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Abstract. Graph isomorphism (GI) has occupied both theoreticians
and applied scientists since the early 1950s. Over the years, several
approaches and algorithms with which an isomorphism between two
graphs can be tested have been developed. A general approach is the
Weisfeiler–Lehman (WL) test, which is based on a coloring algorithm
and provides a necessary criterion for graph isomorphism. However, the
WL test is restricted to examining graphs with only node attributes.
Therefore, this paper presents two extensions of the WL algorithm to
allow for testing on arbitrary graphs. One considers edge attributes, and
the other tests the isomorphism on dynamic graphs. Additionally, we
extend the WL-hierarchy by the attributed and dynamic WL tests and
show that it is a partial order, which induces a lattice. In the future, this
may allow for practical implications coming from lattice theory.
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1 Introduction

The graph isomorphism (GI) problem lays in the class NP and is thus of particular
theoretical interest. Furthermore, the identification of two isomorphic graphs
appears to be highly relevant in a broad range of applications, from the distinction
of molecular graphs in chemistry to computation graphs in computer science.
The history of approaches to solve the problem approximately reaches back to
the 1970s, and the so-called Weisfeiler–Lehman (WL) method was considered as
one possible candidate to solve the GI problem in polynomial time. It iteratively
generates a graph coloring based on the neighborhood structure of the nodes
and compares the used color sets for two graphs after termination. Recently, the
interest in WL tests has rapidly grown in machine learning since they can also
be used to describe the expressive power of Graph Neural Networks (GNNs).
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It has been proven that common GNNs can recognize the same class of graphs as
1-WL [1] [2]. However, there exist classes of graphs that are not distinguishable
by the 1-WL test while being not isomorphic; therefore, the 1-WL equivalence is
a necessary condition for two graphs to be isomorphic. In [3], a great number
of non-isomorphic graph pairs are presented that are not distinguishable by the
WL test. This problem motivated the development of more powerful k-WL tests
[4] for k ∈ N following the WL-hierarchy :

1− WL ⊆ 2− WL ⊂ . . . ⊂ k − WL ⊂ . . .

In particular, this result shows that if there are two graphs that are not distinguish-
able by a k−WL test, there must be an l−WL test with l > k that can distinguish
them.

1-WL = 2-WL

3-WL

k-WL

GI

3-AWL = 3-DWL

k-AWL = k-DWL

AGI = DGI

1-AWL  = 2-AWL
 = 1-DWL
 = 2-DWL

Fig. 1. The WL / AWL complete lat-
tice. Its minimum is the 1-WL test,
equivalent to the 2-WL test, and its
maximum is the Attributed Graph Iso-
morphism (AGI) and Dynamic Graph
Isomorphism (DGI) test.

In practice, however, the k−WL tests
by definition are just applicable to simple
node-attributed graphs. Since in many the-
oretical as well as technical applications
the used graphs are more complex, as, e.g.,
heterogeneous graphs, multigraphs, hyper-
graphs or even dynamic graphs, the usual
k−WL test cannot be used to distinguish
them. For this reason, in this paper we in-
troduce the attributed and dynamic exten-
sions of the k−WL tests, namely k−AWL
and k−DWL in Sec. 3.

Attributed graphs with edge and node
labels and dynamic graphs are particularly
interesting for practical and theoretical
reasons. Indeed, attributed graphs with
edge and node labels and dynamic graphs
are interesting since it has been proved
that they can act as a generic form for
other graph types, as most common other
types of graphs can be transformed into
attributed graphs ([5]). Dynamic graphs
are interesting because their theoretical
analysis differs from static graphs.

It is worth mentioning that the k-AWL and k-DWL, which we will discuss,
have been designed as the counterparts of GNNs. Even if the proof cannot be
included for space restrictions, there exist generic GNN models that operate on
attributed and dynamic graphs and whose expressive power is described by the
k-AWL and k-DWL models presented in the paper, respectively.

