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Summary. Inappropriate choice of working correlation structure in generalized estimating equations (GEE) could lead to
inefficient parameter estimation while impractical normality assumption in likelihood approach would limit its applicability
in longitudinal data analysis. In this article, we propose a profile likelihood method for estimating parameters in longitudinal
data analysis via maximizing the estimated likelihood. The proposed method yields consistent and efficient estimates without
specifications of the working correlation structure nor the underlying error distribution. Both theoretical and simulation results
confirm the satisfactory performance of the proposed method. We illustrate our methodology with a diastolic blood pressure
data set.
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1. Introduction

Longitudinal data arise frequently in biomedical and health
studies in which repeated measurements from the same sub-
ject are correlated. Consistency and efficiency of estimators
for the regression parameters are important for longitudinal
data analysis. Liang and Zeger (1986)developed the general-
ized estimating equation (GEE) for longitudinal data analysis.
GEE approach takes advantage of the built-in robustness
since no specification of the full likelihood is required. It
is well known that GEE estimators are efficient when the
working correlation structure is correctly specified. However,
misspecification of the working correlation structure may lead
to a great loss of efficiency even though the consistency may
remain valid (Wang and Carey, 2003). The quadratic infer-
ence function (QIF) method proposed by Qu, Lindsay, and
Li (2000)does not involve direct estimation of the correlation
matrix and remains optimal even if the working correlation
matrix is misspecified. Ye and Pan (2006)proposed the simul-
taneous GEE equations to estimate both the mean regression
coefficients and the covariance structure parameters. Leung,
Wang, and Zhu (2009)proposed a hybrid method that com-
bines multiple GEEs based on different working correlation
models and obtains parameter estimates by maximizing the
empirical likelihood (Qin and Lawless, 1994). Nonetheless, all
aforementioned articles require the specification of working
correlation models. Again, correct specification of the corre-
lation structure is necessary in order to increase the efficiency.

Since the correlation structure plays a crucial role in
mean structure estimation (e.g., efficiency), the estimation
of the covariance matrix is important in longitudinal anal-
ysis.Motivated by the modified Cholesky decomposition,
Pourahmadi (1999, 2000)proposed to simultaneously estimate

the mean regression coefficients and covariance matrices by
assuming that the errors follow the multivariate normal dis-
tribution. Although the corresponding estimates can be shown
to be efficient, it is impractical to specify the full likelihood
function (in particular, multivariate normal distribution) due
to the correlated nature of longitudinal data. To overcome the
latter issue, we propose to regress the error on its predeces-
sors (Pourahmadi, 1999), treat the prediction error density
as an unknown nonparametric function, and estimate it via
kernel smoothing. With the estimated prediction error den-
sity, we obtain the estimates of the regression parameters
by maximizing the so-called profile likelihood function. Our
proposed method performs well without specification of the
likelihood nor the correlation structure. Most importantly, we
show that the proposed estimates are efficient in both theory
and practice.

We organize our article as follows. In Section 2, we
first introduce the independence maximum profile likelihood
method and derive the efficient maximum profile likelihood
estimators. The asymptotic properties of the estimators are
investigated. In Section 3, simulation studies are conducted
to evaluate the performance of our proposed method and its
competitors. A real data set in diastolic blood pressure study
is analyzed to illustrate our methodologies. A brief discussion
is presented in Section 4. Some simulation results, the techni-
cal conditions, some lemmas, and the proof of Theorem 2 are
presented in the Supplementary Materials.

2. The Maximum Profile Likelihood Methods

We intend to record the response variable for the i-th sub-
ject m times, denoted as y∗

i = (yi1, . . . , yim)T . Here, y∗
i ’s can be

safely assumed to be independently distributed, i = 1, . . . , n,
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with n being the sample size. The covariate correspond-
ing to yij is xij, which is a p-dimensional vector. Denote
X∗

i = (xi1, . . . , xim)T , which is the m × p-dimensional design
matrix for the i-th subject. Let μij = E(yij|Xi) = xT

ijβ, where
β is a p-dimensional parameter vector with true value being
β∗. Denote εij = yij − xT

ijβ
∗ and ε∗

i = (εi1, . . . , εim)T . We assume
that the error vector ε∗

i is independent of the covariate matrix
X∗

i , and ε∗
i (i = 1, . . . , n) are independently and identically dis-

tributed. In practice, missing responses are not uncommon in
longitudinal studies. Let rij take value 1 if yij is observed,
and 0 otherwise. Here, we assume that the missing data
patterns are monotone (Rubin 1987; Robins and Rotnitzky,
1995), that is, ri1 ≥ ri2 ≥ . . . ≥ ri(m−1) ≥ rim, and assume the
data are missing completely at random (MCAR), that is,
R∗

i is independent of y∗
i and X∗

i , where R∗
i = (ri1, . . . , rim)T .

Assume R∗
i (i = 1, . . . , n) are independently and identically

distributed. We assume P(rij = 1) = αj with 1 = α1 ≥ α2 ≥
. . . ≥ αm−1 ≥ αm > 0. Suppose the responses observed on the
i-th subject are yi = (yi1, . . . , yimi

)T with the corresponding
observed covariates Xi = (xi1, . . . , ximi

)T , where mi = ∑m

j=1
rij.

Let nj = ∑n

i=1
rij and we have limn→∞ nj/n = αj > 0.

