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Abstract

The advent of large language models (LLMs)001
has spurred considerable interest in advancing002
autonomous LLMs-based agents, particularly003
in intriguing applications within smartphone004
graphical user interfaces (GUIs). When005
presented with a task goal, these agents006
typically emulate human actions within a007
GUI environment until the task is completed.008
However, a key challenge lies in devising009
effective plans to guide action prediction in010
GUI tasks, as planning is widely recognized as011
effective for decomposing complex tasks into a012
series of steps. Specifically, given the dynamic013
nature of environmental GUIs following action014
execution, it is crucial to dynamically adapt015
plans based on environmental feedback and016
action history. To address this challenge, we017
propose a novel approach called Dynamic018
Planning of Thoughts (D-PoT) for LLM-019
based GUI agents. D-PoT involves the020
dynamic adjustment of planning based on the021
environmental feedback and execution history.022
Experimental results reveal that the proposed023
D-PoT significantly surpassed the strong GPT-024
4V baseline by +12.7% (34.66% → 47.36%) in025
accuracy. The analysis highlights the generality026
of dynamic planning in different backbone027
LLMs, as well as the benefits in mitigating028
hallucinations and adapting to unseen tasks.029

1 Introduction030

Building autonomous agents capable of assisting031

humans in addressing real-world challenges has032

long been a central pursuit of artificial intelligence033

research (Searle, 1972; Wooldridge and Jennings,034

1995; Maes, 1994). Recently, there has been035

a surge in exploration within the realm of au-036

tonomous agents, fueled largely by the emergence037

of large language models (LLMs) (Chowdhery038

et al., 2023; Wei et al., 2022). One prevalent039

application scenario involves automating graphical040

user interfaces (GUIs) on smartphones, where041
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Figure 1: The proposed dynamic planning method
incorporates the execution history to adjust the plan
to predict the action and subsequently supplements the
execution history with the predicted action.

LLMs are tasked with perceiving smartphone GUIs 042

and sequentially predicting action commands until 043

the task is completed (Rawles et al., 2023; Yang 044

et al., 2023b). 045

While previous studies have made significant 046

strides by enhancing environment perception 047

through fine-grained GUI grounding (Zhan and 048

Zhang, 2023; Hong et al., 2023; Yan et al., 2023; 049

Yang et al., 2023b; Cheng et al., 2024; You et al., 050

2024), there has been limited focus on the planning 051

capabilities of GUI agents. Evidence suggests that 052

decomposing a complex task into a series of plans 053

is effective in eliciting the ability of LLMs within 054

agent systems (Zhu et al., 2024; Huang et al., 2024; 055

Song et al., 2023). Additionally, given that the 056

environment evolves based on action predictions, 057

it is crucial to dynamically adapt plans based on 058

environmental feedback and execution history. 059

However, existing LLMs-based GUI agents 060

typically takes actions directly prior planning 061

or adjustment of plans based on environmental 062

feedback (e.g., new GUI screenshot) and execution 063
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history (e.g., previous steps described in natural064

language). For instance, as depicted in Figure 1,065

the static1 method (black data stream) directly066

predicts actions directly based on the screenshot067

and goal. This static approach struggles to handle068

complex real-world scenarios, where users often069

adjust subsequent actions based on past steps.070

To address this challenge, we propose a novel071

method called Dynamic Planning of Thoughts (D-072

PoT) method to enable the LLM-based agent to073

formulate effective plans based on environment074

feedback and execution history during task execu-075

tion, as shown in Figure 1. D-PoT dynamically ad-076

justs its plans by incorporating new screenshots and077

execution history throughout the goal attainment078

process. Moreover, our proposed method allows for079

continuous refinement of the current plan, ensuring080

persistent optimization until the desired goal is081

achieved. Experimental results demonstrate that082

our planning mechanism substantially improves the083

task performance. Additionally, analysis highlights084

the efficacy of dynamic planning in mitigating085

hallucinations and adapting to unseen tasks. Our086

key contributions are as follows:087

(i) D-PoT dynamically formulates plans and088

selects steps for action prediction based on the089

new screenshots and execution history, thereby090

advancing the LLMs-based agent.091

(ii) D-PoT achieves a notable improvement in092

accuracy scores of +12.7% (34.66% → 47.36%)093

compared with the strong GPT-4V baseline.094

(iii) Analysis highlights the efficacy of dynamic095

planning in not only enhancing action prediction096

accuracy but also in in mitigating hallucinations097

and adapting to previously unfamiliar tasks.098

2 Related Work099

Our work focuses on the use of LLMs, and this100

section will first review the recent progress of the101

work on building the mobile control agents and102

then discuss the planning mechanism of the agents.103

2.1 LLMs-based Agent104

LLMs have spurred considerable interest in the105

realm of language agents. Generally, LLMs106

possess robust zero-shot and few-shot adaptabil-107

ity, enabling them to comprehend input within108

specific scenarios and inference within prescribed109

output formats. Notable examples include110

1The typical method is static due to be not aware of
historical information during task execution.

