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Figure 1: We propose a Diffusion-Denoised Hyperspectral Gaussian Splatting (HS-GS) for reconstruct-
ing agricultural scenes and enabling novel view synthesis under hyperspectral imaging. Compared with
NeRF (Mildenhall et al., 2020), Hyper-NeRF (Chen et al., 2024a) and 3DGS (Kerbl et al., 2023), ours can
render high-quality images with fine-grained spectral details, and significantly reduce reconstruction errors.

Abstract

Hyperspectral imaging (HSI) has been widely used in agricultural applications for non-
destructive estimation of plant nutrient composition and precise determination of nutritional
elements of samples. Recently, 3D reconstruction methods have been used to create implicit
neural representations of HSI scenes, which can help localize the target object’s nutrient
composition spatially and spectrally. Neural Radiance Field (NeRF) is a cutting-edge im-
plicit representation that can be used to render hyperspectral channel compositions of each
spatial location from any viewing direction. However, it faces limitations in training time
and rendering speed. In this paper, we propose Diffusion-Denoised Hyperspectral Gaus-
sian Splatting (HS-GS), which combines the state-of-the-art 3D Gaussian Splatting (3DGS)
with a diffusion model to enable 3D explicit reconstruction of the hyperspectral scenes and
novel view synthesis for the entire spectral range. To enhance the model’s ability to cap-
ture fine-grained reflectance variations across the light spectrum and leverage correlations
between adjacent wavelengths for denoising, we introduce a wavelength encoder to generate
wavelength-specific spherical harmonics offsets. We also introduce a novel Kullback–Leibler
divergence-based loss to mitigate the spectral distribution gap between the rendered image
and the ground truth. A diffusion model is further applied for denoising the rendered images
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and generating photorealistic hyperspectral images. We present extensive evaluations on five
diverse hyperspectral scenes from the Hyper-NeRF dataset to show the effectiveness of our
HS-GS. The results demonstrate HS-GS has achieved the new state-of-the-art performance
among all the previously published methods. Code will be released soon.

1 Introduction

Human eyes can respond to wavelengths within the visible spectrum, approximately 380 nm to 750 nm. To
match human vision, conventional RGB cameras capture visible light in three broad bands: red, green, and
blue. In contrast, hyperspectral cameras capture wavelengths across a broader spectrum beyond the visible
light, allowing the analysis of how objects interact with many more bands of light. For a hyperspectral image,
each pixel consists of N bands/channels with N being dependent on the range of wavelengths captured by
the sensor and the spectral resolution of the sensor. Since different materials exhibit distinct reflectance rates
at various wavelengths, they can be identified through their emission spectral signatures (Liang et al., 2008).
This capability has made hyperspectral imaging (HSI) a valuable tool in various applications, including
agriculture, food quality control, construction, and environmental monitoring. In agriculture, HSI has been
utilized for non-destructive nutrient analysis for crops, and precise determination of the material composition
of a plant sample (Corti et al., 2017; Liu et al., 2021). Furthermore, having a 3D spatial reconstruction of
hyperspectral images can provide even more detailed analysis of such material subjects, which is critical for
localizing the presence of different materials in the 3D physical world. This approach lays the groundwork
for building digital twins—virtual replicas of physical objects or environments that include not only spatial
geometry but also functional and material properties. By embedding real-world data, 3D digital twins can
simulate interactions, predict behaviors, and provide immersive and data-driven insights.

The development of digital twins has paved the way for constructing detailed representations of real-world
environments, offering capabilities like mineral composition analysis and crop yield estimation. The inte-
gration of spectral information in an agricultural digital twin holds immense potential for its downstream
applications, as demonstrated by the enhanced fruit counting accuracy (Meyer et al., 2024) and fruit detec-
tion performance in challenging low-light conditions (Chopra et al., 2024). Towards developing a digital twin
for precise agriculture, we focus on modeling highly detailed 3D spectral information for crops to facilitate
applications such as crop monitoring (Qin et al., 2023), yield estimation (Yang et al., 2021; Li et al., 2021),
and non-destructive nutrient assessment (Hu et al., 2021; Bai et al., 2018). These capabilities can enhance
resource management and food productivity to address climate change and population escalating challenges,
achieve precise agriculture for personalized food production to improve public health, further underscoring
the transformative impact of agricultural digital twins.

Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) with implicit neural representation has become
prominent for 3D reconstruction of complex scenes. Previous studies (Chen et al., 2024a) have explored
the feasibility of extending NeRF to model 3D spectral information using hyperspectral images. However,
these methods inherit the limitations from the original NeRF, including slow convergence, long training time,
and the tendency to overfit to image noise. This poses a significant challenge to HSI because hyperspectral
images are inherently high-dimensional and noisy. As the width of the spectral band decreases, the captured
signal is weakened since narrower spectral bands permit less light to reach the sensor (Rasti et al., 2018),
making the sensing system more vulnerable to noise. Thus, how to simultaneously denoise and reconstruct
high-quality scenes for HSI data remains an open problem.

Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has been proposed for reconstructing high-
quality 3D scenes and novel view synthesis in real time. 3DGS represents the scene as a set of anisotropic
3D Gaussians and renders images with a fast rasterization algorithm. Inspired by 3DGS, we propose a
Diffusion-Denoised Hyperspectral Gaussian Splatting (HS-GS) framework to extend the vanilla
Gaussian Splatting for building a 3D hyperspectral scene representation and subsequently rendering novel-
view hyperspectral images. Compared to NeRF-based methods, ours can render noise-free hyperspectral
images even with noisy input data.

To summarize, our main contributions are as follows:
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• We propose a novel HS-GS framework for 3D reconstruction and novel view synthesis of HSI scenes,
extending explicit neural representations to the hyperspectral domain by modeling full spectral
radiance directly, rather than through compressed features as in prior work.

• We introduce a wavelength encoder to embed wavelength-specific spherical harmonics information
into 3D Gaussians. We also design a Kullback-Leibler (KL) divergence-based spectral loss that
can drive Gaussian reflectances to be aligned with ground truth spectral distributions.

• We integrate a hyperspectral diffusion model which de-noises hyperspectral images rendered
from 3DGS. The diffusion model improves both spatial and spectral fidelity by learning to correct
structural and color artifacts produced in the upstream rendering process. We train the enhanced
3DGS pipeline and the hyperspectral diffusion model together in an end-to-end manner.

• We conduct extensive quantitative and qualitative evaluations on five diverse hyperspectral scenes
from the Hyper-NeRF dataset to demonstrate the effectiveness of our HS-GS framework. HS-GS
achieves the state-of-the-art performance among all the published methods.

