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ABSTRACT

We focus on the problem of learning object representations from solely associa-
tion data, that is observed associations between objects of two different types, e.g.
movies rated by users. We aim to obtain embeddings encoding object attributes
that were not part of the learning process, e.g. movie genres. It has been shown
that meaningful representations can be obtained by constraining the learning with
manually curated object similarities. Here, we assume that objects lie in multiple
linear manifolds embedded in high-dimensional space, and we argue that simi-
larities between objects that correspond to sharing manifolds can be learned from
the observed associations. We propose Self-Matrix Factorization (SMF), a method
that learns object representations by constraining them with object similarities that
are learned together with the representations. In our extensive evaluation across
three real-world datasets, we compared SMF with SLIM, HCCF and NMF obtain-
ing better performance at predicting missing associations as measured by RMSE
and precision at top-K. We also show that SMF outperforms the competitors at en-
coding object attributes as measured by the embedding distances between objects
divided into attribute-driven groups.

1 INTRODUCTION

This paper focuses on the problem of learning object representations from observed associations
between objects of two different types. We assume that no data is available other than the associa-
tions between the objects, and our aim is to obtain representations that reflect object attributes and
properties that, in general, are unknown.

The observed associations between two groups of n and m objects respectively can be represented
by a data matrix X € R"*™, where the association between object 7 and object j is stored in Xj ;.
We consider the case in which this value can be either a binary or a positive number, and a value of
zero indicates no known association between objects ¢ and j.

Learning meaningful object representations has been shown to be relevant for several tasks including
recovering missing associations and clustering objects into meaningful groups, and several methods
have been proposed. Matrix Factorization methods, for instance, assume that the association matrix
is low rank, allowing X to be decomposed into lower-dimensional matrix factors, containing the rep-
resentations of the objects. Techniques like principal component analysis (PCA) (Hotellingl [1933)),
singular value decomposition (SVD)(Eckart & Young, |1936) and non-negative matrix factorization
(NMF) (Lee & Seung] |1999) have been successfully applied to tasks such as recovering associations
(Sarwar et al., |2002; [Vozalis & Margaritis, 2007; |Luo et al., 2014} and clustering objects (Yang &
Seoighe} 20165 |Yeung & Ruzzol, [2001]).

Deep Learning is another widely used technique for learning object embeddings, particularly
through graph neural networks (GNNs). An association data matrix can be thought of as a bipar-
tite graph where the nodes represent the objects in the data and the links represent the associations
between them. GNNs leverage this network structure to extract insights from the encoded graphs.
While deep learning methods have been shown to be particularly effective at incorporating prior
known object properties (Wu et al., [2022), a number of techniques have also been developed that
can use solely association data such as, for example, LightGCN (He et all 2020), SEAL (Zhang
et al.,[2021) and HCCF (Xia et al., 2022).
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Recently, learning strategies have been proposed that rely on manually curated similarities between
objects to somehow constrain embedding learning. For example, Neo-GNNs (Yun et al.,|2021) and
BUDDY (Chamberlain et al., [2023) are GNN methods relying on higher-order interactions in the
graph. These interactions function as additional node similarity features and were used to enhance
link-prediction performance. However, selecting such similarities is not trivial.

In this paper, we argue that object similarities can be learned directly from the data matrix. Our
assumption is that the objects lie on multiple linear low-dimensional manifolds embedded in a high-
dimensional space. Our matrix decomposition approach, Self-Matrix Factorization (SMF), learns
distributed representations while constraining them using learned object similarities. These similar-
ities depend on the manifold structures implicit in the association matrix X and are learned together
with the embeddings. In other words, the object similarities, determined by their positions in the
manifolds, naturally constrain the object embeddings during the learning. In our extensive eval-
uation across three distinct benchmark datasets, we show that SMF consistently outperforms the
competitors at encoding object attributes as measured by the embedding distances between objects
divided into attribute-driven groups. We also performed experiments at recovering missing values
on the different association matrices and show that SMF obtains comparable or better predictions
than its competitors.

