
Interpretable Function Approximation with Gaussian Processes
in Value-Based Model-Free Reinforcement Learning

Matthijs van der Lende1, Matthia Sabatelli1, and Juan Cardenas-Cartagena∗1,2

1Bernoulli Institute, University of Groningen, Groningen, The Netherlands.
2Wisenet Center, University of Agder, Grimstad, Norway.

Abstract

Estimating value functions in Reinforcement Learn-
ing (RL) for continuous spaces is challenging. While
traditional function approximators, such as linear
models, offer interpretability, they are limited in
their representation capabilities. In contrast, Deep
Neural Networks (DNN) can model more complex
functions but are less interpretable. Gaussian Pro-
cess (GP) models bridge this gap by offering in-
terpretable uncertainty estimates while modelling
complex nonlinear functions. This work introduces
a Bayesian nonparametric framework using GPs, in-
cluding Sparse Variational (SVGP) and Deep GPs
(DGP), for off-policy and on-policy learning. Re-
sults on popular classic control environments show
that SVGPs/DGPs outperform linear models but
converge slower than their DNN counterparts. Nev-
ertheless, they do provide valuable insights when it
comes to uncertainty estimation and interpretability
for RL1.

1 Introduction

Initially, Reinforcement Learning (RL) relied on tab-
ular methods, which involve storing state-action val-
ues in a table. The classical Q-learning algorithm [1]
is an example of the tabular approach. This method
is sufficient for tasks, where the number of states and
actions is small. However, tabular methods do not
scale well in high-dimensional environments. Indeed,
a critical challenge in RL is approximating value
functions and policies, especially in environments
with continuous state spaces. Sutton [2] introduced
a linear regression-based extension of the Temporal
Difference learning algorithm–TD(λ).

While simple and interpretable, traditional linear
models often fall short in capturing the behaviour
patterns of complex environments, particularly when
there are nonlinear relationships in the state-action
spaces. The sub-field of Deep RL (DRL) seeks to
address this problem by employing Deep Neural
Networks (DNN) as function approximators. State-
of-the-art DRL algorithms are Deep Q-Networks
(DQN) [3] and Proximal Policy Optimization (PPO),

∗Corresponding Author: j.d.cardenas.cartagena@rug.nl
1Code is available at: github.com/matthjs/BachelorProject

[4]. It is well-known that unlike other machine learn-
ing families, such as decision trees and support vec-
tor regression, DNN models lack interpretability [5]
as, unlike a linear model, there is no linear relation-
ship between each weight and one feature. Never-
theless, popular DNN models, like Convolutional
Neural Networks, are widely used because they can
learn a broad range of functions and extract features
from data, as shown in tasks like pixel-based control
from Atari images. [3].

A candidate choice for interpretable function ap-
proximation is a Gaussian Process (GP), a nonpara-
metric kernel-based model for regression or classifica-
tion. Unlike linear models, they can model complex
nonlinear functions [6, 7], and their nonparametric
nature allows them to scale in complexity with the
dataset size. Additionally, GPs provide uncertainty
quantification out of the box, as the predictive vari-
ance is directly derived from the model, offering a
way to estimate uncertainty in predictions. Engel et
al. [8] employed GPs to approximate the value and
action-value function, resulting in a variant of the
SARSA algorithm for on-policy RL. This approach
was extended to the off-policy case by Chowdhary
et al. [9], who proposed a variant of Q-learning us-
ing GPs alongside a proof of convergence. Building
on these ideas, Grande et al. [10] derived sample
complexity results for GPs in RL and introduced
Delayed GPQ, a sample-efficient, model-free RL al-
gorithm using GPs, which can obtain an optimal
policy in a polynomial number of exploration steps
in continuous state spaces. These methods relied on
a sparsification method from Csató and Opper [11]
to reduce computational complexity. However, they
did not make use of more recent inducing point meth-
ods initially introduced by Titsias [12], which offer a
more effective and scalable sparsification approach
that more accurately approximates the GP model
on the full dataset [13]. Kameda and Tanaka [14]
applied such inducing point methods to reduce the
computational complexity in GP Q-learning.

Previous research on GPs in value function ap-
proximation mainly explored strategies like upper
confidence bound and ϵ-greedy, without considering
alternatives like Thompson sampling, which could
improve exploration effectiveness. Moreover, exten-
sions to the basic GP model, such as Deep Gaussian
Processes (DGPs) or Sparse Variational Gaussian

Proceedings of the 6th Northern Lights Deep Learning Conference (NLDL), PMLR 265, 2025.
LM 2025 Matthijs van der Lende, Matthia Sabatelli, & Juan Cardenas-Cartagena. This is an open access article distributed under
the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/matthjs/BachelorProject
http://creativecommons.org/licenses/by/4.0/


Processes (SVGPs), have not been considered de-
spite their ability to capture complex relationships
through their hierarchical structure. Additionally,
prior work, such as that of Kameda and Tanaka [14],
required pre-specified inducing points, which limits
the algorithm’s applicability in environments where
selecting inducing points in advance is challenging.
In contrast, the proposed algorithm is more gen-
eral for online tasks, supports any GP model and
learns the inducing points dynamically [15], a key
improvement over earlier work. This advancement
removes the need to pre-define inducing points, mak-
ing the algorithm applicable to a broader range of
environments.

Contributions: This work focuses on the advan-
tages and limitations of GPs as function approxima-
tors for model-free RL, focusing on GP regression for
the action-value function and its performance com-
pared to traditional TD-learning approaches such
as DQN. The paper proposes two new GP-based RL
algorithms that connect variants of GPs with on/off-
policy RL for online control and explores different
exploration strategies. The results show that GPs
outperform linear models but underperform deep
neural networks.

2 Theoretical Framework

2.1 Reinforcement Learning

RL is a method for learning policies in sequential
decision-making problems, often modelled as Markov
Decision Process (MDP) [16]. An MDP is a 4-tuple
M = (S,A,p, r), where S is a set of states, A is a
set of actions, p : S ×A× S → [0, 1] is a transition
function, and r : S × A → R is a reward function.
The behaviour of the RL agent is modelled by its
policy, which is a conditional probability distribution
over actions given the state:

π(a|s) = P(At = a|St = s) ∀s, a ∈ S ×A, (1)

where St ∈ S, At ∈ A are Random Variables
(RVs) for the state and action at time t. The goal
is to learn an optimal policy π∗ that maximizes the
expected discounted sum of rewards,

π∗ = argmax
π

Eπ[Gt] = argmax
π

Eπ

[ ∞∑
k=0

γkRt+k+1

]
,

(2)
where G is the return, R is the reward and γ ∈ (0, 1]
is a discount factor. The hypothesis in RL is that
by interacting with the environment the agent can
learn to make (sub-)optimal decisions. Value-based
methods achieve it by learning a value function:

vπ(s) = Eπ[Gt|St = s], (3)

or an action-value function:

qπ(s, a) = Eπ[Gt|St = s,At = a], (4)

and then deriving a policy from it. We want then an
approximation v̂ or q̂ that approaches the optimal
value function and generalizes well. In the case of a
parametric model, we learn parameters w ∈ Rd.

2.2 Gaussian Processes

A GP is a collection of RVs {fGP(x) | x ∈ X},
any finite number of which has a joint Gaussian
distribution [6]. In the context of regression, the
index set X is related to the input of some function
f : X → R that we want to approximate, e.g., the
action-value function. It can be interpreted as: At
each point x ∈ X , the output of the GP regression
model is an RV denoted fGP(x).
A GP, denoted fGP(x) ∼ GP(m(x), k(x,x′)), is

fully specified by a mean function m : X → R and
covariance or kernel function k : X × X → R which
are defined as:

m(x) = E[fGP(x)],

k(x,x′) = E[(fGP(x)−m(x))(fGP(x
′)−m(x′))].