2 Related Work

2.1 Hyperspectral Imaging

The primary differences between hyperspectral and RGB imaging lie in spectral resolution. While RGB
images capture light in three broad bands which are red, green, and blue, hyperspectral images encode fine-
grained spectral information across tens to hundreds of narrow and contiguous wavelength bands ranging
from ultraviolet (380 nm) to near-infrared (1100 nm) (Ahmad et al., 2024). This provides us with rich
spectral information which can be used for detailed material discrimination and agricultural applications
such as non-destructive nutrient assessment, pollutant detection, and mineral composition analysis. However,
hyperspectral cameras are highly susceptible to noise. Due to the usage of narrow-band filters, a small number
of photons reach the sensor at each band, resulting in a lower signal-to-noise ratio. In practical settings, the
vulnerability is further aggravated by environmental and lighting conditions (Liang et al., 2013; Zeng et al.,
2024; Li et al., 2023; Fu et al., 2015). Some denoising strategies are proposed recently to exploit spectral
correlations of adjacent spectral bands which share the same structure (Rasti et al., 2018; Cao et al., 2016)
to effectively suppress noise and enhance image quality.

2.2 3D Reconstruction for Hyperspectral Imaging

NeRF (Mildenhall et al., 2020) has revolutionized novel view synthesis by implicitly modeling volumet-
ric scenes using Multi-Layer Perceptrons (MLPs). It takes as input a 3D position and viewing direction
and outputs color and density values, which are integrated along camera rays via volumetric rendering.
X-NeRF (Poggi et al., 2022) models cross-spectral consistency across sensors with different spectral re-
sponses. Another approach generalizes the RGB output of NeRF to N channels to capture hyperspectral
reflectance (Ma et al., 2024). Hyper-NeRF (Chen et al., 2024a) introduces a wavelength-aware MLP that
jointly encodes spatial position, viewing direction, and wavelength information to predict radiance and den-
sity for each band. However, these models suffer from slow rendering speed and vulnerability to noise.

3DGS (Kerbl et al., 2023) offers an explicit and point-based representation that enables real-time rendering
with high visual quality. The scene is represented as a set of anisotropic Gaussians, each parameterized by its
position, scale, orientation, opacity, and spherical harmonics (SH) for view-dependent color. A differentiable
rasterizer is designed for efficient optimization and fast rendering. 3DGS has been extended to dynamic
scene reconstruction (Yang et al., 2024b; Wu et al., 2024; Luiten et al., 2024). One concurrent work, Hyper-
GS (Thirgood et al., 2025), leverages an autoencoder to compress hyperspectral inputs into a latent space
and uses an MLP to decode view-dependent radiance. However, it operates 3D Gaussians in a compressed
feature space. In contrast, our proposed HS-GS framework models hyperspectral radiance directly, which
avoids spectral compression, improves robustness to noise, and preserves full-resolution spectral fidelity,
especially in challenging regions where prior methods degrade.
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Figure 2: Overview of our HS-GS framework. HS-GS enhances 3DGS with a wavelength encoder that
maps positional embeddings of wavelength through an MLP to predict wavelength-dependent SH offsets, a
spectral loss aligning predicted and ground truth spectral distributions, and a conditional diffusion module
that refines noisy output rendered by 3DGS to improve its spectral and spatial fidelity.

2.3 Hyperspectral Diffusion Models

Diffusion models (Ho et al., 2020) are a class of generative models that learn to reverse a gradual noising
process to generate high-fidelity samples from noise. Recently, they have been applied to hyperspectral
image enhancement and super-resolution tasks (Wang et al., 2024; Cao et al., 2024; Cheng et al., 2025).
These methods treat the clean hyperspectral image as the result of a reverse diffusion process, starting from
noise and progressively recovering both spectral and spatial details. Wang et al. (2024) propose a group-wise
autoencoder combined with a diffusion model for the spectral super-resolution task, while Cao et al. (2024)
introduce disentangled modulation strategies to preserve spatial and spectral characteristics during image
sharpening. However, these approaches operate purely in the 2D image domain and lack explicit modeling
of 3D scene geometry and view-dependent effects. As a result, they are unsuitable for novel view synthesis
or spatially consistent hyperspectral scene reconstruction.

To overcome these limitations, we integrate a conditional diffusion model directly into the reconstruction
and rendering pipeline based on 3DGS (Kerbl et al., 2023). The rendered hyperspectral images that exhibit
geometry and color artifacts are further denoised and refined with a hyperspectral diffusion model. Prior
works like GaussianObject (Yang et al., 2024a) and MVSplat360 (Chen et al., 2024b) use frozen Stable
Diffusion models trained on large-scale RGB datasets to enhance natural image rendering. In contrast, due
to the scarcity and sensor variability of hyperspectral data, our method trains a hyperspectral diffusion
model with 3D Gaussian Splatting jointly, incorporating spectral characteristics into diffusion process for
more accurate hyperspectral scene reconstruction.

3 Method

The overall framework of Diffusion-Denoised Hyperspectral Gaussian Splatting (HS-GS) is illustrated in
Figure 2. Our method builds upon 3D Gaussian Splatting (Kerbl et al., 2023) by introducing wavelength-
aware modules that enable high-fidelity hyperspectral rendering. We initialize a set of 3D Gaussians from
multi-view hyperspectral images with known camera poses, and extend the 3DGS pipeline with the following
three key components. First, we introduce a wavelength encoder that maps each input channel’s wavelength
to a spectral offset through a positional encoding followed by an MLP. These offsets are applied to the
spherical harmonics coefficients of the Gaussians to model wavelength-dependent appearance. Secondly, we
incorporate a spectral loss that enforces alignment between predicted and ground truth spectral distribu-
tions at pixel-wise level. This loss combines Kullback-Leibler divergence and cosine similarity to promote
both distributional and angular spectral consistency. Finally, we include a conditional diffusion model that
refines the noisy images rendered by 3DGS. This module learns to denoise the output image conditioned on
both spatial and spectral context, improving fine structure and reducing residual artifacts. Together, these
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components allow HS-GS to accurately synthesize spatially-coherent and spectrally-aligned hyperspectral
images from sparse multi-view input, especially for noisy spectral bands.