2 SELF-MATRIX FACTORIZATION

SMF learns two non-negative matrices W € R™*¥ and H € R**™, with k << (m x n). Bach
matrix contains distinct low dimensional object embeddings, such that their product approximates
the low-rank interaction data matrix X € R"*"™:

X ~WH. (D

While this model is not new, the difference resides in the learning of the embeddings in W to encode
linear manifold information implicitly contained in the association data itself. The model is shown
in Figure E}a, where the rows and columns of matrices W and H, contain representations for the
objects in the rows and columns of X respectively. The black dots in Figure [I|b are examples of
how the objects in the rows of X may be positioned in the high-dimensional space. Note how
they are approximately localized in three different linear manifolds: two one-dimensional subspaces
(lines) and one two-dimensional subspace (plane). The blue dots correspond to the positions of three
highlighted objects (¢, p, and ¢). We assume that objects that belong to the same subspace, are more
similar to each other than objects that reside in different subspaces. We would like these similarities
to constrain the learning of the embeddings — that is, we would like the embedding for two objects
that belong to the same subspace, to be more similar to each other than the embeddings of objects
that reside in different subspaces. Thus, in the illustrated example, object ¢ should be closer to object
p than to object q in the embedding space, mimicking their behavior in the high-dimensional space.

We propose the following loss function for learning a model with these properties:

)\SE
11X = [T o (WWIIX |7

) 1 9
%’IEESMF(W H) = §||X -WHI% +
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subjectto W, H > 0.

where o represents the element-wise product and || - ||% indicates the Frobenius norm. The first term
of Equation [2]is the Euclidean distance between the non-negative matrix X and the product of two
non-negative matrices W and H. Minimizing this distance results in projecting high-dimensional
data into a low-dimensional representation. The non-negativity constraint of matrices W and H is
a crucial factor for the interpretability of the representations (Lee & Seung),{1999). This constraint
naturally encourage any pair of vectors W; . and H. ; to exhibit a significant overlap in their high-
valued components if the objects ¢ and j share an observed association in X. Conversely, objects
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(b) )

Figure 1: SMF overview. (a) SMF decomposes the association data X into two non-negative ma-
trices W and H. (b) Positions of the high-dimensional rows of X in the space, SMF uses the
similarities established by the linear manifolds to constrain W.

that do not meet this condition can be understood as lacking common attributes, making them less
likely to interact.

The second term in Equation[2]is designed to preserve the linear manifold information implicit in the
matrix X. Matrix 7" is populated with ones, except for the diagonal where elements are set to zero.
By reducing the distance between the matrix [T o (WW')] X and the original association matrix, we
are reconstructing each row of X using other rows of X:

Xip =Y T WWi; X,
J

Note that, since we are learning W, the presence of the matrix 7" is necessary to avoid the trivial so-
lution in which WW’ becomes the identity matrix. The last 4 terms apply elastic-net regularization
to the matrices W and H to promote sparsity and mitigate overfitting. Therefore, since minimizing
the loss function in in Equation [2]is attempting to reconstruct a row using only a few other rows, the
learning will favour reconstructing each row using only rows representing the objects in the same
subspace. For instance, in Figure[T]b one can reconstruct each point in the plane by using only points
in the plane, without the need to use points from different subspaces. Let us also note that matrix
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[T o (WW')] contains the coefficients for the reconstruction of the rows of X. Therefore, matrix
WW’ is attempting to encode the inherent similarities between the objects established by the linear
manifolds. During the learning of W, this amount to promote higher values for the dot product
between the lower-dimensional representations of objects within the same subspace than for the dot
product between representations of objects in different subspaces.

Inspired by iterative optimization processes developed for NMF (Lee & Seung] 2000), we develop
a multiplicative update rule to minimize the function in Equation 2}

[(XH' + Xee XW]; ;
Wij < Wi ' ’
3 W HE + Ao (T o (WW))X X' + AW + Asgn(W)], )
W' X

T EN ) W G H + Aysgn(H)]s

“4)

W and H were initialized with non-negative values to ensure that the proposed multiplicative update
rules process results in non-negative embeddings after each iteration. This iterative process can also
be viewed as a gradient descent implementation with an adaptive learning rate:

i T WHH + Ae(T o (WWNXX' + AW + Asgn(W)]:,’
Q) _ Hij

g (W'WH + XoH + M\isgn(H)]i ;'

where, as a variation of gradient descent, the described optimization process will likely converge for
a solution belonging to a local optima rather than the global optima.

