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Abstract

Transition structures in reinforcement learning can contain repeated motifs and redun-
dancies. In this preliminary work, we suggest using the geometric decomposition of the
adjacency matrix to form a mapping into an abstract state space. Using the successor
representation (SR) framework, we decouple symmetries in the transition structure from
the reward structure, and form a natural structural hierarchy by using separate SRs for the
global and local structures of a given task. We demonstrate our method can achieve high
policy evaluation accuracy while using representations that are significantly compressed.
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1. Introduction

Knowledge of a task’s structure can enable more efficient policy learning in reinforcement
learning (RL) Ravindran and Barto (2001). For example, policies can be constructed that
are temporally hierarchical Sutton et al. (1999) or an environment’s state space can be
reduced by recognising its symmetries van der Pol et al. (2020b). Unfortunately, discov-
ering an environment’s latent structure is difficult. Existing methods usually find reduced
state-action spaces by learning a global mapping between the environment’s Markov deci-
sion process (MDP) and a more abstract MDP van der Pol et al. (2020a); Mavor-Parker
et al. (2022). In this paper we use a different strategy—we use results from graph theory
and network analysis MacArthur et al. (2008); Sánchez-Garćıa (2020) to isolate repeated
structural motifs in an MDP, allowing for the compression of its transition function into
a more compact form. Additionally, our approach is formulated using the Successor Rep-
resentation (SR) Dayan (1993), meaning structural regularity can be decoupled from the
reward function. Empirically, we demonstrate effective compression of SRs formed over
small world graphs Barabási and Albert (1999); Watts and Strogatz (1998), opening up
future avenues of work using hierarchical reinforcement learning approaches within the SR.

© 2022 M.J. Sargent, A. Mavor-Parker, P.J. Bentley & C. Barry.



Extended Abstract Track
Sargent Mavor-Parker Bentley Barry

2. Related Work

To operate in large state spaces, knowledge of the structural regularities of an environment
is essential. Traditionally structural knowledge is obtained implicitly by learning an inter-
mediate representation useful for value judgements—or explicitly by learning a compressed
latent model of the environment Hafner et al. (2019). Other approaches encode inductive
biases into policies about structural regularities Ravindran and Barto (2001). For example,
van der Pol et al. (2020b) build knowledge of global symmetries into policy networks, while
van der Pol et al. (2020a) learn the equivariances inherent in the dynamics of a given MDP.
The SR is a biologically plausible middle ground between model-based and model-free rein-
forcement learning that contains information about an environment’s structure—decoupled
into its reward function and expected transition dynamics Dayan (1993); Stachenfeld et al.
(2017). However, as far as we are aware, we are first to build an abstraction on top of the
SR to compress it into a more compact form, which we describe next.

3. Geometric Decomposition

For a given MDP, the transition function T (s, a, s′) implies an adjacency graph G = (S, E)
where S is the set of states in the MDP, and E is the set of edges: pairs of states (s, s′)
that are connected under some action. Only deterministic MDPs are considered. Struc-
tural regularities in this graph can be described using the notion of graph automorphisms.
An automorphism is a permutation of nodes that preserves the adjacency structure of said
nodes. The set of nodes being permuted is known as the orbit. Within the overall adjacency
graph of the MDP, there may exist smaller subgraphs that are symmetric and therefore can
be described by some automorphism that permutes their nodes within the bounds of the
local symmetry. These automorphisms are often repeated across the structure of a graph—
they are hence referred to as motifs (MacArthur et al., 2008). From a given automorphism
group, a graph can be represented as the union of the vertices not belonging to any sym-
metric subgraph, S0, and the the vertices of each motif i.e. S = S0 ∪ SM1 ∪ SM2 . . . ∪ SMm

where SMi is the subgraph of vertices that are symmetric under a specific automorphism.
This decomposition is the geometric decomposition of a graph (MacArthur et al., 2008).
The automorphism group for a given graph is not unique; we follow (Sánchez-Garćıa, 2020)
and generate subgraphs that are non-overlapping, and therefore automorphisms that are
support-disjoint. We use saucy (Darga et al., 2012) to generate our automorphism groups,
and in-line with (Sánchez-Garćıa, 2020) we restrict the motifs found to two orbits in size.

