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ABSTRACT

Modeling biological sequences such as DNA, RNA, and proteins is crucial for
understanding complex processes like gene regulation and protein synthesis. How-
ever, most current models either focus on a single type or treat multiple types of
data separately, limiting their ability to capture cross-modal relationships. We
propose that by learning the relationships between these modalities, the model can
enhance its understanding of each type. To address this, we introduce BSM, a
small but powerful mixed-modal biological sequence foundation model, trained on
three types of data: RefSeq, Gene Related Sequences, and interleaved biological
sequences from the web. These datasets capture the genetic flow, gene-protein
relationships, and the natural co-occurrence of diverse biological data, respectively.
By training on mixed-modal data, BSM significantly enhances learning efficiency
and cross-modal representation, outperforming models trained solely on unimodal
data. With only 110M parameters, BSM achieves performance comparable to
much larger models across both single-modal and mixed-modal tasks, and uniquely
demonstrates in-context learning capability for mixed-modal tasks, which is absent
in existing models. Further scaling to 270M parameters demonstrates even greater
performance gains, highlighting the potential of BSM as a significant advancement
in multimodal biological sequence modeling.

1 INTRODUCTION

Biological sequences—such as DNA, RNA, and proteins—are fundamental to an organism’s functions,
as they encode genetic information that determines structure, function, and regulatory mechanisms
(Watson & Crick, 1953; Nirenberg & Matthaei, 1961). Understanding these sequences is vital for
unraveling the mysteries of biological evolution, deciphering disease mechanisms, and elucidating
molecular interactions.

By applying machine learning algorithms to large-scale biological sequence data, one can capture
evolutionary effects and extract complex patterns in gene transcription and protein translation. This
not only enhances our understanding of gene regulation and protein function but also enables the
prediction and generation of complex biological functions, significantly advancing our comprehension
of biology and life processes (Nguyen et al., 2024a).

Despite the rapid advancements in modeling biological sequences with machine learning, cur-
rent efforts have primarily focused on creating unimodal models specialized for DNA, such as
DNABert2 (Zhou et al., 2023), HyenaDNA (Nguyen et al., 2024b), Caduceus (Schiff et al., 2024),
NT (Dalla-Torre et al., 2023); RNA, including RNA-FM (Chen et al., 2022); or proteins, like
ESM2 (Lin et al., 2023), ProTrans (Ahmed et al., 2020), ProGen2 (Nijkamp et al., 2023). However,
complex biological processes such as gene regulation, CRISPR immunity, and genetic transposition
involve interactions across multiple modalities.

Recently, several methods have focused on developing models capable of handling both gene and
protein data. For example, Evo (Nguyen et al., 2024a) is a 7B genomic foundation model pretrained
on DNA sequences, which inherently contain the potential to express other modalities. It learns
from large genomic regions to capture systems-wide interactions and enables the design of more
sophisticated biological functions. LucaOne (He et al., 2024) is a 1.8B model that is trained on
both gene and protein data separately, allowing the model to process and analyze both types of
data concurrently. Although these models demonstrate excellent performance across various tasks,
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Figure 1: Impact of mixed-modal data on model learning efficiency. After the first round of training,
the model shows slow learning efficiency when using only Round 1 data (single-modal data: DNA,
RNA, and protein). However, when trained on the newly introduced mixed-modal data, it achieves
significantly lower validation loss, indicating greatly improved learning efficiency. Similarly, the
introduction of new web data after the second round further reduces validation loss. All validation
losses across rounds are computed on the same Round 1 validation data for consistency.

they achieve their capabilities primarily by increasing computational resources—LucaOne, for
instance, utilizes 800 billion tokens for pretraining—and by scaling up model size to the billions to
accommodate multiple modalities. This raises the question of whether smaller models can achieve
similar capabilities, making advanced biological sequence modeling more accessible and practical.

Recent advancements in small language models (SLMs) have shown significant progress (Minaee
et al., 2024). These models have demonstrated emerging capabilities and achieved performance levels
comparable to much larger models. The secret behind this achievement lies in strategic training
choices, such as using "textbook-quality" data. Capable SLMs are faster to run and easier to serve;
meanwhile, ongoing improvements, as seen with the Phi series (Abdin et al., 2024), indicate that
SLMs are still under-trained and have great potential for further improvement.

In this paper, we explore the construction of high-quality biological sequence data. According to the
central dogma of molecular biology (Crick, 1970), which highlights the sequential flow of genetic
information, DNA, RNA, and proteins are intrinsically interconnected. We propose that by learning
the relationships among these three types of sequences, the model can enhance its understanding of
each modality. In light of this, we introduce three types of mixed-modal data for pretraining: RefSeq,
Gene Related Sequences, and interleaved biological sequences from the web. These datasets capture
genetic flow, gene and protein relationships, and the natural co-occurrence of diverse biological data
types, respectively. Unlike previous work, which trains models using unimodal data or combines
different types in a simplistic manner (where each training sample consists of only one type), we
explicitly train the model on this mixed-modal data to learn the relationships among them.

We emphasize that incorporating mixed-modal data facilitates a more comprehensive understanding
of biological sequences and enables more effective acquisition of cross-modal representations by
better learning the relationships between these modalities. As illustrated in Figure 1, our experiments
reveal that relying on unimodal data to learn these capabilities results in slow learning efficiency and
requires substantial data and model sizes. In contrast, training on mixed-modal data significantly
lowers validation loss, computed on the same Round 1 data across rounds, indicating greatly improved
learning efficiency and better representation across all single modalities.