Finally, since in our data matrix X the zeros denote our lack of knowledge about a possible as-
sociation, it is often convenient to modulate the importance of the zeros during the learning. This
has been done by other authors before us (e.g. (Galeano et al., [2020; |Blondel et al., |2008))) and is
normally achieved by weighting the contribution of the zero values by a factor « << 1 in the loss
function. In this case our loss function becomes:

e po (X — [T o (WWX)|2

) 1
rvrvl}lr{lﬁwsmp(m H) = Z||Po(X ~ WH)|% + 1

A2 A2 (&)
MW+ Ml H T+ FIWIE + 5 H

subject to W, H > 0.

where the matrix P € R"*™ is defined as P; ; = 1 when X; ; > 0 and P; ; = « otherwise.

Equations [3]and [ are then modified accordingly to optimize Equation 5}

[(P2 OX)H/ + )\Se(P2 o X)W]i)j

Wi = Wi X (P2 s (W) H + oo (P20 (T 0 (W) X)X + oW + Arsgn (W),
(6)
(P26 X, -
H;; + Hi,jx (WP 0 X)]i.; (7)

(W/(P2(WH)) + Ao H + \isgn(H));

3 EXPERIMENTAL RESULTS

To test SMF, we compared its performance against three different models, namely NMF with elastic-
net regularization (Pauca et al., [2006)), Hypergraph Contrastive Collaborative Filtering (HCCF) (Xia
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et al., [2022) and Sparse Linear models (SLIM) (Ning & Karypis, 2011). We compared the perfor-
mance of the models at predicting associations and the quality of the embeddings through clustering
analysis. NMF with elastic-net regularization and HCCF were chosen as representative of matrix de-
composition techniques and GNN-based methods, respectively. NMF has been shown to be effective
at recovering missing associations and encoding object attributes. HCCF is a state-of-the-art GNN
model for link prediction. Like SMF, HCCF also learns similarities between objects of the same
type, avoiding dependence on manually curated similarities. However, it enhances embeddings by
learning hyper-edges (connections involving more than two objects) that contribute to the embed-
ding construction. For the task of predicting associations, we also compared SMF with SLIM (Ning
& Karypis, [2011), a state-of-the-art approach for predicting missing associations (Ferrari Dacrema
et al., 2019) that has been shown to be competitive with deep learning models. SLIM does not
learn object embeddings and for this reason, we could not perform any clustering analysis. Size
embeddings for the models are given in the last three columns of Table [I] other algorithm details
and their implementation are available in the Appendix, while the code we used in our experiments
is available in the Supplementary Material.

We run our experiments on three datasets namely, Movielens, Drug-SE and ModCloth. These
datasets were chosen among those that have been used for the task of predicting associations be-
cause they also included attribute information of the objects. Overall details are given in Table[T|and
descriptions of the three datasets are given below.

Movielens: This dataset describes ratings ranging from 1 to 5 that users gave to movies. It is
a smaller version of Group lens that is made available for educational and development purposes
(Harper & Konstan, 2015). The one used in this work includes object attributes for both users and
movies. Each movie is associated with its respective genre (18 genres in total), and each user is
associated with its gender (2 genders in total). The data-matrix contains 943 users and 1682 movies.
It contains 100000 non-zero elements representing the known ratings, resulting in an association
data matrix with a density equal to 6.3%.

Frequencies of Drug Side Effects (Drug-SE): Galeano et al. obtained a data matrix containing the
frequencies in which certain drugs produce specific side effects(Galeano et al.,[2020) by filtering the
frequencies obtained from the Side Effect Resource Database (SIDER) (Kuhn et al.l[2016)). Integers
between 1 and 5 represent side-effect frequency terms for ’very rare’, rare’, ’infrequent’, frequent’,
and ’very frequent’ respectively.