AutoGPT (Yang et al., 2023a), HuggingGPT (Shen 111

et al., 2023), and MetaGPT (Xi et al., 2023), all of 112

which explored the integration of LLMs as the core 113

of agents. 114

This work focuses on the development of 115

LLMs as intelligent assistants for smartphones. 116

The task will define the output format for 117

inference in advance, typically mirroring the 118

operational instructions for smartphones. It 119

necessitates LLMs to anticipate the output action 120

by comprehending the current screen input and 121

the task goal. These assistants are crafted 122

to assist people in accomplishing their daily 123

tasks and meeting life’s requirements, especially 124

enhancing accessibility for individuals with dis- 125

abilities. Notably, the advent of multi-modal 126

LLMs such as GPT-4V, showcasing robust image 127

understanding capabilities (Yang et al., 2023c), 128

has prompted previous research to predominantly 129

concentrate on comprehending GUI interactions. 130

For instance, MM-Navigator delved into leveraging 131

optical character recognition (OCR) parsing to 132

enhance GPT-4V’s GUI comprehension (Yan 133

et al., 2023), while AppAgent reinforced the 134

understanding of Application GUI elements by 135

introducing the roles of distinct GUI (Yang et al., 136

2023b). In addition to these, CogAgent fine- 137

tuned the agent’s understanding of GUI to enhance 138

performance (Hong et al., 2023). 139

In contrast to the prior research that concentrates 140

on multimodal perception, our work focuses on 141

the planning mechanism to enhance the LLMs 142

proficiency in planning and effectively tackle multi- 143

step tasks on smartphones. 144

2.2 Planning Mechanisms for LLMs 145

LLMs have shown considerable potential in 146

constructing agents with strong capabilities in 147

following instructions and maintaining coherent 148

chains of thought (CoT) via solving complex 149

problems (Wei et al., 2022; Kojima et al., 2022; 150

Zhang et al., 2022). Notably, the CoT prompting 151

technique has enabled LLMs to engage in effective 152

step-by-step problem-solving process (Huang and 153

Chang, 2023; Yao et al., 2024; Wang et al., 2022; 154

Chen et al., 2022). To address more complex 155

problems, divide-and-conquer prompting strategies 156

have been proposed, e.g., dividing problems into 157

manageable steps (Zhou et al., 2022; Lee and Kim, 158

2023) or sequential solutions (Wang et al., 2023). 159

The research above mainly focuses on enhancing 160

the reasoning abilities of LLMs. However, the 161
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Figure 2: Overview of D-PoT. In turn, i, the D-PoT makes a plan based on visual input and textual input, predicts
the action to be performed, and then updates the execution history, and then proceeds to the next turn i+ 1.

ReAct (Yao et al., 2022) has inspired researchers to162

explore more suitable ways for LLMs to complete163

agentic tasks by leveraging their reasoning abilities.164

This approach involves LLMs first observing and165

reasoning before taking action, such as utilizing166

external tools to identify and rectify errors (Gou167

et al., 2023; Shinn et al., 2023), or planning before168

executing (Wang et al., 2023; Hao et al., 2023).169

Inspired by the progress above, we are motivated170

to design a novel dynamic planning mechanism for171

the GUI tasks. We formulate plans by integrating172

both execution history and environmental cues to173

guide its actions. Meanwhile, we devise plans174

in response to environmental stimuli, with these175

plans serving not only as assessments of present176

decisions but also as anticipations of future actions.177

3 Method178

The proposed D-PoT approach is grounded in179

dynamic planning based on environment feedback180

and execution history and includes two stages:181

(1) planning initialization: the LLMs initiate182

the planning process by generating an overall183

plan, considering the ultimate goal, current visual184

input, and prior execution history. Once the plan185

is formulated, the LLMs will select the most186

plausible step for execution. (2) dynamic planning187

adjustment: the executed action is appended to188

the execution history. This updated history then189

shapes subsequent planning cycles. In doing so,190

the agent is equipped with the latest contextual191

information, thereby enhancing decision-making192

efficacy in subsequent turns. The framework of193

D-PoT is shown in Figure 2.194

3.1 Planning Initialization 195

In pursuit of the task goal g, the LLMs engage 196

in k turns of interactions until task completion. 197

Specifically, at each turn i (i = 1, . . . , k), the 198

LLMs f processes the visual input x(i)v (i.e., the 199

current screenshot) and the textual input x(i)t . It 200

then generates the plan pi and identifies the optimal 201

step si ∈ pi to execute: 202

(p(i), s(i)) = f(x(i)v , x
(i)
t ), (1) 203

where the textual input x(i)t consists of the task goal 204

g, screen caption x
(i)
c , and execution history x

(i)
h . 205

The textual input is further wrapped with 206

prompts (Appendix A.1) before feeding the LLMs 207

along with the visual input. Concretely, we 208

articulate our task goal at the text’s outset 209

by prompting “Your ultimate goal is: <g>”. 210

Subsequently, we append the screen caption results 211

under the heading “The current on-screen input 212

is: <x(i)c >”. Then, we include execution history, 213

structured as “Here are previous actions: <x(i)h >”. 214

After feeding the inputs, we request the LLMs 215

to generate a plan p(i) = [p
(i)
1 , p

(i)
2 , . . .], which 216

consists of a sequence of steps to achieve the 217

ultimate goal. Within those steps, the LLMs is also 218

required to identify the optimal step s(i) ∈ p(i). 219

In practice, s(i) is confined to a finite set of 220

available actions in the GUI automation task and 221

will be transformed into the JSON format for 222

execution. Following Rawles et al. (2023), we 223

utilize six distinct types of actions as presented in 224

Table 1. There is no overlap between the different 225

actions. Examples are provided in Figure 3. 226
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Action Type Action Description

Click Idx
Scroll Direction (up, down, left and right)
Typ Text
Navigate Home / Back
Status Complete
Press Enter

Table 1: Six types of available actions.

Step: Click on 

'CLOSE' to dismiss the 

error message.

Action: {'action_type': 

'click', 'idx': 10}

Action Click

Step: Swipe up from 

the bottom of the 

screen to access the 

app drawer or home 

screen.

Action: {'action_type': 

'scroll', 'direction': 'up'}

Action Scroll

Step: Type 

'GameTrailers' into the 

search bar to find the 

channel.

Action: {'action_type': 

'type', 'text': 

'GameTrailers'}

Action Type

Step: Tap the back 

arrow icon to exit the 

Settings of Google 

Photos and return to 

the main screen of the 

app.

Action: {'action_type': 

'navigate_home'}

Action Navigate

Step: Mark the task as 

complete.

Action: {'action_type': 

'status_complete'}

Action Status

Step: Press the 'Enter' 

key to initiate the 

search for 'macbook'.