3.1 Hyperspectral Gaussian Splatting

3.1.1 3D Gaussian Splatting

3DGS (Kerbl et al., 2023) represents a scene using a set of 3D Gaussians, where each Gaussian is represented
by its mean position µ and covariance matrix Σ:

G(x) = e− 1
2 (x−µ)T Σ−1(x−µ), (1)

where Σ can be further decomposed into a rotation matrix R and a scaling matrix S:

Σ = RSST RT . (2)

The 3D covariance matrix Σ can be then projected onto 2D for the convenience of rendering each pixel:

Σ′ = JW ΣW T JT , (3)

where Σ′ denotes the 2D covariance matrix, J is the Jacobian of the affine approximation of the projective
transformation, and W is the viewing transformation matrix from the world to the camera coordinate frame.
To render the color of a pixel on the image plane, we use the opacity σ of the Gaussian and the spherical
harmonics (SH) coefficients to generate 2D views using an α-blending algorithm similar to the volumetric
rendering in NeRF (Mildenhall et al., 2020). The rendering process is shown as follows:

C(p) =
∑
i∈G

Tiαici, (4)

Ti =
i−1∏
j=1

(1 − αj) and αi = σie
− 1

2 (p−µi)T Σ′(p−µi), (5)

where C(p) denotes the color of a pixel located at p, G is a set of Gaussians along the camera ray sorted by
depth with respect to the viewpoint, Ti represents the transmittance, ci is the color of the Gaussian, and µi

denotes the 2D coordinate of the 3D Gaussian projected onto the image plane. The detailed projection and
rendering processes are described in Kerbl et al. (2023).

3.1.2 N-channel 3DGS

To develop a hyperspectral 3DGS framework that can synthesize novel views of hyperspectral images at N
different spectral bands, we extend the vanilla 3DGS framework (Kerbl et al., 2023) into an N -channel 3DGS
(N -3DGS) to render images with N wavelength bands. Two challenges are encountered when extending
the 3DGS to render multi-channel hyperspectral images. Firstly, traditional structure-from-motion (SfM)
methods such as COLMAP (Schonberger & Frahm, 2016) can only generate point clouds based on grayscale
or RGB images. To solve this, we generate pseudo-RGB images from the hyperspectral images through the
sensor simulation method in Chen et al. (2024a), and then feed them to COLMAP (Schonberger & Frahm,
2016) to obtain the sparse point clouds for initialization. Secondly, the vanilla 3DGS only supports rendering
images in three channels, i.e., red, green, and blue. However, hyperspectral images contain more than three
channels where each channel corresponds to a narrow, specific wavelength band across a continuous spectrum,
often covering wavelengths from the visible to near-infrared regions. Based on the physical properties of the
hyperspectral images, we modify the 3DGS algorithm by enabling the SH coefficients to render images with
N channels instead of 3 channels. Specifically, for each spectral band i ∈ {1, . . . , N}, we associate a distinct
set of spherical harmonics (SH) coefficients {SHi,lm} with each 3D Gaussian. The view-dependent radiance
ci for channel i and viewing direction v is then computed as:

ci(v) =
L∑

l=0

l∑
m=−l

SHi,lm · Ylm(v), (6)
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where Ylm(v) denotes the real spherical harmonic basis function of degree l and order m. This formulation
allows each Gaussian to emit reflectance values in N discrete wavelength bands, capturing fine-grained
spectral reflectance variation as a function of viewing direction. These per-channel radiance values are then
composited via alpha blending to generate hyperspectral renders. In this way, the designed 3DGS framework
can be utilized to reconstruct 3D hyperspectral scenes and render novel view hyperspectral images.

3.1.3 Wavelength Encoder

While the 3DGS method can accurately capture the geometry of the hyperspectral scene, the reflectance
values derived directly from the SH are suboptimal across different wavelengths. Notably, the fine-grained
details are missing in the rendered images, especially at wavelengths beyond the visual range, This degra-
dation arises from the lack of spectral priors in the vanilla 3DGS formulation—each wavelength channel is
modeled independently, ignoring the smooth and correlated structure of natural reflectance spectra. As a
result, the network struggles to produce consistent SH representations across the spectral dimension, leading
to noisy or blurred outputs at certain wavelengths. To address this issue, we propose a wavelength encoder
to learn wavelength-specific SH coefficients. Each wavelength in the hyperspectral images is firstly processed
with a positional embedding module. This positional embedding module applies sinusoidal functions at mul-
tiple frequencies, enabling the learning of intricate wavelength-specific features. The positional embedding
γ for wavelength λ is defined as:

γ(λ) =
[
sin(20πλ), cos(20πλ), . . . , sin(2L−1πλ), cos(2L−1πλ)

]⊤
. (7)

where L denotes the number of frequency bands used in the embedding, and thus determines the dimension-
ality of the resulting positional encoding.

To map these high-frequency features to the same dimension as the SH coefficients, we pass the posi-
tional embeddings through an MLP block, inspired by Yang et al. (Yang et al., 2024b). The MLP outputs
wavelength-specific offsets, which are then added to the SH coefficients for each wavelength band. We use
3D spherical harmonics (SH), where each wavelength is represented by a set of SH coefficients encoding
view-dependent color. In our case, using SH of degree 3 results in 16 coefficients per wavelength. The MLP
is designed to match this dimensionality so that the offsets can be added directly to the base SH values.
This allows the appearance of each Gaussian to adapt dynamically based on wavelength, improving spectral
consistency and rendering quality.

δSHλ = MLP(γ(λ)), (8)
SH+

λ = SHλ + δSHλ, (9)

where δSHλ represents the offset of the SH value, SHλ and SH+
λ denote the SH of the 3D Gaussians at the

given wavelength λ before and after adding the offset. Notably, since other Gaussian parameters, such as
position, rotation and scale, define the intrinsic geometry structure of the scene which are invariant across
all the wavelengths, these geometric parameters are not modulated.

3.2 Hyperspectral Denoising with Diffusion Model

The wavelength encoder is able to capture wavelength-dependent SH coefficients for multi-channel hyper-
spectral images; however, the rendered images can still contain artifacts and noise. To further improve the
quality of hyperspectral novel view synthesis, we integrate a diffusion-based denoising model directly into
the 3DGS rendering pipeline and train the system in an end-to-end manner. Images rendered by 3DGS serve
as the input for training the diffusion model, while the output from the diffusion model is used to compute
the loss for training 3DGS. Unlike conventional approaches where diffusion operates as a post-processing
step, our method allows the diffusion model to refine the raw hyperspectral renders during training, thereby
jointly improving the training of the 3DGS itself. Given an initial hyperspectral render X3DGS ∈ RH×W ×N

from the 3DGS pipeline, we treat it as a noisy observation and feed it into the denoising diffusion model.
The ground truth XGT is a raw captured noisy hyperspectral image. XGT is modeled as the output of a
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reverse diffusion process conditioned on X3DGS. The forward process corrupts XGT with Gaussian noise:

