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Abstract

There has been a growing interest in using AI to model human behavior, particularly1

in domains where humans interact with this technology. While most existing work2

models human behavior at an aggregate level, our goal is to model behavior at3

the individual level. Recent approaches to behavioral stylometry—or the task of4

identifying a person from their actions alone—have shown promise in domains5

like chess, but these approaches are either not scalable (e.g., fine-tune a model for6

each person) or not generative, in that they cannot generate actions in the style of7

each person. We address these limitations by casting behavioral stylometry as a8

multi-task learning problem—where each task represents a distinct person—and9

using parameter-efficient fine-tuning (PEFT) methods to learn an explicit style10

vector for each person. Style vectors are generative: they selectively activate11

shared "skill" parameters to generate actions in the style of each person. They also12

induce a latent style space that we can interpret and manipulate algorithmically.13

In particular, we develop a general technique for style steering that identifies a14

subset of players with a desired style property, and steers a new player towards that15

property. We apply our approach to two very different games, at unprecedented16

scale: chess (47,864 players) and Rocket League (2,000 players).17

1 Introduction18

The rapid advances in machine learning in recent years has made it increasingly important to find19

constructive ways for humans to interact with this technology. Even in domains where AI has20

achieved proficiency, it is often important to understand how humans approach these tasks. Such an21

understanding can help identify areas for improvement in humans, develop better AI collaborators or22

teachers, create more human-like experiences, and more.23

A common method for capturing human behavior is behavioral cloning (BC), a form of imitation24

learning [Schaal, 1996] that applies supervised learning to fixed demonstrations collected for a given25

task. While traditionally used in domains such as robotics [Florence et al., 2022] and self-driving26

vehicles [Pomerleau, 1988], BC has seen increasing use in gaming, such as in Counter-Strike [Pearce27

and Zhu, 2022], Overcooked [Carroll et al., 2019], Minecraft [Schäfer et al., 2023], Bleeding28

Edge [Jelley et al., 2024], and chess McIlroy-Young et al. [2020].29

The above work focuses on modeling human behavior in aggregate, with the goal of developing better30

AI partners, opponents, and training tools. However, we believe that the most value for such goals can31

be derived by modeling human behavior at the individual level. To that end, recent results in chess32

have shown the most promise. McIlroy-Young et al. [2020] used behavior cloning to create a set of33

models called Maia that match human play at 9 aggregate skill levels. By fine-tuning these models on34

the data of 400 individual players, they created 400 personalized models that achieve 4-5% higher35

move-matching accuracy on average [McIlroy-Young et al., 2022]. The authors use these models to36

perform behavioral stylometry with high accuracy, where the goal is to identify which person played37

a given query set of games; in this case, they simply apply each of the 400 models to the query set38
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and output the one with the highest accuracy. McIlroy-Young et al. [2021] propose a more scalable39

approach of training a Transformer-based embedding on the games of each player, and use this to40

perform accurate stylometry across 2,844 players; in this case, they compute the embedding of the41

query set of games and match it to the closest player’s embedding.42

These approaches have different merits. The individual model approach creates a generative model43

for each player, but it is not scalable and shares only initial (base model) knowledge across the44

players; adding a new player requires fine-tuning a separate model. The embedding approach is45

much more scalable: it learns a compact (single-vector) representation of each player in a shared46

style space, and supports few-shot learning to embed a new player in this space. It cannot be used to47

generate moves, however, and hence cannot reason about player behavior in practice.48

An ideal solution would combine these properties: generative, scalable, shared knowledge, compact49

representation. Our key insight for achieving this is to view behavioral stylometry as a multi-task50

learning problem, where each task represents an individual person. The goal here is to generalize51

across an initial set of players (tasks) while supporting few-shot learning of new players (tasks). To52

do this efficiently, we leverage recent advances in parameter-efficient fine-tuning (PEFT) [Ponti et al.,53

2023, Caccia et al., 2022]. Specifically, we augment an existing BC model with a set of Low Rank54

Adapters (LoRAs) as well as a routing matrix that specifies a distribution over these adapters for55

each player. Unlike approaches that train a separate LoRA for each task, this modular design allows56

players to softly share parameters in a fine-grained manner. We apply this adapter framework to two57

very different game models (which we create): a modified version of the Maia model for chess, and a58

Transformer-based BC model for Rocket League, a 3D soccer video game played by cars in a caged59

arena. (Our models scale beyond the prior art and may be of independent interest.) Our methodology60

first trains the BC models to convergence across all player data, and then fine-tunes the adapters61

and routing matrix on per-player data. This encourages the adapters to learn different latent skills62

that explain the variance between players, while each row of the routing matrix induces a weight63

distribution over these skills. We call each row the style vector for the corresponding player.64

Style vectors are versatile and powerful. They support few-shot learning which enables stylometry at65

scale. They induce a generative model for each player that we can run and observe. They induce a66

shared style space that we can interpret and manipulate algorithmically. Leveraging these properties,67

we develop a general technique for style steering that identifies a subset of players who exhibit a68

desired style property, and steers a new player towards that property. Our main results include:69

1. We perform behavioral stylometry at an unprecedented scale for chess (47,864 players, 94.4%70

accuracy) and Rocket League (2,000 players, 86.7% accuracy), using a query set of 100 games.71

2. Our per-player generative models achieve move-matching accuracy in the range 45-69% for72

chess and 44-72% for Rocket League, even for players with very few (e.g., 50) games.73

3. Style vectors capture a wide diversity of playing styles and strengths. They can be combined,74

interpolated, and steered, while reflecting consistent changes to play style and strength.75

2 Background and Framing76

We frame behavioral stylometry and per-player generative modeling as a multitask learning problem,77

to which we apply PEFT methods. In multitask learning [Caruana, 1997, Ruder et al., 2019],78

we are given a collection of tasks T =
(
T1, . . . , T|T |

)
, each task Ti associated with a dataset79

Di =
{
(x1, y1), ..., (xni

, yni
)
}
. Multitask learning exploits the similarities among related training80

tasks by transferring knowledge among them; ideally, this builds representations that are easily81

adaptable to new tasks using potentially few target examples. The premise of this paper is that82

modeling individual human behavior from a pool of players can be interpreted as a multitask learning83

problem. In other words, each task Ti consists of modeling the behavior of a specific player i; and84

dataset Di corresponds to the sequence of game actions taken by player i. Specifically, an (x, y) tuple85

denotes a game state x at a specific point in time during game, along with the action y that player i86

took in this state. For the rest of the paper, we use the notion of tasks and players interchangeably.87