(5)
A GP offers a Bayesian approach to nonparamet-

ric regression. Without any data, the kernel function
represents our prior belief about the function we are
trying to model, by abuse of notation denoted p(f),
as it encodes similarity between data points, with
closer points having higher covariance. A GP can
then be conditioned on a dataset, D, to get a poste-
rior GP fGP(x) ∼ GP(mpost(x), kpost(x,x

′)), which
is our posterior belief about the function, p(f |D).
The Appendix B provides a comprehensive discus-
sion of GPs, and their extensions: Sparse Variational
(SVGP) and Deep GPs (DGP).

2.3 Value-based RL using Gaussian
Processes

Using GPs for value-based RL is done by captur-
ing a distribution over possible q-functions, qπ ∼
GP(m(z), k(z, z′)), where the input domain is z ∈
S×A [9]. The core idea behind the GP-Q algorithm
(see Algorithm 1) is to perform a type of Bayesian
optimization on the TD error by setting the target
values as described in Algorithm B.1 to the TD(0)
target. Using different acquisition functions, we now
have more options in designing the behavioural pol-
icy other than just using ϵ-greedy. [9] for example
used a variant of GP-Q using UCB.

The GP-Q algorithm is off-policy and uses

Rt+1 + γmax
a∈A

q̄(St+1, a) (6)

as the TD target, where q̄ is the mean output of the
GP [9]. An on-policy variant, GP-SARSA, can be

2



created by setting the target to

Rt+1 + γq̄(St+1, At+1). (7)

2.4 Interpreting The GP Poste-
rior Predictive Distribution for
Action-Value Functions

GPs are known to provide well-calibrated predictive
distributions which effectively capture epistemic un-
certainty [7]. This means that the predictive vari-
ance reflects the confidence in the output estimate
with higher variance indicating greater uncertainty
in the prediction and lower confidence. For samples
outside the train set the uncertainty increases ac-
cordingly. If a GP is used to predict action-values,
then for each state action pair we have a mean action-
value q̄(s, a) and variance σ2(s, a). Small σ2(s, a)
indicates that the GP-based RL agent is highly con-
fident about the value of action a in state s. Con-
versely high σ2(s, a) indicates high uncertainty in
the predictions, corresponding to under-exploration
of that particular part of the state space [17].
This has two key applications. First, it can re-

duce the number of interactions with the environ-
ment required to learn policies, improving sampling
efficiency. Second, safe RL utilizes uncertainty quan-
tification to adhere to safety constraints during the
learning process [18], particularly vital in robotics
applications where an aggressive exploration phase
could lead to physical harm of the system.

Algorithm 1 Online GP-Q for estimating p(q∗|D)

1: Collect initial dataset D0 = (zi, yi)i=1,...,n0
with

zi ∈ S ×A, yi ∈ R
2: Initialize GP by computing p(q|D0)
3: for each time step t do
4: Choose At from St using behavioral policy

(e.g., ϵ-greedy)
5: Take action At, observe Rt+1, St+1

6: let Zt = (St, At)
⊤ and yt = Rt+1 +

γmaxa′ q̄(St+1, a
′), where q̄ is the posterior

mean function
7: Add state-action pair to dataset, Dt+1 = Dt∪

{(Zt, yt)}
8: if |Dt+1| > Budget then
9: Delete some zi ∈ Dt+1

10: end if
11: Update model by computing p(q|Dt+1)
12: end for

3 Methodology

3.1 Training Environments

Since we are comparing value-based algorithms that
involve taking an (arg-)max over the action space,

we are constrained to environments with discrete ac-
tion spaces, however, the state spaces are continuous
as we consider the realm of approximate RL. For
our experiments, we rely on two popular classic con-
trol environments vastly used within the literature:
CartPole and Lunar Lander from the Gymnasium

library [19]. Note that when it comes to the state
representation of the environments we normalize the
state vector, by relying on standardization

xnorm =
x− x̄√
σ2
x + η

, (8)

where x̄ and σ2
x are the mean and variance of x

and η is a small constant. One exception is that for
the Lunar Lander environment, we only normalized
the first 6 dimensions as some state components are
booleans.

3.2 Algorithm Design

The GP-Q [9] and GP-SARSA [8] algorithms were
adopted for the off-policy and on-policy cases respec-
tively with the following modifications: The updates
were done in batches, instead of per timestep. Mean-
ing, that for a batch size B, we wait B timesteps
before updating the GP. This was done to reduce
computational complexity and improve sampling
efficiency. Furthermore, this aimed to prevent the
inaccurate estimate of the q-function from chang-
ing too much per timestep. All the modifications
made to the base GP-Q/GP-SARSA algorithm are
summarized in algorithm 2.
Initially, D0 = ∅. Updating the GP, i.e., comput-

ing p(q|Dn+1), should be interpreted as performing
type-II Maximum Likelihood Estimation (MLE) of
the hyperparameters and observation noise variance
θ′ = [θ, σ2

y]
⊤, and then computing the predictive

posterior distribution where the test inputs are the
state-action pairs of the current batch. In the case
of SVGP/DPGs, we also have the Evidence Lower
Bound (ELBO) with variational parameters Z,m,S
as hyperparameters. We utilized the Adam opti-
mizer [20] to estimate θ′opt by minimizing the neg-
ative Marginal Log Likelihood (MLL) (18) or the
negative ELBO (23). It was implicitly assumed
that any hyperparameter values after optimization
carry over to the next GP update. As explained
in Appendix B.4, SVGPs allow for mini-batching
in ELBO computation, which helps manage mem-
ory usage and enables handling significantly larger
datasets. Two viable approaches to mini-batching
in terms of time complexity are: using mini-batches
over the entire dataset while assuming a relatively
small dataset and hoping the variational parame-
ters retain information from previously discarded
data points; or maintaining a larger dataset and
optimizing over a random subset of mini-batches
each iteration. In the case of the former, the SVGP

3



Algorithm 2 Adjusted GP-Q/GP-SARSA

1: Initialize:
2: Collect initial dataset D0 = (zi, yi)i=1,...,n0

with zi ∈ S ×A, yi ∈ R
3: Initialize GP with p(q|D0), noise variance σ2

y,
and hyperparameters θ

4: Set θ′n = [θ, σ2
y]

⊤ and batch counter b = 0
5: for each time step t do
6: Choose At from St using a behavioral policy

(e.g., ϵ-greedy, UCB, Thompson sampling)
7: Take At, observe Rt+1 and St+1

8: b = b+ 1
9: if Off-Policy then

10: yt = Rt+1 + γmaxa′ q̄(St+1, a
′)

11: else {On-Policy}
12: At+1 = π(St+1)
13: yt = Rt+1 + γq̄(St+1, At+1)
14: end if
15: Update dataset:
16: Form state-action pair Zt = [St, At]

⊤

17: Dt+1 = Dt ∪ {(Zt, yt)}
18: if |Dt+1| > Budget then
19: Delete oldest (zi, yi) from Dt+1

20: end if
21: if b == batch size then
22: Update GP model, p(q|Dn+1):
23: Minimize negative MLL in (18) or nega-

tive ELBO in (23) w.r.t. Dn+1

24: Update hyperparameters to θ′n+1

25: Reset batch counter: b = 0
26: end if
27: end for

objective becomes:

LSVGP =

[
N
B

∑B
b=1

1
|Bb|

∑
n∈Bb

Ep̂(fn)[log p(yn|fn)]
]

−DKL(p̂(u) ∥ p(u|Z)),
(9)

where Bb is the b’th batch, and B is the number of
batches.