Xt =
√

ᾱtXGT +
√

1 − ᾱtϵ, ϵ ∼ N (0, I), (10)

and the model learns to predict the noise ϵ given the noisy input X3DGS by minimizing the following loss:

Ldiffusion = EXGT,t,ϵ

[
∥ϵ − ϵθ(Xt, t | X3DGS)∥2

]
, (11)

where ϵθ is the predicted noise from the denoising network and Xt is the noisy input at timestep t. During
training, the diffusion model implicitly learns to correct structured artifacts from the 3DGS renderings. This
joint optimization allows the final rendered views to achieve high spectral fidelity while preserving the spatial
realism of the 3D scene. The motivation behind using a diffusion model stems from the unique challenges
of hyperspectral image reconstruction. Renders from 3DGS suffer from complex, structured artifacts, such
as band-specific noise and spectral inconsistencies. Simple denoising models like autoencoder often struggle
to correct without losing fine-grained details. However, diffusion models which iteratively refine data, are
exceptionally well-suited for removing such structured noise while preserving the high-frequency spectral
information. This observation motivates us to leverage diffusion model for the denoising of hyperspectral
images. Please see Appendix. C.4 for quantitative comparison between diffusion model and autoencoder.

3.3 End-to-End Training

3.3.1 Spectral Loss

Considering the physical property of hyperspectral images, where each pixel comprises a continuous emission
spectra distribution, we argue that to achieve high-quality novel view synthesis, it is essential to ensure that
the spectral distributions of the rendered views closely match those of the ground truth. To enforce this
alignment, we introduce a spectral loss composed of two terms: a weighted Kullback-Leibler (KL) divergence
and a cosine similarity penalty. These jointly encourage the model to produce hyperspectral outputs whose
spectral distributions Dλ accurately reflect those observed in the real scene.

Since KL divergence requires the input to be a probability distribution (i.e., non-negative and summing to
1), we normalize the predicted and ground-truth hyperspectral volumes using a softmax operation along the
spectral axis. Specifically, for each pixel (h, w), h ∈ H, w ∈ W , we define the normalized spectral vector as:

Dλ(h, w) = softmax(X(h, w)), (12)

where X ∈ RH×W ×N is the unnormalized hyperspectral volume, and X(h, w) ∈ RN denotes the spectral
vector at pixel (h, w). The spectral loss is then computed as:

Lspectral = α

H∑
h=1

W∑
w=1

KL
(

DGT
λ (h, w) ∥ Dpred

λ (h, w)
)

+ β

H∑
h=1

W∑
w=1

(
1 − cos

(
DGT

λ (h, w), Dpred
λ (h, w)

))
, (13)

where DGT
λ (h, w) and Dpred

λ (h, w) are the normalized spectral vectors from the ground truth and predic-
tion at pixel (h, w), respectively. Here, KL (· ∥ ·) denotes the Kullback–Leibler divergence, which penalizes
distributional mismatches between the predicted and ground truth spectra, while cos (·, ·) denotes the co-
sine similarity, which promotes angular alignment between the spectral vectors. The weights α and β are
user-defined hyperparameters controlling the relative importance of each term; in our experiments.

This spectral-aware formulation encourages the network to not only match the absolute intensities but also
the shape and directionality of the spectral profiles, which is crucial for downstream applications like material
classification or reflectance estimation.

3.3.2 Overall Loss Function

To enable end-to-end training, we combine the vanilla 3DGS loss terms with the designed spectral and
diffusion losses to form the final loss function LHS-GS, as shown below:

LHS-GS = w1LL1 + w2LSSIM + w3Lspectral + w4Ldiffusion. (14)
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In this equation, LL1 measures the pixel-wise difference between the rendered and ground truth images,
and LSSIM evaluates their structural similarity using the Structural Similarity Index Measure (SSIM). The
spectral loss Lspectral enforces pixel-wise consistency between the predicted and ground truth spectral distri-
butions. Finally, Ldiffusion supervises the output of the diffusion model, which takes the noisy 3DGS render
as input and refines it toward the clean hyperspectral target, correcting geometric distortions and spectral
noise. The weights w1, w2, w3, and w4 are hyperparameters controlling the contribution of each term.

4 Experiments

4.1 Datasets

We evaluate our HS-GS framework on two hyperspectral datasets for agricultural scenes collected in Hyper-
NeRF (Chen et al., 2024a), which are captured using two distinct hyperspectral imaging systems. BaySpec
dataset is captured by a GoldenEye camera while Surface Optics dataset is captured by a SOC710-VP
camera. Following the Hyper-NeRF benchmark (Chen et al., 2024a), we split each scene in both datasets
into 90% and 10% images for training and testing, respectively. All evaluations are performed on the test sets.
BaySpec Dataset. This dataset consists of hyperspectral images captured using a BaySpec GoldenEye
camera, which provides a spatial resolution of 640 × 512 and a spectral resolution covering the range from
400 nm to 1100 nm across 141 narrow bands. The scenes feature three plant species: Anacampseros, Caladium
and Pinecone. Each plant is placed on a motorized turntable and imaged from approximately 20 cm away.
A total of 433 hyperspectral images were captured for each scene from a diverse set of viewpoints. Surface
Optics Dataset. This dataset includes hyperspectral images captured using a Surface Optics SOC710-VP
camera, which provides 128 spectral channels ranging from 370 nm to 1100 nm, with a spatial resolution of
696 × 520 pixels. Due to the camera’s narrow field of view and shallow field of depth, it is mounted on a
fixed tripod positioned about 2 m from the target. Two plant objects, Rosemary and Basil, are placed on a
rotating table inside a Macbeth SpectraLight lightbooth to ensure consistent illumination.

4.2 Quantitative Results

We evaluate HS-GS on in total five plant scenes from the aforementioned two datasets. The implementation
details and evaluation metrics are provided in the supplementary material. We compare our method against
a carefully selected group of baselines spanning NeRF-based and 3D Gaussian Splatting (3DGS)-based
methods, each chosen for their relevance to hyperspectral novel view synthesis. NeRF (Mildenhall et al.,
2020) and 3DGS (Kerbl et al., 2023) serve as foundational models for radiance field rendering and explicit 3D
representation, respectively. HyperNeRF (Chen et al., 2024a) is selected for its ability to model hyperspectral
reflectances with spectral priors. MipNeRF (Barron et al., 2021) and MipNeRF360 (Barron et al., 2022)
are included due to their strong performance in novel view synthesis tasks. Both leverage mipmapping and
hierarchical sampling to effectively handle aliasing and unbounded scene geometry, making them robust
candidates for high-fidelity view generation. TensoRF (Chen et al., 2022) is selected for its efficiency and
compactness via tensor decomposition, which benefits rendering with high-dimensional outputs. Hyper-
GS (Thirgood et al., 2025), a recent extension of 3DGS to hyperspectral rendering, represents the most
competitive prior tailored specifically for this task. To ensure a fair comparison, all NeRF- and 3DGS-based
baselines are extended to support N -channel hyperspectral outputs, allowing direct evaluation of both spatial
reconstruction quality and spectral fidelity.