Based on these newly introduced types of high-quality mixed-modal data, we develop a small but
powerful biological sequence foundation model, BSM, through a structured multi-round training
approach. In this process, we conduct three rounds of training, progressively incorporating different
types of mixed-modal data in the latter two rounds. By employing an annealing strategy, we optimize
the data mix to ensure the best possible integration of these datasets. Our experiments demonstrate
that BSM achieves performance comparable to that of billion-scale models on both single-modal and
complex mixed-modal tasks. This proves the effectiveness of our method and its significant potential.

To conclude, our work makes the following contributions: 1) We propose that explicitly learning the
relationships between genes and proteins can enhance the model’s understanding of each modality.
We introduce three types of mixed-modal data and strategically integrate them with unimodal data,
ultimately resulting in our small but powerful BSM model. 2) We conduct extensive experiments

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Models

Datasets

Single-modal Data

Seq: DNA Seq

Seq: RNA Seq

Seq: Protein Seq

Sampled

Round2 Data 
(120B+24B+12B)

Single-modal 

Data:RefSeq:Gene

RelatedSeq =10:2:1

Round3 Data 
(1.3B+1.3B+13.3B)

RefSeq:Gene

RelatedSeq:Filtered

Web Data=1:1:10

CBSM Model v

Round1 
Model

Round2 
Model

Final BSM 
Model

Pretraining 
Data

Sampled

Mixed-modal Interleaved 
Data - Filtered Web Data

Seq: DNA-RNA-Protein Seq

Mixed-modal Pair Data - 
NCBI RefSeq

Transcription

Reverse
Transcription

Translation

Seq: DNA-RNA Seq

Seq: RNA-Protein Seq

Seq: DNA-Protein Seq

Interleaved Data: GATCTG…-

GAAGCGGC…-GATCTGC…-

GAAGCGGC…-[…]

Mixed-modal Pair Data - Gene 
Related Sequences

Seq: DNA-DNA Seq

Seq: DNA-RNA Seq

Seq: DNA-Protein Seq

Related
Sequences

Replication

Round1 Data 
(100B)

Single-modal Data

Figure 2: Overview of the pretraining data and training process of the BSM model. BSM utilizes three
types of mixed-modal data: RefSeq, Gene Related Sequences, and interleaved biological sequences
from the web for pretraining. It undergoes three rounds of training to enhance its ability to learn
complex relationships among different types of biological data.

demonstrating that BSM achieves performance comparable to billion-parameter models across various
tasks, particularly excelling in mixed-modal tasks, and exhibits unique and strong few-shot learning
capabilities with different modality combinations. 3) We conduct scaling experiments to show that
BSM scales effectively; when increased to 270M parameters, it achieves better results, highlighting
the potential of our approach.

2 METHODS

2.1 ARCHITECTURE

BSM employs a single-nucleotide tokenizer with a vocabulary that includes nucleotides, amino acids,
and special tokens. It uses an autoregressive architecture to model biological sequences such as genes
and proteins. By learning next-token prediction, the model reasons over sequences causally and
captures statistical patterns and dependencies in the training data, enabling effective representation
and generation of biological sequences. Furthermore, the autoregressive architecture’s sequential
nature effectively handles long-range dependencies, which is crucial in biological sequences like
DNA, RNA, and proteins, where long-context information can reveal critical functional relationships
or structural interactions.

The BSM family includes models of two sizes, specifically BSM-110M and BSM-270M. BSM-
110M is a decoder-only Transformer with 12 layers, each having 12 attention heads and a hidden
dimension of 768, and BSM-270M features 20 layers, 16 attention heads, and a hidden dimension of
896. Both models utilize rotary position embedding (RoPE) (Su et al., 2024) with a base frequency
hyperparameter of 100,000 and support a context length of 1024 tokens. To accelerate training, we
employ flash-attention mechanisms (Dao, 2023).

2.2 PRETRAINING DATA

High-quality biological data play a key role in developing effective models for biological sequences.
In addition to using unimodal protein and gene data, we incorporate three types of mixed-modal data
for continued pretraining, each containing valuable information that helps the model learn diverse
dependencies and interactions in biological sequences, as well as critical functional relationships.
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These multi-modal datasets enhance the model’s learning efficiency and its ability to understand
cross-modal relationships, enabling it to handle various biological data. In the following section, we
introduce the data used in pretraining. Details of the data construction are listed in the Appendix. B.
Additionally, we perform data cleansing by removing instances of the downstream task test data from
the pretraining data.

Single-modal Data In the initial pretraining phase, we utilize single-modal datasets that exclusively
contain nucleic acid (DNA or RNA) sequences or protein sequences, enabling the model to concentrate
on understanding the essential structures, patterns, and unique characteristics of each modality. These
datasets are sampled from the pretraining dataset of LucaOne (He et al., 2024), and we only use
the sequence information from RefSeq (O’Leary et al., 2016), UniProt (Consortium, 2015) and
ColabFold (Mirdita et al., 2022) without incorporating additional biological annotations, resulting
in a data volume of 220 billion tokens. Single-modal data not only enhances the model’s ability
to understand individual modality sequences but also establishes a solid foundation for continued
pretraining on more complex multimodal data.

Mixed-modal Pair Data - NCBI RefSeq To better learn the relationships among DNA, RNA, and
proteins, we incorporate mixed-modal data from the NCBI RefSeq database (O’Leary et al., 2016).
RefSeq provides a comprehensive and curated collection of annotated reference sequences that
illustrate the flow of genetic information in the central dogma of molecular biology—DNA to RNA
to protein. This resource is crucial for facilitating the understanding of gene-protein interactions and
regulatory mechanisms, capturing essential details about transcription and translation processes.

