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Abstract001

Mechanistic interpretability of large language002
models (LLMs) aims to uncover the internal003
processes of information propagation and rea-004
soning. Sparse autoencoders (SAEs) have005
demonstrated promise in this domain by ex-006
tracting interpretable and monosemantic fea-007
tures. However, prior works primarily focus on008
feature extraction from a single layer, failing to009
effectively capture activations that span multi-010
ple layers. In this paper, we introduce Route011
Sparse Autoencoder (RouteSAE), a new frame-012
work that integrates a routing mechanism with a013
shared SAE to efficiently extract features from014
multiple layers. It dynamically assigns weights015
to activations from different layers, incurring016
minimal parameter overhead while achieving017
high interpretability and flexibility for targeted018
feature manipulation. We evaluate RouteSAE019
through extensive experiments on Llama-3.2-020
1B-Instruct. Specifically, under the same spar-021
sity constraint of 64, RouteSAE extracts 22.5%022
more features than baseline SAEs while achiev-023
ing a 22.3% higher interpretability score. These024
results underscore the potential of RouteSAE025
as a scalable and effective method for LLM026
interpretability, with applications in feature dis-027
covery and model intervention. Our codes028
are available at https://anonymous.4open.029
science/r/RouteSAE-E29F/.030

1 Introduction031

Mechanistic interpretability of large language mod-032

els (LLMs) seeks to understand and intervene in033

the internal process of information propagation034

and reasoning, to further improve trust and safety035

(Elhage et al., 2022b; Gurnee et al., 2023; Wang036

et al., 2023). Sparse autoencoders (SAEs) identify037

causally relevant and interpretable monosemantic038

features in LLMs, offering a promising solution for039

mechanistic interpretability (Bricken et al., 2023).040

Therefore, SAE and its variants (Huben et al., 2024;041

Rajamanoharan et al., 2024a; Gao et al., 2024; Raja-042

manoharan et al., 2024b) have been widely utilized043

Figure 1: Layer-wise normalized activation values for
two features extracted by Topk SAE in pythia-160m.
The low-level feature (visual media terms) exhibits high
activation in early layers that gradually decreases in
deeper layers. In contrast, the high-level feature (tempo-
ral expressions) shows increasing activation with depth,
peaking in the later layers.

in LLM interpretation tasks, such as feature discov- 044

ery (Templeton et al., 2024; Gao et al., 2024) and 045

circuit analysis (Marks et al., 2024). 046

Typically, SAE is trained in an unsupervised 047

manner. It first disentangles the intermediate activa- 048

tions from a single layer in the language model into 049

a sparse, high-dimensional feature space, which is 050

subsequently reconstructed by a decoder. This pro- 051

cess reverses the effects of superposition (Elhage 052

et al., 2022a) by extracting features that are sparse, 053

linear, and decomposable. 054

However, the activation strength of features in 055

this feature space exhibits distinct distribution pat- 056

terns across layers1 (Yun et al., 2021). As shown in 057

Figure 1, low-level features, which are associated 058

with disambiguating word-level polysemy, tend to 059

exhibit peak activation in the early layers and de- 060

cline steadily in deeper layers. High-level features, 061

which capture sentence-level or long-range struc- 062

ture, show increasing activation with depth.2 063

1Referred to as “Transformer factors” in (Yun et al., 2021).
2Refer to (Yun et al., 2021) for more examples of low- and
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Figure 2: Comparison of vanilla single-layer SAE, Crosscoder, and RouteSAE. Most existing SAEs belong to
the vanilla SAE category, where features are extracted from the activation of a single layer. Crosscoder relies on
separate encoders and decoders for each layer. RouteSAE incorporates a lightweight router to dynamically integrate
multi-layer residual stream activations.

This distribution disparity presents a significant064

challenge for previous SAEs (Huben et al., 2024;065

Rajamanoharan et al., 2024a; Gao et al., 2024; Raja-066

manoharan et al., 2024b), as they typically extract067

features from the hidden state of a single layer,068

failing to capture feature activating at other lay-069

ers effectively (cf. Figure 2). Recently proposed070

Sparse Crosscoders3 (Lindsey et al., 2024) serve as071

an alternative to address this limitation, which sep-072

arately encodes the hidden states of each layer into073

a high-dimensional feature space and aggregates074

the resulting representations for reconstruction (cf.075

Figure 2). This approach facilitates the joint learn-076

ing of features across different layers. However,077

Crosscoder has two critical limitations: (1) Lim-078

ited scalability: For an L-layer model, Crosscoder079

employs L separate encoders and decoders to pro-080

cess activations layer by layer, resulting in a param-081

eter scale approximately L times larger than tradi-082

tional SAEs. This significantly increases computa-083

tional overhead during both training and inference.084

(2) Uncontrollable interventions: Crosscoder’s085

joint learning mechanism projects hidden states086

into a high-dimensional space and then aggregates087

them, making it impractical to precisely identify088

and adjust the feature activations at specific lay-089

ers. This limits its flexibility for tasks requiring090

controlled, feature-level interventions, e.g., feature091

steering (Templeton et al., 2024).092

To address these challenges, we propose Route093

Sparse Autoencoder (RouteSAE). At the core is094

integrating a lightweight router with a shared SAE095

to dynamically extract multi-layer features in an ef-096

high-level features.
3Currently a conceptual framework without complete ex-

perimental validation.