BaySpec Results We present quantitative results of our method on the Pinecone, Caladium, and
Anacampseros scenes from the BaySpec dataset in Table 1. HS-GS achieves the best overall performance on
the Caladium and Anacampseros scenes, surpassing the cutting-edge methods such as Hyper-GS (Thirgood
et al., 2025) and MipNeRF360 (Barron et al., 2022) On Pinecone, HS-GS achieves superior performance in
SSIM and RMSE while remaining suboptimal in PSNR and SAM. In terms of rendering speed, our method
is slower than vanilla 3DGS (Kerbl et al., 2023) due to the overhead introduced by the Wavelength En-
coder and the Diffusion module, but achieves higher efficiency than the state-of-the-art hyperspectral 3DGS
method (Thirgood et al., 2025). See Appendix C.3 for more details on memory usage, training time, and
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Table 1: Quantitative results on the BaySpec dataset. We evaluate and compare HS-GS with
both NeRF-based and 3DGS-based baselines on three hyperspectral scenes: Pinecone, Caladium, and
Anacampseros, captured using a BaySpec GoldenEye camera. Our method achieves the state-of-the-art
performance on most of the metrics across all the scenes. The best results are shown in bold, and the
second best are underlined.

Pinecone Caladium Anacampseros
Method PSNR↑ SSIM↑ SAM↓ RMSE↓ PSNR↑ SSIM↑ SAM↓ RMSE↓ PSNR↑ SSIM↑ SAM↓ RMSE↓ FPS↑

NeRF (Mildenhall et al., 2020) 22.82 0.6113 0.0446 0.0728 23.12 0.58348 0.0491 0.0709 24.12 0.6220 0.0384 0.0623 0.13
MipNeRF (Barron et al., 2021) 21.45 0.5738 0.0410 0.0856 23.36 0.5935 0.0487 0.0685 23.43 0.6160 0.0408 0.0786 0.09
TensoRF (Chen et al., 2022) 24.12 0.6454 0.0593 0.0625 24.79 0.6424 0.0516 0.0577 25.07 0.6569 0.0394 0.0558 0.17
Nerfacto (Tancik et al., 2023) 15.36 0.4935 0.0707 0.1709 20.67 0.6208 0.0529 0.0945 21.32 0.6423 0.0417 0.0867 0.50
MipNeRF360 (Barron et al., 2022) 25.93 0.7335 0.0279 0.0507 26.93 0.7371 0.0332 0.0461 26.73 0.7601 0.0230 0.0461 0.01
Hyper-NeRF (Chen et al., 2024a) 20.07 0.581 0.0725 0.1521 19.08 0.705 0.0533 0.0902 20.32 0.7260 0.0345 0.0789 0.47
3DGS (Kerbl et al., 2023) 22.65 0.6039 0.0668 0.0819 23.50 0.7131 0.0289 0.0758 22.59 0.5786 0.0447 0.0853 78.10
Hyper-GS (Thirgood et al., 2025) 27.00 0.7509 0.0309 0.0447 27.70 0.8354 0.0271 0.0414 26.62 0.7545 0.0183 0.0460 2.31
HS-GS (Ours) 25.11 0.9347 0.0572 0.0244 27.86 0.9362 0.0224 0.0417 28.57 0.9490 0.0247 0.0381 2.43

Table 2: Quantitative results on the Surface Optics dataset. We evaluate and compare HS-GS with
both 3DGS-based and NeRF-based baselines on two hyperspectral scenes: Rosemary and Basil, captured
using a Surface Optics SOC710-VP camera. Our method surpasses Hyper-GS (Thirgood et al., 2025) on
most of the metrics, and achieves the state-of-the-art on PSNR and RMSE on both scenes. Best results are
bolded, and the second best are underlined.

Rosemary Basil
Method PSNR↑ SSIM↑ SAM↓ RMSE↓ PSNR↑ SSIM↑ SAM↓ RMSE↓ FPS↑

NeRF (Mildenhall et al., 2020) 8.42 0.7461 0.0284 0.3560 9.91 0.5534 0.0796 0.5256 0.13
MipNeRF (Barron et al., 2021) 13.64 0.5684 1.0000 0.2083 11.01 0.5878 0.0728 0.5334 0.09
TensoRF (Chen et al., 2022) 12.10 0.7335 0.0212 0.2662 15.23 0.5811 0.0435 0.3628 0.20
Nerfacto (Tancik et al., 2023) 18.66 0.8366 0.0708 0.1025 16.54 0.7915 0.0176 0.1655 0.57
MipNeRF360 (Barron et al., 2022) 8.47 0.7518 0.0876 0.3825 13.92 0.8584 0.0497 0.2035 0.01
Hyper-NeRF (Chen et al., 2024a) 18.60 0.8870 0.0077 0.1187 16.81 0.7710 0.0170 0.1587 0.49
3DGS (Kerbl et al., 2023) 25.56 0.9695 0.0028 0.0534 21.79 0.9385 0.0101 0.0897 79.00
Hyper-GS (Thirgood et al., 2025) 26.77 0.9845 0.0021 0.0445 25.30 0.9503 0.0051 0.0569 3.56
HS-GS (Ours) 28.54 0.9191 0.0043 0.0040 48.13 0.9340 0.0019 0.0018 2.95

inference efficiency evaluation. Overall, the experimental results demonstrate that HS-GS achieves the new
state-of-the-art performance with high efficiency and generalizes well across diverse hyperspectral scenes.

Surface Optics Results We present quantitative results of our method on the Rosemary and Basil
scenes from the Surface Optics dataset in Table 2. On Rosemary, HS-GS achieves leading performance with
a PSNR of 28.54 and RMSE of 0.0040. On Basil, HS-GS obtains the best performance in PSNR, SAM and
RMSE, indicating its precise spectral reconstruction and spatial detail preservation. For PSNR, our method
surpasses the state-of-the-art method Hyper-GS (Thirgood et al., 2025) with around 22.83. We attribute
this significant improvement to the following findings. 3DGS (Kerbl et al., 2023) and Hyper-GS (Thirgood
et al., 2025) tend to introduce geometric artifacts in certain regions where severe structural variations and
occlusions make spatial reconstruction less reliable. In contrast, our hyperspectral diffusion module addresses
this issue by learning to correct these residual errors. Our model can enhance geometric fidelity and spectral
consistency, enabling high-quality novel view synthesis even in scenes where 3DGS (Kerbl et al., 2023) and
Hyper-GS (Thirgood et al., 2025) fall short. The quantitative results highlight the robustness of HS-GS in
reconstructing 3D scenes with complex geometry and fine-grained spectral details.