We use data from 15 different species, including Bubalus Bubalis, Camelus Dromedarius, Human,
and several others. Each species has its own unique DNA, RNA, and protein sequences, which are
used to construct our gene-protein pairing dataset, resulting in a dataset of 9.2 billion tokens. This
extensive data ensures a rich representation of genetic information, allowing the model to leverage
diverse biological contexts for effective learning while recognizing the inherent links between DNA
sequences and their corresponding proteins.

Mixed-modal Pair Data - Gene Related Sequences To better understand the complex relationships
between gene-gene and gene-protein, we incorporate data from the NCBI Gene database (Brown
et al., 2015), which offers a detailed collection of gene-related sequences and annotations. The Gene
Related Sequences data within this collection contains related sequences to the gene and provides
links to the corresponding records in Entrez Nucleotide (Maglott et al., 2010),Entrez Protein (Ostell,
2012) or UniProtKB (Boutet et al., 2007).

We have constructed a dataset from the Gene Related Sequences data by sampling from multiple
species, resulting in a diverse collection of 8.3 billion tokens. This dataset enables the model to
capture complex dependencies, recognize patterns of gene regulation and protein expression, and
enhances its understanding of gene and protein functions.

Mixed-modal Interleaved Data - Filtered Web Data To simulate the natural co-occurrence of
diverse biological data types and provide the model with a more realistic learning context, we
integrate filtered web data from FineWeb-Edu (Penedo et al., 2024), which consists of high-quality
web-crawled documents. We specifically filter this data to extract biological sequences within
documents, using a special token, <sep>, to separate interleaved biological sequences, resulting in a
final dataset of 33 million tokens.

By incorporating this curated dataset into our pretraining process, BSM can leverage a rich and diverse
collection of arbitrarily interleaved biological sequences. This dataset features a greater number of
interleaved sequences, enhancing the model’s ability to capture complex biological relationships and
enabling it to understand and generate gene and protein sequences in any arbitrary context.

2.3 PRETRAINING PROCEDURE

Three-round Training We pretrain BSM models from scratch in an end-to-end manner, which
includes a three-round training process, as shown in Figure 2. It begins by establishing a foundational
understanding of individual types of biological sequences (DNA, RNA, or proteins) using 100B
single-modal tokens. The model then advances to incorporate multi-modal data, enhancing its ability
to understand relationships and transitions between different biological data types, which is crucial
for tasks involving mixed modalities. Specifically, in the second round, it utilizes an additional 120B
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single-modal data along with a certain amount of multi-modal pair data from RefSeq (24B) and Gene
Related Sequences (12B). In the third round, it trains on a small amount of high-quality mixed-modal
data, including pair data from RefSeq (1.3B) and Gene Related Sequences (1.3B) as well as web
interleaved data (13.3B). By upsampling these high-quality but relatively small multi-modal datasets
during continued pretraining, we significantly enhance the BSM model’s performance across a range
of biological tasks, making it a powerful tool for decoding the complexities of molecular biology.

We set the learning rate to decay from 2e-5 to 1e-5 in the first round. In the second round, it decays
from 1e-5 to 1e-7, and in the third round, it decays from 1e-6 to 0. The tokenizer is trained with a
peak learning rate of 2e-5.

Simulated Annealing & Data Mixing To obtain a high-quality biological model, it is essential to
carefully determine the proportion of different data sources in pretraining. Similar to Blakeney et al.
(2024) and Llama 3.1 (Dubey et al., 2024), we find that upsampling and annealing help efficiently
select the optimal ratio for mixing new mixed-modal datasets. We evaluate these datasets by training
the BSM-110M over 1000/500 steps with linearly annealed learning rates. Through these annealing
experiments, we identify the best data mixing ratio based on the lowest validation loss in the second
and third rounds. Ultimately, we employ a ratio of 10:2:1 for single-modal data, RefSeq, and Gene
Related Sequences in the second round, and a ratio of 1:1:10 for RefSeq, Gene Related Sequences,
and web interleaved data in the third round. After determining the best mix, we train a larger model
(BSM-270M) on this selected data mix.

3 EXPERIMENTS

We evaluate BSM’s capabilities in understanding and generating biological sequences across a
variety of tasks, including both mixed-modal and single-modal tasks. BSM demonstrates outstanding
performance on multi-modal tasks, even surpassing many billion-scale models. We also assess BSM’s
in-context learning (ICL) ability in a few-shot setting for mixed-modal tasks, demonstrating that
BSM possesses this capability, which has not yet been observed in other biological sequence models.
Additionally, we investigate the model’s supervised fine-tuning (SFT) and zero-shot performance
on protein and gene-related tasks. Scaling experiments confirm that further increasing the model
size continues to enhance its performance. We conduct an ablation study on the performance of
models from different rounds to verify the value of multi-modal data. Finally, we also evaluate the
model’s generative abilities using the perplexity metric. Details of evaluation datasets are listed in the
Appendix C.

Implementation Details For tasks requiring SFT, we fine-tune the model using a learning rate of
1e-6 and a batch size of 16. For tasks that require two sequences as input, other baseline models
lack the ability to simultaneously process both sequences, especially when it comes to handling gene
and protein pairs. Instead, they use a dual-tower structure, employing two independent encoders to
encode each sequence separately. In contrast, BSM directly connects the two sequences as input
using a <sep> token, allowing the model to evaluate their relationship directly in a unified context.
Implementation details are listed in the Appendix A.