2.1. The Independence Estimating Procedure

We first assume that the responses of the i-th subject are
independent of each other, for i = 1, . . . , n. We know that
the cross-sectional errors ε1j, . . . , εnj are i.i.d. with common
density function, denoted as fε1j

(j = 1, . . . , m). The maxi-
mum likelihood estimator of β could be readily obtained if
the density functions, that is, fε1j

(j = 1, . . . , m), are known.
However, these density functions are usually unknown in prac-
tice. Let εij(β) = yij − xT

ijβ. We propose to estimate the density
function fε1j(β) for any β by kernel smoothing as

f̂ε1j(β)(u) = 1

(
∑n

i=1
rij)hj

n∑
i=1

rijK

(
εij(β) − u

hj

)
,

where K is a scalar kernel and hj is any appropri-
ate bandwidth, for j = 1, . . . , m. If the responses of
the same subject are independent of each other (i.e.,
ε11, . . . , ε1m, . . . , εn1, . . . , εnm are all independent of each
other), we could simply propose to obtain the estimator of
β by maximizing the profile likelihood equation (Chen et al.,
2014):

β̂I
MPL = arg max

β

m∑
j=1

n∑
i=1

rij log f̂ε1j(β)(εij(β)). (1)

Since xij is independent of εij, by Lemma 1 of Chen et al.
(2014), we know

m∑
j=1

αj

∫
fε1j(β)(u) log fε1j(β)(u)du

<

m∑
j=1

αj

∫
fε1j(β∗)(u) log fε1j(β∗)(u)du,

for any β �= β∗. Given the MCAR mechanism and nj = O(n),
using similar arguments in Lemma 3 (see Supplementary
Materials), we have, for given r1j, . . . , rnj, supβ |f̂ε1j(β)(εij(β)) −
fε1j(β)(εij(β))| = Op{

√
log nj

njhj
+ h2

j }, for j = 1, . . . , m. Thus,

m∑
j=1

1

n

n∑
i=1

rij log f̂ε1j(β)(εij(β))

→P

m∑
j=1

αj

∫
fε1j(β)(u) log fε1j(β)(u)du

holds uniformly in β. By Theorem 2.1 of Newey and
McFadden (1994), we have β̂I

MPL →P β∗.
Even though the consistency of β̂I

MPL holds, it may not
be an efficient estimator since β̂I

MPL is obtained based on
the independence assumption (i.e., the within-subject corre-
lation is not yet taken into account). This is consistent with
the property of GEE estimator that one could not get the
fully efficient estimator when independence working corre-
lation structure is adopted (Liang and Zeger, 1986; Diggle,
et al., 2002). The asymptotic normality theory in the next
subsection and numerical studies in Section 3 further verify
this fact.

Remark 1. Although we only consider the monotone miss-
ing pattern in this article, the independence estimating
procedure could be readily modified to deal with non-monotone
missing pattern.

2.2. The Efficient Estimation Approach

In practice, it is more realistic to assume that the m com-
plete responses from each subject are correlated. For this
purpose, let the complete errors ε∗

i = (εi1, . . . , εim)T and
assume that Cov(ε∗

i ) = � (i = 1, . . . , n) with � being a m × m

positive definite matrix. By the modified Cholesky decom-
position (Pourahmadi, 1999), there exists a lower triangular
matrix P with ones as diagonal entries and −φjl as the
(j, l)th element and a diagonal matrix D = diag(σ2

i1, . . . , σ
2
im)

such that P�PT = D. Based on this decomposition, one can
regress εij on its predecessors εi1, . . . , εi(j−1) with the cor-
responding regression coefficients being φj1, . . . , φj(j−1) and
denotes the corresponding successive prediction error as ηij,
that is,

ηij = εij −
j−1∑
l=1

φjlεil, for j = 2, . . . , m, i = 1, . . . , n.

It is noteworthy that Cov(η∗
i ) = D where η∗

i = (ηi1, . . . , ηim)T

for i = 1, . . . , n. Hence, ηi1, . . . , ηim are uncorrelated random
variables. The specification of φjl’s determines the correla-
tion structure of the error εi. For example, the error has
the independence correlation structure if φjl’s are all zero,
and has the AR-1 correlation structure if φjl is zero for
j − l ≥ 2.

Define ηij(β, φj) = yij − xT
ijβ − ∑j−1

l=1
(yil − xT

il β)φjl, where∑0

l=1
= 0 and φj = (φj1, . . . , φj(j−1)). We assume η1j follows
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some completely nonparametric distribution for j = 1, . . . , m

and use the kernel nonparametric technique to estimate the
density function of η1j. Due to the presence of missing
responses, we could only observe the first mi responses and
the corresponding covariates for subject i, i = 1, . . . , n. If φj

(j = 2, . . . , m) are known, we can estimate the density func-
tion of η1j(β, φj) using the following kernel smoothing

f̂η1j(β,φj)(u) = 1

(
∑n

i=1
rij)hj

n∑
i=1

rijK

(
ηij(β, φj) − u

hj

)
,

for j = 1, . . . , m,

where K is a scalar kernel and hj is an appropriate bandwidth.
With the estimated prediction error densities, we propose to
get the estimate of β through the maximum profile likelihood
(MPL) method considered in the last sub-section. That is,
β̂MPL is obtained through maximizing the following profile
likelihood equation:

m∑
j=1

n∑
i=1

rij log f̂η1j(β,φj)(ηij(β, φj)). (2)