4.3 Qualitative Results

In Figure 3, we present rendered hyperspectral images and difference heatmaps with the ground truth of
our method and the baselines for three hyperspectral scenes: Caladium, Basil and Rosemary. We quali-
tatively compare our method with NeRF (Mildenhall et al., 2020), Hyper-NeRF (Chen et al., 2024a), and
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Figure 3: Qualitative comparison of novel view synthesis on the BaySpec and Surface Optics datasets.
Caladium, Basil and Rosemary are visualized at the wavelength range of 750 nm to 768 nm. We demonstrate
the rendered images and the difference heatmaps with the ground truth. We compare our method with
NeRF (Mildenhall et al., 2020), Hyper-NeRF (Chen et al., 2024a) and 3DGS (Kerbl et al., 2023). HS-
GS achieves superior performance in spatial reconstruction and spectral fidelity, with reduced artifacts and
improved preservation of fine-grained details across both camera systems.

3DGS (Kerbl et al., 2023). We do not qualitatively compare ours with the most relevant work, Hyper-
GS (Thirgood et al., 2025), because their code is not open-source. NeRF and Hyper-NeRF fail to recover
fine-grained spatial details and suffer from high spectral reconstruction errors. 3DGS achieves finer struc-
ture recovering ability but still exhibits spectral inconsistencies. In contrast, our HS-GS significantly reduces
reconstruction artifacts and reaches higher geometric accuracy across both hyperspectral camera systems.

To further examine our model’s generalization ability to different spectral bands, we further provide Fig-
ure 4 to show the qualitative results on the Anacampseros scene across three spectral ranges: 400–418 nm
(ultraviolet), 750–768 nm (near-infrared), and 1082–1100 nm (far-infrared). Notably, NeRF (Mildenhall
et al., 2020) exhibits large deviations in its spectral curves due to overfitting to noise patterns inherent in
hyperspectral data, leading to unstable and inaccurate spectral reconstructions. Hyper-NeRF (Chen et al.,
2024a) alleviates this issue in the near-infrared range, but still suffers from severe spectral misalignment.
3DGS (Kerbl et al., 2023) demonstrates better performance, but fails to capture fine-grained spectral transi-
tions. Compared to these baselines, our HS-GS achieves accurate spectral and spatial reconstruction across
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Figure 4: Qualitative results of the Anacampseros scene of three different wavelength ranges: 400 nm to
418 nm, 750 nm to 768 nm, 1082 nm to 1100 nm. The rendered images and difference heatmaps with the
ground truth demonstrate the spectral fidelity and spatial consistency of the reconstruction results, partic-
ularly under challenging near-infrared and ultraviolet conditions. In addition, we demonstrate the recon-
struction pixel intensity across all the spectral channels of three randomly selected points at the rightmost
column. Compared to baselines, our method shows the highest degree of similarity with the ground truth.
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Figure 5: Qualitative ablation study on the Caladium scene. We show the rendered images and difference
heatmaps with the ground truth. The proposed wavelength encoder and spectral loss are abbreviated as
WE and SL respectively. With the addition of each designed module, the model gradually gets rid of detail
artifacts and spectral distortions, achiving higher spatial and spectral reconstruction accuracy.

all the wavelength ranges, consistently aligning with the ground truth. We also plot the pixel intensity curves
across spectral channel, as shown in the rightmost column of Figure 4. The pixel intensity of our method
in green dashed line is closely matching the ground truth one in red solid line, and outperforms existing
methods. We have added two videos showing the rendering quality across wavelengths for all our baselines.
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4.4 Ablation Study

Ablation Study of Main Components. To understand the contribution of each component in HS-GS,
we conduct an ablation study of the proposed modules, as shown in Table 3. With the wavelength encoder,
our model can better capture spectral structure variations. With the spectral loss, our model can also
recover spectral details in some regions. When applying both the wavelength encoder and the spectral loss,
our model can yield more fine-grained reconstruction details with better spectral alignment. Furthermore,
introducing the diffusion module to the model can facilitate the refinement of the geometry structure and
de-noise the spectral outputs, especially in some challenging regions with sharp spectral transitions. Our full
model can achieve top-performing performance across all the hyperspectral scenes. In addition, we examine
the effect of diffusion model only, and find that it underperforms than our full model due to the lack of
wavelength encoding and spectral-aware supervision. We also provide qualitative results of the ablation
study on the Caladium scene in Figure 5. We can observe that the model progressively eliminates spectral
distortions and spatial errors as each component is introduced.
Effect of Diffusion Steps. We examine the effect of varying the number of diffusion steps on the final
performance. Compared to vanilla 3DGS (Kerbl et al., 2023), the application of hyperspectral diffusion
module significantly improves both spectral accuracy (lower SAM) and visual sharpness (higher PSNR and
SSIM). In Table 4, we quantitatively evaluate the performance of our model under different diffusion steps.
By varying the number of diffusion steps, we observe that the model with 1000 steps consistently yields the
best results across all the hyperspectral scenes. Additional ablation study results can be found in Appendix.

Table 3: Ablation study of main components. We examine the effect of the wavelength encoder, spectral
loss, and hyperspectral diffusion model. Wavelength encoder and spectral loss are abbreviated as WE and
SL, respectively. The reconstruction performance steadily improves as the components are applied.

Pinecone Anacampseros Caladium
Method SL WE Diffusion PSNR↑ / SSIM↑ SAM↓ / RMSE↓ PSNR↑ / SSIM↑ SAM↓ / RMSE↓ PSNR↑ / SSIM↑ SAM↓ / RMSE↓
3DGS 21.40 / 0.8487 0.0912 / 0.0640 22.61 / 0.7622 0.0451 / 0.0682 20.40 / 0.8729 0.0583 / 0.0615
3DGS + SL ✓ 21.90 / 0.8485 0.0793 / 0.0579 22.77 / 0.7653 0.0365 / 0.0614 20.41 / 0.8720 0.0504 / 0.0571
3DGS+WE ✓ 21.71 / 0.8491 0.0761 / 0.0562 22.48 / 0.7652 0.0342 / 0.0598 20.38 / 0.8694 0.0493 / 0.0567
3DGS+WE+SL ✓ ✓ 22.18 / 0.8497 0.0715 / 0.0533 23.05 / 0.7703 0.0310 / 0.0542 20.66 / 0.8738 0.0458 / 0.0515
3DGS + Diffusion ✓ 24.50 / 0.9285 0.0621 / 0.0292 27.10 / 0.9401 0.0264 / 0.0417 26.92 / 0.9263 0.0249 / 0.0439
HS-GS ✓ ✓ ✓ 25.11 / 0.9347 0.0572 / 0.0244 28.57 / 0.9490 0.0247 / 0.0381 27.86 / 0.9362 0.0224 / 0.0417

Table 4: Ablation study of the number of diffusion steps. With the increase of diffusion steps, the
model performance on all the scenes is steadily improved. We select 1000 diffusion steps as our final choice.