Regarding the removal and addition of data points;
data points were added unconditionally in a first-in-
first-out (FIFO) manner. If the maximum dataset
size (budget) is exceeded then the oldest data points
are removed. It is worth mentioning that for SVG-
Ps/DPGs it is feasible to have a large dataset size
of over 100, 000 data points while for exact GPs
there are actual VRAM limitations for dataset sizes
greater than 1000. The following behavioural poli-
cies were considered: ϵ-greedy, UCB and Thompson
sampling. UCB was implemented by taking (19)
with x ∈ S ×A. Thompson sampling was extended
from the Bandit case by selecting the highest value
action from the sample q-function for a fixed state
s ∈ S. This was done by considering the points
{(s, a) | a ∈ A} sampling from the GP latent RVs,
{fGP(s, a) | a ∈ A}, and selecting the action a for

for which the sampled q-value is highest.

3.3 Experimental Setup

We compared GP-Q with DQN using a Multi-Layer
Perceptron (MLP) and a linear model, as well as a
random policy during training and evaluation. In
Lunar Lander, we also included GP-SARSA. Since
GP-Q and GP-SARSA were expected to perform
similarly, we focused mainly on GP-Q. All algo-
rithms were trained for 1000 episodes on CartPole

and 3000 episodes on Lunar Lander with evaluation
over 30 episodes. The episode numbers were chosen
such that all algorithms would converge.
This comparison involved examining the reward

curve/return graph for policy convergence and per-
formance, including the maximum return obtained,
and measuring computational complexity and en-
ergy usage during training and evaluation2. Time
complexity was measured by considering execution
time during training and evaluation. Space complex-
ity was measured by examining VRAM usage during
training. Energy usage was measured in kilojoules
(kJ) during training and evaluation. Additionally,
we measured the average negative ELBO for each
environment over the number of GP updates.

At evaluation time, we also compared the means
of returns. A two-sample one-tailed Wilcoxon rank-
sum test was performed to compare the average
return between a specific RL agent and a random
policy after training. The null hypothesis was
H0 : Eπagent

[G] = Eπrandom
[G] and the alternative

was HA : Eπagent
[G] > Eπrandom

[G], where G is the
undiscounted sum of rewards over an episode.

We also measured the stability of the GPQ with a
DGP by examining how many times out of Cr runs
of at least Ce episodes the algorithms performed bet-
ter than random. For CartPole Cr = 10, Ce = 200
and Lunar Lander Cr = 7, Ce = 1000. If an algo-
rithm is stable, we expect the same hyperparameter
configuration and environment to produce consistent
results w.r.t. random in most runs.
Finally, we recorded the agent environment in-

teraction after training and described the general
behaviour in cases where it was insightful. For de-
tails about model architecture, experimental design,
and hyperparameter tuning, refer to Appendix D.

4 Results

The following showcases the results from the exper-
iment described in Section 3.3. A comparison of
exploration methods is found in Appendix C.1.
The reward curves are displayed in Figure 1, re-

ward metrics in Table 1, and resource consump-

2As GP-Q and GP-SARSA are the same, except for the
computation of the TD target, such measurements were omit-
ted from GP-SARSA for brevity.

4



Figure 1. Comparison of cumulative average return (±0.1 · std) in CartPole (left) and Lunar Lander (right).

Table 1. Performance metrics for CartPole and Lunar Lander. Values are presented as Train/Evaluation for
Average Return and Max Return. Sig. BTR: significantly better (avg. return) than random (Wilcoxon test,
p < 0.05)

Algorithm Avg. Return Max Return Sig. BTR

CartPole (1000 episodes)
DQN (MLP) 266.43± 219.66 / 451.53± 147.89 500 / 500 True
GP-Q (DGP) 326.34± 191.95 / 222.9± 157.24 500 / 500 True
GP-Q (SVGP) 270.48± 208.33 / 276.60± 209.82 500 / 500 True
RANDOM 22.16± 11.83 / 22.23± 11.27 96 / 52 NA
DQN (Linear) 12.01± 5.19 / 9.33± 0.99 55 / 12 False

Lunar Lander (3000 episodes)
DQN (MLP) 188.17± 126.85 / 177.58± 120.07 323.55 / 312.30 True
GP-Q (DGP) 13.09± 156.93 / 104.06± 128.34 316.62 / 271.29 True
GP-SARSA (DGP) 49.69± 164.58 / −56.73± 188.40 315.95 / 273.29 True
GP-Q (SVGP) −110.67± 121.80 / −99.61± 85.71 269.63 / 142.78 True
RANDOM −181.95± 110.02 / −191.07± 104.94 80.22 / −71.85 NA
DQN (Linear) −441.17± 178.65 / −539.79± 156.03 33.8 / −186.96 False

tion in Table 2. In the case of CartPole, GPQ
(SVGP) stopped learning around episode 150, GPQ
(DGP) around episode 170, and DQN (MLP) around
episode 450. While for Lunar Lander, DQN (MLP)
stopped learning around episode 600. For GPQ
(DGP) and GP-SARSA (DGP), the reward-stopping
condition was reached around episode 1500. GPQ
(SVGP) did not reach the stopping condition and
converged to a sub-optimal policy. DQN (Linear)
did not learn any meaningful policy.

The general behaviour of GPQ and DQN (MLP)
was similar in CartPole; both balanced the pole
for the duration of the episode most of the time,
with DQN achieving this more often. DQN (Linear)
failed to learn any meaningful policy for balancing
the pole, resulting in the pole losing its balance
immediately. Out of 10 runs, the success rates were
100% for DQN (MLP), 40% for GP-Q (DGP) and
0% for DQN (Linear). And for Lunar Lander, GP-
Q (DGP) also landed the module reasonably well.
GP-Q (DGP) kept the module upright and typically
landed it successfully, though it applied more upward
force, resulting in a more gradual and slow landing,
compared to DQN, which was almost free-falled

initially. GP-Q (SVGP) did not control the module
as well as GP-Q (DGP) and as a result, was not as
successful in landing the module at the landing spot.
Out of 7 runs, the success rate was 100% for DQN
(MLP), 100% for GP-Q (DGP) and 0% for DQN
(Linear).

It takes around 1000 more episodes for GP-Q/GP-
SARSA to reach a close-to-optimal policy in Lu-
nar Lander compared to CartPole, which may be
due to the larger state space. This raises questions
about how well GP-Q and GP-SARSA converge as
the state and action spaces grow larger. However,
benchmarks from [15] show that DGPs can handle
high-dimensional data, as demonstrated by their
application to a 784-dimensional image dataset.

4.1 Interpreting GP predictions in
Lunar Lander

In the case of Lunar Lander, we visualized the GP
posterior distribution by fixing a state s ∈ S and
plotting a Gaussian with mean q̄(s, a) and variance
σ2(s, a) for each a ∈ A. Figure 2 illustrates these
Gaussians, showing that as training progresses, GP-

5



Table 2. Time, memory, and energy usage for CartPole and Lunar Lander tasks. Values are presented as
Train/Evaluation where applicable.

Algorithm CartPole (1000 episodes) Lunar Lander (3000 episodes)

Time (s) Memory (GB) Energy (kJ) Time (s) Memory (GB) Energy (kJ)

GP-Q (DGP) 5995.15 / 121.11 1.80 252.07 / 4.29 27349.92 / 135.99 2.35 2134.39 / 4.87
GP-Q (SVGP) 2116.31 / 40.02 0.566 16.11 / 1.57 9568.53 / 39.23 0.936 645.86 / 1.16
DQN (MLP) 64.01 / 5.48 0.414 2.15 / 0.16 349.91 / 4.22 0.678 7.92 / 0.093
DQN (Linear) 12.01 / 0.29 0.414 0.49 / 0.0087 124.44 / 1.95 0.02 2.79 / 0.042

Figure 2. Predictive action distribution for a given state for each action a ∈ A. The top two figures are taken
from a GPQ (DGP) agent before training on Lunar Lander, and the bottom two are after training. As training
continues, the action distributions shift and the standard deviations around the mean decrease.