Action: {'action_type': 

'press_enter'}

Action Press

Figure 3: Examples of six types of available actions.

3.2 Dynamic Planning Adjustment227

After the execution of s(i), the LLMs becomes228

anchored in the subsequent interaction turn with an229

updated visual input x(i+1)
v (e.g., a new screenshot).230

Simultaneously, we refine the execution history231

x
(i+1)
h by concatenating x

(i)
h and s(i):232

x
(i+1)
h = CONCAT(x

(i)
h , s(i)), (2)233

where CONCAT denotes the concatenation opera-234

tion between strings.235

Consequently, the execution history is organized236

with consecutive elements in the format of “step237

<turn id>: <action>”. This updated execution238

history x
(i+1)
h is subsequently employed according239

to the planning initialization process outlined in240

Section 3.1 for turn (i + 1) until the task reaches241

completion. The task is considered complete when242

i = k or the LLMs predicts the “Status” action243

type with the “Complete” action description.244

4 Experiments245

4.1 Dataset and Setup246

We utilize the popular AITW dataset (Rawles247

et al., 2023) for evaluating our D-PoT. AITW248

is a comprehensive benchmark tailored for GUI249

control, comprising natural language instructions,250

screenshots, and associated actions. Agent predicts251

execution actions based on screenshots and task 252

goals across five categories shown in Table 2. The 253

dataset spans over 350 applications and websites, 254

totaling 715,000 episodes with 30,000 unique 255

instructions. Subsequently, each filtered subset is 256

partitioned episode-wise into training, validation, 257

and test sets following 80/10/10 splits. We sampled 258

60 episodes from each subset for analysis to get 259

more convincing results, and incorporated screen 260

caption results into textual input, detecting GUI 261

icons using OCR and IconNet (Sunkara et al., 262

2022). Each GUI icon is associated with a 263

bounding box and OCR-detected text.

Dataset Episodes Screens Instructions

General 9,476 85,413 545
Install 25,760 250,058 688
GoogleApps 625,542 4,903,601 306
Single 26,303 85,668 15,366
WebShopping 28,061 365,253 13,473

Table 2: Statistics for AITW dataset.

264
In line with prior research (Zhan and Zhang, 265

2023; Yan et al., 2023), our primary evaluation 266

metric is the screen-wise action matching score, 267

computed as the ratio of correct actions to the 268

episode length. Specifically, for click actions, 269

correctness is determined if the selected element 270

is within a 14% screen distance from the gold 271

gestures or falls within the same detected bounding 272

box as the user’s gestures. Given the error in 273

OCR identification, we select the top left, top 274

right, bottom left, bottom right, and center of the 275

box as sample points for calculating coordinate 276

distances. Regarding scroll actions, correctness is 277

assessed if the selected direction aligns with the 278

scroll direction of the user’s gestures. For other 279

actions, correctness is established only if the types 280

of actions match (Rawles et al., 2023). 281

4.2 Baseline 282

To verify the proposed D-PoT, we used several 283

recent agent methods as our comparison systems: 284

• PaLM-2 ZS (Rawles et al., 2023): This setting 285

evaluates the zero-shot performance of PaLM-2 by 286

providing a textual description of the screen and 287

prompting it to predict an action from the supported 288

actions in AITW. 289

• ChatGPT 5-shot (Zhan and Zhang, 2023): 290

ChatGPT’s performance is assessed with a 5-shot 291

prompt format similar to PaLM-2. The experiments 292

are conducted using the ChatGPT API. 293
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Model Overall General GoogleApps Install Single WebShopping

Fine-tuned Llama 2 (Zhan and Zhang, 2023) 28.40 28.56 30.99 35.18 27.35 19.92

PaLM-2 ZS (Rawles et al., 2023) 30.9 - - - - -
ChatGPT 5-shot (Zhan and Zhang, 2023) 7.72 5.93 10.47 4.38 9.39 8.42

GPT-4V ZS 34.66 29.69 35.75 43.50 32.95 31.42
D-PoT 46.47 40.10 49.74 47.18 58.96 36.34
D-PoT w/ reference 47.36 42.19 49.48 49.61 58.96 36.55

Table 3: Main results (%). Segment 1: fine-tuned Llama 2 baseline; Segment 2: in-context learning LLM baselines,
“ZS” stands for “zero-shot” and “5-shot” stands for using 5-shot in-content learning (Section 4.2); Segment 3:
GPT-4V as agent model, “D-PoT” represents our proposed framework. “D-PoT w/ reference” represents seeking
similar task goals during the planning initialization stage as a reference (Detailed discussion provided in Section
4.5). The best result is reported in boldface.