2.1 Parameter-efficient fine-tuning88

Popularized in NLP, parameter-efficient fine-tuning (PEFT) [Houlsby et al., 2019, Hu et al., 2022, Liu89

et al., 2022] approaches have emerged as a scalable solution for adapting Large Language Models to90

several downstream tasks. Indeed, standard finetuning of pretrained LLMs requires updating (and91
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storing) possibly billions of parameters for each task. PEFT methods instead freeze the pretrained92

model and inject a small set of trainable task-specific weights, or “adapters".93

One such approach is the use of Low Rank Adapters (LoRA) [Hu et al., 2022], which modify linear94

transformations in the network by adding a learnable low rank shift95

h =
(
W0 +∆W

)
x =

(
W0 +ABT

)
x. (1)

Here, W0 ∈ Rd×d are the (frozen) weights of the pre-trained model, and A,B ∈ Rd×r the learnable96

low-rank parameters of rank r ≪ d. With this approach, practitioners can trade off parameter97

efficiency with expressivity by increasing the rank r of the transformation.98

2.2 Polytropon and Multi-Head Adapter Routing99

Standard PEFT methods such as LoRA can adapt a pretrained model for a given task. In multitask
settings, training a separate set of adapters for each task is suboptimal, as it does not enable any
sharing of information, or transfer, across similar tasks. On the other hand, using the same set of
adapters for all tasks risks negative interference [Wang et al., 2021] across dissimilar tasks. Polytropon
[Ponti et al., 2019] (Poly) addresses this transfer/interference tradeoff by softly sharing parameters
across tasks. That is, each Poly layer contains 1) an inventory of LoRA adapters

M = {A(1)B(1), . . . , A(m)B(m)},

with m ≪ |T |, and 2) a task-routing matrix Z ∈ R|T |×m, where Zτ ∈ Rm specifies task τ ’s100

distribution over the shared modules. This formulation allows similar tasks to share adapters, while101

allowing dissimilar tasks to have non-overlapping parameters. The collection of adapters M can be102

interpreted as capturing different facets of knowledge, or latent skills, of the full multitask distribution.103

At each forward pass, Poly LoRA adapters for task τ are constructed as follows:104

Aτ =
∑
i

αiA
(i); Bτ =

∑
i

αiB
(i) (Poly)

where αi = softmax(Z [τ ])i denotes the mixing weight of the i-th adapter in the inventory, and105

A(i),B(i),Aτ ,Bτ ∈ Rd×r. Here, the τ -th row of the routing matrix Z is effectively selecting106

which adapter modules to include in the linear combination. In our setting, where each task consists107

of modeling an individual, Z [τ ] specifies which latent skills are activated for user τ ; we call this their108

style vector. As per Eqn 1, the final output of the linear mapping becomes h =
(
W0 +Aτ (Bτ )T

)
x.109

In Poly, the module combination step remains coarse, as only linear combinations of the existing110

modules can be generated. Caccia et al. [2022] propose a more fine-grained approach, called Multi-111

Head Routing (MHR), which is what we use in our work. Similar to Multi-Head Attention [Vaswani112

et al., 2017], the input dimension of A (and output dimensions of B) are partitioned into h heads,113

where a Poly-style procedure occurs for each head. The resulting parameters from each head are114

then concatenated, recovering the full input (and output) dimensions. See A.1 for more details.115

Routing-only fine-tuning. While LoRA adapters can reduce the parameter cost from billions to116

millions [Liu et al., 2022], training the adapters for each new task can still be prohibitive when dealing117

with thousands of tasks. To this end, Caccia et al. [2022] proposed routing-only finetuning, where118

after an initial phase of pretraining, the adapter modules are fixed, and only the routing parameters Z119

are learned for a new task. This reduces the parameter cost for each additional task by several orders120

of magnitude, while maintaining similar performance. We use this method for few-shot learning.121

3 ML Methodology122

In this section, we detail our methodology for creating a generative model of individual behavior that123

enables our style analyses. Our methodology applies to any behavior cloning scenario with access to124

human demonstrations from multiple individuals. To demonstrate this generality, we apply it to two125

very different games: chess and Rocket League. We start with a base model for each and apply the126

MHR adapter framework to it, and then discuss model training and evaluation.127
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Figure 1: (left) Our overall architecture. We augment a base model with a set of MHR adapters and
a routing matrix composed of each player’s style vector. (right) Detailed view of an MHR layer,
showing a skill inventory of adapters shared across players. The player’s style vector specifies which
skills are active (in this case, the first and third) to generate the final low-rank weight shift that is
applied to the (frozen) base model layer.

3.1 Model architecture128

For chess, we follow McIlroy-Young et al. [2022] and use the Squeeze-and-Excitation (S&E) Residual129

Network [Hu et al., 2018] as a base model, but with a deeper and wider configuration (see A.2).130

At every residual block, an additional 2-layer MLP rescales the residual output along the channel131

dimension to explicitly model channel interdependencies. The input is a 112-channel 8 × 8 image132

representation of the chess board; the output is the predicted move represented as a 1858-dimensional133

vector. The total parameters is 15.7M. For Rocket League, we use the GPT-2 architecture from134

Radford et al. [2019] with a dimensionality of 768, 12 attention heads, and 12 layers. The input is a135

49-dimensional vector with game physics information; the output is 8 heads: 5 with 3 bins of [-1, 0,136

1] and 3 binary. The model has no embedding layer, as the game data points are passed directly as137

tokens after processing. The total parameters is 87.7M.138

To enable user-based adaptation, we incorporate the MHR adapters described in §2.2 into our base139

models, as illustrated in Fig. 1. In chess, for every linear transformation in the MLP used for channel-140

wise rescaling, we add an MHR layer built of LoRA adapters with rank 16, for a total of 12×2=24141

MHR layers. We use an adapter inventory of size 32 and a multi-head routing strategy with 8 heads.142

Therefore, for each user we must learn 32×8=256 routing parameters as their style vector. This yields143

5M additional parameters. For Rocket League, we attach the adapters to the fully connected layer of144

each transformer block, resulting in 12 MHR layers of LoRAs with rank 16. We use an inventory size145

of 16 and 64 heads. This yields 13.8M additional parameters. To facilitate interpretability and style146

analysis, we use the same routing (style vector) across all MHR layers.147

3.2 Data collection and partitioning148

We use data from the largest open-source online chess platform, Lichess.org [Duplessis, 2021], which149

boasts a database of over 4.8 billion games. We collected Blitz games played between 2013 and150

2020 inclusive—these are games with 3 or 5 minutes per side, optionally with a few seconds of151

time increment per move—and applied the same player filtering criteria as McIlroy-Young et al.152