Q and GP-SARSA agents using Thompson sam-
pling transition from an exploratory phase, marked
by high uncertainty in q-value estimates, to an ex-
ploitative phase characterized by near-deterministic
decision making. Such behaviour indicates that un-
certainty plays a key role in the RL agent’s learning
process as it interacts with the environment.

5 Conclusions

The work aimed to compare a GP-based RL al-
gorithm with linear and neural network function
approximators, specifically against DQN, using lin-
ear and MLP models. The goal was to assess the
strengths and limitations of GPs in RL.

Findings from simulations align with the hypothe-
sis: GP-based algorithms (GP-Q/GP-SARSA), par-
ticularly using SVGPs and DGPs, outperform linear
function approximation in CartPole and Lunar Lan-
der. However, they do not match the stability of
DQN with an MLP in CartPole or the overall per-

formance in Lunar Lander. Additionally, GP-Q and
GP-SARSA are more computationally expensive,
even during inference.
Utilizing uncertainty quantification, GP-based

agents via Thompson sampling automatically bal-
ance exploration and exploitation, unlike DQN,
which relies on random action selection.

These results underscore the potential of GPs,
particularly DGPs, as function approximators in RL
tasks requiring uncertainty quantification and inter-
pretability, such as safe RL, where understanding
the confidence in predictions can mitigate risks and
ensure robust decision-making.

6



References

[1] C. J. Watkins and P. Dayan. “Q-learning”. In:
Machine learning 8 (1992), pp. 279–292.

[2] R. S. Sutton. “Learning to predict by the
methods of temporal differences”. In: Machine
learning 3 (1988), pp. 9–44.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A.
Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller. “Playing Atari with Deep Rein-
forcement Learning”. In: CoRR abs/1312.5602
(2013). arXiv: 1312 . 5602. url: http : / /

arxiv.org/abs/1312.5602.

[4] J. Schulman, F. Wolski, P. Dhariwal, A.
Radford, and O. Klimov. “Proximal Pol-
icy Optimization Algorithms”. In: CoRR
abs/1707.06347 (2017). arXiv: 1707.06347.
url: http://arxiv.org/abs/1707.06347.

[5] C. Rudin. “Stop explaining black box machine
learning models for high stakes decisions and
use interpretable models instead”. In: Nature
Machine Intelligence 1.5 (May 2019), pp. 206–
215. issn: 2522-5839. doi: 10.1038/s42256-
019- 0048- x. url: https://doi.org/10.
1038/s42256-019-0048-x.

[6] C. E. Rasmussen and C. K. Williams. Gaus-
sian Processes for Machine Learning. eng.
OCLC: 1178958074. Cambridge: The MIT
Press, 2004. isbn: 978-0-262-25683-4.

[7] K. P. Murphy. Probabilistic Machine Learning:
Advanced Topics. MIT Press, 2023. url: http:
//probml.github.io/book2.

[8] Y. Engel, S. Mannor, and R. Meir. “Reinforce-
ment learning with Gaussian processes”. In:
Proceedings of the 22nd International Confer-
ence on Machine Learning. ICML ’05. Bonn,
Germany: Association for Computing Machin-
ery, 2005, pp. 201–208. isbn: 1595931805. doi:
10.1145/1102351.1102377. url: https://
doi.org/10.1145/1102351.1102377.

[9] G. Chowdhary, M. Liu, R. Grande, T. Walsh,
J. How, and L. Carin. “Off-policy reinforce-
ment learning with gaussian processes”. In:
IEEE/CAA Journal of Automatica Sinica 1.3
(2014), pp. 227–238. doi: 10.1109/JAS.2014.
7004680.

[10] R. Grande, T. Walsh, and J. How. “Sample Ef-
ficient Reinforcement Learning with Gaussian
Processes”. In: Proceedings of the 31st Inter-
national Conference on Machine Learning. Ed.
by E. P. Xing and T. Jebara. Vol. 32. Proceed-
ings of Machine Learning Research 2. Bejing,
China: PMLR, 22–24 Jun 2014, pp. 1332–1340.
url: https : / / proceedings . mlr . press /

v32/grande14.html.

[11] L. Csató and M. Opper. “Sparse On-
Line Gaussian Processes”. In: Neural
Computation 14.3 (Mar. 2002). eprint:
https://direct.mit.edu/neco/article-
pdf/14/3/641/815172/089976602317250933.pdf,
pp. 641–668. issn: 0899-7667. doi: 10 .

1162 / 089976602317250933. url: https :

//doi.org/10.1162/089976602317250933.

[12] M. Titsias. “Variational Learning of Inducing
Variables in Sparse Gaussian Processes”. In:
Proceedings of the Twelfth International Con-
ference on Artificial Intelligence and Statistics.
Ed. by D. van Dyk and M. Welling. Vol. 5.
Proceedings of Machine Learning Research.
Hilton Clearwater Beach Resort, Clearwater
Beach, Florida USA: PMLR, 16–18 Apr 2009,
pp. 567–574. url: https://proceedings.
mlr.press/v5/titsias09a.html.

[13] M. Bauer, M. Van der Wilk, and C. E. Ras-
mussen. “Understanding probabilistic sparse
Gaussian process approximations”. In: Ad-
vances in neural information processing sys-
tems 29 (2016). url: https://arxiv.org/
abs/1606.04820.

[14] K. Kameda and F. Tanaka. “Reinforcement
learning with Gaussian process regression us-
ing variational free energy”. In: Journal of
Intelligent Systems 32.1 (2023), p. 20220205.
doi: doi:10.1515/jisys-2022-0205. url:
https://doi.org/10.1515/jisys-2022-

0205.

[15] H. Salimbeni and M. Deisenroth. “Doubly
Stochastic Variational Inference for Deep
Gaussian Processes”. In: Advances in Neural
Information Processing Systems. Ed. by
I. Guyon, U. V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett. Vol. 30. Curran Associates, Inc.,
2017. url: https://proceedings.neurips.
cc / paper _ files / paper / 2017 / file /

8208974663db80265e9bfe7b222dcb18 -

Paper.pdf.

[16] M. L. Puterman. Markov decision pro-
cesses: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[17] O. Lockwood and M. Si. “A Review of Un-
certainty for Deep Reinforcement Learning”.
In: Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital
Entertainment 18.1 (Oct. 2022), pp. 155–162.
doi: 10 . 1609 / aiide . v18i1 . 21959. url:
https://ojs.aaai.org/index.php/AIIDE/

article/view/21959.

[18] F. Berkenkamp. “Safe exploration in reinforce-
ment learning: Theory and applications in
robotics”. PhD thesis. ETH Zurich, 2019. url:

7

https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
http://probml.github.io/book2
http://probml.github.io/book2
https://doi.org/10.1145/1102351.1102377
https://doi.org/10.1145/1102351.1102377
https://doi.org/10.1145/1102351.1102377
https://doi.org/10.1109/JAS.2014.7004680
https://doi.org/10.1109/JAS.2014.7004680
https://proceedings.mlr.press/v32/grande14.html
https://proceedings.mlr.press/v32/grande14.html
https://doi.org/10.1162/089976602317250933
https://doi.org/10.1162/089976602317250933
https://doi.org/10.1162/089976602317250933
https://doi.org/10.1162/089976602317250933
https://proceedings.mlr.press/v5/titsias09a.html
https://proceedings.mlr.press/v5/titsias09a.html
https://arxiv.org/abs/1606.04820
https://arxiv.org/abs/1606.04820
https://doi.org/doi:10.1515/jisys-2022-0205
https://doi.org/10.1515/jisys-2022-0205
https://doi.org/10.1515/jisys-2022-0205
https://proceedings.neurips.cc/paper_files/paper/2017/file/8208974663db80265e9bfe7b222dcb18-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8208974663db80265e9bfe7b222dcb18-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8208974663db80265e9bfe7b222dcb18-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8208974663db80265e9bfe7b222dcb18-Paper.pdf
https://doi.org/10.1609/aiide.v18i1.21959
https://ojs.aaai.org/index.php/AIIDE/article/view/21959
https://ojs.aaai.org/index.php/AIIDE/article/view/21959


https://www.research-collection.ethz.

ch / bitstream / handle / 20 . 500 . 11850 /

370833/root.pdf.