ficient and flexible manner. A router is employed to 097

compute normalized weights for activations from 098

multiple layers. This dynamic weighting approach 099

significantly reduces the number of parameters 100

compared to a suite of layer-specific encoders and 101

decoders, thereby addressing scalability concerns. 102

Additionally, by unifying feature disentanglement 103

and reconstruction within a shared SAE, Route- 104

SAE facilitates fine-grained adjustments of specific 105

feature activations, enabling more controlled in- 106

terventions to influence the model’s output. This 107

enhances flexibility and supports precise feature- 108

level control, making the framework well-suited 109

for tasks requiring robust and interpretable manip- 110

ulation of model activations. 111

We conduct comprehensive experiments on 112

Llama-3.2-1B-Instruct (Dubey et al., 2024), eval- 113

uating downstream KL divergence, interpretable 114

feature numbers, and interpretation score. The 115

experimental results demonstrate that RouteSAE 116

significantly improves the interpretability. At an 117

equivalent sparsity level of 64, it achieves a 22.5% 118

increase in the number of interpretable features and 119

a 22.3% improvement in interpretation scores. 120

Our contributions are summarized as follows: 121

• We propose RouteSAE, a novel sparse autoen- 122

coder framework that integrates multi-layer acti- 123

vations through a routing mechanism. 124

• RouteSAE achieves higher computational effi- 125

ciency than Crosscoder by using a shared SAE 126

structure with minimal additional parameters. 127

• Extensive experiments confirm that RouteSAE 128

enhances model interpretability, highlighting the 129

effectiveness of the proposed routing mechanism. 130
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2 Methodology131

In this section, we first briefly review SAEs, then132

introduce our proposed Route Sparse Autoencoder133

(RouteSAE) in detail.134

2.1 Preliminary135

SAE and Feature Decomposition. SAEs decom-136

pose language model activations — typically resid-137

ual streams (He et al., 2016), x ∈ Rd, into a sparse138

linear combination of features f1, f2, . . . , fM ∈ Rd,139

where M ≫ d represents the feature space dimen-140

sion. The original activation x is reconstructed141

using an encoder-decoder pair defined as follows:142

z = σ(Wenc(x− bpre)) (1)143

144
x̂ = Wdecz+ bpre, (2)145

where Wenc ∈ RM×d and Wdec ∈ Rd×M are the146

encoder and decoder weight matrices, bpre ∈ Rd is147

a bias term, and σ denotes the activation function.148

The latent representation z ∈ RM encodes the149

activation strength of each feature. The training150

objective is to minimize the reconstruction mean151

squared error (MSE):152

L = ∥x− x̂∥22. (3)153

TopK SAE. Early SAEs (Huben et al., 2024;154

Bricken et al., 2023) leverage the ReLU activa-155

tion function (Agarap, 2019) to generate sparse156

feature representations, coupled with an additional157

L1 regularization term on latent representation z to158

enforce sparsity. However, this approach is prone159

to feature shrinkage, where the L1 constraint drives160

positive activations in z toward zero, reducing the161

expressive capacity of the sparse feature space. To162

mitigate this issue, TopK SAE (Gao et al., 2024) re-163

places the ReLU activation function with a TopK(·)164

function, which directly controls the number of165

active latent dimensions by selecting the top K166

largest values in z. This is defined as:167

z = TopK(Wenc(x− bpre)). (4)168

By eliminating the need for an L1 regularization169

term, TopK SAE achieves a more effective balance170

between sparsity and reconstruction quality, while171

enhancing the model’s ability to learn disentangled172

and interpretable monosementic features. In our173

RouteSAE framework, the shared SAE module is174

instantiated as a TopK SAE due to its superior per-175

formance in producing monosemantic features.176

2.2 Route Sparse Autoencoder (RouteSAE) 177

As shown in Figure 2, existing SAEs are typi- 178

cally trained on intermediate activations from a 179

single layer, restricting their ability to simultane- 180

ously capture both low-level features from shallow 181

layers and high-level features from deep layers. To 182

overcome this limitation, RouteSAE incorporates a 183

lightweight router to dynamically integrate multi- 184

layer residual streams from language models and 185

disentangle them into a unified feature space. 186

Layer Weights. As illustrated in Figure 3, the 187

router receives residual streams from multiple lay- 188

ers and determines which layer’s activation to route. 189

Instead of concatenating these activations, which 190

could result in an excessively large input dimen- 191

sion, we adopt a simple yet effective aggregation 192

strategy: sum pooling. Specifically, given activa- 193

tions xi ∈ Rd from layer i, we aggregate them 194

using sum pooling to form the router’s input: 195

v =
L−1∑
i=0

xi, xi ∈ Rd, (5) 196

where L denotes the total number of layers being 197

routed. The resulting vector v ∈ Rd serves as a 198

condensed representation of multi-layer activations. 199

Next, the router projects v into RL using a learn- 200

able weight matrix Wrouter ∈ RL×d, yielding the 201

layer weight vector α: 202

α = Wrouterv ∈ RL. (6) 203

Each element αi in α represents the unnormalized 204

weight for layer i, indicating its relative importance 205

in the routing process. These weights are then 206

normalized using a softmax function to obtain layer 207

selection probabilities pi: 208

pi =
exp(αi)∑L−1

j=0 exp(αj)
, i = 0, 1, . . . , L− 1. (7) 209

pi reflects the likelihood that the activation strength 210

peaks at layer i, dynamically assigned by the router 211

based on the input representations. 212

Routing Mechanisms. In RouteSAE, the router 213

selects the layer i∗ with the highest probability pi, 214

computed as described in Equation 7. Formally, 215

this is expressed as: 216

i∗ = argmax
i

pi, i = 0, 1, . . . , L− 1. (8) 217

To ensure differentiability, we scale the activation 218

xi∗ from the selected layer i∗ by its corresponding 219
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Figure 3: RouteSAE employs a lightweight router to dynamically integrate activations from multiple residual stream
layers, effectively disentangling them into a shared feature space. It enables the model to capture features across
different layers — low-level features such as “units of weight” and “Olympics” from shallow layers, and high-level
features like “more [X] than [Y]” and “do everything [possible/in my power]” from deeper layers.