[2022]. The resulting dataset comprises 47,864 unique players and over 244 million games. (See A.2153

for a discussion on data imbalance.) For Rocket League, we collect data from a large open-source154

replay database, Ballchasing.com [CantFlyRL, 2024]. We use 2.2 million 1v1 replays from 2015 to155

mid-2022, totalling several decades of human game play hours at 5 minutes per game. After parsing,156

each Rocket League game state is a vector holding the player’s 3D position, linear and angular157

velocity, boost remaining, rotation, and team; we also include the opponent’s state and the position,158

linear and angular velocity of the ball. Given a game state, we have to predict the user’s throttle, steer159

(while grounded), pitch, yaw, roll (while aerial), jump, boost, and handbrake. Additional processing160

was needed to correct for missing aerial controls and inconsistent sampling rates (24-27hz). Our full161

data processing procedure, including the challenges we faced, are detailed in A.3.162

We divide the set of players into a few subsets to support our training methodology. The base player163

set comprises all data and is used to train the base models. The fine-tuning player set is used to164

fine-tune the MHR architecture shown in Fig. 1. (For both, we split each player’s data into 80/10/10 for165

train/test/validation.) The few-shot player set is used for few-shot learning based on a reference set of166
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100 games per player. For our chess experiments, to enable a direct comparison with prior work, we167

create an additional fine-tuning player set consisting of the same 400 players used in those studies.168

Currently, we treat each player’s data holistically, but in principle one could partition a player’s data169

in different ways to perform a finer analysis of their playing style. We explore this in A.4.170

3.3 Model training and evaluation171

Base model. We train our base Maia model for chess using data from a base player set of all 47,864172

players, treating this as a classification task of predicting human move y made in chess position x,173

given a datapoint (x, y). We use the same loss functions and evaluation criteria as the original Maia174

work: Maia’s policy head uses a cross entropy loss while the value head uses MSE; the output of the175

policy head is used to evaluate the model’s move-matching accuracy.176

We train our Rocket League model using a base player set of over 800,000 players, though the vast177

majority of players have 5 games or fewer. We discretize the actions into 3 bins for throttle, steer,178

pitch, yaw, and roll, as most of this data is close to 0, -1, or 1. We use binary outputs for jump, boost,179

and handbrake. A next-move prediction is labelled correct if and only if all of the outputs are correct.180

MHR fine-tuning. To train the MHR LoRA adapters, we adopt the methodology used in Caccia et al.181

[2022]: namely, we freeze the base model and fine-tune the MHR layers and routing matrix using data182

from a fine-tuning player set. Recall that the routing matrix Z has a row (style vector) for each player183

in the fine-tuning set. Following Ponti et al. [2019], we use a two-speed learning rate, where the style184

vectors’ learning rate is higher than the adapters’, to enable better specialization.185

For chess, we use two fine-tuning player sets in our experiments, creating two separate MHR-Maia186

models. The first set comprises all 47,864 players and is used to evaluate behavioral cloning and187

stylometry at very large scale. The second set is comprised of the same 400 players used by McIlroy-188

Young et al. [2022], which we use to compare few-shot learning and stylometry results. For Rocket189

League, we train an MHR-Rocket model on a fine-tuning set of 2,000 players with 100 games each.190

Few-shot learning. To perform few-shot learning on our MHR models, we perform the “routing-only191

fine-tuning" described in section 2.2 that additionally freezes all MHR LoRA adapters. Given a few-192

shot player, we add a (randomly-initialized) new row to Z and fine-tune it on the player’s reference193

set of games, eventually learning a style vector for the player. Using this style vector, we can invoke194

a generative model of the player and use it to evaluate move-matching accuracy, as described above.195

To perform stylometry, if the player is a seen player (i.e., part of the fine-tuning set), then a matching196

style vector already exists in Z, and we can find it using cosine similarity. Otherwise, if the player is197

unseen, then we simply repeat the few-shot learning process on a query set of games (from the same198

player), and compare this new style vector to the entries in Z.199

For chess, (unless stated otherwise), all of our few-shot experiments use the MHR-Maia model fine-200

tuned on the 400-player set from McIlroy-Young et al. [2022]. For Rocket League, the few-shot201

player set consists of 1,000 of the 2,000-player set used to fine-tune MHR-Rocket.202

Evaluation. We evaluate a fine-tuned MHR model in two ways. First, we measure its move-matching203

accuracy, similar to how we evaluate the base models. However, since our MHR models provide a204

generative model for each player (invoked through their style vector), we can separately evaluate each205

player’s model by applying it to their test set and measuring move-matching accuracy. The overall206

move-matching accuracy for the model is simply the average of these per-player accuracies.207

Our second evaluation method uses the model to perform behavioral stylometry among all players in208

the fine-tuning set. This is done by leveraging our few-shot learning methodology (above). That is,209

given a query set of games from some player, we learn a new style vector in Z for those games via210

few-shot learning, and compare this vector to every other vector in Z. Using cosine similarity as our211

distance metric, we simply output the player with the highest cosine similarity to the query set vector.212

4 Style methodology213

The style vectors in Z represent distinct distributions over latent skills that give us a starting point for214

comparing player styles. For example, our stylometry method above uses the cosine similarity of215
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Method |Query| |Universe| |Query Games| Random (%) Acc. (%)

Seen few-shot players
McIlroy-Young et al. [2022] 400 400 100 0.25 98.0
McIlroy-Young et al. [2021] 400 400 100 0.25 99.5
MHR-Maia 400 400 100 0.25 99.8
McIlroy-Young et al. [2022] 400 400 30 0.25 94.0
MHR-Maia 400 400 30 0.25 98.8
MHR-Maia 10000 47864 100 0.002 94.4

Unseen few-shot players
McIlroy-Young et al. [2021] 578 2844 100 0.035 79.1
MHR-Maia (100 games) 10000 10000 100 0.01 87.6

Table 1: Stylometry accuracy results. Seen few-shot players are a subset of the fine-tuning player set,
unlike unseen players. Numbers for McIlroy-Young et al. [2022] and McIlroy-Young et al. [2021] are
borrowed from their respective papers.

these vectors to determine how similar or different players are. However, style vectors also enable216

much more powerful capabilities, such as the ability to synthesize new (human-like) styles.217

To begin, we measure the intra-player consistency of style vectors by splitting a player’s dataset218

into disjoint subsets of varying size, and few-shot learning a style vector for each subset. We then219

investigate inter-player consistency by merging the datasets of two players and seeing if the style220

vector trained on the merged dataset is similar to the average of the two player’s style vectors.221