[19] M. Towers, J. K. Terry, A. Kwiatkowski, J. U.
Balis, G. d. Cola, T. Deleu, M. Goulão, A.
Kallinteris, A. KG, M. Krimmel, R. Perez-
Vicente, A. Pierré, S. Schulhoff, J. J. Tai,
A. T. J. Shen, and O. G. Younis. Gymnasium.
Mar. 2023. doi: 10.5281/zenodo.8127026.
url: https://zenodo.org/record/8127025
(visited on 07/08/2023).

[20] D. P. Kingma and J. Ba. Adam: A Method for
Stochastic Optimization. 2017. arXiv: 1412.
6980 [cs.LG]. url: https://arxiv.org/
abs/1412.6980.

[21] M. Jankowiak, G. Pleiss, and J. Gardner.
“Deep Sigma Point Processes”. In: Proceedings
of the 36th Conference on Uncertainty in Ar-
tificial Intelligence (UAI). Ed. by J. Peters
and D. Sontag. Vol. 124. Proceedings of Ma-
chine Learning Research. PMLR, Mar. 2020,
pp. 789–798. url: https://proceedings.
mlr.press/v124/jankowiak20a.html.

[22] J. Gardner, G. Pleiss, K. Q. Weinberger,
D. Bindel, and A. G. Wilson. “GPyTorch:
Blackbox Matrix-Matrix Gaussian Process
Inference with GPU Acceleration”. In:
Advances in Neural Information Processing
Systems. Ed. by S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett. Vol. 31. Curran Associates, Inc.,
2018. url: https://proceedings.neurips.
cc / paper _ files / paper / 2018 / file /

27e8e17134dd7083b050476733207ea1 -

Paper.pdf.

[23] N. Srinivas, A. Krause, S. M. Kakade, and M.
Seeger. “Gaussian Process Optimization in the
Bandit Setting: No Regret and Experimental
Design”. In: IEEE Transactions on Informa-
tion Theory 58.5 (May 2012). arXiv:0912.3995
[cs], pp. 3250–3265. issn: 0018-9448, 1557-9654.
doi: 10.1109/TIT.2011.2182033. url: http:
//arxiv.org/abs/0912.3995 (visited on
05/02/2024).

[24] J. Hensman, A. Matthews, and Z. Ghahra-
mani. “Scalable Variational Gaussian Process
Classification”. In: Proceedings of the Eigh-
teenth International Conference on Artificial
Intelligence and Statistics. Ed. by G. Lebanon
and S. V. N. Vishwanathan. Vol. 38. Pro-
ceedings of Machine Learning Research. San
Diego, California, USA: PMLR, Sept. 2015,
pp. 351–360. url: https://proceedings.
mlr.press/v38/hensman15.html.

[25] K. Jakkala. “Deep Gaussian Processes: A Sur-
vey”. In: CoRR abs/2106.12135 (2021). arXiv:
2106.12135. url: https://arxiv.org/abs/
2106.12135.

[26] A. Damianou and N. D. Lawrence. “Deep
Gaussian Processes”. In: Proceedings of the
Sixteenth International Conference on Artifi-
cial Intelligence and Statistics. Ed. by C. M.
Carvalho and P. Ravikumar. Vol. 31. Proceed-
ings of Machine Learning Research. Scottsdale,
Arizona, USA: PMLR, 29 Apr–01 May 2013,
pp. 207–215. url: https://proceedings.
mlr.press/v31/damianou13a.html.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J.
Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala. “PyTorch: An Imperative
Style, High-Performance Deep Learning Li-
brary”. In: Advances in Neural Information
Processing Systems 32. Ed. by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett. Curran Associates, Inc.,
2019, pp. 8024–8035. url: https://arxiv.
org/abs/1912.01703.

[28] M. Balandat, B. Karrer, D. R. Jiang, S.
Daulton, B. Letham, A. G. Wilson, and E.
Bakshy. “BoTorch: A Framework for Efficient
Monte-Carlo Bayesian Optimization”. In: Ad-
vances in Neural Information Processing Sys-
tems 33. 2020. url: http://arxiv.org/abs/
1910.06403.

[29] J. You, J.-W. Chung, and M. Chowdhury.
“Zeus: Understanding and Optimizing GPU
Energy Consumption of DNN Training”. In:
20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23).
Boston, MA: USENIX Association, Apr. 2023,
pp. 119–139. isbn: 978-1-939133-33-5. url:
https : / / www . usenix . org / conference /

nsdi23/presentation/you.

[30] D. Duvenaud, O. Rippel, R. Adams, and Z.
Ghahramani. “Avoiding pathologies in very
deep networks”. In: Proceedings of the Seven-
teenth International Conference on Artificial
Intelligence and Statistics. Ed. by S. Kaski
and J. Corander. Vol. 33. Proceedings of Ma-
chine Learning Research. Reykjavik, Iceland:
PMLR, 22–25 Apr 2014, pp. 202–210. url:
https : / / proceedings . mlr . press / v33 /

duvenaud14.html.

[31] A. Raffin. RL Baselines3 Zoo. https : / /

github.com/DLR-RM/rl-baselines3-zoo.
2020.

8

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/370833/root.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/370833/root.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/370833/root.pdf
https://doi.org/10.5281/zenodo.8127026
https://zenodo.org/record/8127025
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v124/jankowiak20a.html
https://proceedings.mlr.press/v124/jankowiak20a.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/27e8e17134dd7083b050476733207ea1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/27e8e17134dd7083b050476733207ea1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/27e8e17134dd7083b050476733207ea1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/27e8e17134dd7083b050476733207ea1-Paper.pdf
https://doi.org/10.1109/TIT.2011.2182033
http://arxiv.org/abs/0912.3995
http://arxiv.org/abs/0912.3995
https://proceedings.mlr.press/v38/hensman15.html
https://proceedings.mlr.press/v38/hensman15.html
https://arxiv.org/abs/2106.12135
https://arxiv.org/abs/2106.12135
https://arxiv.org/abs/2106.12135
https://proceedings.mlr.press/v31/damianou13a.html
https://proceedings.mlr.press/v31/damianou13a.html
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403
https://www.usenix.org/conference/nsdi23/presentation/you
https://www.usenix.org/conference/nsdi23/presentation/you
https://proceedings.mlr.press/v33/duvenaud14.html
https://proceedings.mlr.press/v33/duvenaud14.html
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo


A Future Works

An important next step is extending the proposed
algorithm to continuous action spaces. Currently,
we are limited to discrete actions due to the need to
compute an argmax over the action space. This limi-
tation could be addressed by integrating GPs into an
actor-critic framework. According to Lockwood and
Si [17], uncertainty quantification in RL has mainly
focused on the critic (value functions) because it is
directly affected by aleatoric (data) uncertainty and
this uncertainty propagates to the actor through
updates of the form ∇θJ = E[∇θ log(πθ)δ], where δ
depends on the critic.