Extending the original WL-hierarchy in Sec. 4 changes its total order to a
partial order, where the 3−WL and the attributed 1−WL are not comparable
(cf. Thm. 4.05). Additionally, in Thm. 4.06, we prove that 1−DWL= 1−AWL.
A very promising additional result is that the new extended version of the WL-
hierachy induces a complete and distributive lattice with the partial order defined
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in Cor. 4.07 by: A ≤ B iff the partition PA induced by the test A is equal or
coarser than the partition PB induced by the test B. The minimum element of
this lattice is the 1-WL test, equivalent to the 2-WL test, while the maximum
element is the Attributed Graph Isomorphism (AGI) test and Dynamic Graph
Isomorphism (DGI) test defined in Sec.2.

In the future, the goal is to find useful implications from lattice theory for
the GI problem with this result. Some possible research questions regarding that
would be, e.g.,
1. How big is the difference |PB | − |PA| of the partitions PA,PB if A ≤ B?
2. Which approaches from lattice theory can be applied to the WL hierarchy

to infer beneficial consequences from it?
3. Is it possible for two graphs to find the minimal WL-test capable of

distinguishing the graphs?
4. What are minimal requirements to a subset of WL-tests such that it

remains a lattice, or that we obtain a semilattice?

2 Preliminaries

The following definitions and preliminaries are listed to ensure that this paper is
self-contained and enables effortless understanding.

2.1 Graphs

In this paper, only finite graphs are under consideration.

Definition 2.1.01 (Different Graph Types). The elementary graphs are defined
in [5] as follows.
1. A directed graph (digraph) is a tuple G = (V, E) containing a set of nodes

V ⊊ N and a set of directed edges given as tuples E ⊆ V × V.
2. A (generalized) directed hypergraph is a tuple G = (V, E) with nodes

V ⊊ N and hyperedges E ⊆ {(x, fi)i | x ⊆ V, fi : x → N0} that include a
numbering map fi for the i-th edge (x, f)i which indicates the order of the
nodes in the (generalized) directed hyperedge.

An elementary graph G = (V, E) is called
1. undirected if the directions of the edges are irrelevant, i.e.,

– for directed graphs: if (u, v) ∈ E whenever (v, u) ∈ E for u, v ∈ V.
– for directed hypergraphs: if fi : x → 0 for all (x, fi)i ∈ E4.

2. multigraph if the node or edge sets are multisets.
3. heterogeneous if the nodes or edges can have different types. I.e., the node

set is determined by V ⊆ N × S with a node type set S and thus, a node
(v, s) ∈ V is given by the node v itself and its type s. The edges can be extended
by a set R that describes their types, to (e, r) ∀ e ∈ E of edge type r ∈ R.
Otherwise, the graph is called homogeneous.

4 fi(x) = 0 encodes that x is an undirected hyperedge
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4. attributed if the nodes V or edges E are equipped with node or edge
attributes5, formally given by a node and edge attribute function, respectively,
i.e. α : V → A and ω : E → W, where A and W are arbitrary attribute sets.

Definition 2.1.02 (Dynamic Graph). Let T = {ti}i∈I ⊊ R with I = [0, . . . , l] ⊊
N be a set of timestamps. Each timestamp ti can be bijectively identified by
its index i. W.l.o.g., from now on we refer to the set of timestamps as I. Then
a (discrete) dynamic graph can be considered as a vector of static graph
snapshots, i.e., G = (Gt)t∈I , where Gt = (Vt, Et, αt, ωt) ∀t ∈ I.

Furthermore,

αv(t) :=

{
α(v, t), v ∈ Vt

⊥, otherwise
and ω{u,v}(t) :=

{
ω({u, v}, t), {u, v} ∈ Et
⊥, otherwise

,

where α : V × I → A ∪ ⊥ and ω : E × I → B ∪ ⊥ define the vector of dynamic
node/edge attributes. In particular, αv(t) =⊥ means that at the timestamp t
the node v does not exist. Analogoulsy, ω{u,v}(t) =⊥ encodes the absence of the
edge at that time. Moreover, let

Ωnev (t) =
(
ω{v,x1}(t), . . . , ω{v,x|nev(t)|}(t)

)
t∈I

be the sequence of dynamic edge attributes of the neighborhood corre-
sponding node at each timestamp.

In [5] it has been shown that every graph type is transformable into a static
attributed undirected homogeneous graph (SAUHG). Thus, it in the
following, only the SAUHG is considered when talking about attributed graphs.
W.l.o.g., the attribute spaces are set to the same Rk vector space. Furthermore,
there exists a bijective transformation from any arbitrary graph type defined in
Def. 2.1.01 to the SAUHG. They result from concatenating transformations for
single graph properties from [5] and are sketched in the following.