The latter method actually creates a new playing style that is human-like and yet previously unseen222

in the world. This suggests a more general approach to style synthesis: interpolate between players223

using a convex combination of their style vectors. To determine the playing strength of these new224

players, we can simulate games between them and the players they are derived from. The results of225

these games can be used to calculate a win rate, which can then be converted to a strength rating.226

Currently, our advanced style synthesis techniques focus on chess, where there is a robust mapping227

between win rates and playing strength (the Elo rating system), and simulating games is cheap.228

Rocket League simulations are quite costly at present, but in principle the same methodology should229

apply and we plan to reduce these costs in future work.230

In order to make style comparisons more human-understandable, we again exploit the generative231

nature of our MHR models. Inspired by the concept probing technique used to analyze AlphaZero232

(a deep RL chess engine) [McGrath et al., 2022], we use a set of human-coded heuristic functions233

found in Stockfish (a traditional chess engine) to evaluate a player’s model. These functions capture234

concepts such as: king safety, material imbalance, piece mobility, and so on. By invoking a player’s235

model on a fixed set of chess positions and seeing which move they select, we can use this to236

summarize how much emphasis the player places on the corresponding concepts.237

Finally, we combine the above methods to design a simple but general method for steering a player’s238

game style towards a specific attribute a, such as increasing their king safety, while limiting the239

changes on other attributes (so as to preserve their style). To achieve this, we first collect a set players240

X who exhibit high values for attribute a—determined, for example, by running their generative241

models on a fixed set of game states. We then extract the common direction among these players, by242

averaging their style vectors and subtracting the population average. This yields a style delta vector243

that can be added to any player’s style vector to elicit the desired change.244

5 Experiments245

In this section, we demonstrate two main findings. First, MHR-Maia performs competitively with246

prior methods for behavior cloning and stylometry in chess, while achieving unprecedented scale.247

We also show that our approach can be applied to Rocket League, for both stylometry and move248

prediction. Second, we show that explicitly capturing style vectors allows us to reason about and249

perform arithmetic operations on generated behaviors.250
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5.1 Behavioral Stylometry251

In this section, we show that our models perform competitively with previous behavioral stylometry252

methods for both seen and unseen players. Here, the goal is to predict the player who produced a given253

set of games. We compare to individual model fine-tuning [McIlroy-Young et al., 2022], fitting a254

pre-trained Maia to the data from a single player, and to a Transformer-based method [McIlroy-Young255

et al., 2021], which embeds players in a 512-dimensional style space based on their gameplay. All256

reported accuracies are top-1 unless stated otherwise.257

To perform stylometry on a query set of games, McIlroy-Young et al. [2022] suggest measuring258

the move-matching accuracy of each available fine-tuned model and selecting the best performing259

model. As seen in Table 1, this procedure works well, but is tremendously expensive—requiring260

computationally intensive inference calls on the entire query set for every candidate player.261

In contrast, both the Transformer-based method and MHR-Maia scale much better to large numbers of262

players. The Transformer-based method needs only to condition on these games to produce a vector,263

while MHR-Maia needs only to fit a new vector. In either case, the produced vectors need only be264

matched to those in the player set, e.g., using cosine similarity. Table 1 compares both approaches,265

showing that MHR-Maia performs competitively or better, on a much larger universe. To do this, we266

use few-shot learning to compute style vectors for 10,000 players based on their 100 game reference267

sets, then fit new style vectors for each player based on their respective query sets. Note that the268

individual model fine-tuning method is omitted from the larger few-shot study due to scalability269

reasons. The Transformer-based method can scale, but it is not a generative model.270

For Rocket League, to the best of our knowledge, we are the first to attempt stylometry. We report271

player identification results averaged over the few-shot player set. For each prediction, our MHR-272

Rocket approach must correctly identify each of the 1,000 players among a pool of 2,000 players.273

Yet, it reaches an accuracy of 86.7% (random: 0.05%), showcasing the validity of our approach.274

5.2 Move generation275
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Figure 2: Accuracy at various game counts
of the individual models (Maia) and our
method (MHR-Maia).

Here we compare the efficacy of our method to using276

individually fine-tuned models for each player. Fine-277

tuning individual models generally results in superior278

results compared to PEFT methods, as the increased pa-279

rameter count produces more expressive models. How-280

ever, they are also more computationally intensive to281

train and store. That said, in the domain of modeling in-282

dividual behavior in chess, MHR-Maia is able to perform283

comparatively well despite using a much smaller pa-284

rameter budget. Figure 2 shows that MHR-Maia matches285

individual model fine-tuning over a wide range of game286

counts. The base model is frozen for all game counts287

in MHR-Maia. The model has already learned the set288

of skills required to differentiate the players, all that is289

needed with very few-shot learning is to find a proper recombination of the learned skills within the290

new style vectors. The Transformer-based method is omitted, as it is incapable of generating moves.291

For Rocket League, we compare the next move prediction of our base model, with MHR-Rocket,292

to validate that our user-based conditioning generates better predictions. We find that, on average,293

MHR-Rocket increases the next move prediction from 53.1% to 56.1%.294

5.3 Analysis of style vectors295

In this section, we explore the consistency of our style vectors across different players and datasets.296

Consistency across a single player. To showcase intra-player consistency, we first partition 50297

players’ datasets into disjoint subsets. We use 50 splits for chess and 20 for Rocket League. The298

subsets are sampled across a wide range of dates, opposing players, and playing sessions. Next,299

we train a style vector for every split across all players. We find that vectors corresponding to the300

same player will be similar to each other, and have low similarity with the other players and general301

population. This is visualized in Figure 3. This suggests that our neural network is able to find302
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Figure 3: Cosine similarity between style vectors learned
from different partitions of the same player (red) vs across
different players (blue).

bishop pairs

threats 
mid game

mobility    
mid game   

king danger passed pawns 
mid game

imbalance

     end game 
    eval

0.2
0.4

0.6
0.8

Player 1
Player 2
Player 3
Player 4
Player 5

Figure 4: Comparing player styles
using human-interpretable evaluation
metrics.
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Figure 5: Cosine similarity between averaged style vectors of two players, and the learned style
vectors on their merged datasets (red) vs across the full population (blue). The style of an intermediate
player (green) is shown along with the two component players (blue and red) on the right.

distinct tendencies for each player. To confirm, we sampled 5 random chess players, predicted their303

preferred move across 217 positions, and measured a series of Stockfish evaluation metrics per player.304