Regarding DGPs, Jankowiak et al. [21] have pro-
posed an alternative parametric model called deep
sigma point process (DSPP). This model retains
many properties of DGPs without needing to ap-
proximate the predictive posterior distribution. Em-
pirical results suggest that DSPPs achieve better-
calibrated predictive distributions and can outper-
form deep kernel learning and DGPs on univariate
and multivariate regression tasks. For this reason, it
is an important model to consider for future research
in GPs and RL.

Lastly, steps must be taken to reduce the overall
time complexity, as there is currently a noticeable
difference in training and inference speed compared
to DQN. Future research can tackle this from two
angles: making the algorithm itself more efficient
and developing a faster GP model, particularly for
online settings.

B Detailed Theoretical Frame-
work

B.1 Gaussian Process Derivation

Given a train set of noisy observations D =
(xi, yi)i=1,...,N , where xi ∈ X and yi = f(xi) + ϵi
with ϵi ∼ N (0, σ2

y). Suppose we are interested in get-

ting predictions f∗ = [fGP(x
∗
1), . . . , fGP(x

∗
N∗

)]⊤3 for
test inputs X∗ = (x∗

1, . . . ,x
∗
N∗

). By the definitions
of a GP, it follows that the prior joint distribution
p(y, f∗|X,X∗) has the following form:

p(y, f∗|X,X∗) = N
([

µX

µ∗

]
,

[
Kσ KX,∗
K⊤

X,∗ K∗,∗

])
,

(10)
where µX = [(m(x1), ...,m(xN )]⊤, µ∗ =
[m(x∗

1), . . . ,m(x∗
N∗

)]⊤, KX,X = k(X,X) ∈ RN×N ,

Kσ = KX,X + σ2
yI, KX,∗ = k(X, ,X∗) ∈ RN×N∗ ,

and K∗,∗ = k(X∗,X∗) ∈ RN∗×N∗ are matrices of all
the covariances between relevant datapoints.
One can then condition on the observations to

get the Bayesian predictive distribution for the test

3f∗ is implicitly assumed to be a realization of the random
vector.

points. By Gaussian identities, we can get this in
closed form:

p(f∗|X,y,X∗) = N (µ∗|D,X∗ ,Σ∗|D,X∗), (11)

where

µ∗|D,X∗ = µ∗ +K⊤
X,∗K

−1
σ (y − µX),

Σ∗|D,X∗ = K∗,∗ −K⊤
X,∗K

−1
σ KX,∗.

(12)

Assuming a zero mean function, this reduces for a
single test point to:

E[fGP(x∗)] = µ(x∗) = k⊤
∗ K−1

σ y︸ ︷︷ ︸
α

=
∑N

i=1 αik(xi,x∗),

V[fGP(x∗)] = σ2(x∗) = k(x∗,x∗)− k⊤
∗ K

−1
σ k∗,

(13)
where k∗ = [k(x∗,x1), . . . , k(x∗,xN )]⊤.

To get the posterior mean and covariance function
we consider (12) and (13) over an infinite number
of potential test points:

mpost(x∗) = m(x∗) + k⊤
∗ K

−1
σ (y − µX)

kpost(x∗,x
′
∗) = k(x∗,x

′
∗)− k⊤

∗ K
−1
σ k∗′ ,

(14)

where k∗′ = [k(x′
∗,x1), . . . , k(x

′
∗,xN )]⊤.

B.2 Kernel Learning

The generalization properties of GPs rely on the
selection of the appropriate kernel [6, 7]. A common
kernel is the Matern kernel, given by

kmatern(x,x
′; l, ν, σf ) = σf

21−ν

Γ(ν)

(√
2νd

)ν
Kν

(√
2νd),

(15)
with d = (x−x′)⊤l−2(x−x′), lengthscale parameter
l, outputscale parameter σf , smoothness parameter
ν, Gamma function Γ and a modified Bessel function
Kν . As ν → ∞, the Matern kernel approaches the
Radial Basis Function (RBF) kernel:

kRBF(x,x
′; l, σf ) = σf exp

(
− ∥ x− x′ ∥2

2l2

)
, (16)

which when used results in smooth infinitely differ-
entiable functions being sampled.

For generalization, it is also important to optimize
the GP hyperparameters, such as kernel parameters
and noise variance, alongside computing the predic-
tive distribution as seen in (12). This can be done
by performing type-II MLE through maximizing the
MLL log p(y|X, θ), for hyperparameters θ:

p(y|X, θ) =

∫
RN

p(y|f ,X)p(f |X, θ) df . (17)

As y ∼ N (0,Kσ) this integral can be computed as:

log p(y|X, θ) = −1

2
y⊤K−1

σ y−1

2
log |Kσ|−

N

2
log(2π),

(18)

9



where the first term is a data fit term, the second
term, a model fit term, and the last is a constant.
The negative MLL is differentiable with respect to
θ, so stochastic gradient descent can be used.
Using black box matrix-matrix multiplication

(BBMM) inference [22], which leverages GPU accel-
eration, the overall time and space complexity of GP
regression is O(N2). See Appendix B.6 for details.

B.3 Bayesian Optimization and
Multi-Armed Bandits

Bayesian optimization (BayesOpt) concerns itself
with global optimization of black-box functions f :
X → R [7]. Commonly a GP is used as a regressor
or surrogate for f based on the data collected so far.
The BayesOpt algorithm as shown in B.1 pro-

ceeds as follows: At each iteration n, a dataset
Dn = (xi, yi)i=1,...,n is maintained where the target
outputs yi = f(xi) + ϵi are assumed to be noisy
outputs of the function f we want to optimize. A
GP can then be used to estimate p(f |D), a distri-
bution over f . An acquisition function α(x;Dn) is
then used to select a new candidate x based on its
expected utility. Once yn+1 = f(xn+1) + ϵn+1 has
been observed, the GP is updated by computing
p(f |Dn+1).
In particular, [23] provided sublinear regret

bounds using their GP optimization algorithm with
yn = Rn + ϵn as targets, implying that the algo-
rithm’s action selection becomes optimal over time.
However, this algorithm is constrained to the ban-
dit’s problem, which learns a policy in a single-state,
discrete-actions environment.

Algorithm B.1 Bayesian Optimization

1: Collect initial dataset D0 = (xi, yi)i=1,...,n0 from
random queries xi or a space-filling design

2: Initialize model (e.g., a GP) by computing
p(f |D0)

3: for n = 1, 2, . . . until convergence do
4: Choose next query point xn+1 =

argmaxx∈X α(x;Dn)
5: yn+1 = f(xn+1) + ϵn
6: Dn+1 = Dn ∪ {(xn+1, yn+1)}
7: Update model by computing p(f |Dn+1)
8: end for

B.3.1 Acquisition Functions

The acquisition function regulates exploration in the
input space, resembling behavioural policies in RL,
designed to favour inputs x with high uncertainty in
f(x) while minimizing selections of already explored
points. This approach results in more confident
estimates for f(x). Various acquisition functions
exist [7]:

Upper confidence bound (UCB) is an acquisi-
tion function defined as:

αn(x;Dn) = µn(x) + βnσn(x), (19)

where µn, σn are the mean and standard deviation
outputs as described in (13). βn is an exploration
parameter.

Another acquisition function is Thompson sam-
pling. In the context of Bandits, this involves sam-
pling an action-value function q̃ from the GP pos-
terior predictive distribution, and greedily selecting
an action according to the sample:

an+1 = argmax
a∈A

q̃(a) q̃(·) ∼ p(q|Dn). (20)

The intuition behind Thompson sampling is that
exploration is encouraged by maximizing q̃ because
the sampled function is within the credible interval
(standard deviations around the mean) with high
values around the areas with high uncertainty. Max-
imizing q̃ involves selecting actions where there is
potentially high uncertainty on q. At the same time,
actions with a high mean value are also likely to be
sampled, which promotes exploitation.