It should be noticed that the estimation procedure proposed
here is consistent with the profile likelihood approach for
estimating regression parameters in semiparametric longitu-
dinal models (see also, Wang, Carroll, and Lin, 2005; Lin and
Carroll, 2006; Fan, Huang, and Li, 2007; Lombardia and Sper-
lich, 2008). The basic idea of profile likelihood approach is to
replace the unknown function by its nonparametric (kernel)
estimate for given parametric components (Linton, Sperlich,
and Van Keilegom, 2008). We conclude that the choice of
φjl and thus the correlation structure being used has no
impact on the consistency property of the estimated β. This
coincides with that in the GEE approach in the literature.
Specifically, for any φj (j = 2, . . . , m) and noting that εi is
independent of Xi, we know by Lemma 1 of Chen et al. (2014)
that

m∑
j=1

αj

∫
fη1j(β,φj)(u) log fη1j(β,φj)(u)du

<

m∑
j=1

αj

∫
fη1j(β∗,φj)(u) log fη1j(β∗,φj)(u)du

since

m∑
j=1

1

n

n∑
i=1

rij log f̂η1j(β)(ηij(β, φj))

→P

m∑
j=1

αj

∫
fη1j(β,φj)(u) log fη1j(β,φj)(u)du

holds uniformly in β. Hence, β̂MPL is a consistent estimator
(Newey and McFadden, 1994).

Pourahmadi (1999, 2000)assumed ε∗
i follows the multivari-

ate normal distribution and ηij’s are hence normally and

independently distributed. Ones could then use the maxi-
mum likelihood (ML) method to obtain efficient estimator
of β by using the observed responses and the correspond-
ing covariates. If ε∗

i are not normally distributed (e.g.,
multivariate T distribution or mixture of multivariate nor-
mal distributions), the ML method in Pourahmadi (1999,
2000)may not work satisfactorily. In real applications, ones
usually do not know the distribution of ε∗

i . In these cases,
the proposed MPL approach would be a good alternative
for estimating β consistently and efficiently, since it esti-
mates the prediction error density via kernel smoothing and
thus does not require specification of the underlying error
distribution.

Remark 2. The proposed MPL estimator is motivated by
Cholesky decomposition of the covariance matrix �. However,
the consistency property of the proposed estimator does not
rely on existence of the covariance matrix of the error. Specif-
ically, we regress the error on its predecessors motivated by
the Cholesky decomposition and estimate the prediction error
density. The proposed approach is based on maximizing the
estimated likelihood and does not directly include the covari-
ance of error εi or operate on its empirical counterpart. On
the contrary, the GEE approach requires the covariance matrix
of the error directly. As shown in Study 6 in our simula-
tion study, when the covariance matrix diverges, our proposed
method still performs very well while the GEE method breaks
down.

Remark 3. Our proposed method is robust against outliers.
Intuitively, by the property of commonly used kernel functions
(e.g., gaussian and Epanechnikov kernels), an outlier being
distant from other observations would have much smaller
estimated density value and thus has little impact on the esti-
mation of β. The robust performance is further illustrated via
the subsequent simulation studies.

Let 	 = (φ2, . . . , φm). Given R∗
i , mi = ∑m

j=1
rij, for i =

1, . . . , n. Define

Wi(	) =
(

f
′
η11(β∗)(ηi1(β

∗))

fη11(β∗)(ηi1(β∗))
,
f

′
η12(β∗,φ2)(ηi2(β

∗, φ2))

fη12(β∗,φ2)(ηi2(β∗, φ2))
,

. . . ,
f

′
η1mi

(β∗,φmi
)(ηimi

(β∗, φmi
))

fη1mi
(β∗,φmi

)(ηimi
(β∗, φmi

))

)T

,

Qi(	) = diag

{{
f

′
η11(β∗)(ηi1(β∗))

fη11(β∗)(ηi1(β∗))

}2

,

{
f

′
η12(β∗ ,φ2)

(ηi2(β∗,φ2))

fη12(β∗ ,φ2)(ηi2(β∗,φ2))

}2

,

. . . ,

{ f
′
η1mi

(β∗ ,φmi )
(ηimi

(β∗,φmi
))

fη1mi
(β∗ ,φmi )

(ηimi
(β∗,φmi

))

}2

}
,

and Pi be an mi × mi lower unitriangular matrix with the
(j, l)-th below diagonal entry being −φjl. We present the
asymptotic normality of our proposed MPL estimator as
follow.
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Theorem 1. Under Conditions (a)–(f) in the Supplemen-
tary Materials, for any given 	,

√
n(β̂MPL − β∗) = −
−1 1√

n

n∑
i=1

(Xi − EXi)
T PT

i Wi(	) + op(1)

holds for given R∗
i (i = 1, . . . , n), where 
 = 1

n

∑n

i=1
(Xi −

EXi)
T PT

i Qi(	)Pi(Xi − EXi).

This theorem could be proved by similar arguments given for
Theorem 2 in Chen et al. (2014)and we thus omit its proof.
The asymptotic normality of β̂I

MPL can be readily obtained by
setting each element in 	 to be zero.

We show the efficiency property of β̂MPL under the assump-
tion that the errors are normally distributed. Without loss of
generality, assume that EX = 0 and mi = m. When the true
value of 	 (i.e., 	∗) is used when maximizing (2), since

Wi(	
∗) =

(
− ηi1(β

∗)
σ∗2
11

, −ηi2(β
∗, φ∗

2)

σ∗2
12

, . . . , −ηim(β∗, φ∗
m)

σ∗2
1m

)T

with σ∗2
1j being the variance of ηij(β

∗, φ∗
j ), we can readily show

that

√
n(β̂MPL − β∗) →L N

(
0, {E(XT

1�∗−1X1)}−1
)
,

where �∗ is the true value of �. It is easily seen that
β̂MPL is asymptotically as efficient as the maximum likeli-
hood estimator based on the true distribution of the error.
We conclude that the choice of 	 does not affect the asymp-
totical consistency as well as normality of the MPL estimator;
however, determines the efficiency of the resulted MPL esti-
mator. This result is consistent with the properties of GEE
approach in the literature. Most importantly, as long as
ηi1(β

∗), ηi2(β
∗, φ∗

2), . . . , ηim(β∗, φ∗
m) are independent of each

other, we can obtain the fully efficient estimator β̂MPL when
	 is set to 	∗ regardless of the error distribution.