probability pi∗ , using it as input to the shared SAE220

for disentangling into the high-dimensional feature221

space and subsequent reconstruction training:222

xroute = pi∗xi∗ . (9)223

The latent representation z and the reconstruction224

x̂ are calculated as follows:225

zroute = TopK(Wenc(xroute − bpre)) (10)226

x̂route = Wdeczroute + bpre. (11)227

Finally, we minimize the reconstruction MSE:228

L = ∥xroute − x̂route∥22. (12)229

This objective function jointly trains the router and230

the shared TopK SAE, ensuring efficient and adap-231

tive feature extraction across multiple layers.232

Shared SAE and Unified Feature Space. The233

routed intermediate activation ( xroute, as defined234

in Equation 9) is processed by a shared SAE for re-235

construction, which in this work is instantiated as a236

TopK SAE (Gao et al., 2024). Notably, RouteSAE237

is flexible and can be easily adapted to various SAE238

variants. By employing a shared SAE, RouteSAE239

establishes a unified feature space across activa-240

tions from all routing layers. This ensures consis-241

tent feature representations, thereby enhancing the242

disentanglement of high-dimensional features and243

improving interpretability.244

3 Experiments245

We first outline the experimental setup, followed246

by the evaluation of RouteSAE. In this paper, we247

follow prior work (Gao et al., 2024; Rajamanoha- 248

ran et al., 2024a; Huben et al., 2024; Templeton 249

et al., 2024; He et al., 2024) and employ multiple 250

evaluation metrics to assess the effectiveness of 251

RouteSAE, including downstream KL-divergence, 252

interpretable features, interpretation score, and re- 253

construction loss. Finally, we provide a detailed 254

case study, demonstrating that RouteSAE not only 255

effectively captures both low-level features from 256

shallow layers and high-level features from deep 257

layers, but also enables targeted manipulation of 258

these features to control the model’s output. 259

3.1 Setup 260

Inputs. We train all SAEs on the residual streams 261

of the Llama-3.2-1B-Instruct. For baseline SAEs, 262

we follow the standard approach (Gao et al., 2024) 263

of selecting the layer located approximately at 3
4 264

of the model depth (i.e., Layer 11). Prior work 265

(Lad et al., 2024) has shown that the early layers of 266

LLMs primarily handle detokenization, whereas 267

later layers specialize in next-token prediction. 268

Based on this insight, we select residual streams 269

from the middle layers of the model as input for 270

both RouteSAE and Crosscoder (Lindsey et al., 271

2024). In particular, we focus on layers spanning 272
1
4 to 3

4 of the model depth, as detailed in Table 1. 273

The training data is sourced from OpenWeb- 274

Text2 (Gao et al., 2020), comprising approximately 275

100 million randomly sampled tokens for training, 276

with an additional 10 million tokens reserved for 277

evaluation. All experiments are conducted using a 278

context length of 512 tokens. To ensure stable train- 279
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Figure 4: Pareto frontier of sparsity versus KL diver-
gence. RouteSAE achieves a lower KL divergence at
the same sparsity level.

ing, we normalize the language model activations280

following (Gao et al., 2024).281

Hyperparameters. For all SAEs, we use the282

Adam optimizer (Kingma and Ba, 2015) with stan-283

dard settings: β1 = 0.9 and β2 = 0.999. The284

learning rate is set to 5× 10−4, following a three-285

phase schedule. (1) Linear warmup. The learning286

rate increases linearly from 0 to the target rate over287

the first 5% of training steps. (2) Stable phase.288

The learning rate remains constant for 75% of the289

training steps. (3) Linear Decay. The learning rate290

gradually decreases to zero over the final 20% of291

training steps to ensure smooth convergence. To292

improve training stability, we apply unit norm reg-293

ularization (Gao et al., 2024) to the columns of294

the SAE decoder every 10 steps, ensuring that the295

decoder columns maintain unit length.296

Baselines. We benchmark RouteSAE against297

leading baselines, including ReLU SAE (Huben298

et al., 2024), Gated SAE (Rajamanoharan et al.,299

2024a), TopK SAE, and Crosscoder (Lindsey et al.,300

2024). Moreover, we compare with a random set-301

ting, where the router is replaced by a uniform dis-302

tribution that assigns equal routing weights to each303

layer. It is important to note that Crosscoder re-304

mains a conceptual framework and lacks complete305

experimental validation. As there is no official306

codebase or hyperparameter guidance available,307

we implement it following the description in (Lind-308

sey et al., 2024). We acknowledge that our results309

may not fully reflect its actual performance.310

3.2 Downstream KL Divergence311

To assess whether the extracted features are rele-312

vant for language modeling, we replace the residual313

streams x with the reconstructed representation x̂314

during the forward pass of the language model and315

evaluate the reconstruction quality using Kullback-316

(a) (b)

Figure 5: Effect of threshold on feature interpretability
in RouteSAE. (a) Increasing the threshold reduces the
number of selected features. (b) Higher thresholds yield
better interpretation scores across sparsity levels.