B.4 Scaling Gaussian Process Infer-
ence to Large Datasets

To address the O(N2) time and space complexity of
exact inference, where N = |D|, different approxima-
tion approaches can be taken to allow GPs to scale
to larger datasets. This is especially of concern in
RL, where in theory we have a continually growing
dataset. See [7] for a full overview of the available
techniques.

B.4.1 Sparse Variational Gaussian Pro-
cesses

SVGPs [7, 12, 13, 21, 24, 25] approximate the GP
posterior predictive distribution through variational
inference. The core idea is to use a set of inducing
points Z = (z1, . . . , zM ) where M ≪ N , which
serve as a sparse approximation of the full dataset.
The associated inducing variables are denoted u =
[fGP(z1), . . . , fGP(zM )]⊤. The variational posterior
is defined as:

p̂(f ,u) = p(f |u,X,Z)p̂(u), p̂(u) = N (m,S),
(21)

where p(f |u,X,Z) is the conditional density of the
function values f = fGP(X) given train inputs X,
inducing points Z and inducing variables u. p̂(u) is
a Gaussian distribution with mean m and covariance
matrix S.
Variational inference aims to minimize the

Kullback-Leibler (KL) divergence DKL(p̂ ∥ p) be-
tween the variational posterior p̂ and the true pos-
terior p. Using the variational posterior in (21) and

10



the lower bound on the marginal likelihood,

Ep̂(f ,u)

[
log

p(y, f ,u)

p̂(f ,u)

]
, (22)

we obtain the evidence lower bound (ELBO):

LSVGP =

N∑
i=1

Ep̂(fi)[log p(yi|fi)]−DKL(p̂(u) ∥ p(u|Z)),

(23)
where p(yi|fi) is the Gaussian likelihood for the
observations given latent function values. Since the
bound is a sum over the data, an unbiased estimator
can be obtained using mini-batch subsampling. The
variational parameters Z, m, and S, are estimated by
maximizing the lower bound LSVGP. This approach
is guaranteed to converge because LSVGP is a lower
bound to the MLL, i.e., log p(y|X) ≥ LSVGP.
Posterior predictions for test points are now

made by marginalizing over the inducing variables
p(f∗|D,X∗) ≈

∫
RM p(f∗|u)p̂(u) du which results in

another multivariate Gaussian. The resulting mean
and variance predictions for a test point x∗ become:

µ(x∗) = m(x∗) + α(x∗)
⊤(m−m(Z)),

σ2(x∗) = k(x∗,x∗)− α(x∗)
⊤(KZ,Z − S)α(x∗),

α(x∗) = K−1
Z,Zk(Z,x∗),

(24)
where KZ,Z = k(Z,Z) and k(Z,x∗) =
[k(x∗, z1), . . . , k(x∗, zM )]⊤.

The time complexity for SVGPs is O(NM2), as it
can be shown that the likelihood term in (23) can be
computed in O(NM2) time [7]. In terms of storage,
we have an N ×M and M ×M covariance matrix,
which is in O(NM +M2).

SVGPs do not overfit with an increasing number
of inducing points, and as M increases, the approxi-
mation quality of exact inference is recovered. Too
few inducing points may make the GP behave as if
it was underfitting [13].

B.5 Deep Gaussian Processes

Another drawback of GPs is the inability of their
kernel functions to handle structured data where
the similarity between two data points requires hier-
archical feature extraction, which occurs in image
data and also some vector datasets [25]. DGPs seek
to address this issue, while still staying in a Bayesian
nonparametric framework.
A DGP is a composition of GPs [7, 26]:

DGP(x) = fL ◦ · · · ◦ f1(x),
fi(·) = [f

(1)
GP,i(·), . . . , f

(Hi)
GP,i(·)]⊤,

f
(j)
GP,i ∼ GP(mi(·), ki(·, ·)).

(25)

DGPs have a neural network-like structure with L
layers, each containing H GPs. Empirical results
suggest that DGPs do not overfit as the number

of layers increases, even with limited data, and ad-
ditional layers generally improve performance on
large datasets [15]. [15] also showed that for the
same computational budget, increasing the number
of layers can be more effective than increasing the
number of inducing points in an SVGP.

One can show that a DGP is strictly more general
than a GP [7], as a DGP is not just another GP. That
said, posterior inference in DGP is quite expensive,
as it requires marginalizing over a large number of
RVs, corresponding to the hidden function values
at each layer. Additionally, the posterior predictive
distribution needs to be approximated using Monte
Carlo samples, i.e., a finite mixture of Gaussian
distributions.
[15] addressed the former by using a variational

approach similar to the SVGP method in Section
B.4 to allow DGP to scale to larger datasets. This
method is called doubly stochastic variational infer-
ence, which is the technique used for DGP modelling
in this thesis.
The time and space complexity for DGPs using

doubly stochastic variational inference is analogous
to SVGPs. The ELBO also has a similar form and
takes O(NM2(D1 + . . .+DL)) time to compute for
N train samples, M inducing points and where Di

is the number of GPs in layer i. Similarly, the space
complexity is O((NM +M2)(D1 + . . .+DL)).

B.6 Complexity Analysis of Exact
Gaussian Process Inference

When it comes to computational complexity there
are two points of interest: Computing the predictive
posterior distribution (13) and computing the MLL
(18).

To ensure numerical stability, the Cholesky decom-
position of Kσ = LσL

⊤
σ ∈ RN×N is used, which is

in O(N3). After computing α = K−1
σ y, predictions

for each test point take O(N) time for the mean and
O(N2) time for the variance. Space complexity is
O(N2) since an N ×N covariance matrix must be
stored.
BBMM inference [22], used in the GPytorch li-

brary, allows for computing the GP MLL (18) and
other expensive GP operations using only matrix
multiplication, leveraging GPU acceleration. This
reduces the time complexity for exact GP inference
from O(N3) to O(N2). Note that this does not
reduce the space complexity.

B.7 Complexity Analysis of the GP-
Q and GP-SARSA Algorithm
Variants

The time and space complexity of GP-Q and GP-
SARSA mainly depend on the GP model and how
the GP is updated with the dataset. As they only

11



differ in computing the TD target, their complex-
ities are the same. In detail, the Time and Space
complexity of GP-Q and GP-SARSA algorithms for
different GP models is given below with N : dataset
size; M : inducing points; Di: GPs in layer i:

• Exact GP (BBMM):

– Time Complexity: O(N2)

– Space Complexity: O(N2)

• SVGP:

– Time Complexity: O(NM2)

– Space Complexity: O(NM +M2)

• DGP:

– Time Complexity: O(NM2
∑

Di)

– Space Complexity: O((NM +M2)
∑

Di)

C Additional Results

C.1 ϵ-greedy vs Upper Confidence
Bound vs Thompson Sampling

UCB’s β parameter (19) was set to 1.5, and the
ϵ-greedy schedule was based on DQN for a specific
environment.
Thompson sampling outperforms UCB and ϵ-

greedy in Figure C.1, making it a preferred policy
for the GP-Q/GP-SARSA algorithm. The perfor-
mance gap in UCB may be due to its tendency for
over-exploration, as noted by [9]. Additionally, the
ϵ-greedy schedule effective for DQN may not suit
GP-Q. Thompson sampling’s advantage is the lack
of exploration parameters to tune.

Figure C.1. Comparison of cumulative average return
(±0.1 ·std) in Lunar Lander between behavioural policies
for the same DGP model.

C.2 Loss Curve of Experiment

Figure C.2 showcases how the negative ELBO
changes per update during training.

Figure C.2. Average loss (negative ELBO) (±0.1 · std)
in CartPole (top) and Lunar Lander (bottom).