3.1 MIXED-MODAL MODELING & FEW-SHOT EVALUATION

As shown in Figure 3, in mixed-modal tasks, such as RNA-protein interactions, BSM outperforms
larger models like LucaOne. In the Central Dogma task, which focuses on DNA-protein associations,
BSM achieves performance comparable to LucaOne. Additionally, in the few-shot learning setting
without fine-tuning, BSM achieves performance close to SFT. Notably, BSM is the only existing
biological sequence model capable of few-shot learning on mixed-modal data. These results highlight
BSM’s ability to efficiently process and analyze mixed-modal biological sequence data, positioning it
as a leading model in the field despite its smaller size.

ncRPI The ncRNA-Protein Interactions (ncRPI) (Han & Zhang, 2023) task is a binary classification
task aimed at predicting interactions between various non-coding RNAs (ncRNAs) and proteins,
which is crucial for understanding cellular functions. Both BSM-110M and BSM-270M surpass the
performance of billion-scale biological models, such as DNABert2 + ESM2-3B and LucaOne 1.8B.
Notably, the results for BSM-270M are comparable to those of ncRPI-LGAT, a model specifically
tailored for this task.
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Figure 3: Results on mixed-modal tasks and few-shot evaluation. In the RNA-protein mixed-modal
task (ncRPI), BSM outperforms larger models like LucaOne. In the DNA-protein mixed-modal task
(Central Dogma), BSM achieves performance comparable to LucaOne. In few-shot learning settings
without fine-tuning, BSM performs similarly to SFT, making it the only biological sequence model
capable of few-shot learning on mixed-modal data.

Central Dogma The Central Dogma task is a binary classification task curated by LucaOne, aimed
at recognizing the intrinsic association between DNA sequences and their corresponding proteins
based on the central dogma. Specifically, the DNA-protein pairs are constructed from the RefSeq
database (O’Leary et al., 2016). To ensure data integrity, we removed 57 instances of test data
that were present in our pretraining dataset. We conducted two experimental settings for this task:
one involved SFT with 3,200 training samples, while the other utilized few-shot learning without
fine-tuning the model.

In the SFT experiment, BSM-270M performs comparably to LucaOne despite using a much smaller
model size. Additionally, BSM outperform DNABERT2 + ESM2-3B in performance.

Few-shot Learning In the few-shot learning setting, we concatenate few-shot demonstrations with
the test sample, each containing a DNA and protein sequence, as input for BSM. We then calculate
the log probability for each token in the tested protein sequence. This allows us to obtain the overall
generation probability for the tested protein sequence. We then set a threshold for this generation
probability to classify whether the protein is linked to the tested DNA, and subsequently compute the
prediction accuracy.

Despite not being fine-tuned, the BSM model demonstrates strong performance in identifying correct
DNA-protein associations. The experiments show that increasing the number of demonstrations
further enhances performance, with the few-shot learning results approaching those of SFT. This
experiment highlights BSM’s in-context learning capability, particularly in mixed-modal tasks, a
capability that other existing models do not possess.

3.2 PROTEIN MODELING EVALUATION

We evaluate BSM’s capabilities on four protein tasks, with results shown in Figure 4. Notably, we
surpass all baseline models in both the PPI and ProtLoc tasks, achieving the best results. In the
ProtStab task, we obtain results comparable to LucaOne. Additionally, in the zero-shot protein fitness
prediction task, we achieve performance similar to Evo-7B and Progen2-large. These results highlight
BSM’s capability in modeling protein sequences through a deep understanding of protein functions
and activities, despite its smaller size.

PPI The Protein-Protein Interaction (PPI) task is pivotal for mapping out how proteins interact
within biological systems. We use the DeepPPI (Sun et al., 2017) database that contains human
protein interactions for binary classification. The models are fine-tuned on this dataset, and their
performances are assessed based on prediction accuracy. Both BSM-110M and BSM-270M surpass
protein-specific models like DeepPPI and ESM2-3B, as well as multimodal biological sequence
models like LucaOne.

Prokaryotic Protein Subcellular Location (ProtLoc) ProtLoc (Xu et al., 2009) predicts the sub-
cellular localization of prokaryotic proteins, classifying them into six compartments like the cell
membrane and cytoplasm. It uses a strategy similar to DeepLocPro (Moreno et al., 2024), helping to
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Figure 4: Results on four protein tasks. BSM outperforms all baseline models in PPI and ProtLoc,
achieving the best results. In ProtStab, its performance matches LucaOne. Additionally, in the zero-
shot protein fitness prediction task, BSM shows comparable results to Evo-7B and Progen2-large.

understand protein functions based on their locations. In this task, both BSM-110M and BSM-270M
achieve the best results.

Protein Stability (ProtStab) evaluates protein stability by correlating features with stability mea-
surements from the TAPE dataset (Rao et al., 2019). This task is important for understanding protein
activity and can assist in drug design and biotechnology applications. In this task, BSM outperforms
ESM-2-3B and TAPE, attaining results comparable to LucaOne.

Zero-shot Protein Fitness Prediction This task evaluates models’ ability to predict the impact of
mutations on protein function without task-specific fine-tuning. It uses Deep Mutational Scanning
(DMS) datasets (Jacquier et al., 2013; Firnberg et al., 2014; Adkar et al., 2012; Tsuboyama et al.,
2023; Kelsic et al., 2016), where a comprehensive set of mutations is introduced into protein-coding
sequences to measure their effects on fitness. Fitness serves as a metric for how effectively a protein
performs a specific function.