• Fine-tuned Llama-2 (Zhan and Zhang, 2023):294

The LLaMa-2 is fine-tuned with LoRA, utilizing295

user instructions and screen descriptions in HTML296

syntax, which aligns with the format used for in-297

context learning. The model is fine-tuned using298

1% randomly sampled training data to facilitate299

adaptation to the task.300

• GPT-4V ZS: Zero-shot prompting with GPT-301

4V. The model is presented with a screenshot image302

and a textual description of the screen, tasked with303

predicting an action from the available actions.304

4.3 Implementation Details305

We use the GPT-4V (Achiam et al., 2023) interface306

provided by OpenAI as the backbone of our307

agent. The GPT-4V model we use is “gpt-4-vision-308

preview”. We set the “max_tokens” as 300 and the309

“temperature” as 0. We also fine-tune public large310

models, i.e., Llama2-7B (Touvron et al., 2023) and311

LLaVa-7B (Liu et al., 2024), to verify the general312

effectiveness of our approach. For the finetuning313

experimental setup, training epochs are set as 3,314

without eval set between epochs. The maximum315

length of the input sequence is 2560 tokens. Text316

input includes the goal, screen descriptions in317

HTML syntax, and execution history. For inputs318

with a “Plan” experimental group, the step is319

spliced at the end of the input. The fine-tuning320

results of these open source LLMs we put in321

Section 4.8.322

4.4 Main Results323

Table 3 presents the main results of the test sets for324

AITW. Based on the results, we have the following325

findings:326

(i) The proposed D-PoT achieves substantial327

performance gains on all comparison methods328

in terms of Overall scores. Particularly, D-329

PoT exhibits +11.81% (34.66% → 46.47%) 330

improvement on the strong baseline GPT-4V ZS. 331

This presents the effectiveness of our D-PoT, that 332

is, both environmental feedback and action history 333

are beneficial for the GUI task. 334

(ii) We observe that our D-PoT gains improve- 335

ment on the comparison methods (PaLM-2 ZS, 336

ChatGPT 5-shot, Fine-tuned Llama-2, and GPT- 337

4V ZS) in almost all five categories (General, 338

GoogleApps, Install, Single, and WebShopping). 339

This indicates that our D-PoT is generalized to 340

different GUI tasks. 341

Accuracy w/ GPT-4V w/ Human

Click 17.83 27.39
Scroll 0.00 1.27
Typ 2.55 9.55
Navigate Home 0.64 3.82
Navigate Back 0.00 0.00
Press 0.00 2.55
Complete 2.55 7.64

Total 23.57 52.23

Table 4: Comparison of GPT-4V generated planning
and human-annotated planning in the Install dataset (%).
The best average result is reported in boldface.

(iii) We observed that improvement of D- 342

PoT on certain tasks, such as the Install and 343

WebShopping datasets, is not significant. We think 344

that this slight improvement may be attributed 345

to the generated low-quality plans. To verify it, 346

we select 20 episodes from the Install dataset 347

and label them with corresponding plans (e.g., 348

Click, Scroll, Typ, Navigate Home, Navigate Back, 349

Press, and Complete, see Table 1). These human- 350

annotated plans are input into LLMs instead of 351

plans generated by GPT-4V and are prompted to 352

select steps and predict actions. Table 4 shows 353

a significant improvement for these 20 episodes, 354

with the Total accuracy scores increasing from 355
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Methods Static
Planning

Dynamic
Planning

Updating
History Overall General GoogleApps Install Single WebShopping

NP ✗ ✗ ✗ 32.45 28.03 40.32 33.79 26.98 33.13
SP ✓ ✗ ✗ 28.58 21.97 38.71 20.69 42.86 18.67
DP ✗ ✓ ✗ 42.01 31.06 50.81 40.69 57.14 30.72
D-PoT ✗ ✓ ✓ 44.50 45.45 52.42 37.93 52.38 34.34

Table 5: The ablation studies on planning mechanisms. Static Planning: Create a plan based on the provided
screenshot and goal at the outset of the episode. And utilize this plan consistently throughout the episode to direct
LLMs in predicting actions; Dynamic Planning: Continuously adapt and formulate plans during task execution,
considering all available input information; Updating History: Incorporate the steps into the execution history and
utilize them in the planning process. Each experiment’s execution or omission of a particular process is denoted by
✓ (if performed) or ✗ (if not performed). The best average result is in boldface.

23.57%→52.23%. The high-quality plans are356

beneficial for the GUI task, which means that one357

of the slight decrease reasons is attributable to358

low-quality planning generated by GPT-4V, likely359

failing to stimulate this ability to generate high-360

quality plans during supervision fine-tuning.361

4.5 Alleviating Planning Hallucinations and362

Errors363

To mitigate planning hallucinations and errors,364

we seek similar task goals during the planning365

initialization stage as a reference. Initially,366

we encode the goal of each episode using367

sentence-transformer and identify the goals of the368

two most similar episodes from the remaining369

testsets (Reimers and Gurevych, 2019). We then370

combine the predicted actions of these two episodes371

as a reference for the plan. Additionally, we utilize372

InstructBlip to extract captions from the initial373

screen of each episode task, indicating starting374

point of the task (Li et al., 2023). These inputs375

are incorporated into the prompt for planning376

initialization, as outlined in the Appendix A.1.377

The experimental results are shown in Table 3.378

We observe that when all predicted actions from379

similar tasks are as a reference, the proposed380

D-PoT with reference gains the improvement381

of 0.89% accuracies on the D-PoT in terms of382

Overall scores. Specifically, on the General383

and Install datasets, incorporating references384

result in accuracy improvements of 2.09% and385

2.43%, respectively. This indicates that D-PoT386

is effective at alleviating planning hallucinations387

and errors.388

4.6 Ablation Study of Varied Planning389

To study the impact of dynamic planning, we390

randomly sampled 20 episodes from each data391

subset, with a total of 100 episodes as the dataset392

for the ablation experiment, and built several 393

baselines. 394

• No Planning (NP): Its inputs are screenshots, 395

goals, and screen captions. We ask the LLMs 396

to predict actions directly based on these inputs 397

without specifying a plan. 398

• Static Planning (SP): It represents the utilization 399

of planning statically. We will ask LLMs to 400

generate a plan at the beginning of the episode 401

and add the plan to the prompt during the whole 402

episode. 403

• Dynamic Planning (DP): It represents the 404

utilization of planning, excluding selecting steps 405

and updating execution history. The inputs of 406

DP are screenshots, goals, and screen captions. 407

When receiving a new screenshot, we ask LLMs 408

to generate a plan and then take action. Table 5 409

presents the detailed results of the test set for the 410

AITW dataset. 411

First, the accuracy scores of DP and D-PoT are 412

higher than those of NP and SP. This means that 413

dynamic planning is significantly superior to static 414

planning in the graphical user interface automation 415

task. We think that this superiority contributes to 416

two potential or possible factors: 1) This planning 417

greatly stimulates the understanding ability of the 418

LLMs-based agent for the graphical user interface 419

automation task; 2) Throughout task execution, the 420

historical information helps the LLMs-based agent 421

flexibly update its plan for the environment changes 422

and unseen scenarios. 423

Second, the comparison among NP, DP, and 424

D-PoT reveals that integrating planning leads to 425

substantial enhancements preceding the predicted 426

action. We think that this effect arises as 427

the generative planning may prompt LLMs to 428

engage in GUI automation, thereby enhancing 429

their comprehension of the intended goal. This 430

demonstrates that the proposed D-PoT obtains 431
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notable enhancement via plan integration before432