D Experimental Design in De-
tail

D.1 Model Architectures

The computational backend for all the models is
PyTorch [27]. For the GP models, we used GPytorch

[22], a high-performance GPU-accelerated library
for GP modelling, in conjunction with Botorch

[28], a Bayesian optimization library that extends
GPytorch. An NVIDIA RTX 4090 with 24 GB of
VRAM was used for GPU acceleration.

We were also interested in measuring VRAM us-
age on the GPU, energy consumption, and execution
time. For VRAM usage, we used pynvml, a Python
interface for the NVIDIA Management Library. For
energy consumption and execution time, we used
the Zeus library [29].

D.1.1 Gaussian Processes and Kernel Selec-
tion

In selecting the GP model, we primarily considered
DGPs, which reduce to an SVGP when using a single
unit.
In Section 2.2, the derivations assumed an ob-

servation noise variance parameter σ2
y. In the RL

setting, it is hard to estimate the exact value of σ2
y.

To address this, instead of setting σ2
y a priori, we in-

ferred it alongside the hyperparameters by including
σ2
y in the optimization process when minimizing the

negative MLL in (18) or the negation of the ELBO
in (23).

12



Regarding the choice of the kernel for the states,
existing literature on GPs and RL have used the
RBF (16) or Matern (15) kernel [9, 14]. This implies
that those authors had a prior belief that the action-
value function is reasonably smooth. We assumed
that this assumption was reasonable. Among the
two, the RBF kernel was used.
Regarding [8]’s suggestion to use a separate ker-

nel for the states and action is sensible, but this
causes issues with sparse variational methods when
learning the inducing points Z ∈ RMd using gradi-
ent methods [7]. The actions are discrete, but the
problem is that the optimizer that optimizes the
inducing points zi ∈ S ×A does not take this infor-
mation into account. Using a kernel for categorical
features introduces issues since the actions may not
be exact integers anymore. For this reason, we used
the approach by [9, 14], and simply used one kernel
for the states and actions.
Using a constant mean function in DGPs makes

each GP mapping highly non-injective, leading to
issues with the DGP prior [30]. Following [15], we
used a linear mean function, m(X) = XW, for
all hidden layers. If input and output dimensions
match, W = I; otherwise, W is set to the top
Dl left eigenvectors from the data’s singular value
decomposition.

D.1.2 Neural Network Models

The linear model was treated as a single-layer feedfor-
ward network with an identity activation function:

y = Ws+ b, (26)

with W ∈ Rn×m and b ∈ Rm.
Regarding the choice of function approximator for

the DQN algorithm, we used the following MLP as
shown in Table D.1.

Note the difference in how the q-function is mod-
elled compared to a GP. With a neural network,
we have as input the state and an output neuron
for each action, containing q̂(s, a). This is differ-
ent for a GP, where the input is a state-action pair
z ∈ S × A, and the output is a Gaussian with a
mean and variance for the action-value.

D.2 Hyperparameter Tuning

Hyperparameter selection for DQN was based on pre-
tuned settings from the Stable-Baselines3 Zoo

GitHub repository [31]. Since the ϵ-greedy schedule
in Stable-Baselines3 is based on timesteps, we
adjusted to compare policies over the same number
of episodes by running DQN for the recommended
timesteps, recording the episodes passed, and then
running the remaining episodes without training.
For GP-Q/GP-SARSA, due to the experimental

nature of the algorithm and the computational com-
plexity of certain hyperparameter settings, informal

testing was performed on both CartPole and Lunar
Lander to identify effective hyperparameter settings.
This involved examining the reward curve on runs
with different configurations. We tuned GP fitting
settings, such as the initial learning rate of the Adam
optimizer and how optimization over the dataset was
performed at each GP update.
The hyperparameters used in the experimental

setup are summarized in Tables D.3 and D.2. A
moderate dataset size of 10,000 or 20,000, with each
GP update involving a random subset of approxi-
mately 3,500 samples, works well when optimized
in mini-batches. Using a small learning rate (0.001
or 0.005) for the Adam optimizer ensures that hy-
perparameters are not too tightly fitted on early
inaccurate q-value estimates. However, the learning
rate should not be too low to allow the agent to
learn a meaningful policy. The discount factor γ
was set to 0.99, the same as with the DQN algo-
rithm. The selected behavioural policy chosen was
Thompson sampling, but a small comparison was
made to ϵ-greedy and UCB in Lunar Lander.
What was tested more rigorously was the perfor-

mance difference going from an SVGP to a DGP.
According to [15], a DGP with a relatively small
(∼ 100) number of inducing points generally out-
performs a single-layer DGP/SVGP with a larger
number of inducing points (∼ 500) on regression
and classification.
Increasing the number of inducing points and

units improves performance, but there is a point of
diminishing returns. We adopted a similar approach
to [15], validating performance using an SVGP with
512 inducing points and a four-layer DGP with 128
inducing points per unit. For the number of units
per layer in the DGP, we use min(30, D0) for all
inner layers, where D0 is the input dimensionality,
and the same RBF kernel is used for all layers.

Learning was stopped for GP-Q/GP-SARSA if a
close-to-optimal policy was found, defined as achiev-
ing a return of 500 for 5 consecutive episodes in
CartPole and a return of ≥ 200 for 5 consecutive
episodes in Lunar Lander.

13



Table D.1. Summary of neural network parameters. n is input state dimensionality and m is number of actions.

Layer (type) Output Shape Param #

Linear (layer1) + ReLU [batch size, 256] n× 256
Linear (layer2) + ReLU [batch size, 256] 256× 256
Linear (layer3) [batch size, m] 256×m
Total Parameters n× 256 + 65, 536 + 256×m

Table D.2. Hyperparameters for GP Models in CartPole and Lunar Lander Environments.

Hyperparameter CartPole Lunar Lander

Fitting (Adam)
GP Fit Num Epochs 1 1
GP Fit Batch Size 128 512
GP Fit Num Batches 30 7
GP Fit Learning Rate 0.001 0.005
GP Fit Random Batching True True

Exploration
UCB Beta NA 1.5
GP E-Greedy Steps NA 100,000

Model
Discount Factor (γ) 0.99 0.99
Batch Size 32 128
Max Dataset Size/Budget 10,000 20,000
Kernel Type RBF RBF
Behavioral Policy Thompson sampling Thompson sampling

Table D.3. Hyperparameters for DQN Algorithm in CartPole and Lunar Lander Environments.

Hyperparameter CartPole Lunar Lander

Learning Rate 2.3e-3 6.3e-4
Batch Size 64 128
Buffer Size 100000 50000
Learning Starts 1000 0
Gamma 0.99 0.99
Target Update Interval 10 250
Train Frequency 256 4
Gradient Steps 128 -1
Exploration Fraction 0.16 0.12
Exploration Final Epsilon 0.04 0.1
Number of timesteps 5e4 1e5

14


	Introduction
	Theoretical Framework
	Reinforcement Learning
	Gaussian Processes
	Value-based RL using Gaussian Processes
	Interpreting The GP Posterior Predictive Distribution for Action-Value Functions

	Methodology
	Training Environments
	Algorithm Design
	Experimental Setup

	Results
	Interpreting GP predictions in Lunar Lander

	Conclusions
	Future Works
	Detailed Theoretical Framework
	Gaussian Process Derivation
	Kernel Learning
	Bayesian Optimization and Multi-Armed Bandits
	Acquisition Functions

	Scaling Gaussian Process Inference to Large Datasets
	Sparse Variational Gaussian Processes

	Deep Gaussian Processes
	Complexity Analysis of Exact Gaussian Process Inference
	Complexity Analysis of the GP-Q and GP-SARSA Algorithm Variants

	Additional Results
	-greedy vs Upper Confidence Bound vs Thompson Sampling
	Loss Curve of Experiment

	Experimental Design in Detail
	Model Architectures
	Gaussian Processes and Kernel Selection
	Neural Network Models

	Hyperparameter Tuning