Following the implementation of Evo, the model predicts fitness scores based solely on its under-
standing of the protein sequence in a zero-shot setting. In the experiments, Evo-7B and NT-500M use
gene sequences as input, while other protein models like ESM-2 650M and Progen2-large rely on
protein sequences. In contrast, BSM utilizes both gene and protein sequences due to its mixed-modal
modeling capability. Our experiments demonstrate that incorporating gene data enhances BSM-110M
performance on this task, increasing the SRCC from 40.7% to 42.3%. This advancement not only es-
tablishes BSM’s broad applicability in computational biology but also showcases its forward-looking
nature in improving protein modeling capabilities through the integration of genetic information.
Ultimately, BSM-270M achieves performance comparable to Evo-7B and Progen2-large, although it
does not surpass ESM-2 650M.

3.3 GENE MODELING EVALUATION

We evaluate BSM’s capabilities on several critical genomic challenges, with results shown in Figure 5.
BSM outperformed Evo 7B in the zero-shot ncRNA fitness prediction task, leveraging its under-
standing of genomic sequences to predict the effects of mutations on ncRNA functionality without
task-specific fine-tuning. It also performed well in the ncRNAFam multi-class classification task.
These collective achievements underscore the model’s comprehensive strength in genomic analysis
and its potential to contribute significantly to molecular biology research.

Zero-shot ncRNA Fitness Prediction This task investigates the model’s ability to predict the
functional implications of mutations in non-coding RNAs (ncRNAs), including tRNAs, rRNAs,
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Figure 5: Results on two gene-related tasks. BSM outperformed Evo 7B in the zero-shot ncRNA
fitness prediction task, accurately predicting the effects of mutations on ncRNA functionality without
task-specific fine-tuning. It also performed well in the ncRNAFam multi-class classification task.

and ribozymes (Kobori et al., 2015; Andreasson et al., 2020; Domingo et al., 2018; Guy et al.,
2014). Understanding these roles is crucial for cellular processes like protein synthesis and gene
regulation. We use ncRNA Deep Mutational Scanning (DMS) data for evaluation, which includes
various mutations and their effects on ncRNA functionality. Following Evo, we adopt a zero-shot
approach to assess whether the pretrained BSM can generalize its understanding of genomic sequences
to accurately predict the impact of mutations on ncRNA fitness without task-specific fine-tuning.
Experimental results show that both BSM-110M and BSM-270M achieve the best performance,
surpassing other methods, including Evo-7B.

Non-coding RNA Family (ncRNAFam) The ncRNAFam task is a sophisticated multi-class classifi-
cation challenge, requiring models to accurately categorize non-coding RNA (ncRNA) sequences
into 88 distinct families (Noviello et al., 2020; Rossi et al., 2019). These ncRNAs, while not coding
for proteins, play indispensable roles in gene expression regulation and other cellular processes.
Our fine-tuned BSM model achieves a remarkable accuracy of 97.5%, slightly below LucaOne
but surpassing DNABert2 110M. This achievement underscores BSM’s proficiency in discerning
the subtleties of ncRNA sequences, showcasing its advanced capability to classify these crucial
non-coding elements with high precision.

Figure 6: Effectiveness of scaling BSM and incorporating cross-modal data. Validation loss curves for
the BSM-110M and BSM-270M show that scaling enhances model capabilities. Adding cross-modal
data in Round 2 and Round 3 continuously reduces validation loss compared to the BSM-110M-single.
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3.4 SCALING UP BSM

To unlock the full potential of BSM, we investigate its scaling properties by increasing its parameters
from 110M to 270M. As shown in Figure 6, BSM-270M exhibits lower validation loss across
all three rounds of training, demonstrating a significant improvement compared to BSM-110M.
Experiments across diverse biological tasks also indicate that a larger model enhances performance.
This scaling shows that increasing model size can further enhance BSM’s capabilities, underscoring
the effectiveness of our approach and the considerable value of incorporating mixed-modal data in
advancing biological sequence modeling.

3.5 ABLATION STUDY ON MIXED-MODAL DATA

We compared models trained on single-modal versus with mixed-modal data under the same token
budget on BSM-110M. The results in Table 1 show that BSM-110M (R2) outperforms BSM-110M-
single (R2), and BSM-110M (R3) outperforms BSM-110M-single (R3). This demonstrates that
incorporating mixed-modal data in both Round 2 and Round 3 leads to a significant improvement in
model performance, both in single-modal and mixed-modal tasks. Additionally, without mixed-modal
data, BSM-110M-single performs significantly worse than billion-scale models. However, when
mixed-modal data is included, its performance matches or even exceeds that of these larger models.
Figure 6 shows the validation loss of BSM-110M-single consistently higher than BSM-110M. This
aligns with Figure 1 , confirming that introducing mixed-modal data significantly reduces validation
loss and improves single-modal representations.

Table 1: Ablation study on mixed-modal data.

Model ncRPI PPI ProtLoc Protein Fitness ncRNA fitness
ESM2-3B 0.9332 0.9745 0.9496 / /
LucaOne 0.938 0.9748 0.9452 / /
Evo / / / 0.452 0.243
BSM-110M-single (R2) 0.9216 0.9648 0.9019 0.373 0.21
BSM-110M (R2) 0.9422 0.9722 0.9401 0.403 0.239
BSM-110M-single (R3) 0.922 0.9651 0.9038 0.379 0.211
BSM-110M (R3) 0.9494 0.975 0.9685 0.423 0.256

3.6 COMPARISON OF BSM WITH MODELS OF SIMILAR SIZE

We compared our models with ESM-150M, which share similar size with ours. Results in Table 2
show that the performance of ESM-150M is far lower than its larger models, and both BSM-110M
and BSM-270M significantly outperform ESM-150M, highlighting the advantages of our approach
and the importance of mixed-modal data. We clarify that we report ESM-650M for Zero-shot Protein
Fitness Prediction because it is the best size for this task (Nguyen et al., 2024a).