action prediction.433

Third, we observe that D-PoT outperformed DP434

in terms of Overall scores. This indicates that in-435

corporating execution history into LLMs enhances436

GUI automation through dynamic planning. In437

other words, historical information is beneficial438

for LLMs in GUI automation, especially dynamic439

planning based on historical steps. Moreover, the440

accuracy scores of D-PoT are inferior to those of441

DP on the Single and Install datasets. In addition442

to the generated low-quality plans in Table 4, part443

of the reasons may be that the short episode length444

reduces the reliance on historical information for445

the Single dataset, and D-PoT may be misled446

by incorrect historical information for the Install447

dataset.448

4.7 Exploring the Proportion and Correct449

Rate of Predicted Actions450

To conduct a detailed analysis of the impact451

of dynamic planning, we dive into the correct452

rate and the proportion of predicted actions.453

Specifically, we combine five categories for an454

overarching analysis, more details of the correct455

rate of predicted actions are in Appendix A.2,456

and compute the proportion of actions within the457

dataset in Table 6. Table 7 presents the overall458

predicted ratio and the predicted accuracy ratio for459

different actions. Due to the potential occurrence460

of unpredictable actions in LLMs, it’s possible that461

the sum of predicted probabilities may not equal 1.462

Category Proportion (%)

Click 52.54
Scroll 13.97
Typ 10.67
Navigate Home 4.44
Navigate Back 0.79
Press 1.75
Complete 15.87

Table 6: The proportion of actions on AITW.
463

Our observations based on these statistics reveal464

the following two findings:465

(i) Dynamic planning empowers LLMs to466

enhance their task management capabilities.467

Within the DP and D-PoT experimental groups,468

we observed a noteworthy increase in both469

the prediction proportion and accuracy rate of470

“Complete” actions. This suggests that dynamic471

planning enhances the comprehension of LLMs-472

based agent in the current task. 473

(ii) Dynamic planning reduces the invalid 474

predicted click action. We observed a 475

significant decrease in the prediction ratio for 476

“Click” with the introduction of dynamic planning, 477

but the prediction accuracy rate is not affected. 478

Existing work indicates that GPT-4V is more likely 479

to predict the “Click” action (Yan et al., 2023). 480

However, the proposed D-PoT minimizes invalid 481

and erroneous click actions, showcasing a better 482

comprehension of the implementation progress of 483

the current plan. 484

4.8 Adaptation to Unfamiliar Tasks 485

As new applications continually emerge, their 486

interfaces often pose unfamiliarity to agents. 487

Despite the diversity of GUI tasks, there exists a 488

semblance of similarity in screen navigation logic. 489

Even when the interface is unknown, certain screen 490

transition patterns remain consistent. Consequently, 491

the proposed D-PoT utilizes dynamic planning to 492

capture environmental changes and historical steps, 493

which will be beneficial for adaptation to unfamiliar 494

tasks. To validate this, we select two base 495

models, Llama2-7B and LLaVa-7B, for fine-tuning. 496

Llama2-7B serves to verify the effectiveness of 497

the D-PoT method on plain text, while LLaVa-7B 498

serves to verify its effectiveness on multimodal 499

data. We randomly choose the GoogleApps dataset 500

as the training set and the remaining datasets as 501

the test set. The five datasets contain various task 502

categories. We utilize both the D-PoT instruction 503

from our method and the action instruction from 504

AITW for fine-tuning. 505

The results are shown in Table 8, including the 506

results for Llama2-7B and LLaVa-7B which are 507

fine-tuned using nearly all the action instruction 508

data. The experimental results indicate that LLMs 509

fine-tuned with D-PoT data exhibit significant 510

improvements in other tasks and demonstrate 511

robust adaptability to unknown tasks compared to 512

direct fine-tuning with action instructions. Even 513

on the Llama2-7B model, the experimental results 514

of fine-tuning using only a small amount of D- 515

PoT data are comparable to those of fine-tuning 516

using the full AITW dataset. This verifies the 517

effectiveness of D-PoT for out-of-domain tasks. 518

Additionally, in the experiment with LLaVa- 519

7B, we observed that allowing LLaVa-7B to learn 520

dynamic planning rather than following the planned 521

prediction actions formulated by GPT-4V, yielded 522

higher accuracy scores. This indicates that our 523
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Model Click Scroll Typ Home Back Press Complete

NP 78.57 / 26.67 4.29 / 1.27 4.29 / 2.38 4.13 / 1.11 1.59 / 0 0.48 / 0.16 1.43 / 1.43
SP 71.11 / 19.84 8.41 / 1.43 1.43 / 0.63 8.73 / 0.48 2.06 / 0 2.7 / 0.48 3.81 / 3.33
DP 71.90 / 25.08 3.49 / 1.11 3.17 / 2.54 6.98 / 2.06 0.63 / 0 1.59 / 0.32 11.75 / 8.57
D-PoT 68.45 / 26.83 7.01 / 2.7 3.51 / 3.02 1.03 / 0.79 0.41 / 0 0.62 / 0 18.14 / 9.52
D-PoT w/ reference 64.29 / 29.37 10.48 / 2.7 5.87 / 3.33 2.38 / 0.95 0.95 / 0 3.49 / 0.16 11.9 / 8.10

Table 7: The predicted ratio and the predicted accuracy ratio for different actions(%). the number on the left of “/” is
the predicted ratio, and the number on the right of “/” is the predicted accuracy ratio. The best result is in boldface.