Leibler (KL) divergence. It quantifies the discrep- 317

ancy between the original and reconstructed dis- 318

tributions, with lower value indicating that the ex- 319

tracted features are highly relevant for language 320

modeling. Note that RouteSAE replaces the activa- 321

tion at the layer with the highest routing weight. 322

As shown in Figure 4, the sparsity-KL diver- 323

gence frontiers for ReLU and Gated SAE are nearly 324

identical, yet both exhibit a significant gap com- 325

pared to TopK SAE. Due to suboptimal reconstruc- 326

tion quality, the KL divergence for ReLU and Gated 327

SAE drops substantially as L0 increases, falling 328

from around 400 to 350. In contrast, the KL diver- 329

gence for both TopK and RouteSAE remains con- 330

sistently below 150, with only minimal decreases 331

as L0 increases. This indicates that both methods 332

are able to effectively reconstruct the original in- 333

put x even at high sparsity levels. The random 334

routing baseline yields higher KL divergence than 335

both TopK and RouteSAE, further highlighting the 336

advantage of learned routing. 337

Notably, RouteSAE achieves the best perfor- 338

mance among all methods, maintaining a lower 339

KL divergence at comparable sparsity levels. It 340

outperforms even TopK SAE, indicating that fea- 341

ture substitution during inference is most effective 342

when performed at the layer where the target fea- 343

ture is most active, rather than at a predetermined 344

fixed layer. We exclude Crosscoder from this com- 345

parison, as it produces multiple reconstructed repre- 346

sentations x̂, making its application to this setting 347

nontrivial and not directly comparable. 348

3.3 Interpretable Features 349

Previous works (Huben et al., 2024; He et al., 2024) 350

interpret features by preserving the context with the 351

highest feature activation value. However, we argue 352

that it has two limitations: (1) Retaining only the 353

highest activation context for each feature leads to 354
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a large number of undiscernible features; (2) Each355

feature is associated with only a single context,356

reducing the reliability of the interpretation.357

To address these limitations, we introduce a new358

approach for preserving feature contexts using an359

activation threshold. For a given sequence context,360

only features with activation values exceeding the361

threshold are retained. As shown in Figure 5(a),362

increasing the threshold reduces the number of re-363

tained features. In contrast, Figure 5(b) demon-364

strates that a higher threshold leads to improved365

interpretation scores. Consequently, the threshold366

governs a trade-off between the quantity of inter-367

pretable features and their interpretability quality.368

In this section, we set the threshold to 15, which369

achieves a balance between maintaining sufficient370

feature quantity and enhancing interpretability. No-371

tably, a single sequence may be associated with372

multiple contexts.373

To further refine the interpretation, activated con-374

texts are categorized based on their activation to-375

kens, maintaining a min-heap of activation values.376

We retain the top 2 contexts with the highest activa-377

tion values within each activated token. A filtering378

step is applied to remove features with fewer than379

four active contexts, ensuring that only sufficiently380

represented features are considered. To evaluate381

feature extraction, we use 10 million tokens from382

the evaluation set to extract contexts associated383

with each feature.384

As illustrated in Figure 6, at a threshold of 15,385

both ReLU and Gated SAE extract over 1,000 inter-386

pretable features, performing similarly. In contrast,387

TopK SAE significantly outperforms both, extract-388

ing more than 3,000 features. RouteSAE surpasses389

all other methods, extracting over 4,000 features at390

the same threshold. Notably, RouteSAE exhibits391

a more gradual decline in the number of extracted392

features as L0 increases, while TopK SAE exhibits393

a more pronounced reduction. The random rout-394

ing baseline sometimes extracts even more features395

than RouteSAE, but its feature count decreases396

much more rapidly as L0 increases. These results397

suggest that learning based solely on single-layer398

activation values limits the ability of SAEs to ex-399

tract interpretable features. In comparison, Cross-400

coder extracts substantially fewer features, retain-401

ing approximately 200. Since Crosscoder aggre-402

gates and projects activations across multiple lay-403

ers, we hypothesize that the optimal threshold for404

balancing feature quantity and interpretability lies405

in a lower range for Crosscoder. Therefore, com-406

Figure 6: Comparison of the interpretable feature num-
ber. RouteSAE extracts the most interpretable features
at the same threshold.

(a) (b)

Figure 7: Human–GPT-4o alignment in the automatic
feature interpretation pipeline. (a) Percentage of fea-
tures assigned to each category (Low, High, or Undis-
cernible) by humans and GPT-4o. (b) Distribution of the
absolute differences in interpretability scores between
human annotators and GPT-4o.

paring it against the same activation threshold may 407

not reflect its actual ability to extract high-quality 408

features. We plan to investigate this in future work. 409

410

3.4 Interpretation Score 411

Despite the feature screening in Section 3.3, the 412

number of retained features remains in the thou- 413

sands, making manual interpretation and evaluation 414

challenging. To further assess feature interpretabil- 415

ity, we follow prior work (Huben et al., 2024; Tem- 416

pleton et al., 2024; He et al., 2024) and leverage 417

GPT-4o (Hurst et al., 2024) to analyze the features 418

extracted by SAEs, assigning an interpretability 419

score alongside feature descriptions. Unlike previ- 420

ous approaches, we provide GPT-4o with multiple 421

token categories per feature along with their con- 422

textual usage. Given resource constraints, we ran- 423

domly select a subset of 100 retained features per 424

SAE for interpretation. As detailed in Appendix D, 425

for each feature, we construct a structured prompt 426

comprising a prefix prompt, the activated token, 427

and its surrounding context, which is then given to 428

GPT-4o. GPT-4o outputs three standardized com- 429

ponents: (1) Feature categorization, labeling each 430

feature as low-level, high-level, or undiscernible; 431
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(2) Interpretability score, rated on a scale of 1 to 5;432