Drugs can be grouped by clinical activity using their main Anatomical, Therapeutic and Chemical
(ATC) class level. ATC is a hierarchical organization of terms maintained by the World Health
Organization. A term at a lower level indicates a more specific descriptor of clinical activity. Each
drug in the matrix R is associated with its respective ATC-category term in three different levels.
The drugs in this dataset belong to all 14 groups at the more general Anatomical level, 70 out of 94
groups at the intermediate Therapeutic level and 147 out of 262 groups at the more specific Chemical
level. The data matrix contains 759 drugs and 994 side effects. It contains 37441 non-zero elements
representing known frequencies, resulting in an association matrix with a density of 5%.

ModCloth: This dataset contains ratings that users gave to different clothing items (Misra et al.,
2018). Originally, a rating in this dataset could be 2, 4, 6, 8, or 10. However, we divided all the
values by 2, resulting in ratings ranging from 1 to 5. Due to the low density of known ratings in the
association matrix, we eliminated those users and clothes with less than 10 associations from the
data matrix. The resulting matrix had higher density but still had objects with less than 10 associa-
tions. The final data matrix contains 5419 clothing items and 32.089 users with 91900 associations,
resulting in a 0.05% density. Each clothing item belongs to 1 of 66 different categories.

Table 1: Datasets and embedding sizes
Datasets rows columns density NMF HCCF SMF

Movielens 943 1682 6.3% 10 32 10
Drug-SE 759 994 5% 10 32 10
ModCloth 5419 32089 0.05% 30 32 30
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3.1 PERFORMANCE EVALUATION AT PREDICTING ASSOCIATION

SMF achieves scores closer to the real values. We evaluated SMF by assessing the model’s per-
formance at recovering the different levels of associations. In our experiments, we set 10% of the
known associations to zero and then we compared the performance of the different models at recov-
ering them.

We used Root Mean Square Error (RMSE) to assess the reconstruction of the association matrix.
The outcomes of the evaluations for NMF, SLIM and SMF are reported in Tables E] as the mean
RMSE across 30 runs of each model, along with the corresponding variance. HCCF is not included
because it cannot predict the ratings nor the frequencies, only the presence of a link.

The RMSE is a comparison between known associations and the scores predicted by the models,
where lower RMSE values indicate that the predicted scores are closer to the actual associations.
We can see that SMF scores remain consistently closer to the real values than those produced by
NMF and SLIM. SMF achieves a 15% lower RMSE than NMF in the sparser ModCloth dataset and
at least 65% lower RMSE than SLIM for all datasets.

Table 2: Root Mean Square Error
MODELS Movielens Drug-SE ModCloth

NMF 0.9777 £ 3e—5  0.6558 = 1le—4  1.5759 £ 3e—4
SLIM 2.9480 + 3e—6 1.8622 £ 5e—6  3.7790 £ 4e—7
SMF 09352+ 1e—5 0.6455+5e—5 1.3258 +1le—5

SMF achieves better performance at top-K predictions. It is important to measure a system’s
ability to predict the existence of associations between objects, independently of their specific val-
ues. For our datasets, this amounts to predicting which movies is a user more likely to watch, which
side effects is a drug likely to cause, and which clothes is a user more likely to rent. To measure
this, we generated three binary datasets. These new datasets were built by replacing the non-zero
elements on all the datasets. In practice, we are often interested in predicting only a small number
of associations with high accuracy. This is commonly referred to as the top-K recommendation task
(Cremonesi et al., 2010) where a system’s performance is measured using precision at top-K. For
this purpose, we ranked the scores to retrieve the K higher elements. These were predicted as new
associations between objects and compared with the test set to obtain the precision at top-K, which
is the ratio of known associations within the predicted associations. To have fair measurements,
the true positives for the analysis are the ones on the test set, and all the unknown elements on the
original datasets are considered as true negatives (Krichene & Rendlel [2020). The outcomes of the
evaluations are reported in Figure [2} where SMF outperforms the competitors in almost every set-
ting. ModCloth datasets results are not shown due to the low association density, all the models only
manage to predict a few true positives at the top 1000.