Methods General Install Single WebShopping

Llama2-7B(in-domain)
w/ all data 28.56 35.18 27.35 19.92

Llama2-7B(out-domain)
NP Baseline 13.08 17.12 3.87 8.71
Plan by GPT-4V 24.67 23.46 39.48 19.48
Plan by Itself 17.81 17.58 15.87 12.46

LLaVa-7B(out-domain)
NP Baseline 17.81 17.98 1.66 10.91
Plan by GPT-4V 27.19 26.77 44.46 20.61
Plan by Itself 30.73 29.39 45.94 21.67

Table 8: Finetuning results of Llama2-7B and LLaVa-
7B. Segment 1: “w/ all data” stands for the model is
fine-tuned with 1% randomly sampled training data to
help adapt to this task. Segments 2 & 3: The training
set is 180 episodes in the GoogleApps, and the test set
is 180 episodes in other datasets. “GPT-4V” stands
for planning is made by GPT-4V. “itself ” stands for
planning made by the finetuned model itself. The best
average result is in boldface.

fine-tuned LLaVa-7B model learned the plan from524

the GoogleApp dataset and is capable of planning525

effectively for tasks in other domains. This further526

supports the notion that D-PoT can adapt LLMs527

to unfamiliar tasks.528

4.9 Error Analysis.529

To dive into the mistakes of GPT-4V in dynamic530

planning and facilitate future studies, we categorize531

three common errors that lead to discrepancies532

between the predictions of GPT-4V and human-533

annotated predictions. Due to space constraints,534

we present only one of the errors in the main body.535

More details are presented in Appendix B.536

The first common error we identify is a bias of537

GPT-4V on mobile tasks. GPT-4V often exhibits538

“preferences” in its planning. As illustrated in539

Figure 4(a), when tasked with searching for specific540

information, GPT-4V tends to click on Google,541

while the human-annotated prediction suggests542

clicking on Chrome. Similarly, in Figure 4(b),543

when required to input text in the search bar, GPT-544

4V may plan to clear the search bar first, whereas545

(a) (b)

Figure 4: The first common error is a bias of GPT-4V on
mobile tasks. The red circles are the steps that GPT-4V
performs in a dynamic schedule.

the human prediction is to directly input the text. 546

We believe that these analyses will help future 547

researchers comprehend the limitations of GPT-4V 548

and other LLMs in mobile tasks, particularly within 549

the AITW benchmark. Additionally, they may 550

offer inspiration for the development of subsequent 551

mobile task datasets. 552

5 Conclusion 553

This study introduces a prompting approach called 554

D-PoT, designed to facilitate interactions in a 555

multimodal environment. D-PoT encourages 556

LLMs to dynamically update planning based on 557

feedback from the environment and execution 558

history. Through the application of D-PoT, we 559

demonstrate that the D-PoT surpasses the widely 560

adopted GPT-4V baseline on the AITW benchmark 561

dataset. Meanwhile, our findings indicate that the 562

D-PoT excels in adapting to unfamiliar tasks, and 563

can predict different actions more correctly. 564
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6 Limitation565

This study utilizes the powerful zero-shot capability566

of LLMs to forecast smartphone actions by567

incorporating prompt constraints. Our focus568

lies predominantly on exploring the efficacy of569

dynamic planning in enhancing action prediction570

within a given scenario during an episode. In terms571

of social impact, employing LLM-based agents572

on mobile phones holds promise for assisting573

individuals with disabilities. It’s worth noting574

that applying LLMs-based agents on smartphones575

presents certain constraints. While we find promise576

in the observed improvement in predicted action577

accuracy over longer episodes through dynamic578

planning, practical implementation remains a579

distant goal. Many challenges stem from the580

limited knowledge of the mobile phone domain581

within LLMs, highlighting inherent imperfections.582

These issues warrant further investigation in future583

research endeavors.584
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A Example Appendix 776

A.1 Dynamic planning prompting 777

We use the following prompt for Planning Initialization. 778
779

Imagine that you are a robot operating a mobile. Like how humans operate the mobile, you can click on 780
the screen, type some text, go home, go back to the last screen, scroll up, down, left and 781

right, or mark the status as complete. Given a goal and a mobiel screen, you need to make a plan 782
to achieve your goals based on the current screen, and choose the steps that should be achieved 783
on the current screen from the plan you have made. Since achieving this goal is a **continuous 784

process**, you will be given the **previous steps and actions** that have been performed, so 785
please pay attention to this information. There may be multiple ways to achieve your goals, but 786
what you need to do is create the plan that best suits your current situation based on the 787
current screen input. 788

789
**Your ultimate goal is: check out phone information.** 790
The current on-screen input is: 791
Screen: 792
<p id=0 class=‘‘text’’ alt=‘‘vvaiipaper,’’>vvaiipaper,</p> 793
<p id=1 class=‘‘text’’ alt=‘‘sieep,’’>sieep,</p> 794
<p id=2 class=‘‘text’’ alt=‘‘iolL’’>iolL</p> 795
<p id=3 class=‘‘text’’ alt=‘‘SIZE’’>SIZE</p> 796
<p id=4 class=‘‘text’’ alt=‘‘Sound’’>Sound</p> 797
<img id=5 class=ICON\_VOLUME\_STATE alt=‘‘’’></p>\n <p id=6 class=‘‘text’’ alt=‘‘Volume,’’>Volume,</p 798

> 799
<p id=7 class=‘‘text’’ alt=‘‘vibration,’’>vibration,</p> 800
<p id=8 class=‘‘text’’ alt=‘‘Do’’>Do</p> 801
<p id=9 class=‘‘text’’ alt=‘‘Not’’>Not</p> 802
<p id=10 class=‘‘text’’ alt=‘‘Disturb’’>Disturb</p>\newline <p id=11 class=‘‘text’’ alt=‘‘Storage’’> 803