and (3) Explanation, providing a brief justification433

for the assigned category and score.434

To evaluate the consistency between GPT-4o and435

human annotators in both feature categorization436

and interpretability scoring, we randomly sample437

100 features from RouteSAE. For each feature,438

we provide its activation contexts and a scoring439

prompt to both GPT-4o and human annotators. As440

illustrated in Figure 7, (a) shows the percentage of441

features assigned to each interpretability category442

(“Low,” “High,” or “Undiscernible”) by both hu-443

mans and GPT-4o. The two distributions are nearly444

identical, reflecting strong categorical agreement445

between human and GPT-4o annotations. (b) de-446

picts the distribution of absolute differences |∆| in447

interpretability scores, showing that most features448

exhibit minimal discrepancy between human and449

GPT-4o (|∆| < 2). This indicates a high degree of450

alignment in interpretability assessment.451

To quantify overall interpretability, we compute452

the average interpretability score across the 100453

sampled features for each SAE. Due to stochastic-454

ity in both feature selection and GPT-4o’s scoring,455

these results should be viewed as indicative rather456

than definitive measures of interpretability.457

Figure 8 shows that both ReLU and Gated SAE458

exhibit low and relatively stable interpretation459

scores, consistently falling below those of the other460

methods. TopK SAE shows a noticeable decline in461

interpretation scores as L0 increases, with scores462

dropping from over 4.0 at sparsity 48 to around463

3.7 at sparsity 72. In contrast, Crosscoder, despite464

not being sensitive to changes in sparsity, main-465

tains consistent scores, hovering around 3.9 across466

all sparsity levels. The random routing baseline467

achieves higher interpretation scores than ReLU,468

Gated, TopK, and Crosscoder, but remains consis-469

tently lower than RouteSAE. In comparison, Route-470

SAE achieves the highest interpretation scores,471

maintaining values above 4.4 at all sparsity levels.472

It remains largely unaffected by changes in sparsity,473

demonstrating its robust ability to preserve high474

interpretability, regardless of the sparsity setting.475

These results indicate that dynamically leveraging476

multi-layer activations, as done in RouteSAE and477

even to some extent by the random router, not only478

allows for extraction of more features but also leads479

to higher feature interpretability.480

Figure 8: Comparison of interpretation scores. Route-
SAE achieves a higher interpretation score at the same
sparsity level.

(a) (b)

Figure 9: Illustration of weights assigned to routing
layers during training (a) and inference (b). In both
cases, the weights exhibit a U-shaped distribution rather
than concentrating on a small subset of shallow layers.

3.5 Routing Weights 481

In fact, reconstructing the activations of a language 482

model using SAE becomes increasingly difficult 483

as the number of layers grows. This is likely due 484

to the increasing abstraction and entanglement of 485

features in deeper layers, which imposes additional 486

challenges on the autoencoder’s capacity to isolate 487

and reconstruct meaningful components. 488

To analyze how RouteSAE allocates routing 489

weights across layers during training and inference, 490

we track the layer-wise routing weights through- 491

out both phases. As shown in Figure 9, RouteSAE 492

produces a distinct weight profile across layers, 493

exhibiting a U-shaped distribution rather than con- 494

centrating weights on a small subset of shallow 495

layers. This pattern suggests a balanced allocation 496

of representational capacity, where both shallow 497

and deep layers contribute meaningfully. These re- 498

sults are consistent with the observations reported 499

in (Yun et al., 2021), which indicate that lower- 500

level features are primarily activated in the earlier 501

layers, whereas higher-level features become more 502

prominent in the deeper layers. 503
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3.6 Case Study504

Interpretable Features. As shown in Figure 3,505

RouteSAE effectively captures both low-level and506

high-level features from shallow and deep lay-507

ers, respectively. Specifically, RouteSAE identi-508

fies low-level features such as “units of weight”509

and “Olympics” from shallow layers. The “units510

of weight” feature activates on tokens related to511

weight units, including terms like “pound” and512

“kilograms”. The “Olympics” feature captures vari-513

ations of the term “Olympic”, such as “Olympics”514

and “Olympian”. These two features exemplify515

word-level polysemy disambiguation, peaking at516

shallow layers. At deeper layers, RouteSAE ex-517

tracts high-level features, including the patterns518

“more [X] than [Y]” and “do everything [possible/in519

my power]”. The first feature identifies tokens that520

appear in comparative structures, particularly those521

following the pattern “more [X] than [Y].” The sec-522

ond feature highlights tokens in phrases expressing523

a commitment to maximal effort or capability, such524

as “do my best”, and “do all he could”. These525

two features reflect sentence-level or long-range526

pattern formation, peaking at deeper layers. These527

observations demonstrate that RouteSAE success-528

fully integrates features from multiple layers of529

activations into a unified feature space. For more530

interpretable features, refer to Appendix E.531

RouteSAE Feature Steering Figure 10 illus-532

trates how RouteSAE enables controlled model533

steering by directly manipulating internal features534

from the SAE decoder. This is achieved by replac-535

ing the activation x with the reconstructed repre-536

sentation x̂. In each example, the original response537

is generated without intervention, reflecting the538

model’s default behavior. In contrast, the clamped539

response is obtained by increasing the activation of540

a specific target feature to 20. In the upper exam-541

ple, the clamped feature is a low-level one related542

to the “Olympics” concept; after intervention, the543

model’s response becomes focused on Olympic-544

related content, regardless of the input question.545

In the lower example, the manipulated feature is546

a high-level one representing the intent to “do ev-547

erything possible”; as a result, the model adopts a548

proactive, determined stance, as evidenced by re-549

sponses such as “I can do this.” This illustrates that,550

RouteSAE enables more controllable and targeted551

interventions on model behavior through direct fea-552

ture activation manipulation.553

Original: That's a classic idiom! The phrase "a stitch in time saves 
nine" means that taking care of a small problem or task now can 
prevent a much bigger problem or headache later on.

Clamped: This is the first time I have ever heard of this phrase. I 
have heard of  "a new Olympic Games" but…

Human: What does the phrase "a stitch in time saves nine" mean?

Olympics

Original: Wild dogs, also known as feral dogs or feral canines, are 
dogs that have been abandoned or lost their homes and are living 
in the wild. They are not domesticated dogs…

Clamped: I can do this. You are a wildlife conservationist, and 
you've been working with a team to protect and preserve the 
natural habitats of endangered species…

Human: Can you tell me about wild dogs? Not stray dogs, but 
wild dogs.

Do everything [possible/in my power]

Figure 10: Illustration of feature steering via activation
manipulation in RouteSAE. The original response is
generated with unaltered feature activations, while the
clamped response is produced after setting the target
feature’s activation to a high value. The upper example
demonstrates a low-level feature associated with the
“Olympics” concept; increasing its activation leads the
model to output Olympics-related content. The lower
example involves a high-level feature linked to “doing
everything possible”; increasing its activation causes the
model to adopt an all-in attitude in its response.