Figure 4 shows the distribution of these metrics for each player, demonstrating that these vectors305

store a wide diversity of styles.306

Consistency across merged players. To parse out whether we can generate new styles using this307

information, we merged two players’ datasets together to generate a new set with the tendencies308

of both players, measuring inter-player consistency. We then compared this new set of vectors to a309

different set of vectors generated by simply averaging the style vectors of the player pair. As seen310

in Figure 5 (left and center), vectors with the same two source players have very high similarity in311

both chess and Rocket League. We then sampled a random pair in the merged dataset, created a new312

player by averaging the two players’ vectors, and recorded their gameplay according to the previous313

section. The results are visualized in Figure 5 (right), showing that the new player (green) has an314

intermediate playing style to the source players (red, blue).315

5.4 Synthesis of new styles316

Convex combinations. We show that interpolating between skill vectors results in a player whose317

level is a weighted average of the interpolated players. Here, we take 100 pairs of learned player318

vectors, such that one item in the pair corresponds to a strong player and the other to a weaker player.319

We then gradually interpolate between the weak and strong player as (1− λ)uw + λus, 0 ≤ λ ≤ 1,320

where uw and us are respectively vectors representing the weak and strong player. For each value of321

λ we simulate 1,000 games between the interpolated vector and us, the stronger player.322

Figure 6 plots the win rate of the interpolated player as a function of λ for each player pair we323

considered. This plot demonstrates that win rate progresses in a roughly linear fashion, starting off324

winning infrequently against the stronger player and eventually winning roughly half the time as the325

interpolated player converges to the stronger player.326

Directly steering player style. Finally, we directly control the playing style of a player by creating327

skill vectors according to the procedure described in 4. We choose players in our chess dataset with328

high (>2 std) bishop pair utilization, and separately players with high king danger. Figure 7 shows329
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the change in 2,000 randomly sampled player’s stockfish evaluations after adding the skill vector330

corresponding to each heuristic to their style vectors. Indeed, we see that the player’s style is steered331

towards the attribute in question, with model impact on other attributes.332

6 Related Work333

Stylometry and player style modeling. Originally referring to performing author attribution via334

statistical analysis of text [Tweedie et al., 1996, Neal et al., 2017], stylometry has since come to refer335

to the general task of identifying individuals given a set of samples or actions, and has found broad336

application for tasks such as handwriting recognition [Bromley et al., 1993], speaker verification337

[Wan et al., 2018], identifying programmers from code [Caliskan-Islam et al., 2015], determining338

user age and gender from blog posts [Goswami et al., 2009], and identifying characteristics of authors339

of scientific articles [Bergsma et al., 2012]. In the context of gaming (covered in the introduction),340

stylometry is closely related to playstyle modeling, where the goal is to associate a player with a341

reference style, such as by building agents representative of different playstyles and find the closest342

behavioral match [Holmgård et al., 2014], or gathering gameplay data and applying methods such343

as clustering [Ingram et al., 2022], LDA [Gow et al., 2012], Bayesian approaches [Normoyle and344

Jensen, 2015] and sequential models [Valls-Vargas et al., 2015] to identify groups of players with345

similar styles. Unlike our work, these approaches focus on aggregate playstyles, and do not learn346

generative models that can be conditioned on an individual’s style.347

Our method for style synthesis is inspired by earlier work on vector arithmetic with embed-348

dings [Church, 2017], as well as recent work on steering multiask models with task vectors [Ilharco349

et al., 2023]. Finally, our steering method is reminiscent of Radford et al. [2016], which manipulates350

the model’s latent space to generate images containing specific attributes.351

Parameter-efficient adaptation Approaches for efficient adaption of a pretrained model can352

be broadly grouped in two categories. Adapter based methods inject new parameters within a353

pretrained model, and only updates the newly inserted parameters while keeping the backbone354

fixed. Houlsby et al. [2019] defines an adapter as a two-layer feed-forward neural network with a355

bottleneck representation, and are inserted before the multi-head attention layer in Transformers.356

Similar approaches have been used for cross-lingual transfer [Pfeiffer et al., 2020]. Adapters have357

also been used in vision based multitask settings [Rebuffi et al., 2017]. More recently, Ansell et al.358

[2022] propose to learn sparse masks, and show that these marks are composable, enabling zero-shot359

transfer. Lastly, Hu et al. [2022] learn low-rank shifts on the original weights, and [Liu et al., 2022]360

learns an elementwise multiplier of the pretrained model’s activations. Adapters have also been used361

in multitask settings. Chronopoulou et al. [2023] independently trains adapters for each task. In order362

to transfer to new tasks, the authors merge the parameters of the adapters of relevant training tasks.363

7 Conclusion364

We show that individual player behavior can be modeled at very large scale in games as different as365

chess and Rocket League. We cast this problem in the framework of multi-task learning and employ366

modular PEFT methods to learn a shared set of skills across players, modulated by a distinct style367

vector for each player. We use these style vectors to perform behavioral stylometry, analyze player368

styles, and synthesize and steer new styles.369
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A Appendix497

A.1 Multi-Head Adapter Routing498

In Poly, the module combination step remains coarse, as only linear combinations of the existing499

modules can be generated. Caccia et al. [2022] propose a more fine-grained module combination500

approach, referred to as Multi-Head Routing (MHR). Similar to Multi-Head Attention [Vaswani et al.,501

2017], the input dimension of A (and output dimensions of B) are partitioned into h heads, where502

a Poly-style procedure occurs for each head. The resulting parameters from each head are then503

concatenated, recovering the full input (and output) dimensions. This makes the module combination504

step piecewise linear, with a separate task-routing matrix Z learned for each head.505

Formally, a MHR layer learns a 3-dimensional task-routing tensor Z ∈ R|T |×|M|×h. The 2D slice506

Z:,:,k ∈ R|T |×|M| of the tensor Z denotes the distribution over modules for the k-th head, and507

W [k] ∈ R d
h×r the k-th partition along the rows of the matrix W ∈ Rd×r. The adapter parameters508

Aτ ∈ Rd×r for task τ , and for each adapter layer, are computed as (similarly for Bτ ):509

Aτ
k =

∑
j

αi,k ·Aj [k] with Aτ
k ∈ R

d
h×r, (MHR)

Aτ = concat(Aτ
1 , . . . ,A

τ
h),

where αi,k = softmax(Z[τ,:,k])i. Importantly, the number of LoRA adapter parameters does510

not increase with the number of heads. Only the task-routing parameters linearly increase with h for511

MHR vs. Poly. However, this cost is negligible as the parameter count of the routing matrices is much512

smaller than for the LoRA modules themselves.513

A.2 Maia Architecture/Data514

Our base Maia architecture follows McIlroy-Young et al. [2022] and uses the Squeeze-and-Excitation515