Storage</p> 804
<p id=12 class=‘‘text’’ alt=‘‘used’’>used</p> 805
<p id=13 class=‘‘text’’ alt=‘‘GB free’’>GB free</p> 806
<p id=14 class=‘‘text’’ alt=‘‘49\%’’>49\%</p> 807
<p id=15 class=‘‘text’’ alt=‘‘-32.63’’>-32.63</p> 808
<p id=16 class=‘‘text’’ alt=‘‘Privacy’’>Privacy</p> 809
<p id=17 class=‘‘text’’ alt=‘‘Permissions,’’>Permissions,</p> 810
<p id=18 class=‘‘text’’ alt=‘‘account’’>account</p> 811
<p id=19 class=‘‘text’’ alt=‘‘personal’’>personal</p> 812
<p id=20 class=‘‘text’’ alt=‘‘data’’>data</p> 813
<p id=21 class=‘‘text’’ alt=‘‘activity,’’>activity,</p> 814
<p id=22 class=‘‘text’’ alt=‘‘Location’’>Location</p> 815
<img id=23 class=ICON\_LOCATION alt=‘‘’’></p> 816
<p id=24 class=‘‘text’’ alt=‘‘On’’>On</p> 817
<p id=25 class=‘‘text’’ alt=‘‘have access’’>have access</p> 818
<p id=26 class=‘‘text’’ alt=‘‘- 4 apps’’>- 4 apps</p> 819
<p id=27 class=‘‘text’’ alt=‘‘location’’>location</p> 820
<p id=28 class=‘‘text’’ alt=‘‘to’’>to</p> 821
<p id=29 class=‘‘text’’ alt=‘‘Security’’>Security</p> 822
<p id=30 class=‘‘text’’ alt=‘‘lock, fingerprint’’>lock, fingerprint</p> 823
<p id=31 class=‘‘text’’ alt=‘‘Screen’’>Screen</p> 824
Here are previous actions: (format: action \u2192 action description) 825
Previous Actions: 826
{’’step\_idx’’: 0, ’’action\_description’’: ’’scroll up’’} 827
{’’step\_idx’’: 1, ’’action\_description’’: ’’click []’’} 828
{’’step\_idx’’: 2, ’’action\_description’’: ’’scroll up’’} 829
And the previous steps: 830
Previous Steps: 831
Step 1. Swipe up from the bottom of the screen to access the app drawer. 832
Step 2. Tap on the ’Settings’ icon to open the settings menu. 833
Step 3. Scroll up to reveal more settings options. 834

835
Please formulate an operational guide for future operations for solving the goal. The guide includes: 836
1. Plan: A **multi-step future** plan **(start from current screen, DON’T include previous steps)**; 837

steps indexed by numbers. 838
2. Step: Based on the current screen and Previous Steps, provide the **immediate** step that needs to 839

be taken from the Plan. 840
"**Output Format:** A JSON dictionary strictly following the format: "{’plan’: ’...<Your Plan Here>’, 841

’step’: ’...<Your Step Here>’} "If the goal has already been implemented, no more planning is 842
required, Provide {’plan’: ’1. Mark the task as complete’, ’step’: ’Mark the task as complet’}. 843

**Please do not output any content other than the JSON format.** 844
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845

We use the following prompt for Planning Initialization with references.846
847

Imagine that you are a robot operating a mobile. Like how humans operate the mobile, you can click on848
the screen, type some text, go home, go back to the last screen, scroll up, down, left and849

right, or mark the status as complete. Given a goal and a mobiel screen, you need to make a plan850
to achieve your goals based on the current screen, and choose the steps that should be achieved851
on the current screen from the plan you have made. Since achieving this goal is a **continuous852

process**, you will be given the **previous steps and actions** that have been performed, so853
please pay attention to this information. There may be multiple ways to achieve your goals, but854
what you need to do is create the plan that best suits your current situation based on the855
current screen input.856

**Your ultimate goal is: What is the price of a 12’ ladder at Home Depot?.**857
I also give you two similar examples as a reference, here are their goal, the initial caption of858

mobile screen, and all the execution actions to complete goal:859
Goal: What’s the price of the 1000-Watt EGO Power+ Snow Blower?860
Caption: The information on the phone screen is a screenshot of the Google Play Store, displaying861

various apps available for download. The screenshot provides a visual representation of the apps862
that can be found on the Google Play Store, allowing users to easily browse and choose from a863

variety of options.864
Execution history: {\"step_idx\": 0, \"action_description\": \"click [9]\"}865

866
{\"step_idx\": 1, \"action_description\": \"click [9]\"}867

868
{\"step_idx\": 2, \"action_description\": \"click []\"}869

870
{\"step_idx\": 3, \"action_description\": \"type\"}871

872
{\"step_idx\": 4, \"action_description\": \"press_enter\"}873

874
{\"step_idx\": 5, \"action_description\": \"click [Shopping]\"}875

876
{\"step_idx\": 6, \"action_description\": \"scroll up\"}877

878
{\"step_idx\": 7, \"action_description\": \"click [Official Site - Shop Ego Lb5300]\"}879

880
\\{\"step_idx\": 8, \"action_description\": \"status_complete\"\\}881

882
Goal: What’s the price of the new iPhone on eBay?883
Caption: The information displayed on the phone screen is a screenshot of the Google Calendar app.884

The screenshot shows the current date and time, as well as a list of upcoming events for the885
next few days. It also highlights some of the features of the Google Calendar app, such as the886
ability to add events, set reminders, and manage multiple calendars. The screenshot provides an887
overview of the user’s schedule and helps them stay organized and on top of their upcoming888
events.889

Execution history: {\"step_idx\": 0, \"action_description\": \"click [9]\"}890
891

{\"step_idx\": 1, \"action_description\": \"click [weather like in]\"}892
893

{\"step_idx\": 2, \"action_description\": \"click [google.com/search?q=wea]\"}894
895