In practice, ones usually do not know the true value
of 	. Let β̂ be a

√
n−consistent estimator of β, μ̂ij = xT

ij β̂

and η̂ij(φj) = yij − μ̂ij − ∑j−1

l=1
(yil − μ̂il)φjl, j = 2, . . . , m, i =

1, . . . , n. We propose to obtain the estimator of φj (i.e., φ̂j)
by maximizing

n∑
i=1

rij log f̂η̂1j(φj)(η̂ij(φj)) for j = 2, . . . , m,

where

f̂η̂1j(φj)(u) = 1

(
∑n

i=1
rij)hj

n∑
i=1

rijK

(
η̂ij(φj) − u

hj

)
. (3)

The asymptotical consistency of φ̂j is presented in the
following theorem with the proof being reported in the Sup-
plementary Materials. To facilitate the proof, we assume that
ηi1(β

∗), ηi2(β
∗, φ∗

2), . . . , ηimi
(β∗, φ∗

mi
) are independent of each

other, for i = 1, . . . , n.

Theorem 2. Under Conditions (a)–(f) in the Supplemen-
tary Materials, φ̂j converges in probability to φ∗

j , for j =
2, . . . , m.

Due to the consistency property of φ̂j ( j = 2, . . . , m), when
φj in (2) is replaced by φ̂j, the resulted MPL estimator of

β, that is, β̂∗
MPL, has the asymptotic normality property in

Theorem 1 by letting 	 = 	∗, that is,

√
n(β̂∗

MPL − β∗) →L N(0, 
∗−1�∗
∗−1),

where 
∗ = limn→∞ 1
n

∑n

i=1
{(Xi − EXi)

T P∗T
i Qi(	

∗)P∗
i (Xi −

EXi)} with P∗
i being the true value of Pi and �∗ =

limn→∞ 1
n

∑n

i=1
[(Xi − EXi)

T P∗T
i Wi(	

∗)Wi(	
∗)T P∗

i (Xi − EXi)].

We note that β̂∗
MPL is an efficient estimator. We estimate

Qi(	
∗) as

Q̂i(	
∗) := diag

{{ f̂
′
η11(β̂∗

MPL
)
(ηi1(β̂

∗
MPL))

f̂η11(β̂∗
MPL

)(ηi1(β̂
∗
MPL))

}2

,

{ f̂
′
η12(β̂∗

MPL
,φ̂2)

(ηi2(β̂
∗
MPL, φ̂2))

f̂η12(β̂∗
MPL

,φ̂2)(ηi2(β̂
∗
MPL, φ̂2))

}2

,

. . . ,

{ f̂
′
η1mi

(β̂∗
MPL

,φ̂mi
)
(ηimi

(β̂∗
MPL, φ̂mi

))

f̂η1mi
(β̂∗

MPL
,φ̂mi

)(ηimi
(β̂∗

MPL, φ̂mi
))

}2

}
,

where

f̂
′
η1j(β,φj)

(u) = − 1

(
∑n

l=1
rlj)h

2
j

n∑
l=1

rljK
′
(

ηlj(β, φj) − u

hj

)
,

for j = 1, . . . , mi.

As a result, we estimate 
∗ by


̂ := 1

n

n∑
i=1

(Xi − X̄i)
T P̂T

i Q̂i(	
∗)P̂i(Xi − X̄i),

where X̄i = ( 1∑n

l=1
rl1

∑n

l=1
rl1xl1, . . . ,

1∑n

l=1
rlmi

∑n

l=1
rlmi

xlmi
)T ,

and P̂i, the estimator of Pi, is the lower triangular matrix with
1′s as diagonal entries and −φ̂jl as the (j, l)th element. Under

some mild conditions, 
̂−1 converges in probability to 
∗−1

under the Frobenius norm (using Lemma 5). We could simi-
larly obtain a consistent estimator of �∗ (i.e., �̂ ). Thus, the

covariance matrix of β̂∗
MPL could be estimated by


̂−1�̂
̂−1

n
.

Remark 4. The assumption ηi1, . . . , ηimi
are independent

are used to facilitate the proof of Theorem 2. However,
the consistency and the asymptotical normality (Theorem 1)
properties of the MPL estimator does not depend on the
assumption that ηi1, . . . , ηimi

are independent. In practice,
even if ηi1, . . . , ηimi

are uncorrelated but not independent, our
proposed MPL estimator performs very well (see, Studies 5
and 6). Note that, the ηi1, . . . , ηimi

corresponding to the mul-
tivariate T distribution are uncorrelated but not independent.
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2.3. Bandwidth Selection: Maximum-Likelihood
Cross-Validation

The proposed MPL approach is based on maximizing the esti-
mated likelihood and its performance depends on the choice
of bandwidth parameters hj (j = 1, . . . , m) for kernel smooth-
ing. In this article, we propose to select the bandwidth via
the so-called maximum-likelihood cross-validation procedure
(Duin, 1976). Here, we only state the selection of the band-
width parameters for the estimated density functions used
in equation (2). The bandwidth selection regarding equations
(1) and (3) could be conducted accordingly. Specifically, the
maximum-likelihood cross-validation bandwidth for estimat-
ing fη1j(β,φj)(·) is given by

ĥj = arg max
h>0

n∑
i=1

rij log

{
1

(
∑n

i=1
rij − 1)h

∑
k �=i

rkj

×K

(
ηkj(β̂, φj) − ηij(β̂, φj)

h

)}
, for j = 1, . . . , m.