Remark 2.1.03 (Graph Type Transformations). Given a graph of arbitrary
type, the concatenation of suitable transformations from the following list lead
to the SAUHG type.
1. Hypergraph → Simple Graph: Transform undirected hyperedges to

fully connected subgraphs and directed edges to chained directed bipartite
subgraphs given the hyperedge direction.

2. Multigraph → Simple Graph: Encode multiple nodes or edges in an
additional counter each and, i.a., concatenate the corresponding attributes
in a vector.

3. Dynamic → Static: Encode the dynamical behaviour of the graph into a
timeseries of node and edge attributes accordingly.

4. Unattributed → Attributed: Add empty attributes to each node or edge.
5. Directed → Undirected: Replace all directed edges by undirected ones and

add the direction as encoded additional information into the edge attributes.
5 In some literature attributes are also called features.
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6. Heterogenous → Homogeneous: Encode the different node or edge types
in an additional dimension of the node or edge attribute, respectively.

The graph isomorphism (GI) in comparison distinguishes graphs by their
structure [6]. To substantiate the usage of the WL test on attributed and dynamic
graphs, the GI is extended, respectively, as follows.

Definition 2.1.04 (Graph Isomorphism). Let G1 and G2 be two static graphs,
then G1 = (V1, E1) and G2 = (V2, E2) are isomorphic to each other G1 ≈ G2, iff
there exists a bijective function ϕ : V1 → V2, with
1. v1 ∈ V1 ⇐⇒ ϕ(v1) ∈ V2 ∀ v1 ∈ V1,
2. {v1, v2} ∈ E1 ⇐⇒ {ϕ(v1), ϕ(v2)} ∈ E2 ∀ {v1, v2} ∈ E1

In case both graphs are attributed, i.e., G1 = (V1, E1, α1, ω1) and G2 = (V2, E2, α2, ω2),
then G1 ≈ G2 iff additionally there exist bijective functions φα : A1 → A2 and
φω : B1 → B2 with Ai := im(αi), Bi := im(ωi) for i = 1, 2, and
1. φα(v1) = α2(ϕ(v1)) ∀ v1 ∈ V1,
2. φω({u1, v1}) = ω2(ϕ(u1), ϕ(v1)) ∀ {u1, v1} ∈ E1.

Furthermore, two dynamic graphs are isomorphic if all the static graph snapshots
in each timestemp are isomorphic.

2.2 Weisfeiler-Lehman Algorithms

To analyze if two given graphs are isomorphic, in general, is a non-trivial problem
that lays in the class NP [6]. However, the Weisfeiler-Lehman (WL) test can
be used to at least distinguish non-isomorphic graphs. If the WL test outputs
two graphs as isomorphic the isomorphism is likely but not given for sure.

The 1-WL test is based on a graph coloring algorithm that is applied in
parallel on two input graphs. They are detected as non-isomorphic if the number
of colors used in both colorings after termination do not coincide. When the
numbers are equal, the graphs are only possibly isomorphic.

Definition 2.2.01 (1-WL test). Let HASH be a bijective function that encodes
every possible node feature with a color and G = (V, E , α). Then, the 1-WL test
is recursively defined on the graph nodes by

– At iteration i = 0 the color is set to the hashed node feature:

o(0)v = HASH(αv)

– For any other iteration i > 0 it holds

o(i)v = HASH
((

o(i−1)
v , o(i−1)

nev

))
.

The algorithm terminates if the number of colors between two iterations does
not change, i.e., if

|{oiv | v ∈ V}| = |{oi+1
v | v ∈ V}|.
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So the termination in Def. 2.2.01 corresponds to a stability of the colors of
each node after an iteration. Therefore, it is reasonable to define two graphs as
equivalent if their node colors result in the same stable position which leads to
the following expression of WL-equivalence.

Definition 2.2.02 (WL-equivalence). Let G1 = (V1, E1, α1) and G2 = (V2, E2, α2)
be two graphs. Then G1 and G2 are WL-equivalent, noted by G1 ∼WL G2, iff
for all nodes v1 ∈ V1 there exists a corresponding node v2 ∈ V2 with ov1 = ov2 .