Steps Pinecone Anacampseros Caladium
PSNR↑ / SSIM↑ SAM↓ / RMSE↓ PSNR↑ / SSIM↑ SAM↓ / RMSE↓ PSNR↑ / SSIM↑ SAM↓ / RMSE↓

10 24.91 / 0.9305 0.0624 / 0.0272 27.63 / 0.9418 0.0263 / 0.0435 27.42 / 0.9321 0.0271 / 0.0450
500 25.03 / 0.9332 0.0593 / 0.0251 28.02 / 0.9450 0.0250 / 0.0416 27.61 / 0.9349 0.0255 / 0.0420
1000 25.11 / 0.9347 0.0572 / 0.0244 28.57 / 0.9490 0.0247 / 0.0381 27.86 / 0.9362 0.0248 / 0.0312

5 Conclusion

In this work, we present Diffusion-Denoised Hyperspectral Gaussian Splatting (HS-GS), a novel framework
for hyperspectral novel view synthesis that leverages a wavelength encoder to integrate wavelength-specific
information and a spectral loss to enforce alignment with ground truth spectral distributions. To further
enhance spectral fidelity and spatial realism, we incorporate a diffusion-based denoising model directly into
the 3DGS rendering pipeline, treating intermediate hyperspectral renders as noisy observations and refining
them end-to-end through a conditional reverse diffusion process. This joint optimization enables the model to
correct structured artifacts such as band-wise noise and geometric distortions, resulting in high-quality, noise-
resilient hyperspectral renderings. Extensive experiments demonstrate that HS-GS outperforms existing
state-of-the-art methods, offering a robust and accurate approach to 3D hyperspectral scene reconstruction.
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A Implementation Details

We implement our framework based on the 3D Gaussian Splatting implementation from Nerfstudio (Tancik
et al., 2023), and train our model for 60,000 steps. The wavelength encoder is trained jointly with 3D
Gaussians using an Adam optimizer (Kingma & Ba, 2015) with ϵ = 10−15. For 3D Gaussian parameters, we
set the learning rate as 1.6 × 10−4, while for the wavelength encoder, we set the learning rate as 1.6 × 10−5.
For the diffusion model, we leverage a timestep conditioned U-Net (Ronneberger et al., 2015; Ho et al.,
2020) which is a hierarchical encoder-decoder structure with residual connections and time-step embeddings.
The hyperspectral input is progressively downsampled through convolution blocks with increasing channel
dimensions, and subsequently upsampled to reconstruct the output. We empirical set the weights w1, w2,
w3, and w4 as 0.4, 0.2, 0.1 and 0.3 respectively to balance different loss terms. For spectral loss, we set
α = 0.5 and β = 0.5. All experiments are conducted on one NVIDIA A40 GPU.

B Evaluation Metrics

For comparison, we utilize the following metrics to quantitatively evaluate the model performance. Peak
Signal-to-Noise Ratio (PSNR) measures pixel-level reconstruction quality. Structural Similarity Index Mea-
sure (SSIM) evaluates perceived structural similarity. Spectral Angle Mapper (SAM) quantifies spectral
distortion in radians. Root Mean Squared Error (RMSE) captures absolute error between predicted and
ground truth. Finally, Frames Per Second (FPS) denotes the number of rendered frames per second by the
method.

C Ablation Study of Module Design

C.1 Ablation Study of Positional Encoding Settings

As shown in Tab. 5 and Fig. 6, the absence of positional embeddings (No PE) results in a significant loss
of geometric structure and reflective details, particularly in the central regions and beyond-visual-range
wavelengths of the Pinecone scene. The rendered details appear blurred and fail to represent fine textures
accurately. To isolate the effect of positional encoding, all experiments in this study were conducted without
the diffusion module. Introducing positional embeddings (L = 5) significantly improves the rendering of
finer reflective details and geometric accuracy, as evident in the sharper edges and clearer representation
of reflective regions in the scene. However, further increasing the number of positional embeddings from
L = 5 to L = 10 provides only marginal improvements, with relatively small enhancements in continuity and
fidelity. This highlights that while positional embeddings are critical for wavelength encoding, increasing
them beyond a certain threshold yields diminishing returns in terms of rendering quality.

Table 5: Ablation study on the impact of positional encoding in HS-GS. We evaluate the effect
of different positional encoding settings without the diffusion module to isolate the contribution of the
wavelength encoder. Performance is reported on the Pinecone, Anacampserous, and Caladium scenes from
the Hyperspectral-NeRF dataset (Chen et al., 2024a), along with average results.

Method Pinecone Anacampserous Caladium Average
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

No PE 18.31 0.8424 22.84 0.7681 20.18 0.8691 20.44 0.8265
L = 5 22.13 0.8496 23.04 0.7716 20.54 0.8732 21.90 0.8315
L = 10 (Ours) 22.18 0.8497 23.05 0.7703 20.66 0.8738 21.96 0.8313

C.2 Ablation Study of Spectral Loss Weight

As shown in Tab. 6 and Fig. 7, the choice of the spectral loss (SL) weight has a significant impact on
rendering quality. To isolate the effect of spectral loss, all experiments in this section are conducted without
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Ground Truth No Position 5 PS 10 PS

Figure 6: Comparison of positional encoding configurations in HS-GS without diffusion. The
ground truth (left) is shown alongside variants of the wavelength encoder without positional embedding,
with 5-dimensional embeddings, and with 10-dimensional embeddings. All models are trained without the
diffusion module to isolate the effects of wavelength encoding.

the diffusion model. When the SL weight is set to 0.1, the rendered details in the central portion of the
Pinecone plant are visible but lack refinement, and the reflective properties are not accurately captured.
Increasing the SL weight to 0.2 leads to a noticeable improvement in rendering accuracy. The finer details,
particularly in the central portion, are better defined, and the reflective regions exhibit improved fidelity.
This demonstrates that a moderate SL weight effectively balances spectral accuracy and perceptual quality.
However, further increasing the SL weight to 0.3 diminishes returns and degrades rendering quality. The
central portion of the Pinecone plant appears overly darkened, with some fine details becoming obscured.
This suggests that an excessively high SL weight overemphasizes spectral accuracy at the cost of spatial and
perceptual fidelity.