We can see that SMF predictions achieve the top precision in 7 out of 10 settings. HCCF achieves
a better precision at top 10 and top 20 for Drug-SE dataset, indicating that it contains more true
associations in the top predictions. However, the precision drops as K increments, resulting in the
worst precision of all the models for the tops 50, 100 and 150 in the same Drug-SE dataset. SLIM,
a state-of-the-art predictor for top-K recommendations (Ferrari Dacrema et al. [2019), achieves the
best precision for top 150 in the Drug-SE dataset.

The Area under the receiver operating characteristic curve (AUROC) and the Area under the
precision-recall curve (AUPRC) are also useful metrics to evaluate the overall distribution of the
true positives. The AUROC, AUPRC and correlation outcomes for all datasets are shown in the
Appendix.

3.2 EMBEDDING EVALUATION THROUGH CLUSTER ANALYSIS

To demonstrate that the SMF-derived embeddings offer a more meaningful encoding of previously
unseen latent object attributes, we analyzed these low-dimensional representations and compared
them with the ones learned by NMF and HCCF. Our aim is to assess their capacity for encapsulating
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Figure 2: Precision at top-K: Bar plot of the precision of NMF, SLIM, HCCF and SMF for differ-
ent values of K while predicting missing links in the interaction data. The error bars indicate the
variance of the precision for 30 different runs of the models. (a) Precision for the Movielens dataset
while predicting links between users and movies, the negative to positive ratio in the test set is ap-
proximately 1600. (b) Precision for the Drug-SE dataset while predicting links between side effects
and drugs, the negative to positive ratio in the test set is approximately 200.

inherent data characteristics, which were not part of the training process but may play crucial roles
in establishing connections between objects. Our embedding analysis was conducted on two levels:
first, to verify whether SMF effectively clusters objects into meaningful groups within the low-
dimensional space; and second, to assess whether SMF achieves superior class separation of objects
compared to NMF and HCCF.

We took advantage of this information and grouped the embeddings in W into disjoint sets based
on the classes to which their corresponding objects belong. Subsequently, we calculate a similarity
matrix, W, € R™ "™, containing the cosine similarity between all the embeddings. Finally, we
employ a two-sample ¢-test to assess whether the similarities between objects within the same class
(intra-similarities) differ significantly from the similarities between objects in different classes (inter-
similarities). An illustration of this procedure is provided in Figure3]a. This process was repeated
30 times across different runs of the models.

For the Movielens dataset, we organized users based on their gender, and movies by their respective
genres. In our genre analysis, we refined the dataset to include only movies with a single genre,
enabling the classification of movies into disjoint categories. In the case of the Drug-SE dataset, we
categorized drugs according to their various levels within the ATC hierarchyﬂ The lower levels of
the ATC hierarchy provide more specific terms for drug classification. For this study, we compared
the similarity of drug embeddings across three levels of the hierarchy: anatomical, therapeutical,
and chemical. Finally, the clothing items of the ModCloth dataset can be separated into different
groups depending on which type of clothes they are (dresses, jeans, blazers, etc).

SMF consistently clusters objects in the low-dimensional space. In our analysis of the distribu-
tions of intra- and inter-similarities for the clothing types included in the ModCloth dataset, all NMF,
HCCF and SMF achieved significant separation in 100% of the runs. However, for the Movielens
dataset, clustering movies by gender in the embedding space proved challenging for HCCF. NMF,
HCCF and SMF attain significant separation 100%, 67% and 93% of the runs, respectively.

When considering the various levels of the ATC drug classification hierarchy, SMF and HCCF
achieved significant distribution separation 100% of the runs for every level. On the other hand,
NMF struggled to maintain consistent separation, achieving statistical significance in only 3%, 13%,
and 13% of runs for the 15¢, 27¢_ and 37 [evels, respectively. The consistent achievement of statisti-
cal significance in these experiments indicates effective clustering of objects in the low-dimensional

'ATC categories were obtained from the ATC codes WHO 2018 release.
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space. This provides compelling evidence that the SMF-learned embeddings reliably encode mean-
ingful information about the fundamental attributes of the objects.