3. Numerical Studies

3.1. Simulation Studies

In this section, we investigate the finite sample performances
of the proposed estimation via Monte Carlo simulation stud-
ies. We consider the following model:

yij = xT
ijβ0 + εij, for i = 1, . . . , n; j = 1, . . . , mi,

where β0 is a p-dimensional vector of parameters. We gen-
erate 200 data sets, respectively, for all the studies. We use
the simulated average mean square error (SAMSE), which is
obtained by averaging ||β̂ − β0||2/p over 200 simulated sam-
ples, to measure the accuracy of estimators (Wang, 2011).
We compare our proposed MPL estimator β̂∗

MPL with GEE
and QIF estimators using three different working correlation
structures: independence, exchangeable, and the AR-1 work-
ing correlation matrices (Zhou and Qu, 2012). Note, the GEE
and QIF estimators using the independence working corre-
lation structure are equal. In order to explain that MPL
approach accounting for within-subject correlation using our
proposed estimating procedure via regressing the error on its
predecessors could improve accuracy of the estimators, we also
compute the estimators of the parameter (i.e., β̂I

MPL) using the
independence MPL estimating method described in Section
2.1. For all the numerical demonstrations considered in this
section, the Gaussian kernel function K(u) = 1√

2π
exp(−u2/2)

is used.

Study 1. The sample size n is taken to be 100, the dimension
of the covariates is set to be p = 3, and mi is set to be 5 for i =
1, . . . , n. The dimension of the parameter is low and fixed in
this study. The covariate xij is set to be (xij1, xij2, xij3)

T , which
follows the multivariate normal distribution with mean being

zero and covariance matrix being �(1) with (�)
(1)
i,j = 0.5|i−j|

for 1 ≤ i, j ≤ 3. Let β0 = (1, 0.5, −0.5)T . The errors are set as
follows: εi1 = ηi1, εi2 = ηi2 + 0.5εi1, εi3 = ηi3 + 0.4εi1 + 0.4εi2,

εi4 = ηi4 + 0.3εi1 + 0.3εi2 + 0.3εi3, εi5 = ηi5 + 0.1εi1 + 0.1εi2 +
0.1εi3 + 0.1εi4, where ηi1, ηi2, and ηi3 follow the standard nor-
mal distribution, ηi4 and ηi5 follow the T -distribution with 3
degrees of freedom, and ηij (j = 1, . . . , 5) are all independent
of each other.

Study 2. We consider the sample size n = 50, 100, 200, 500
and the dimension of the parameter pn = [2.5n1/3], where [q]
is the the largest integer not greater than q. In this study,
β0 = (0.41T

k , −0.31T
k , 0.21T

k , −0.11T
pn−3k)

T , where 1k denotes
a k-dimensional vector of ones and k = [pn/4]. We take the
covariate xij = (xij1, . . . , xijpn

)T , which follows the multivari-
ate normal distribution with mean being zero and covariance

matrix being �(2) with (�)
(2)
i,j = 0.5|i−j| for 1 ≤ i, j ≤ pn. The

error used in this study is identical to that of Study 1. This
study is to investigate how the proposed approach performs
when the dimension of the parameter pn grows with the sam-
ple size n.

Study 3. The sample size in this study is set to be n = 100.

For i = 1, . . . , 50, mi equals 5; for i = 51, . . . , 100, mi are i.i.d.
from a discrete uniform distribution on the set {2, 3, 4, 5}. We
consider p = 3 and p = 11. The covariates for the case of p = 3
and p = 11 are generated via the methods of Study 1 and
Study 2, respectively. The error εi = (εi1, . . . , εimi

)T is gener-
ated from the multivariate normal distribution with mean
being zero and covariance matrix being �

(3)
mi , which is an

mi × mi AR-1 correlation matrix with autocorrelation coef-
ficient 0.8.

Study 4. The error εi = (εi1, . . . , εimi
)T follows the multivari-

ate normal distribution with mean zero and covariance matrix
�

(4)
mi , which is an mi × mi exchangeable correlation matrix

with all pairs of observations having the common correlation
0.8. The data sets are generated following the procedure in
Study 3. The main purpose of Studies 3 and 4 is to investigate
the robust performances of the new method to the correlation
structures.

Study 5. The error εi = (εi1, . . . , εimi
)T is generated from the

multivariate T distribution with location parameter being

zero, scale matrix being �
(4)
mi and degree of freedom being 3.

We generate the data sets following the procedure in Study 3.
This study is to investigate the performance of the proposed
approach when the error is heavy-tailed.

Study 6. The error εi = (εi1, . . . , εimi
)T is generated from

the multivariate Cauchy distribution with location parame-

ter being zero and scale matrix being �
(4)
mi . We generate the

data sets following the procedure in Study 3. This study is
designed to investigate how the proposed approach performs
when covariance matrix of the error is undefined.