Table 2: Comparison of BSM with ESM-150M of Similar Size

Tasks ESM-150M ESM-650M ESM-3B BSM-110M BSM-270M
PPI 0.8139 / 0.9745 0.975 0.9788
ProtLoc 0.8644 / 0.9496 0.9685 0.9713
Protein Stability 0.7129 / 0.7556 0.7653 0.7681
Protein Fitness 0.408 0.512 / 0.423 0.441

3.7 PERPLEXITY EVALUATION

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Comparison of BSM with various
protein sequence models based on perplexity.

Model PPL.

Progen2 2.7B 8.92
Progpt2 700M 9.75
BSM-270M 9.47

Perplexity (PPL) is one of the most common metrics
for evaluating the generation capabilities of language
models. It is defined as the exponentiated average
negative log-likelihood of a sequence, reflecting how
well a model can predict the next word based on the
preceding context. A lower perplexity score indicates
a better ability of the model to accurately predict the
next word. We evaluate BSM’s generation capability
using perplexity on our validation protein data. As
illustrated in Table 3, BSM outperforms the larger
model ProGPT2 700M, although it doesn’t surpass Progen2 2.7B. This demonstrates that using
mixed-modal data for pretraining allows smaller models to effectively model and generate protein
sequences.

4 RELATED WORK

4.1 BIOLOGICAL SEQUENCE MODEL

Modeling biological sequences has traditionally involved unimodal approaches tailored to specific
data types, such as DNA, RNA, or proteins. While significant progress has been made with models
like DNABert2 (Zhou et al., 2023), RNA-FM (Chen et al., 2022), and ESM2 (Lin et al., 2023),
these models often struggle with capturing complex mixed-modal interactions inherent in biological
processes. Recent advancements, such as LucaOne (He et al., 2024) and Evo (Nguyen et al., 2024a),
have begun to handle both gene and protein data, demonstrating the potential of large-scale models in
modeling multi-modal biological data. However, insufficient attention has been given to exploring
diverse data, especially high-quality mixed-modal data, which is crucial for models to acquire
comprehensive capabilities. Our work proves that learning from mixed-modal data significantly
enhances learning efficiency and improves both single and mixed-modal representations.

4.2 SMALL LANGUAGE MODEL

Small Language Models (SLMs) like Phi (Gunasekar et al., 2023) and Gemma 2 (Team et al., 2024)
illustrate that with strategic training approaches, such as high-quality data utilization and knowledge
distillation, SLMs can achieve impressive performance. Unlike current trends in biological sequence
modeling that focus on scaling model size to the billion-parameter level, our research explores the
potential of leveraging rich and high-quality mixed-modal bio-sequence data, which has rarely been
studied or utilized in this field. We demonstrate that introducing mixed-modal data can enable smaller
models to achieve performance close to or even surpass that of billion-scale models, highlighting the
critical importance of data quality and diversity. Our work strongly demonstrates the tremendous
potential of expanding both mixed-modal data and model size, paving the way for more powerful
models in bioinformatics.

5 CONCLUSION

In this study, we have demonstrated that high-quality mixed-modal biological data is essential for
enhancing both cross-modal and single-modal learning capabilities in our BSM models. The results
indicate that protein-gene interleaving data has considerable potential to improve model performance,
highlighting the importance of data quality in training effective biological models.

However, our research has certain limitations. We utilized only a partial dataset from RefSeq and
Gene Related Sequence data, which lacks exploration of other valuable types of cross-modal data,
such as gene-protein interactions data. Additionally, we mined only a relatively small dataset of
interleaved biological sequences from the web, it still yielded continuous improvements in model
performance. This suggests that there is substantial room for further investigation, and we believe that
leveraging larger and more diverse datasets could enhance our model’s capabilities even further. Our
future work will focus on exploring additional types of cross-modal data to fully realize the potential
of mixed-modal approaches in biological sequence modeling and contribute to advancements in the
field.
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A IMPLEMENTATION DETAILS

We use hyper-parameters listed in Table 4 for pretraining.

Table 4: Hyper-parameters for BSM-110M and BSM-270M models

Hyper-parameter BSM-110M BSM-270M
Number of params (M) 110 270
Number of layers 12 20
Number of heads 12 16
Head dimensions 768 896
Context length 1024 1024

Batch size 4096 1024
Learning rate(R1/R2/R3) 2e-5/1e-5/1e-6 2e-5/1e-5/1e-6
Total steps 32,500 124,000

B DETAILS OF PRETRAINING DATA CONSTRUCTION

Mixed-modal Pair Data - NCBI RefSeq We use 15 species data from the RefSeq dataset, which are
listed in Table 5. We construct pair data using any combination of DNA, RNA, and protein, with a
shuffled order.

Table 5: The 15 different species included in the RefSeq dataset utilized for pretraining phase.

No. Species No. Species No. Species
1 Bubalus Bubalis 6 Peromyscus Californicus 11 Mucor Saturninus
2 Camelus Dromedarius 7 Fusarium Annulatum 12 Penicillium Chermesinum
3 Human 8 Melampsora 13 Sporopachydermia Quercuum
4 Macaca Assamensis 9 Metschnikowia 14 Tranzscheliella Williamsii
5 Macaca Nigra 10 Mucor Saturninus 15 Xylariales

Mixed-modal Pair Data - Gene Related Sequences We randomly extract 8.3 billion tokens from
multiple species to construct our datasets, employing the same methodology for pairing DNA, RNA,
and protein sequences in related sequences datasets, where the order is randomly selected.