SMF achieves superior class separation. To assess the efficacy of each method in achieving class
separation, we employ the Z-score difference between the means of the intra-class and inter-class
similarity distributions:

Min — Hout
Z = 2 2
Tin Tout
Nin Nout

where (;, is the average embedding similarity of object-pairs in the same group. (i, is the av-
erage embedding similarity of object-pairs in different groups. o;,, and o, are the corresponding
standard deviations, and n;, and n,, are the corresponding number of object-pairs.

We can interpret the z-score as a normalized distance that measures how different two distributions
are by adjusting the difference between the means according to their standard deviation.

Our results for this experiment are summarized in Figures [3]b, [Blc and [3]d. We can see that SMF-
learned embeddings effectively group objects into more meaningful clusters than those learned by
both NMF and HCCE, across all the datasets and diverse groups. Notably, in Figure [3d, we observe
that the separation between groups in the ATC levels increases as we delve from the first to the
second level of the hierarchy. This reflects the fact that the drug clinical activity becomes more
similar as we move to more specific levels.

4 CONCLUSION AND DISCUSSION

Many machine learning approaches rely on learning distributed representations able to reflect re-
levant object attributes. A common strategy to enrich these embeddings is by directly constraining
them to follow similarities extracted from side information (Aggarwal et al., [2016). Similarly, one
can directly rely on the similarities in the association matrix to guide the embedding learning to
better uncover patterns in the data. In this work, we introduced Self-Matrix Decomposition (SMF),
a constrained matrix decomposition approach that learns low-dimensional representations by cons-
training them to rely on object similarities. These similarities depend on linear manifolds implicit in
the association data and are learned with the representations.

SMF can decompose a low-rank matrix while preserving its inherent similarities in WW’, leve-
raging the relationships between rows of X that are revealed thanks to the second term in Equation
This Self-Expressive term learns a coefficient matrix that allows X to be reconstructed by itself,
similarly to a Self-Expressive model (Elhamifar & Vidall 2013)). The loss function in Equation 3] fa-
cilitates the embeddings to learn better representations and capture the latent attributes, as they allow
the embeddings to glean information from objects residing within the same subspace (as depicted in
Figure|I).

We conducted experiments to assess whether a set of known object properties could be effectively
encoded within the object embeddings. Prior research has also delved into similar investigations,
revealing, for instance, that various NMF variants can learn embeddings encoding movie genres
(Gomez-Uribe & Hunt, [2015) and drug ATC categories (Galeano et al.| [2020). We conducted an
in-depth analysis of the similarities among embeddings generated by NMF, HCCF and SMF across
multiple runs and diverse groupings. This analysis aimed to ascertain whether objects belonging to
the same group consistently clustered together in the low-dimensional space. SMF offers signifi-
cantly higher stability in learning well-separated embeddings compared to NMF and HCCF. This
is evident from the fact that in multiple runs, SMF achieves statistical significance approximately
99% of the time, whereas NMF and HCCF accomplish this feat in only 41% and 87% of the runs,
respectively. Furthermore, the experimental results demonstrate that SMF consistently achieves su-
perior class separation in all conducted experiments (depicted in Figure[3). Consequently, SMF can
be used to cluster objects in meaningful groups, and an analysis of these groups may help reveal
hidden object attributes.