Definition 2.2.03 (k-WL Test). Let

Ns,j = {(s1, ..., sj−1, r, sj+1, ..., sk) |r ∈ V}

be the j-th neighborhood of a k-tuple s = (s1, ..., sk) ∈ Vk. It is obtained by
replacing the j-th component of s by every node from V . In iteration 0, the
algorithm initializes each k-tuple with its atomic type, i.e., two k-tuples s, s′ ∈ Vk

get the same color if the assignment si 7→ s′i induces an isomorphism between
the subgraphs induced from the nodes from s and s′, respectively.

For iteration i > 0, we define

O
(i)
s,j = HASH

(
(o

(i−1)
s′ |s′ ∈ Nj(s))

)
,

and set
o(i)s = HASH

(
o(i−1)
s , (O

(i)
s,1, ..., O

(i)
s,k)

)
Hence, two tuples s and s′ with o

(i−1)
s = o

(i−1)
s′ get different colors in iter-

ation i if there exists j ≤ k such that the number of j−neighbors of s and s′,
respectively, colored with a certain color is different. The algorithm then proceeds
analogously to the 1-WL. By increasing k, the algorithm gets more powerful in
terms of distinguishing non-isomorphic graphs, i.e., for each k ≥ 2, there are
non-isomorphic graphs which can be distinguished by the (k + 1)-WL but not by
the k-WL [7].

2.3 Lattice

The mathematical structure of a lattice can be fully characterized using algebraic
terms as well by order properties. The partial order coming from the WL-hierarchy
extension, including the k−dimensional attributed and dynamic WL test results
in a lattice of all the considered WL tests (cf. Sec. 4).

Definition 2.3.01 (Semilattice). Let L =< L, · > be a commutative semi-group.
If ∀a ∈ L holds a · a = a (i.e. every element in A is idempotent) then L is a
semilattice.

Definition 2.3.02 (Lattice). Let L =< L,∨,∧ > be an algebra such that
< L,∨ > and < L,∧ > are semilattices.
L is a lattice if the absorption laws hold, i.e. if

a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a ∀a, b ∈ L.
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The lattice operations ∨ and ∧ are called join and meet. It is particularly
important to underline the relation between lattices and partially ordered sets
(posets). Let L be a set, ≤ a partial order on L (i.e., ≤ is reflexive, anti-symmetric
and transitive) and X ⊆ L. Then, an element a ∈ L is an upper bound of X in L,
such that x ≤ a ∀x ∈ X and, if x ≤ b ∀x ∈ X then a ≤ b, if it exists. In a similar
fashion the lower bound can be defined. Given X ⊆ L, we will indicate with ∨X
and ∧ the upper bound and the lower bound respectively (if they exist).

Theorem 2.3.03. Let L be a poset such that any X ⊆ L, |X| < ∞, admits
upper and lower bounds. Then, < L,∨,∧ > is a lattice where, ∀a, b ∈ L

a ∨ b =
∨

{a, b} and a ∧ b =
∧

{a, b}.

Vice versa, if < L,∨,∧ > is a lattice, then the relation a ≤ b iff a ∨ b = b iff
a ∧ b = a is a partial order.
Every finite subset X ⊆ L , X = {a1, . . . , an} admits upper and lower bounds
defined by ∨

X = a1 ∨ · · · ∨ an
∧

X = a1 ∧ · · · ∧ an.

Definition 2.3.04. Let L be a lattice. Then a, b ∈ L are comparable if a ≤ b
or b ≤ a. Otherwise, they are incomparable.

If the elements of L are pairwise comparable, the lattice is fully ordered and
it is called a chain. We say that a covers b if {c : a ≤ c ≤ b} = {a, b}.

Definition 2.3.05 (Complete Lattice). A lattice L is complete if each subset
of L admits upper and lower bounds.

Definition 2.3.06 (Distributive Lattice). A lattice L is distributive if
∀a, b, c ∈ L

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

There are two ‘minimal’ counterexamples to distributivity, namely the non-
distributive lattices M3 and N5, depicted in Figure 2.

Fig. 2. The lattices M3 (left) and N5(right).