Table 6: Ablation study of spectral loss weight w3 in HS-GS. We evaluate the impact of vary-
ing the spectral loss weight w3 on model performance across three scenes from the Hyperspectral-NeRF
dataset (Chen et al., 2024a). The results show that w3 = 0.2 yields the best performance and is used in our
final model.

w3
Pinecone Anacampserous Caladium Average

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
0.1 22.06 0.8493 22.99 0.7692 20.56 0.8731 21.87 0.8305
0.3 22.05 0.8497 22.81 0.7673 20.56 0.8744 21.81 0.8305
0.2 (Ours) 22.18 0.8497 23.05 0.7703 20.66 0.8738 21.96 0.8312

Ground Truth w3 = 0.1 w3 = 0.2 w3 = 0.3

Figure 7: Comparison of spectral loss (SL) results for different configurations on Pinecone. The
ground truth (left half) is shown alongside the right halves of w3 = 0.1, w3 = 0.2, and w3 = 0.3 configurations.

C.3 Runtime and Memory Benchmarks

We provide a detailed evaluation and comparison of the runtime and memory consumption of HS-GS and
other methods. Table 7 reports training time per iteration, total memory usage, number of Gaussians
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and inference speed in frames per second. We observed that the vanilla 3DGS model is the most efficient,
achieving inference speeds above 75 FPS. The inclusion of the diffusion module increases memory usage
and reduces inference speed to around 2.4 FPS. Despite this, HS-GS still performs much faster than NeRF-
based methods in both training and rendering speed. In sum, HS-GS achieves a good balance between
reconstruction performance and computational efficiency.

Table 7: Runtime and memory benchmarks. We report training iteration time (s), peak GPU memory
(GB), number of Gaussians and FPS.

Method Train. Time (s) GPU Mem (GB) Gaussians FPS (↑)
NeRF 821 10.9 - 0.13
Hyper-NeRF 261 10.6 - 0.5
3DGS 0.48 7.6 112,350 75.2
3DGS + Diffusion 1.23 19.1 134,024 2.4
3DGS + Spectral Loss 0.85 11.8 128,910 54.3
3DGS + Wavelength Encoder 0.87 12.2 129,704 52.7
HS-GS (Ours) 1.25 19.4 134,472 2.2

Table 8: Performance comparison between HS-GS and autoencoder baseline on the BaySpec
dataset. HS-GS consistently outperforms 3DGS, 3DGS+Diffusion and autoencoder in spatial and spectral
fidelity, as measured by PSNR, SSIM, RMSE, and SAM.

Method Scene PSNR ↑ SSIM ↑ RMSE ↓ SAM ↓

Autoencoder
Pinecone 10.45 0.2841 0.2763 0.1984

Anacampseros 9.90 0.2291 0.3068 0.2145
Caladium 11.02 0.3187 0.2634 0.1862

3DGS
Pinecone 21.40 0.8487 0.0640 0.0912

Anacampseros 22.61 0.7622 0.0682 0.0451
Caladium 20.40 0.8729 0.0615 0.0583

3DGS + Diffusion
Pinecone 24.50 0.9285 0.0292 0.0621

Anacampseros 27.10 0.9401 0.0417 0.0264
Caladium 26.92 0.9263 0.0439 0.0249

HS-GS (Ours)
Pinecone 25.11 0.9347 0.0244 0.0572

Anacampseros 28.57 0.9490 0.0381 0.0247
Caladium 27.86 0.9362 0.0417 0.0224

C.4 Autoencoder Baselines on BaySpec Dataset

To evaluate the performance of traditional low-dimensional latent reconstruction models on hyperspectral
data, we train an autoencoder and a variational autoencoder on three representative plant scenes (e.g.:
Pinecone, Anacampseros, Caladium) from the BaySpec dataset. The results are presented in Table. 8.

Autoencoder: We firstly train an autoencoder baseline using a U-Net-style encoder-decoder architecture.
The autoencoder baseline consistently underperforms in both spatial and spectral metrics (e.g.: PSNR,
SSIM, SAM), demonstrating its inferior performance on preserving fine-grained spectral features across view-
dependent geometry and material variations. Notably, SAM scores are significantly worse than those of 3DGS
or our proposed HS-GS method, validating that simple bottleneck-based reconstructions are inadequate for
hyperspectral consistency.

Variational Autoencoder: In addition, we train a variational autoencoder (VAE) baseline. However, due
to the high channel dimensionality of hyperspectral inputs which are up to 141 bands, the VAE’s latent
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sampling and reconstruction pipeline ran out of memory in our experiment. This further reinforces the need
for spatially conditioned and spectrally aware architectures, such as HS-GS, that can scale to such domains.

C.5 Relation to Prior 3DGS + Diffusion Works

While our approach integrates 3D Gaussian Splatting with a diffusion model, it differs significantly from
prior works such as GaussianObject (Yang et al., 2024a) and MVSplat360 (Chen et al., 2024b) in both
motivation and methodology.

GaussianObject focuses on object-level scene synthesis from sparse views and employs a frozen, pre-trained
2D diffusion model as a generative decoder to enhance rendering realism. In contrast, our diffusion model
is trained in an end-to-end manner and designed specifically for denoising hyperspectral radiance outputs.
Compared to GaussianObject, HS-GS directly learns to correct spectral distortions aligned with wavelength-
dependent SH encoding and spectral loss, rather than enhancing RGB textures. GaussianObject operates
purely in the natural image domain, without any consideration for hyperspectral fidelity.

MVSplat360 addresses novel view synthesis for outdoor scenes, leveraging multi-view Gaussian splatting
and a depth-aware neural renderer. While it incorporates a diffusion model to enhance RGB image qual-
ity, it is also pre-trained and only focusing on natural image restoration. HS-GS, in contrast, deals with
hyperspectral radiance modeling and directly incorporates spectral priors through wavelength-specific SH
modulations, KL-based spectral loss, and a custom diffusion denoiser tuned for spectral domains.

To the best of our knowledge, HS-GS is the first system to jointly train a wavelength-aware 3DGS model with
a diffusion module tailored for high-fidelity hyperspectral scene reconstruction. It integrates spectral-domain
learning objectives and view-aware spatial consistency to address the unique challenges of HSI.
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