4 Conclusion 554

In this paper, we introduce Route Sparse Autoen- 555

coder (RouteSAE), a new framework designed to 556

enhance the mechanistic interpretability of LLMs 557

by efficiently extracting features from multiple lay- 558

ers. Through the integration of a dynamic rout- 559

ing mechanism, RouteSAE enables the assignment 560

of layer-specific weights to each routing layer, 561

achieving a fine-grained, flexible, and scalable ap- 562

proach to feature extraction. Extensive experiments 563

demonstrate that RouteSAE significantly outper- 564

forms traditional SAEs, with a 22.5% increase in 565

the number of interpretable features and a 22.3% 566

improvement in interpretability scores at the same 567

sparsity level. These results underscore the po- 568

tential of RouteSAE as a powerful tool for under- 569

standing and intervening in the internal representa- 570

tions of LLMs. By enabling more precise control 571

over feature activations, RouteSAE facilitates bet- 572

ter model transparency and provides a solid foun- 573

dation for future work in feature discovery and 574

interpretability-driven model interventions. 575
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Limitations576

While RouteSAE shows promising results, several577

limitations remain, which we aim to address in578

future research.579

Improvements of the router. To the best of our580

knowledge, we are the first to introduce a routing581

mechanism in SAEs to learn a shared feature space.582

However, we employed a simple linear projection,583

which has limited capabilities. Our experiments584

show that the weight distribution of the router is585

influenced by the feature space size M and the586

sparsity level k. Therefore, exploring more sophis-587

ticated activation aggregation methods and router588

designs is an important direction for future work.589

Cross-layer features. Research on cross-layer590

feature extraction is still in its early stages, and the591

current method of dynamically selecting activations592

across multiple layers, as presented in this paper,593

is not yet optimized for discovering cross-layer594

features. Further exploration is needed to enable595

RouteSAE to more effectively identify and utilize596

cross-layer features.597

Ethical Considerations598

This paper presents work whose goal is to advance599

the field of Machine Learning. There are many600

potential societal consequences of our work, none601

which we feel must be specifically highlighted here.602
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A Related Work783