Study 7. The error εi follows the mixture of multivariate nor-

mal distributions, that is, 0.9 N(0, �
(4)
mi ) + 0.1N(0, 100�

(4)
mi )

and the data sets are sampled using the procedure in Study 3.
The main purpose of this study is to investigate robustness
of the proposed method in terms of resistance to outliers.
Studies 3–7 could also serve to investigate how the proposed
method works when the true covariance matrix does not
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Table 1
The simulated average mean squared errors for the estimated regression parameters using different methods. The

independence MPL estimating method is abbreviated as MPL.I

GEE QIF

n p MPL MPL.I Ind Excha AR-1 Excha AR-1

Study 1 100 3 0.0037 0.0056 0.0072 0.0060 0.0060 0.0055 0.0056

Study 2 50 9 0.0099 0.0125 0.0132 0.0109 0.0119 0.0113 0.0115
100 11 0.0046 0.0060 0.0067 0.0057 0.0062 0.0054 0.0057
200 14 0.0021 0.0027 0.0033 0.0029 0.0030 0.0029 0.0029
500 19 0.0008 0.0010 0.0015 0.0013 0.0014 0.0011 0.0012

Study 3 100 3 0.0013 0.0034 0.0034 0.0015 0.0009 0.0016 0.0011
100 11 0.0016 0.0041 0.0039 0.0016 0.0011 0.0020 0.0014

Study 4 100 3 0.0013 0.0032 0.0031 0.0009 0.0012 0.0011 0.0013
100 11 0.0016 0.0042 0.0040 0.0010 0.0013 0.0014 0.0016

Study 5 100 3 0.0019 0.0064 0.0086 0.0023 0.0032 0.0023 0.0028
100 11 0.0020 0.0065 0.0115 0.0029 0.0036 0.0033 0.0034

Study 6 100 3 0.0062 0.0143 54.741 31.411 31.302 0.1711 0.1293
100 11 0.0059 0.0119 182.62 70.859 57.323 0.0401 0.0314

Study 7 100 3 0.0022 0.0059 0.0354 0.0106 0.0136 0.0092 0.0109
100 11 0.0019 0.0054 0.0435 0.0118 0.0150 0.0071 0.0065

admit an explicit Cholesky decomposition for different error
distributions.

The results for the above seven simulation studies are pre-
sented in Table 1. First, we see clearly that the proposed MPL
method has generally smaller SAMSEs than the GEE and
QIF methods for the errors under study. Second, the results
based on multivariate normal errors in Studies 3 and 4 seem
to be in favor of the GEE and QIF approaches using AR-1
and exchangeable correlation structures, respectively. In these
cases, our proposed method produces sightly larger SAMSEs
than the GEE and QIF methods using the correct correlation
structures. The new method works well without the specifi-
cation of the correlation matrix and is thus robust regardless
of the correlation structure. Third, consistent with the gen-
eral knowledge in longitudinal data analysis, our proposed
method has taken into account the within-subject correlation
and thus has smaller SAMSEs than the MPL method based
on the independence estimating procedure. Fourth, even if
the covariance matrix being studied does not admit a clear
Cholesky decomposition, our proposed method continues to
perform well in Studies 3–7. Fifth, Study 2 shows that our
proposed approach performs satisfactorily when the dimen-
sion of the parameter pn grows with the sample size n. Sixth,
the proposed method is resistant to heavy-tailed errors being
considered in Study 5. Seventh, when the covariance matrix
of the error diverges (e.g., Cauchy distribution in Study 6),
our method works well while the GEE method breaks down.
Finally, the proposed method is robust against outliers as is
seen in Study 7. Our simulation results generally demonstrate
excellent robust performance of our proposed approach for
longitudinal data analysis.

Next, we examine the accuracy of the estimates of the
covariance matrix of β̂∗

MPL. “SD” represents the sample stan-
dard deviation over the 200 estimates and is regarded as the

true standard error. “SE” represents the sample average of
200 standard errors using the covariance estimating method
described at the end of Section 2.2. Table 2 compares SD
with SE for all models used above for the case of n = 100
and p = 3. We observe that the covariance estimating method
works remarkably well. Similar conclusions can be drawn for
other sample sizes and dimension of covariates being studied
and the results are not reported here in order to save space.

Finally, we conduct the following simulation studies to
investigate the performance of our proposed method when
the covariance matrix of the responses is covariate-dependent,
although it is assumed that the covariance matrix is static
throughout the article.
Studies 3∗.The settings here is identical to that in
Studies 3 except that the covariance matrix is set

to be S
1/2
i �

(3)
mi S

1/2
i , where Si = diag

(
exp(

∑p

l=1
xi1l/p +

zi1), . . . , exp(
∑p

l=1
ximil/p + zimi

)
)
, where zij are identically

Table 2
Comparisons of standard deviation (SD) and estimated

standard error (SE) of the MPL estimators for n = 100 and
p = 3

β̂∗
1 β̂∗

2 β̂∗
3

SD SE SD SE SD SE

Study 1 0.0536 0.0519 0.0635 0.0671 0.0639 0.0673
Study 3 0.0309 0.0298 0.0370 0.0376 0.0394 0.0382
Study 4 0.0338 0.0324 0.0406 0.0393 0.0402 0.0385
Study 5 0.0371 0.0389 0.0443 0.0461 0.0500 0.0507
Study 6 0.0689 0.0679 0.0799 0.0826 0.0875 0.0876
Study 7 0.0399 0.0398 0.0500 0.0514 0.0495 0.0510
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Table 3
The simulated average mean squared errors for the estimated regression parameters for different methods when covariance

matrices are covariate-dependent. The independence MPL estimating method is abbreviated as MPL.I

GEE QIF

n p MPL MPL.I Ind Excha AR-1 Excha AR-1

Study 3∗ 100 3 0.0026 0.0048 0.0084 0.0056 0.0055 0.0057 0.0054
100 11 0.0029 0.0051 0.0079 0.0047 0.0043 0.0047 0.0041

Study 4∗ 100 3 0.0028 0.0065 0.0083 0.0049 0.0065 0.0050 0.0056
100 11 0.0025 0.0050 0.0079 0.0038 0.0047 0.0038 0.0042