{\"step_idx\": 3, \"action_description\": \"type\"}896
897

{\"step_idx\": 4, \"action_description\": \"click [iPhone on]\"}898
899

{\"step_idx\": 5, \"action_description\": \"scroll up\"}900
901

{\"step_idx\": 6, \"action_description\": \"click [iPhones for Sale - New & Used]\"}902
903

{\"step_idx\": 7, \"action_description\": \"scroll up\"}904
905

{\"step_idx\": 8, \"action_description\": \"click [H]\"}906
907

\\{\"step_idx\": 9, \"action_description\": \"status_complete\"\\}908
909

The current on-screen input is:910
Screen: <p id=0 class=\"text\" alt=\"Mon, Oct 10\">Mon, Oct 10</p>911
<img id=1 class=ICON_CLOUD alt=\"\"></p>912
<p id=2 class=\"text\" alt=\"56\u00b0F\">56\u00b0F</p>913
<img id=3 class=ICON_CALL alt=\"\"></p>914
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<img id=4 class=ICON_CHAT alt=\"\"></p> 915
<img id=5 class=ICON_PLAY alt=\"\"></p> 916
<img id=6 class=ICON_GOOGLE alt=\"\"></p> 917
<img id=7 class=ICON_MIC alt=\"\"></p> 918
<img id=8 class=ICON_NAV_BAR_RECT alt=\"\"></p> 919
<img id=9 class=ICON_NAV_BAR_CIRCLE alt=\"\"></p> 920
<img id=10 class=ICON_V_BACKWARD alt=\"\"></p> 921

922
Here are previous actions: (format: action \u2192 action description) 923
Previous Actions: 924
{’action_type’: ’click’, ’idx’: 15} 925
And the previous steps: 926
Previous Steps: 927
Step 1. Press the home button to exit the email setup screen. 928

929
Please formulate an operational guide for future operations for solving the goal. The guide includes: 930
1. Plan: A **multi-step future** plan **(start from current screen, DON’T include previous steps)**; 931

steps indexed by numbers. 932
2. Step: Based on the current screen and Previous Steps, provide the **immediate** step that needs to 933

be taken from the Plan. 934
"**Output Format:** A JSON dictionary strictly following the format: "{’plan’: ’...<Your Plan Here>’, 935

’step’: ’...<Your Step Here>’} "If the goal has already been implemented, no more planning is 936
required, Provide {’plan’: ’1. Mark the task as complete’, ’step’: ’Mark the task as complet’}. 937

**Please do not output any content other than the JSON format.** 938939
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A.2 The correct rate of predicted actions in ablation studies940

We provide the predicted action accuracy for all datasets of ablation experiments in Table 9.

Model Action General GoogleApps Install Single Webshopping

NP

Click 23.48 33.06 25.52 23.81 26.51
Scroll 0.67 2.42 2.07 - 0.60
Typ 3.03 - 2.76 - 4.22
Navigate Home - 1.61 2.07 - 1.20
Navigate Back - - - - -
Press Enter - - - 1.59 -
Complete 0.76 3.23 1.38 1.59 0.60

SP

Click 16.67 30.65 14.48 25.40 16.87
Scroll 3.03 0.81 2.76 - -
Typ - - 0.69 3.17 0.60
Navigate Home - 0.81 0.69 - 0.60
Navigate Back - - - - -
Press Enter - - - - -
Complete 2.27 6.45 2.07 26.98 0.60

DP

Click 16.67 36.29 24.14 30.16 22.29
Scroll 0.76 1.61 2.07 - 0.60
Typ 2.27 0.81 4.14 1.59 3.01
Navigate Home 4.52 2.42 3.45 - 1.81
Navigate Back - - - - -
Press Enter - - - - -
Complete 9.85 9.68 6.90 22.22 3.01

D-PoT

Click 27.27 35.48 21.38 23.81 25.90
Scroll 3.03 3.23 5.52 - 0.60
Typ 3.79 0.81 3.45 1.59 4.22
Navigate Home - 1.61 1.38 - 0.60
Navigate Back - - - - -
Press Enter - - - - -
Complete 11.36 11.29 6.21 26.98 3.01

D-PoT
w/ reference

Click 21.21 37.90 28.28 28.57 30.72
Scroll 4.55 3.23 4.83 - -
Typ 2.77 - 4.14 6.35 4.82
Navigate Home 0.76 1.61 1.38 - 0.60
Navigate Back - - - - -
Press Enter - - - - -
Complete 9.85 11.29 5.52 22.22 1.2

Table 9: The correct rate of predicted actions of GPT-4V and D-PoT in ablation studies. We mainly collected the
correct rate of “Click”, “Scroll”, “Typ’, “Navigate” and “Complete” actions. To make it look nice, we’ll replace 0
with “-”. The best average result is in boldface.

941
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B Errors Examples 942

The other two errors are shown here. 943

(a) (b)

Figure 5: The second common error we recognize is instruction overlap in the AITW dataset. The red circles are the
steps that GPT-4V performs in a dynamic schedule

The second common error we recognize is instruction overlap in the AITW dataset. The same operation 944

on one mobile screen can correspond to two different actions. For instance, in Figure 4(a), when searching 945

for an item, GPT-4V may click on ’search’ or the search entry, whereas the human prediction is to press. 946

In Figure 4(b), when returning to the home page, GPT-4V often clicks on the “home” button below, while 947

the human instruction is to “navigate home”. The third common error we classify as confusion in gesture

Figure 6: The third common error we classify as confusion in gesture operations. The red arrow indicates that the
GPT-4V wants to slide under in dynamic planning

948
operations. For example, in Figure 6, when swiping down to view more apps, the corresponding gesture 949

should be from bottom to top, indicating “scroll up”. However, GPT-4V also suggests swiping down, but 950

its predicted instruction is “scroll down”. 951
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