Mixed-modal Interleaved Data - Filtered Web Data We filter documents from the Fineweb-Edu
dataset that contain three or more biological sequences and use the extracted sequences to construct
our dataset. This data ensures that the model is exposed to a richer variety of biological sequence
data, simulating the natural co-occurrence of sequences in real bioinformatics environments.

C EVALUATION DATA DETAILS

ncRPI The ncRPI dataset is specifically designed for evaluating computational methods that predict
interactions between non-coding RNA (ncRNA) and proteins (ncRPI). It consists of three sub-
datasets: NPInter2.0, NPInter2.0_lncRNA, and RPI7317, covering thousands of experimentally
validated ncRNA-protein interaction pairs identified from various model organisms. Specifically,
the NPInter2.0 dataset contains 10,412 experimentally validated ncRNA-protein interaction pairs,
involving 4,636 ncRNAs and 449 proteins; the NPInter2.0_lncRNA dataset includes 4,158 lncRNA-
protein interaction pairs, involving 990 lncRNAs and 27 proteins; and the RPI7317 dataset contains
7,317 lncRNA-protein interaction pairs, involving 1,874 lncRNAs and 118 proteins. To generate
negative samples (i.e., non-interaction pairs), researchers randomly paired ncRNAs and proteins from
these datasets, creating an equal number of negative samples to the positive samples, ensuring that
the total amount of positive and negative samples is equal during training and testing.
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Central Dogma The central dogma dataset was meticulously designed and constructed to assess the
model’s ability to recognize the connection between DNA sequences and their corresponding proteins.
The dataset selected 8,533 precise DNA-protein pairs from 13 species in the NCBI-RefSeq database.
Each DNA sequence was extended to include an additional 100 nucleotides at both the 5’ and 3’
ends, with intron sequences preserved. To test the model’s discrimination capabilities, researchers
generated a number of negative samples double that of the positive samples by inserting, replacing,
or deleting nucleotides in the DNA sequences or altering amino acids in the protein sequences. All
samples were randomly allocated to the training, validation, and testing sets in a ratio of 4:3:25. The
dataset is characterized by the inclusion of both positive samples and negative samples generated
through various editing methods, which helps test whether the model can identify the intrinsic links
between DNA sequences and corresponding proteins.

PPI The PPI dataset is a valuable resource for assessing protein-protein interactions (PPIs), sourced
from the DeepPPI database, which includes a vast array of unique protein pairs. These datasets are
crucial for unraveling the complex molecular communication mechanisms within cells. Specifically,
the dataset comprises 59,766 training samples, 7,430 validation samples, and 7,425 test samples,
collectively forming a binary classification task aimed at predicting whether a pair of protein sequences
will interact. Each sample consists of a pair of protein sequences labeled as 1 (indicating interaction)
or 0 (indicating no interaction). To ensure the accuracy and validity of the assessment, the dataset is
meticulously divided to guarantee consistency in data distribution across the training, validation, and
test sets. When constructing predictive models using this dataset, researchers must consider how to
handle potential class imbalance issues and choose accuracy as the sole metric to measure model
performance.

ProtLoc The ProtLoc dataset is a specialized dataset designed for predicting the subcellular localiza-
tion of prokaryotic proteins. It comprises a curated selection of protein sequences from the UniProt
and PSORTdb databases, with each sequence annotated for its specific subcellular location within the
cell, such as the cytoplasm, cytoplasmic membrane, periplasmic space, outer membrane, cell wall
and surface, and extracellular space, which are the six primary regions. This dataset is extensively
used in the field of bioinformatics to train and evaluate machine learning models for the accurate
prediction of protein subcellular localization. The dataset is divided into 9,915 training samples,
1,991 validation samples, and 1,131 test samples to support the training and assessment of models.
When constructing predictive models using the ProtLoc dataset, accuracy is adopted as the primary
evaluation metric to measure model performance.

ProtStab The ProtStab dataset is specifically designed for evaluating protein stability prediction
models, sourced from the TAPE project, and includes stability measurement data for a variety of
protein types, including natural proteins, mutants, and de novo designed proteins. The ProtStab dataset
provides researchers with a benchmark for quantifying protein stability, aiding in the understanding
of protein stability within biological systems and under different conditions. The dataset comprises
53,614 training samples, 2,512 validation samples, and 12,851 test samples, all of which support
the training and evaluation of models. Each protein sample in the dataset is accompanied by a
continuous numerical label indicating its stability measurement. When constructing and evaluating
protein stability prediction models, Spearman’s Rank Correlation Coefficient (SRCC) is used as the
evaluation metric to measure the performance of the model.

Zero-shot Protein Fitness Prediction The Zero-shot Protein Fitness Prediction dataset is utilized for
evaluating a model’s ability to predict the impact of mutations on protein function without any task-
specific fine-tuning or supervision. This dataset encompasses multiple Deep Mutational Scanning
(DMS) studies, which include exhaustive mutation scans of protein-coding sequences, along with
experimentally measured fitness scores that quantify the protein’s ability to perform specific functions.
The dataset comprises samples from both E. coli and human proteins, with the number of variants
depending on the specific DMS study. Each sample consists of a protein sequence, the introduced
nucleotide mutations, and the corresponding fitness score. The sequences are preprocessed to fit
the input requirements of machine learning models. The performance of models on this dataset is
assessed using the Spearman’s Rank Correlation Coefficient (SRCC), which measures the strength and
direction of association between the model’s predictions and the experimental fitness measurements.