(S&E) Residual Network of [Hu et al., 2018]. At every residual block, channel information is516

aggregated across spatial dimensions via a global pooling operation. The resulting vector is then517

processed by a 2-layer MLP, with a bottleneck representation compressing the number of channels518

by r. The output of this MLP is a one-dimensional vector used to scale the output of the residual519

block along the channel dimension. We use 12 residual blocks containing 256 filters, and a bottleneck520

compression factor of r = 8. We note that this differs from the base Maia model in McIlroy-Young521

et al. [2022], which uses 64 filters and 6 residual blocks.522

While our dataset has a median game count of 3,479 games, many players may have as few as 10-50523

games, implying some degree of data imbalance. Our evaluation of few-shot learning shows that 100524

games is sufficient to learn the style vector of an unseen player. However, one might still ask how525

accurately such a style vector is given a very small number of games. To explore this, we first split a526

player into disjoint sets of 10, 25, 50, 100, 500, and 1,000 games. We then train a style vector on527

each set. As a baseline, we train a style vector on 10,000 games and track the cosine similarity of the528

smaller-set style vectors relative to this baseline vector. We show the results in Figure 8.529

A.3 Rocket League Architecture/Data530

The 1v1 replays dataset was scraped over the course of several weeks from the Ballchasing.com API531

using the Grand Champion subscription tier, though the API does have a slower free tier. This API532

yields raw game replays, which are uploaded by users either manually or using a community-made533

plugin for the game. The replays are in a binary format which must be parsed using community-made534

projects such as Carball [SaltieRL, 2024].535

The Carball library allows us to convert the binary replay format to a more standard CSV format,536

which we save to a Cloud binary blob storage. The data present in both is a lossy reconstruction537

of game states, and requires some processing to be usable. In particular, the data is sampled at an538

inconsistent rate (varying between 24hz and 27hz), contains repeated physics ticks, and is missing539

action data for aerial controls (pitch, yaw, roll).540

We resolve the issue of sampling rate and repeated ticks by removing repeated ticks, and doing a541

time-weighted resampling and interpolation to a standard 10hz for model training, though we found542
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Figure 8: Cosine similarity of style vectors trained with varying game sizes compared to a style
vector trained with 10,000 games, run on 50 players.

that 30hz also works well. Note that the actual game physics ticks occur at 120hz, so any value543

aligned with this should work. Without these changes, the model performs extremely poorly and is544

unable to navigate the arena.545

We resolve the issue of missing aerial controls through the physics-based solver present in the Carball546

library. The estimation of these controls is not perfect, but it is sufficient for our purposes. Some547

previous community work has used inverse dynamics [Braaten, 2022] trained from rollouts of in-game548

bots to solve for these actions, though we opted to not use this due to the inconsistency in replay data549

sampling.550

The data returned by the CSVs are fairly large, messy, and inconsistent. We apply the following551

transformations to the dataframe to bring the values closer to 0:552

• Divide position by 2300553

• Divide linear velocity by 23000554

• Divide angular velocity by 5500555

• Divide boost by 255556

• Encode rotation Euler angles according to Zhou et al. [2020]557

Additionally, when turning the data into tokens for use in our model, we add in an extra dimension to558

represent the team, and concatenate the opponent’s data points along with the position, linear and559

angular velocity of the ball. We complete all of these transformations at runtime.560

We also have to align the data returned by the simulators for Rocket League with the data used to561

train the model, RLBot [RLBot, 2017] and RLGym [Emery, 2021]. Along with including an extra562

dimension to represent the team, we apply the following transformations to all samples obtained from563

the game:564

• Divide position by 2300565

• Divide linear velocity by 2300566

• Divide angular velocity by 5.5567

• Divide boost by 100568

The skill distribution of the players in our dataset can be found in Figure 9.569

A.4 Implicit Stationarity Assumptions570

Most of the existing work in chess assumes that a player remains stationary over time and across571

gameplay situations. However, in reality, a player’s style may depend on the type of opponent they572

are facing, which opening is used, which stage of the game they are in (opening, middle, endgame),573

and so on. For instance, McIlroy-Young et al. [2021] observe that stylometry accuracy drops when574
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Figure 9: Skill distribution of Rocket League players in our dataset.

removing the opening (e.g., the first 15 moves) moves, suggesting that the opening has an outsized575

effect on style identification. Our approach does not rely on these assumptions and can in principle576

be applied to arbitrary subsets of a player’s data. For instance, one could split a player’s data into577

opening, middlegame, and endgame moves and train a separate style vector for each. One could578

further split the data based on which defense the opponent uses, what time of the day it is, etc..579

Despite treating players holistically and avoiding any splits of their data, we are still able to capture580

the peculiarities of each individual’s playing style and perform stylometry with high accuracy. This581

also enables us to compare our results to those of prior work, which also treats player data holistically.582

A.5 Delta Style Vector Computation583

Algorithm 1 Style Delta Vector computation
Input:
X : Style vectors of top-k players for attrib. a;
P : Style vectors of all players in population
Output ∆a: Style delta vector for attr. a

Va = mean(X, axis = ‘players’)
VP = mean(P, axis = ‘players’)
∆a = Va − VP

Returns ∆a
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NeurIPS Paper Checklist584

1. Claims585

Question: Do the main claims made in the abstract and introduction accurately reflect the586

paper’s contributions and scope?587

Answer: [Yes]588

Justification: The abstract directly summarizes the key results of the paper, which focus on589

performing behavioral stylometry at scale in games (chess and Rocket League)590

Guidelines:591

• The answer NA means that the abstract and introduction do not include the claims592

made in the paper.593

• The abstract and/or introduction should clearly state the claims made, including the594

contributions made in the paper and important assumptions and limitations. A No or595

NA answer to this question will not be perceived well by the reviewers.596

• The claims made should match theoretical and experimental results, and reflect how597

much the results can be expected to generalize to other settings.598

• It is fine to include aspirational goals as motivation as long as it is clear that these goals599

are not attained by the paper.600

2. Limitations601

Question: Does the paper discuss the limitations of the work performed by the authors?602

Answer: [Yes]603

Justification: Please see Related work and explanation of our limited style synthesis/steering604

results for Rocket League.605

Guidelines:606

• The answer NA means that the paper has no limitation while the answer No means that607

the paper has limitations, but those are not discussed in the paper.608

• The authors are encouraged to create a separate "Limitations" section in their paper.609

• The paper should point out any strong assumptions and how robust the results are to610

violations of these assumptions (e.g., independence assumptions, noiseless settings,611

model well-specification, asymptotic approximations only holding locally). The authors612

should reflect on how these assumptions might be violated in practice and what the613

implications would be.614

• The authors should reflect on the scope of the claims made, e.g., if the approach was615

only tested on a few datasets or with a few runs. In general, empirical results often616

depend on implicit assumptions, which should be articulated.617

• The authors should reflect on the factors that influence the performance of the approach.618