4. Structural Hierarchies with Local Symmetry and Successor
Representations

Once an automorphism group is generated and the geometric decomposition of the graph
is found, we generate a reduced graph with adjacency matrix Â by representing every oc-
currence of a symmetric subgraph with a single node, whilst also keeping an index of which
node represents which subgraph and the local transition structure of each symmetric sub-
graph Ai. An illustrative diagram of this can be found in 1. For the purposes of this
work, we will only consider the task of policy evaluation under a random walk policy. If
one were to sample trajectories from this graph following a policy, or compute a policy
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Figure 1: A diagram showing an example graph, and its decomposition into a irreducible
core and subgraphs. States that are symmetric under an automorphism are dis-
played in purple or green; the core is shown as grey. Each graph is shown with a
pictorial representation of its random walk successor representation matrix.

through sample-based policy improvement, the graph-subgraph structure would need to be
represented hierarchically using the options framework (Sutton et al., 1999), where nodes
representing a symmetric subgraph would also lie in the initiating set of an option that
would allow the agent to execute a policy specified for the subgraph.

A random walk SR is generated for the reduced graph Â, and for each symmetric sub-
graph Ai. Let SAi represent the state space of subgraph Ai. We generate expected random
walk state transition dynamics using the analytic form of the SR: ψπ = (I− γA)−1, where
π is the policy, ψ is the SR and γ is the discount factor. A policy over the MDP is defined
for m subgraphs as π(a|s) = argmaxa (ψ

π(R(s))— ψ is either the SR of the reduced graph,
or a subgraph depending on the state being evaluated. a represents actions and s represents
graph states. When evaluating states in SÂ, R(s) for states representing compressed sub-
graphs is the mean of the rewards contained in the subgraph. There is an inherent bias in
estimating the value function in this way, as the state occupancies obtained for SÂ will not
account for occupancies accumulated inside the subgraphs. Future work will study deriving
a bound for this value approximation error, but empirically this is not a significant malus.

4.1. Results

To test this approach, 100 Barabási-Albert (Barabási and Albert, 1999) and 100 Connected
Watts-Strogatz (Watts and Strogatz, 1998) graphs were generated, each with 100 nodes.
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The Barabási-Albert graphs were generated withm = 1 edges preferentially reattached, and
the Watts-Strogatz graphs were generated with nodes initially attached to k = 2 neighbours
and rerouted with p = 0.33. The Watts-Strogatz graphs were more densely connected than
the Barabási-Albert graphs. We used networkx (Hagberg et al., 2008) to generate these
graphs. To convert these to MDPs, an action space was chosen arbitrarily with size equal
to the degree of the most connected node in a graph. For each graph, the value function
under a random walk policy was found for 100 reward functions, where the reward function
r(s, a, s′) := r(s′) := N (0, 1); that is, 100 reward functions for each of the 200 graphs.

The exact value functions can be recovered within symmetric motifs using their random
walk SRs and the rewards associated with each state. In the reduced graph, there will be a
discrepancy between the value functions as the state occupancy for states in the core will not
reflect transitions made inside motifs. As such the difference between the optimal greedy
policies obtained by the reduced random walk SR combined with a given reward vector, and
the true optimal policies found using the SR defined over the original state space, was quan-
tified as the total variation TV := 1

|S′|
∑

s∈S′
1
2 ||π(s)−π∗(s)||1. The TV gives an indication

of, on average, the proportion of actions taken under the inferred policy that deviate from
the optimal policy. The numbers quoted in Table 1 correspond to a deviation of around
4% and 0.1% for the Barabási-Albert and Watts-Strogatz graphs respectively. The mean
squared error between the derived value and optimal value is also shown—in practice this
is dominated by a small number of graphs per node that are massively overestimated. The
compression is shown as a percentage size of the resulting SRs compared to an SR defined
over the original graph. For a graph with n states, the number of elements required for
storage is equal to (n− (

∑
i |SAi | − 1))2 + (

∑
i |SAi |+ 1)2. An additional 1 is added to the

second term to allow for a virtual state to be represented in the SRs of the subgraphs that
allows for an agent to leave the subgraph and return to the main graph. This is an upper
bound and assumes that every subgraph is generated according to a unique motif.

Table 1: Summary statistics of evaluation of the random walk policy over 100 graphs with
100 rewards functions per graph

Graph Generator TV(π, π∗) ||V ,V ∗||22 Compression

Barabási-Albert 0.0231±0.0074 19.4±0.8 33.6%± 7.7%
Watts-Strogatz 0.0015±0.0001 22.1±1.2 94.3%± 3.5%

5. Future Work

An additional improvement that can be made is the use of the internal connectivities to
adjust the SR of the Â to reduced the value approximation error. Sánchez-Garćıa (2020) use
this information in the form of their Basic Symmetric Motifs to adjust pairwise network
measures over compressed graphs. The largest constraint is the need to know the full
adjacency matrix—this is not tractable in reinforcement learning with high dimensional
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observations. Instead, we are interested in using the knowledge of symmetric graphs to
allow agents to form expectations of local structures given their prior experience.
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