The experimental results in the supervised setting indicate that SMF attains and overall better RMSE
values compared to NMF and SLIM suggesting that the subspaces encoded in the matrix coefficient
of WW’ contribute to the learning of more descriptive embeddings for recommendations. While
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Figure 3: Embedding Analysis: Box plots showing the distributions of the Z-score differences across
30 different runs of NMF, HCCF and SMF. (a) Pipeline explaining the experiment, first, we have the
embedding matrix W, arranged into three different groups, g1, g2, and g3. Next, Wy;,,, contains the
similarities between all the embeddings. Lastly, we calculate if there is a statistical significance in the
difference between the intra-class and inter-class similarities from Wy;,, (b) Movielens experiments.
The left plot shows the separation between the distributions of the similarities while grouping the
users by their gender (Male and Female for this dataset). The right plot shows the separation between
the distribution of the similarities while grouping the movies by their genres (18 distinct groups). (c)
ModCloth experiments. Separation of the distribution of the similarities while grouping the clothes
by their type. (d) ATC-category experiments. From left to right, the grouping advances in the ATC
hierarchy, 1°*: anatomical, 2"%: therapeutic, and 3"%: pharmacological.
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AUROC and AUPRC are commonly used to evaluate classification tasks by showing how true po-
sitive samples are ranked when predicting associations, practical effectiveness is better measured by
the precision at top-K metric. This metric indicates how close the true positives are to the top of the
ranking, which is more relevant for suggesting new associations. In this regard, SMF consistently
outperforms NMF, SLIM and HCCEF, reinforcing the notion that SMF embeddings adeptly capture
the distinctive patterns typically learned by reconstructing the data matrix X directly with W and H
and indirectly by constraining .
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A APPENDIX

A.1 MODELS LEARNING

SMF: For our model, we optimized the function showed in Equation [5} using the iterative multi-
plicative update rule described in Equations [6|and[7] for all the datasets.

NMF: Here we opted to train a elastic-net regularized NMF (Pauca et al., 2006), where we modify
the loss function similarly as with data-driven regularized NMF (Galeano et al., 2020):

. 1 2
Ir/Ivl}IILIlEWNMF(Wa H) = §||PO (X —WH)|% ®)
subject to W, H > 0.
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that can be optimized with the following multiplicative update rules:

(P20 X)H'):,

Wi i Wi j
3 W X PT o (WH)H + AW + Agsgn(W)];

©))

[W'(P? 0 X))
[W/(PQ(WH)) + AQH —|— Alsgn(H)]ij

H;; + Hi,jx (10)
SLIM: here we modified the original loss by replacing the diagonal constraint by adding the trace of
M (tr(M)) multiplied by a large number +y as a new term in the loss function (Galeano & Paccanarol
2022). The loss is also modified similarly as in Equation[5]to tune the importance of the zeros during
the learning:

. 1 A
min Lwsum(M) = 5 [P o (X = MX)|[F: +tr(M) + T M|F + M| M]]

1D
subjectto M > 0
that can be optimized with the following multiplicative update rules:
P?0 X)X,
Mz,_} — MZ,J [( © ) ]LJ (12)

[(P2(MX))X" +~I 4+ XoM + Xisgn(M)]; ;

All learnable parameters for NMF, SLIM and SMF were initialized by sampling form an uniform
distribution between 0 and 0.1. It can be proven that in the optimization proposed for Equation 8|and
both loss functions are non-increasing at their respective parameters converge in a local minimum
for NMEF, and global minimum for SLIM. For Equation[5] we observed that the loss function always
increases for the first iteration, then, for the second iteration forward, the loss function turns out
to be non-increasing, and it also manages to achieve convergence for every run of the model, what
seems to indicate that this version of adaptive gradient descent is well suited for the problem under
study in this work. The algorithm for the optimization of Equation [5] was implemented in Matlab
R2023a, and the code is included with this submission. The training is stopped by satisfying the
stopping criteria § < le—3 for the NMF, SLIM and SMF models, and the maximum relative change
0 is defined as:

max(|| WO — Jynew
5 = max(IWe; Wi ) 13
max([|W])

where W4 and WY are the values of the matrix W after each iteration, clearly the same formula
is also applied for H and M.

HCCEF: This is a GNN model relying in two message-passing mechanisms. One message-passing
occurs between the representation of graph nodes, and the other occurs between hyper-edge repre-
sentations of the nodes. Both mechanisms are connected by incorporating message and node em-
beddings generated by the other message-passing, and by the loss function including a contrastive
term to connect the two different types of message embeddings:

/)

I L
exp(s(z;,’,
(u) — _ 2 ,
Ly _ZZ log —; @ @)
i=0 1=0 > ir=0 exp(s(zi’l aFigl)/T)

where, zi(q;) and I‘ﬁ) are the message embeddings for both processes related to user i for the [t?)