Study 5∗ 100 3 0.0037 0.0075 0.0242 0.0151 0.0205 0.0124 0.0135
100 11 0.0037 0.0067 0.0204 0.0105 0.0129 0.0076 0.0087

Study 6∗ 100 3 0.0060 0.0107 298.41 166.61 149.47 0.3367 0.2505
100 11 0.0091 0.0125 5046.7 763.08 1127.5 0.0708 0.0874

Study 7∗ 100 3 0.0032 0.0066 0.0948 0.0579 0.0663 0.0327 0.0355
100 11 0.0041 0.0069 0.0877 0.0472 0.0602 0.0148 0.0147

and independently distributed from N(0, 1), for j = 1, . . . , mi

and i = 1, . . . , n.
The setings in Studies 4∗–7∗ are identical to those in Studies

4–7, except that the covariance matrix is covariate-dependent
as in Study 3∗. The results are reported in Table 3. In general,
the good performances observed in Studies 3–7 still hold when
the covariance matrices are covariate-dependent. The results
for performances of the covariance estimating method here
are reported in the Supplementary Materials.

3.2. The Diastolic Blood Pressure Data

The data were collected by the Akdeniz University Hos-
pital Anesthesiology and Reanimation Department during
the period of January 2008 to January 2011. There are
375 patients and the diastolic blood pressures (DBP) were
observed 9 times for each individual, which were measured
every 5 minutes during the surgery. Hypertension is a common
clinical problem and a major risk factor for cardiovascular
disease and stroke. Due to the lack of evidence supporting
heart rate lowering as a therapeutic strategy in hypertension,
heart rate is generally not a major consideration in choosing
antihypertensive medications (Reule and Drawz, 2012). We
are interested in the relationship between the DBP and the
pulse, which may help to investigate the chronotropic therapy
in hypertension.

The slope coefficient estimates based on the proposed MPL
approach, the independence MPL estimating approach, the
GEE and QIF approaches using independence, exchangeable,
and the AR-1 working correlation structures and their cor-
responding standard errors are reported in Table 4. We also
report the results in Table 4 of MLE estimates by assuming
the responses from the i-th subject follows the multivari-
ate normal distribution with mean (β0 + β1 ∗ pulsei1, . . . , β0 +
β1 ∗ pulsei9) and covariance �9×9, where pulseij is the pulse
value of the j-th observation for subject i, for i = 1, . . . , n. It
is interesting to see that an opposite conclusion (i.e., negative
slope estimate) may be produced if the dependence nature of
the longitudinal data is totally ignored. We also note that the
slope estimates from MPL and GEE are very different. This
may be due to the fact that the 9-dimensional responses from

the 375 subjects are not multivariate-normally distributed,
since both p-values of skewness and kurtosis statistics is less
than 10−5 when the Mardia’s multivariate normality test is
conducted (Mardia, 1974). Again, the standard errors of the
MPL estimates are generally the smallest among all methods
being studied. The test for the hypothesis that the DBP and
pulse have no relationship yields a p-value of 0.0323, indicat-
ing that there is no relationship between DBP and pulse.

We next evaluate the efficiency of the five methods via a
bootstrapping method. We randomly choose a total of 200
individuals as training data to fit the model and various meth-
ods are used to estimate the regression coefficients and the
corresponding standard errors. This procedure is repeated
100 times under the sampling-with-replacement scheme. The
results are reported in Table 4. Consistent with our simulation
results, our proposed MPL method yields the most efficient
estimates. Program codes prepared in R have been developed
to implement the methodologies developed in this article and
are available from the first author upon request.

4. Discussion

We proposed a novel profile likelihood based method for
longitudinal data analysis. The proposed method takes the
within-subject correlation into account and works well with-
out specifications of the likelihood as well as the correlation
structure. Our theoretical and numerical results show that our
proposed methods produce consistent and efficient estimates.

In this article, we only considered monotone missing data
patterns and the covariance matrix is assumed to be con-
stant for different subjects in this article. We are currently
studying a new profile likelihood based method which could
deal with non-monotone missing data patterns, and incorpo-
rate the time and covariate information into the covariance
structure of the longitudinal observations.

There are several possible directions for future study. First,
it is interesting to investigate the theory of the proposed
method under the “large n, diverging p” asymptotic frame-
work (Wang, 2011; Lian, Liang, and Wang, 2014; Zhang and
Wang, 2016). Second, a large number of time points in lon-



Profile Likelihood Approach 227

Table 4
The estimates and the corresponding standard errors (SE), and the standard deviations (SD) and the means of standard

errors (MSE) over 100 replications for the real data using different methods. The independence MPL estimating method is
abbreviated as MPL.I

GEE QIF

MPL MPL.I Ind Excha AR-1 Excha AR-1 MLE

Estimate 0.0274 −0.0008 0.1261 0.3992 0.3149 0.3381 0.3786 0.2265
SE 0.0128 0.0244 0.0464 0.0363 0.0377 0.0353 0.0342 0.0192

Bootstrap
SD 0.0259 0.0439 0.0473 0.0336 0.0373 0.0435 0.0420 0.0306
MSE 0.0220 0.0464 0.0624 0.0492 0.0490 0.0476 0.0459 0.0259

gitudinal setting may be observed for each subject (Xie and
Yang, 2003). It would be of great research interest to consider
“large n, diverging m” asymptotic properties for our proposed
approach. Third, one could adopt the within-subject correla-
tion via alternative decompositions (Rothman, Levina, and
Zhu, 2010; Zhang and Leng, 2012). These topics are beyond
the scope of the current article and will be pursued elsewhere.