Zero-shot ncRNA Fitness Prediction The Zero-shot ncRNA Fitness Prediction dataset aims to eval-
uate a model’s ability to predict the impact of mutations on the function of non-coding RNA (ncRNA)
without any specific task fine-tuning or supervision. This dataset originates from multiple Deep
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Mutational Scanning (DMS) studies that conduct exhaustive mutation scans on ncRNA sequences
and measure the effects of these mutations on fitness through experimental means. Non-coding
RNA plays a crucial role in many biological processes, including gene expression regulation, signal
transduction, and cellular differentiation. The dataset includes samples from DMS studies, with each
sample comprising the wild-type ncRNA sequence, the introduced mutations, and the corresponding
fitness scores. The sequences are preprocessed to meet the input requirements of machine learning
models. The performance of the model on this dataset is assessed using the Spearman’s Rank Corre-
lation Coefficient (SRCC), which measures the correlation between the model’s predictions and the
experimentally determined fitness scores.

ncRNAFam The ncRNAFam dataset is specifically designed for evaluating models that classify
non-coding RNA (ncRNA) sequences into their respective families. Non-coding RNAs play a crucial
role in many key biological processes, including the regulation of gene expression, signal transduction,
and cellular differentiation. This dataset encompasses a variety of ncRNA sequence types, such
as long non-coding RNAs and small nucleolar RNAs, each with its unique biological functions. It
comprises 105,864 training samples, 17,324 validation samples, and 25,342 test samples, all of which
support the training and evaluation of classification models. The dataset is roughly divided into 80%
for training, 10% for validation, and 10% for testing. Each ncRNA sequence in the dataset is labeled
according to its family classification, and the accuracy metric is used to assess the performance of the
models.

Table 6: Evaluation data details.

Task Task Type Input Type Train/Valid/ Test Size Seq Length
(Max/Min/Mean)

ncRPI Binary-Class(2) RNA-Protein 16,658/-/4,166 3,678/49/1,920
Central Dogma Binary-Class(2) DNA-Protein 3,200/2,400/20,000 617/11/244
PPI Binary-Class(2) Protein-Protein 59,766/7,430/7,425 33,423/24/593
ProtLoc Multi-Class(6) Protein 9,915/1,991/1,131 5,627/8/438
ProtStab Regression Protein 53,614/2,512/12,851 50/43/45
ncRNAFam Multi-Class(88) RNA 105,864/17,324/25,342 200/24/116

Additionally, Table 7 shows the species involved in different tasks.

We use Spearman Correlation Coefficient (SRCC) for the regression tasks, and Accuracy for the
classification tasks. We followed Evo (Nguyen et al., 2024a) and LucaOne (He et al., 2024) in using
the SRCC metric, which computes the Spearman correlation between the values (e.g., protein stability
for ProtStab, fitness scores for proteins and ncRNAs) and the sequence likelihood (for autoregressive
language models) or the sequence pseudolikelihood (for masked language models). Table 8 shows
the details of label assignment for evaluation tasks.
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Table 7: Species involved in different Tasks.

Tasks Species Num. of species

ncRPI

Escherichia coli 6
Saccharomyces cerevisiae
Caenorhabditis elegans
Drosophila melanogaste
Mus musculus
Homo sapiens

ProtLoc
Archaea 3
Gram-positive bacteria
Gram-negative bacteria

PPI

Homo sapiens 4
Escherichia coli
Drosophila
Caenorhabditis elegans

ProtStab / /

Zero-shot Protein Fitness Prediction

Humans 4
Eukaryotes
Prokaryotes
Viruses

Zero-shot ncRNA Fitness Prediction / more than 10

ncRNAFam / 41

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Details of label assignment for evaluation tasks

Task Task type Label counts Label description

Central dogma Classification(2) Train:1067(1)/2133(0);
Test:6646(1)/13297(0)

Whether DNA seq translates
to protein (1) or not (0)

ncRPI Classification(2) Train:8330(1)/8328(0);
Test:2083(1)/2083(0)

Whether ncRNA-protein in-
teract (1) or not (0)

PPI Classification(2) Train:33189(1)/26577(0);
Test:4171(1)/3254(0)

Whether protein pair inter-
acts (1) or not (0)

ProtLoc Classification(6) Train:2010(0)/75(1)/5913(2)
/869(3)/592(4)/456(5);
Test:325(0)/35(1)/250(2)
/288(3)/160(4)/73(5)

Subcellular locations: cyto-
plasmic membrane(0), cell
wall(1), cytoplasmic(2), ex-
tracellular(3), outer mem-
brane(4), and periplasmic(5)

ncRNAFam Classification(88) Train: each class contains
1203 instances;
Test:
Max:4179(0),Min:1(62),
Avg:287.9772

The family classification of
non-coding RNA (ncRNA)
sequences

ProtStab Regression Train: Range: [-1.97, 3.40],
Avg:0.1791,
Counts:
21712(≤0)/31902(>0);
Test: Range: [-1.16, 2.77],
Avg:1.0020,
Counts:59(≤0)/12792(>0)

The label represents a numer-
ical value quantifying the in-
trinsic stability of each pro-
tein.

Protein Fitness Regression Train: Range: [-0.94, 2.46],
Avg: 0.2649,
Counts: 4070(≤0)/7215(>0);
Test: Range: [-0.52, 2.31]
Avg: 0.6872,
Counts: 703(≤0)/3863(>0)

The fitness label reflects the
effects of mutations on a
protein sequence, measuring
how well the protein per-
forms a specific function.

ncRNA Fitness Regression Train: Range: [-1.52, 2.13],
Avg: 0.4059,
Counts: 1322(≤0)/3161(>0);
Test: Range: [-1.16, 1.95],
Avg: 0.6395,
Counts: 318(≤0)/1313(>0)

The fitness label reflects the
effects of mutations on non-
coding RNAs.
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