For example, a facial recognition algorithm may perform poorly when image resolution619

is low or images are taken in low lighting. Or a speech-to-text system might not be620

used reliably to provide closed captions for online lectures because it fails to handle621

technical jargon.622

• The authors should discuss the computational efficiency of the proposed algorithms623

and how they scale with dataset size.624

• If applicable, the authors should discuss possible limitations of their approach to625

address problems of privacy and fairness.626

• While the authors might fear that complete honesty about limitations might be used by627

reviewers as grounds for rejection, a worse outcome might be that reviewers discover628

limitations that aren’t acknowledged in the paper. The authors should use their best629

judgment and recognize that individual actions in favor of transparency play an impor-630

tant role in developing norms that preserve the integrity of the community. Reviewers631

will be specifically instructed to not penalize honesty concerning limitations.632

3. Theory Assumptions and Proofs633

Question: For each theoretical result, does the paper provide the full set of assumptions and634

a complete (and correct) proof?635
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Answer: [NA]636

Justification: we dont use proofs as a contribution637

Guidelines:638

• The answer NA means that the paper does not include theoretical results.639

• All the theorems, formulas, and proofs in the paper should be numbered and cross-640

referenced.641

• All assumptions should be clearly stated or referenced in the statement of any theorems.642

• The proofs can either appear in the main paper or the supplemental material, but if643

they appear in the supplemental material, the authors are encouraged to provide a short644

proof sketch to provide intuition.645

• Inversely, any informal proof provided in the core of the paper should be complemented646

by formal proofs provided in appendix or supplemental material.647

• Theorems and Lemmas that the proof relies upon should be properly referenced.648

4. Experimental Result Reproducibility649

Question: Does the paper fully disclose all the information needed to reproduce the main ex-650

perimental results of the paper to the extent that it affects the main claims and/or conclusions651

of the paper (regardless of whether the code and data are provided or not)?652

Answer: [Yes]653

Justification: We provide thorough implementation details, some of which appear in the654

appendix.655

Guidelines:656

• The answer NA means that the paper does not include experiments.657

• If the paper includes experiments, a No answer to this question will not be perceived658

well by the reviewers: Making the paper reproducible is important, regardless of659

whether the code and data are provided or not.660

• If the contribution is a dataset and/or model, the authors should describe the steps taken661

to make their results reproducible or verifiable.662

• Depending on the contribution, reproducibility can be accomplished in various ways.663

For example, if the contribution is a novel architecture, describing the architecture fully664

might suffice, or if the contribution is a specific model and empirical evaluation, it may665

be necessary to either make it possible for others to replicate the model with the same666

dataset, or provide access to the model. In general. releasing code and data is often667

one good way to accomplish this, but reproducibility can also be provided via detailed668

instructions for how to replicate the results, access to a hosted model (e.g., in the case669

of a large language model), releasing of a model checkpoint, or other means that are670

appropriate to the research performed.671

• While NeurIPS does not require releasing code, the conference does require all submis-672

sions to provide some reasonable avenue for reproducibility, which may depend on the673

nature of the contribution. For example674

(a) If the contribution is primarily a new algorithm, the paper should make it clear how675

to reproduce that algorithm.676

(b) If the contribution is primarily a new model architecture, the paper should describe677

the architecture clearly and fully.678

(c) If the contribution is a new model (e.g., a large language model), then there should679

either be a way to access this model for reproducing the results or a way to reproduce680

the model (e.g., with an open-source dataset or instructions for how to construct681

the dataset).682

(d) We recognize that reproducibility may be tricky in some cases, in which case683

authors are welcome to describe the particular way they provide for reproducibility.684

In the case of closed-source models, it may be that access to the model is limited in685

some way (e.g., to registered users), but it should be possible for other researchers686

to have some path to reproducing or verifying the results.687

5. Open access to data and code688
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Question: Does the paper provide open access to the data and code, with sufficient instruc-689

tions to faithfully reproduce the main experimental results, as described in supplemental690

material?691

Answer: [Yes]692

Justification: We will open source our data and models upon publication.693

Guidelines:694

• The answer NA means that paper does not include experiments requiring code.695

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/696

public/guides/CodeSubmissionPolicy) for more details.697

• While we encourage the release of code and data, we understand that this might not be698

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not699

including code, unless this is central to the contribution (e.g., for a new open-source700

benchmark).701

• The instructions should contain the exact command and environment needed to run to702

reproduce the results. See the NeurIPS code and data submission guidelines (https:703

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.704

• The authors should provide instructions on data access and preparation, including how705

to access the raw data, preprocessed data, intermediate data, and generated data, etc.706

• The authors should provide scripts to reproduce all experimental results for the new707

proposed method and baselines. If only a subset of experiments are reproducible, they708

should state which ones are omitted from the script and why.709

• At submission time, to preserve anonymity, the authors should release anonymized710

versions (if applicable).711

• Providing as much information as possible in supplemental material (appended to the712

paper) is recommended, but including URLs to data and code is permitted.713

6. Experimental Setting/Details714

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-715

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the716

results?717

Answer: [Yes]718

Justification: See Appendix and main paper for full experimental details.719

Guidelines:720

• The answer NA means that the paper does not include experiments.721

• The experimental setting should be presented in the core of the paper to a level of detail722

that is necessary to appreciate the results and make sense of them.723

• The full details can be provided either with the code, in appendix, or as supplemental724

material.725

7. Experiment Statistical Significance726

Question: Does the paper report error bars suitably and correctly defined or other appropriate727

information about the statistical significance of the experiments?728

Answer: [Yes]729

Justification: While we do not use error bars, our methodology is properly described and730

clarifies the significance or our results.731

Guidelines:732

• The answer NA means that the paper does not include experiments.733

• The authors should answer "Yes" if the results are accompanied by error bars, confi-734

dence intervals, or statistical significance tests, at least for the experiments that support735

the main claims of the paper.736

• The factors of variability that the error bars are capturing should be clearly stated (for737

example, train/test split, initialization, random drawing of some parameter, or overall738

run with given experimental conditions).739
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• The method for calculating the error bars should be explained (closed form formula,740

call to a library function, bootstrap, etc.)741

• The assumptions made should be given (e.g., Normally distributed errors).742

• It should be clear whether the error bar is the standard deviation or the standard error743

of the mean.744

• It is OK to report 1-sigma error bars, but one should state it. The authors should745