In this section, we begin by reviewing prior work784

on sparse encoding, followed by a discussion of785

SAEs for interpreting LLMs. Finally, we briefly786

introduce cross-layer feature extraction in LLMs.787

A.1 Sparse Encoding788

Dictionary learning (Mairal et al., 2009) is a foun-789

dational machine learning approach that aims to790

learn an overcomplete set of basis components, en-791

abling efficient data representation through sparse792

linear combinations. Autoencoders (Hinton and793

Salakhutdinov, 2006), in contrast, are designed to794

extract low-dimensional embeddings from high-795

dimensional data. By merging these two paradigms,796

sparse autoencoders have been developed, incor-797

porating sparsity constraints such as L1 regulariza-798

tion (Memisevic et al., 2015) to enforce sparsity799

in learned representations. Sparse autoencoders800

have found widespread application across various801

domains of machine learning, including computer802

vision (Wang et al., 2015) and natural language803

processing (Chang et al., 2018).804

A.2 Sparse Autoencoder for LLMs805

SAEs have emerged as effective tools for captur-806

ing monosemantic features (Elhage et al., 2022a),807

making them increasingly popular in LLM appli-808

cations. Early work (Huben et al., 2024) intro-809

duced SAEs for extracting interpretable features810

from the internal activations of GPT-2 (Radford811

et al., 2019). To address systematic shrinkage812

in feature activations inherent in traditional SAEs813

(Huben et al., 2024; Bricken et al., 2023), Gated814

SAEs (Rajamanoharan et al., 2024a) were pro-815

posed, decoupling feature detection from magni-816

tude estimation. TopK SAEs (Gao et al., 2024),817

inspired by k-sparse autoencoders (Makhzani and818

Frey, 2014), directly controlled sparsity to enhance819

reconstruction fidelity while preserving sparse rep-820

resentations. JumpReLU SAEs (Rajamanoharan821

et al., 2024b) advanced the trade-off between re-822

construction quality and sparsity by replacing the823

conventional ReLU activation (Agarap, 2019) with824

the discontinuous JumpReLU function (Erichson825

et al., 2020). More recently, Switch SAEs (Mu-826

dide et al., 2024) introduced a mixture-of-experts827

mechanism, where inputs are routed to smaller, spe-828

cialized SAEs, achieving better reconstruction per-829

formance within fixed computational constraints.830

However, these approaches capture the intermedi-831

ate activations of language models from a single 832

layer, neglecting features activated across multiple 833

layers, which limits their overall applicability. 834

A.3 Features across Layers 835

Layer-wise differences in activation features within 836

the transformer-based language model were first 837

highlighted in (Yun et al., 2021), revealing that 838

shallow layers capture low-level features while 839

deeper layers focus on high-level patterns. Build- 840

ing on this, Gemma Scope (Lieberum et al., 2024) 841

leveraged JumpReLU SAEs (Rajamanoharan et al., 842

2024b) to train separate models for each layer and 843

sub-layer of the Gemma 2 models (Rivière et al., 844

2024). Similarly, Llama Scope (He et al., 2024) 845

trained 256 SAEs per layer and sublayer of the 846

Llama-3.1-8B-Base model (Dubey et al., 2024), ex- 847

tending layer-wise sparse modeling. Nevertheless, 848

training a suite of SAEs is computationally expen- 849

sive and often learns redundant features, posing 850

significant scalability challenges for larger models. 851

Moreover, determining the specific SAE relevant 852

to a given input or characteristic can be nontriv- 853

ial, complicating their practical application. Re- 854

cently, Sparse Crosscoders (Lindsey et al., 2024) 855

introduced a cross-layer SAE variant designed to 856

investigate layer interactions and shared features 857

(Templeton et al., 2024; Kissane et al., 2024). This 858

framework facilitates circuit-level analysis (Elhage 859

et al., 2021; Marks et al., 2024) by enabling feature 860

tracking across layers, providing valuable insights 861

into the evolution of model features and architec- 862

tural differences. However, Crosscoder still relies 863

on separate encoders and decoders for each layer, 864

which limits its efficiency and hinders seamless 865

integration with downstream tasks. 866

The challenges of scalability, feature localiza- 867

tion, and applicability to downstream tasks moti- 868

vate the development of RouteSAE. 869

B Comparison of Routing Mechanisms. 870

In RouteSAE, the router determines how the multi- 871

layer activations are integrated into the SAE. We 872

denote the routing mechanism defined in Equation 873

9 as hard routing. 874

Hard Routing. In hard routing, the router se- 875

lects the layer with the highest probability pi. The 876

activation xi∗ from the selected i∗ is scaled by its 877

corresponding probability pi∗ and used as the input 878

to the SAE: 879

xSAE = pi∗xi∗ . (13) 880
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Figure 11: Routing mechanism comparison. Hard routing enforces sparse selection by activating only a single layer,
whereas soft routing integrates information from all layers, weighted by their respective significance probabilities.

Soft Routing. As an alternative, we also explore881

soft routing, where the router combines activations882

from all layers by weighting them with their re-883

spective probabilities pi. Instead of selecting a884

single layer, the input to the SAE is computed as a885

weighted sum of all layer activations:886

xSAE =

L−1∑
i=0

pixi. (14)887

This approach allows the SAE to incorporate multi-888

layer information in a more continuous manner,889

leveraging a richer feature representation compared890

to hard routing.891

Discussion. Hard routing enforces sparsity by892

selecting the activation from a single layer, typi-893

cally the one with the strongest response for a given894

input. This mechanism simplifies the routing task,895

as the router only needs to identify the layer with896

the highest activation. In contrast, soft routing ag-897

gregates activations from all layers, weighted by898

their estimated importance scores. This introduces899

a significantly more challenging requirement: the900

router must accurately estimate the relative contri-901

bution of each layer. Inaccurate estimations may re-902

sult in disproportionately high weights assigned to903

less relevant layers, which can lead to the accumula-904

tion of noisy or irrelevant activations. This, in turn,905

may interfere with the disentanglement of monose-906

mantic features in subsequent stages. While soft907

routing has the potential to capture cross-layer fea-908

tures—i.e., features that are distributed across mul-909

tiple layers—our experiments thus far have not910

demonstrated clear benefits in this setting. We plan911

to investigate this direction further in future work.912

Model Llama-3.2-1B-Instruct

Hidden Size 2,048
# Layers 16

Routing Layers [3:11]
SAE Width 16,384 (8x)
Batch Size 64

Table 1: Implementation details of RouteSAEs for
Llama-3.2-1B-Instruct. Note that the layer indices start
from 0.

Figure 12: Pareto frontier of sparsity versus Norm MSE.
Norm MSE, as a proxy metric, cannot be directly com-
pared between models with distinct input distributions.

C Reconstruction Loss 913

Given a fixed sparsity L0 in the latent representa- 914

tion z, a lower reconstruction loss indicates better 915

performance in terms of the SAE’s ability to recon- 916

struct the original input. However, evaluating the 917

effectiveness of SAEs remains challenging. The 918

sparsity-reconstruction frontier is commonly used 919

as a proxy metric, but it should be noted that the 920

primary goal of SAEs is to extract interpretable 921

features, not simply to reconstruct activations. As 922

shown in Figure 12, TopK SAE achieves the opti- 923

mal sparsity-reconstruction trade-off, maintaining 924
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a normalized MSE of around 0.15 across sparsity925

levels. The performance of Random, ReLU and926

Gated SAE is comparable, with all three methods927

showing a normalized MSE of approximately 0.25,928

significantly lagging behind TopK. Crosscoder, on929

the other hand, demonstrates a notably poorer re-930

construction frontier, with its MSE consistently931

around 0.35.932

It is important to clarify that, as a proxy met-933

ric, normalized MSE cannot be directly compared934

between models with different input distributions.935

Both RouteSAE and Crosscoder receive and recon-936

struct activations from multiple layers, which leads937

to a more complex distribution compared to a single938

layer. This increased complexity makes reconstruc-939

tion more difficult, resulting in a higher MSE loss.940

Nevertheless, while both Crosscoder and Route-941

SAE aggregate activations across multiple layers,942

RouteSAE exhibits significantly better reconstruc-943

tion performance than Crosscoder, trailing only944

slightly behind TopK. RouteSAE maintains a nor-945

malized MSE of around 0.18, demonstrating its946

ability to handle the complexities of multi-layer947

reconstruction.948

D Auto Intrepretation Prompt Design.949

Background
We are analyzing the activation levels of features in a neural network, where
each feature activates certain tokens in a text. Each token’s activation value
indicates its relevance to the feature, with higher values showing stronger
association. Features are categorized as:
A. Low-level features, which are associated with word-level polysemy
disambiguation (e.g., "crushed things", "Europe").
B. High-level features, which are associated with long-range pattern
formation (e.g., "enumeration", "one of the [number/quantifier]")
C. Undiscernible features, which are associated with noise or irrelevant
patterns.

950

Task description
Your task is to classify the feature as low-level, high-level or undiscernible
and give this feature a monosemanticity score based on the following
scoring rubric:
Activation Consistency
5: Clear pattern with no deviating examples
4: Clear pattern with one or two deviating examples
3: Clear overall pattern but quite a few examples not fitting that pattern
2: Broad consistent theme but lacking structure
1: No discernible pattern
Consider the following activations for a feature in the neural network.
Token: ... Activation: ... Context: ...