message passing layer. The function s(.) represents a similarity between both embeddings and T is
a temperature constant that tunes the softmax. The overall loss is:

L="Lr+ (LY + L) + Xpal O] (14)
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where L, is the marginal loss, Li“’ and cg”) are the contrastive loss for users and items respectively
and the last term is weight decay for the learnable parameters. A. tunes the importance of the
contrastive term in the learning. The final predictions of HCCF are given by:

Pri; = o0
where Psiz(-“) and Psis-v) are the final embeddings of user ¢ and item j. We used the code provided

by the authors (Xia et al., [2022)) in https://github.com/akaxlh/HCCEF to train the HCCF model for
our experiments.

A.2  AUROC, AUPRC AND CORRELATION
Tables [3] ] and [5] below show extra evaluation metrics used to evaluate the performance of SMF

against its competitors. AUROC and AUPRC measure the distribution of true positives in the ranked
scores and correlation indicates how close are the predicted scores to the actual levels of association.

Table 3: Results for Movielens dataset

MODELS CORRELATION AUROC AUPRC

NMF 0.5432+3-5  0.9441 +1e—7 0.1402 + 5e—6
SEM 0.35314+3-7  0.9436+4e—9 0.1457 +4-8
HCCF (=) 0.8686 & de—4  0.0611 = 2e—4
SMF 05714+ 6—6  0.9436+2—7  0.1387 +5-6

Table 4: Results for Drug-SE dataset

MODELS CORRELATION AUROC AUPRC

NMF 0.7406 £ Te—5 0.8819 £ 4e—10 0.0879 £ 4e—10
SEM 0.4181 £ 4e—T7 0.9268 = 6e—8 0.1582 + 7e—8
HCCF (-) 0.8113 £3e—=5  0.0616 £ 2e—5
SMF 0.7432 £ 1e—5 0.8582 £ 2e—8  0.1016 £ 4e—9

Table 5: Results for ModCloth dataset

MODELS CORRELATION AUROC AUPRC
NMF 0.0836 = 5e—6  0.6904 +3e—5  1.64e—4
SEM 0.0418 +2e—7  0.6230 + le—10  2.50e—4
HCCF (-) 0.6781 + de—5  1.97e—4
SMF 01010 + le—6  0.7513 = le—5 2.84e—4

A.3 HYPERPARAMETER TUNING

A validation set with 10% of the interactions for each dataset was used to select an appropriate
set of hyperparameters, the decision was based on RMSE and AUPRC measures. The final set of
hyperparameters used to perform the experiments are detailed in Tables [6]and [7}

SLIM does not have a value set for k. It is important to note that the value of o the Movielens and
ModCloth datasets are only used for the link prediction task (when evaluating precision, AUROC
and AUPRC). For rating prediction (when evaluating RMSE and correlation), « is set to zero, re-
flecting the fact that there are no true zeros in the dataset. Assuming that in an ideal scenario, where
all the users assign a rating to all the movies and clothing items, those values should be between 1
and 5. A\, in Equation [5| was always set to one.
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Table 6: Hyperparameters for Movielens, Drug-SE, and ModCloth
Movielens Drug-SE ModCloth

Values | NMF SLIM SMF | NMF SLIM SMF | NMF SLIM SMF
A1 0.5 0.5 1 0.5 0.5 0.5 0.01 0.01 0.01
A2 0.5 0.5 0 0.5 0.5 0.5 0.5 1 0.5
@ 0.224 0.224 0.224 | 0.0025 0.224 0.0025 | 0.05 0.05  0.05

Table 7: Hyperparameters for HCCF
Values Movielens Drug-SE ModCloth

Awd le—3 le — 2 le — 2
Ae le—6 le—7 le—7
T 0.1 0.1 0.1
drop 0.5 0 0

where A\y,q, Ac and 7 are shown in Equation |14| and drop is dropout. HCCF model training was
run with the predefined parameters in https://github.com/akaxlh/HCCF, except for the parameters
in Table [/} The set of parameters was selected after multiple rounds of testing against the same

validation set used for hyperparameter tuning of NMF, SLIM and SMF.
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