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis746

of Normality of errors is not verified.747

• For asymmetric distributions, the authors should be careful not to show in tables or748

figures symmetric error bars that would yield results that are out of range (e.g. negative749

error rates).750

• If error bars are reported in tables or plots, The authors should explain in the text how751

they were calculated and reference the corresponding figures or tables in the text.752

8. Experiments Compute Resources753

Question: For each experiment, does the paper provide sufficient information on the com-754

puter resources (type of compute workers, memory, time of execution) needed to reproduce755

the experiments?756

Answer: [Yes]757

Justification: We talk about the exact model parameter sizes, and use standard models that758

are very small. Due to the use of standard base models, information on computational759

resources required to train them based on token count is readily available.760

Guidelines:761

• The answer NA means that the paper does not include experiments.762

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,763

or cloud provider, including relevant memory and storage.764

• The paper should provide the amount of compute required for each of the individual765

experimental runs as well as estimate the total compute.766

• The paper should disclose whether the full research project required more compute767

than the experiments reported in the paper (e.g., preliminary or failed experiments that768

didn’t make it into the paper).769

9. Code Of Ethics770

Question: Does the research conducted in the paper conform, in every respect, with the771

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?772

Answer: [Yes]773

Justification: Upon reading the code of Ethics, the paper conforms to the code of ethics.774

Guidelines:775

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.776

• If the authors answer No, they should explain the special circumstances that require a777

deviation from the Code of Ethics.778

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-779

eration due to laws or regulations in their jurisdiction).780

10. Broader Impacts781

Question: Does the paper discuss both potential positive societal impacts and negative782

societal impacts of the work performed?783

Answer: [Yes]784

Justification: This paper extends prior work on behavior cloning of individual behavior, but785

it is not the first to perform such fine-grained behavior cloning or observe their societal786

implications. Prior work by McIlroy-Young et al. discusses the implications of mimicking787

individual behavior with high fidelity (see "Mimetic Models: Ethical Implications of AI that788

Acts Like You" in AIES ’2022).789

Guidelines:790
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• The answer NA means that there is no societal impact of the work performed.791

• If the authors answer NA or No, they should explain why their work has no societal792

impact or why the paper does not address societal impact.793

• Examples of negative societal impacts include potential malicious or unintended uses794

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations795

(e.g., deployment of technologies that could make decisions that unfairly impact specific796

groups), privacy considerations, and security considerations.797

• The conference expects that many papers will be foundational research and not tied798

to particular applications, let alone deployments. However, if there is a direct path to799

any negative applications, the authors should point it out. For example, it is legitimate800

to point out that an improvement in the quality of generative models could be used to801

generate deepfakes for disinformation. On the other hand, it is not needed to point out802

that a generic algorithm for optimizing neural networks could enable people to train803

models that generate Deepfakes faster.804

• The authors should consider possible harms that could arise when the technology is805

being used as intended and functioning correctly, harms that could arise when the806

technology is being used as intended but gives incorrect results, and harms following807

from (intentional or unintentional) misuse of the technology.808

• If there are negative societal impacts, the authors could also discuss possible mitigation809

strategies (e.g., gated release of models, providing defenses in addition to attacks,810

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from811

feedback over time, improving the efficiency and accessibility of ML).812

11. Safeguards813

Question: Does the paper describe safeguards that have been put in place for responsible814

release of data or models that have a high risk for misuse (e.g., pretrained language models,815

image generators, or scraped datasets)?816

Answer: [NA]817

Guidelines:818

• The answer NA means that the paper poses no such risks.819

• Released models that have a high risk for misuse or dual-use should be released with820

necessary safeguards to allow for controlled use of the model, for example by requiring821

that users adhere to usage guidelines or restrictions to access the model or implementing822

safety filters.823

• Datasets that have been scraped from the Internet could pose safety risks. The authors824

should describe how they avoided releasing unsafe images.825

• We recognize that providing effective safeguards is challenging, and many papers do826

not require this, but we encourage authors to take this into account and make a best827

faith effort.828

12. Licenses for existing assets829

Question: Are the creators or original owners of assets (e.g., code, data, models), used in830

the paper, properly credited and are the license and terms of use explicitly mentioned and831

properly respected?832

Answer: [Yes]833

Justification: Papers and codebases are properly cited.834

Guidelines:835

• The answer NA means that the paper does not use existing assets.836

• The authors should cite the original paper that produced the code package or dataset.837

• The authors should state which version of the asset is used and, if possible, include a838

URL.839

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.840

• For scraped data from a particular source (e.g., website), the copyright and terms of841

service of that source should be provided.842
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• If assets are released, the license, copyright information, and terms of use in the843

package should be provided. For popular datasets, paperswithcode.com/datasets844

has curated licenses for some datasets. Their licensing guide can help determine the845

license of a dataset.846

• For existing datasets that are re-packaged, both the original license and the license of847

the derived asset (if it has changed) should be provided.848

• If this information is not available online, the authors are encouraged to reach out to849

the asset’s creators.850

13. New Assets851

Question: Are new assets introduced in the paper well documented and is the documentation852

provided alongside the assets?853

Answer: [NA]854

Guidelines:855

• The answer NA means that the paper does not release new assets.856

• Researchers should communicate the details of the dataset/code/model as part of their857

submissions via structured templates. This includes details about training, license,858

limitations, etc.859

• The paper should discuss whether and how consent was obtained from people whose860

asset is used.861

• At submission time, remember to anonymize your assets (if applicable). You can either862

create an anonymized URL or include an anonymized zip file.863

14. Crowdsourcing and Research with Human Subjects864

Question: For crowdsourcing experiments and research with human subjects, does the paper865

include the full text of instructions given to participants and screenshots, if applicable, as866

well as details about compensation (if any)?867

Answer: [NA]868

Guidelines:869

• The answer NA means that the paper does not involve crowdsourcing nor research with870

human subjects.871

• Including this information in the supplemental material is fine, but if the main contribu-872

tion of the paper involves human subjects, then as much detail as possible should be873

included in the main paper.874

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,875

or other labor should be paid at least the minimum wage in the country of the data876

collector.877

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human878

Subjects879

Question: Does the paper describe potential risks incurred by study participants, whether880

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)881

approvals (or an equivalent approval/review based on the requirements of your country or882

institution) were obtained?883

Answer: [NA]884

Guidelines:885

• The answer NA means that the paper does not involve crowdsourcing nor research with886

human subjects.887

• Depending on the country in which research is conducted, IRB approval (or equivalent)888

may be required for any human subjects research. If you obtained IRB approval, you889

should clearly state this in the paper.890

• We recognize that the procedures for this may vary significantly between institutions891

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the892

guidelines for their institution.893

• For initial submissions, do not include any information that would break anonymity (if894

applicable), such as the institution conducting the review.895
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