Question
Provide your response in the following fixed format:
Feature category: [Low-level/High-level/Undiscernible]
Score: [5/4/3/2/1]
Explanation: [Your brief explanation]

951

E Interpretable Features Extracted by 952

RouteSAE. 953

In this section, we present additional interpretable 954

features extracted by RouteSAE from Llama-3.2- 955

1B-Instruct, including feature-activated tokens, 956

contexts, values, and GPT-4 explanations. 957

E.1 Low-Level Features 958

Feature 3675: flourish and thrive

Explanation: The feature consistently activates on variations of the
words “flourish” and “thrive”, which are semantically similar and often
used interchangeably in contexts indicating growth or success. The acti-
vation values are consistently high across all instances, with no deviating
examples, indicating a clear pattern associated with word-level polysemy
disambiguation related to these terms.
Contexts: Anti-Nafta rhetoric doesn’t play well in El Paso, San Anto-
nio and Houston, which have become gateway cities for commerce with
Latin America and have flourished since the North American Free Trade
Agreement passed Congress in 1993. Activation: 16.16
Contexts: It’s not, by the way, a song about devil-worshipping, although
the Stones thrived on the controversy and didn’t do much to discourage
speculation. Activation: 17.33
Contexts: When the researchers planted worn-out cattle fields in Costa
Rica with a sampling of local trees, native species began to move in and
flourish, raising the hope that destroyed rainforests can one day be replaced.
Activation: 16.43

959

Feature 3896: academic or job application

Explanation: The feature consistently activates on tokens related to
the context of academic or job application processes, specifically focusing
on “applicant” and “interviews.” There is a clear pattern with no deviat-
ing examples, indicating a strong association with word-level polysemy
disambiguation related to the application process.
Contexts: ON a Sunday morning a few months back, I interviewed my
final Harvard applicant of the year. Activation: 15.97
Contexts: Then you have to advertise a position or opportunity, and
weed through the applicants to find the 5% that are actually worth talking
to. Activation: 15.80
Contexts: I might be smart and qualified, but for some random reason I
may do poorly in the interviews and not get an offer! Activation: 15.45

960

Feature 4574: spatial or temporal prepositions

Explanation: The feature consistently activates on the tokens “in” and
“within”, indicating a strong association with spatial or temporal prepositions.
The activations are highly consistent across different contexts, showing no
deviating examples, which suggests a clear pattern related to the usage of
these prepositions. This aligns with low-level features focused on word-level
polysemy disambiguation.
Contexts: The show was getting huge, and just as with COMDEX, the
show-within-a-show was born. Activation: 17.48
Contexts: According to a Circuit City employee in Chicago, the con-
sumer electronics chain is trading in HD DVD players bought into their
stores “within 3 months of the announcement”, as opposed to their 30-day
return policy. Activation: 28.23
Contexts: There’s now at least a 50% risk that prices will decline within
two years in 11 major metro areas, including San Diego; Boston; Long
Island, N.Y.; Los Angeles; and San Francisco, according to PMI Mortgage
Insurance’s latest U.S. Activation: 29.30

961
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E.2 High-Level Features962

Feature 19: enumeration or distribution

Explanation: The feature consistently activates tokens that are part of
a pattern involving enumeration or distribution, such as “each”, “neither”,
“all”, and “both”. These tokens are often used in contexts where items or
actions are being listed or compared, indicating a high-level feature related
to long-range pattern formation. The activations show a clear pattern with
no deviating examples, suggesting a strong monosemanticity.
Contexts: A caller, discussing how Clinton and Obama are both ter-
rifying or whatever, made the comment that “my 12-year-old says that
Obama looks like Curious George!” As my jaw hit the steering wheel, Rush
chuckled and they moved on to the next topic. Activation: 17.73
Contexts: Advanced Graphics Card Repair Now that you have already
learned how to repair broken capacitors and inductors on your graphics
cards (or any other boards), it’s time to move on to the smaller components
that are harder to tackle. Activation: 16.62
Contexts: Creating a useful command line tool Now that we have the
basics out of the way, we can move onto creating a tool to solve a specific
problem. Activation: 16.37

963

Feature 1424: date expressions

Explanation: The activations consistently highlight tokens that are part
of date expressions, specifically the day of the month in a date format (e.g.,
“January 1”, “February 28”, “March 31”). This indicates a clear pattern
of recognizing and activating on numerical day components within date
contexts, which aligns with high-level features associated with long-range
pattern formation, such as recognizing structured data formats like dates.
There are no deviating examples, hence the highest score for activation
consistency.
Contexts: As of January 1, more than one of every 100 adults is behind
bars, about half of them Black. Activation: 22.78
Contexts: The Random Destructive Acts FAQ Updated March 19, 2003:
It has been about 8 years since I wrote this page (before 2002 the last
modification date was June 30, 1995) and I still get emails about it every
few days. Activation: 20.76
Contexts: Taguba, USA (Ret.) served 34 years on active duty until his
retirement on 1 January 2007. Activation: 15.03

964

Feature 2271: comparative or equality expressions

Explanation: The activations consistently highlight tokens that are part
of comparative or equality expressions, such as “just as [adjective/adverb] as”
and “equal [noun].” This indicates a clear pattern of identifying long-range
patterns related to comparisons and equality, with no deviating examples.
Contexts: a big Obama supporter, and I would have voted the old John
McCain over Hillary Clinton (but not the new, party-line-toeing, I’m-just-
as-conservative-as-Bush-I-swear John McCain). Activation: 18.64
Contexts: Equally important, it represents the anticipation of how much
new money will be created in the future. Activation: 18.11
Contexts: It was important to us to have an equal amount of diversity in
the cast. Activation: 16.23
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