5. Supplementary Materials

Web Appendices referenced in Sections 2–3, the R code for
the proposed procedures are available with this article at the
Biometrics website on Wiley Online Library.

Acknowledgements

We are grateful to the editor, an associate editor, and
two reviewers for their constructive comments that greatly
improved the article. Chen’s research is supported in part
by National Nature Science Foundation of China (Project
No. 11401593), Specialized Research Fund for the Doc-
toral Program of Higher Education of China (Project
No. 20130162120086) and Hunan Provincial Natural Sci-
ence Foundation of China (Project No. 2016JJ3138). Tang’s
research is fully supported by a grant from the Research Grant
Council of the Hong Kong Special Administration Region
(Project No. UGC/FDS14/P01/16). Gao’s research is sup-
ported in part by National Nature Science Foundation of
China(No. 11471068).

References

Chen, Z., Tang, M. L., Gao, W., and Shi, N.-Z. (2014). New robust
variable selection methods for linear regression models. Scan-
dinavion Journal of Statistics 41, 725–741.

Diggle, P. J., Heagerty, P. J., Liang, K. Y., and Zeger, S. L. (2002).
Analyis of Longitudinal Data. New York: Oxford University
Press.

Duin, R. P. W. (1976). On the choice of smoothing parameters
of Parzen estimators of probability density functions. IEEE
Transactions on Computers 25, 1175–1179.

Fan, J., Huang, T., and Li, R. (2007). Analysis of longitudinal
data with semiparametric estimation of covariance func-
tion. Journal of the American Statistical Association 102,
632–641.

Leung, D. H. Y., Wang, Y. G., and Zhu, M. (2009). Efficient param-
eter estimation in longitudinal data analysis using a hybrid
GEE method. Biostatistics 10, 436–445.

Lian, H., Liang, H., and Wang, L. (2014). Generalized addi-
tive partial linear models for clustered data with diverging
number of covariates using GEE. Statistic Sinica 24,
173–196.

Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis
using generalized linear model. Biometrika 73, 13–22.

Lin, X. and Carroll, R. J. (2006). Semiparametric estimation in
general repeated measures problems. Journal of the Royal
Statistical Society, Series B 68, 69–88.

Linton, O., Sperlich, S., and Van Keilegom, I. (2008). Estimation of
a semiparametric transformation model. Annals of Statistics
36, 686–718.

Lombardia, M. J. and Sperlich, S. (2008). Semiparametric inference
in generalized mixed effects models. Journal of the Royal
Statistical Society, Series B 70, 913–930.

Mardia, K. V. (1974). Applications of some measures of mul-
tivariate skewness and kurtosis for testing normality and
robustness studies. Sankhy A 36, 115–128.

Newey, W. K. and McFadden, D. (1994). Large sample estimation
and hypothesis testing. In Handbook of Econometrics, R. F.
Engle and D. McFadden (eds), 4, 2111–2245. Amsterdam:
Elsevier Science.

Pourahmadi, M. (1999). Joint mean-covariance models with
applications to longitudinal data: Unconstrained parameter-
isation. Biometrika 86, 677–690.

Pourahmadi, M. (2000). Maximum likelihood estimation of gen-
eralised linear models for multivariate normal covariance
matrix. Biometrika 87, 425–435.

Qin, J. and Lawless, J. (1994). Empirical likelihood and general
estimating equations. Annals of Statistics 22, 300–325.

Qu, A., Lindsay, B., and Li, B. (2000). Improving generalised
estimating equations using quadratic inference functions.
Biometrika 87, 823–836.

Reule, S., Drawz, P. E. (2012). Heart rate and blood pressure:
Any possible implications for management of hypertension?
Current Hypertension Reports 14, 478–484.

Robins, J. M. and Rotnitzky, A. (1995). Semiparanetric effi-
ciency in multivariate regression models with missing
data. Journal of the American Statistical Association 90,
122–129.

Rothman, A., Levina, L., and Zhu, J. (2010). A new approach
to Cholesky-based covariance regularization in high dimen-
sions. Biometrika 97, 539–550.

Rubin, D. B. (1987). Multiple Imputation for Survey Nonresponse.
New York: Wiley.



228 Biometrics, March 2018

Wang, L. (2011). GEE analysis of clustered binary data with
diverging number of covariates. Annals of Statistics 39,
389–417.

Wang, Y. G. and Carey, V. (2003). Working correlation structure
misspecification, estimation and covariate design: impli-
cations for generalised estimating equations performance.
Biometrika 90, 29–41.

Wang, N., Carroll, R. J., and Lin, X. (2005). Efficient semi-
parametric marginal estimation for longitudinal/clustered
data. Journal of the American Statistical Association 100,
147–157.

Xie, M. and Yang, Y. (2003). Asymptotics for generalized esti-
mating equations with large cluster sizes. The Annals of
Statistics 31, 310–347.

Ye, H. and Pan, J. (2006). Modelling of covariance structures
in generalised estimating equations for longitudinal data.
Biometrika 93, 927–941.

Zhang, W. and Leng, C. (2012). A moving average Cholesky
factor model in covariance modeling for longitudinal data.
Biometrika 99, 141–150.

Zhang, X. and Wang, J. (2016). From sparse to sense functional
data and beyond. The Annals of Statistics 44, 2281–2321.

Zhou, J. and Qu, A. (2012). Informative estimation and selection
of correlation structure for longitudinal data. Journal of the
American Statistical Association 107, 701–710.

Received January 2016. Revised April 2017.
Accepted April 2017.