The following theorem [8] characterizes distributive lattices in terms of ‘for-
bidden substructures’.

Theorem 2.3.07. Let L be a lattice. Then L is distributive iff, L does not
contain an unbounded sublattice which is isomorphic to M3 or N5.
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3 WL Test Extensions

To exclude the isomorphism for arbitrary graph types, the WL test is preseneted
here. In the attributed extension, the coloring update is dependent on the edge
attributes and the dynamic version is aligned to the sequential definition of
dynamic graphs.

3.1 WL Tests for Attributed Graphs

To cover all graph types introduced in Def. 2.1.01 a more powerful WL test is
needed, that can handle attributed edges.

Definition 3.1.01 (Attributed 1-WL test). Let HASH be a bijective function
that codes every possible node feature with a color and G = (V, E , α, ω). The
attributed 1-WL (1-AWL) test is defined recursively through the following.

– At iteration i = 0 the color is set to the hashed node attribute:

c(0)v = HASH(αv)

– At iteration i > 0 the HASH function is extended to the edge weights:

c(i)v = HASH
((

c(i−1)
v , Ωnev , c

(i−1)
nev

))
Definition 3.1.02 (Attributed 1-WL equivalence). Let G1 = (V1, E1, α1, ω1)
and G2 = (V2, E2, α2, ω2) be two SAUHGs. Then G1 and G2 are attributed
WL-equivalent, noted by G1 ∼AWL G2, if and only if for all nodes v1 ∈ V1

there exists a corresponding node v2 ∈ V2 with cv1 = cv2 . Analogously, two nodes
u ∈ V1, v ∈ V2 are attributed WL-equivalent, noted by u ∼AWL v if and only if
cu = cv.

Remark 3.1.03. Due to the fact that the coloring of node pairs after the 1-AWL
are equal, two graphs are 1-AWL equivalent iff the structure is determined as
possibly isomorphic analogously to the 1-WL test, and the attributes of the node
pairs are equal.

Remark 3.1.04. Having a closer look at the 1-AWL as defined in Def. 3.1.01
one might think that the extension is quite trivial. We can even observe later in
Sec. 4 that the extension is just slightly more powerful than the initial 1-WL test.
Indeed, there are many possible ways to define an extension for the attributed
case, that can be even more powerful than the 1-AWL. One example could be,

c(i)v = HASH
(
c(i−1)
v , {(c(i−1)

u , ω{v,u})|u ∈ nev}
)
.

Definition 3.1.05 (Attributed k-WL Test). Given a k-tuple s = (s1, ..., sk) ∈ Vk,
the j-th neighborhood of s is defined as in 2.2.03. It is an inductive procedure:
in iteration i = 0, the algorithm labels each k-tuple with its atomic type, i.e.,
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two k-tuples s and s′ in Vk get the same color if the map si 7→ s′i induces an
attributed isomorphism between the sub–graphs induced from the nodes from s
and s′, respectively. For iteration i > 0, we define the list of weights of the j-th
neighborhood of s as:

Ωs,j =
(
ω{x,y}|(x, y) ∈ E and x,y are in the same tuple in Ns,j

)
.

Then we set
C

(i)
s,j = HASH

(
(c

(i−1)
s′ |s′ ∈ Nj(s))

)
,

and
c(i)s = HASH

(
c(i−1)
s , (Ωs,1, ..., Ωs,k), (C

(i)
s,1, ..., C

(i)
s,k)

)
.

Analoguously to the k-WL test, the k-AWL proceeds as the 1-WL test and
two tuples s and s′ with o

(i−1)
s = o

(i−1)
s′ get different colors in iteration i if there

exists j ≤ k such that the number of j−neighbors of s and s′, respectively, colored
with a certain color is different. Additionally, an increasing k implies a more
powerful k-AWL test.

3.2 WL Tests for Dynamic Graphs

For the dynamic WL test an extended version of the attributed 1-WL test
(Def. 3.1.01) is defined. Note that it is not equal to an attributed extension of
the r-dimensional WL-test defined in [4] since here a special subset of r nodes is
used. In the literature, there are several architectures built to deal with dynamic
graphs. The 1-DWL test is defined as follows since it mirrors a DGNN [9], a
particular GNN architecture that can learn on dynamic graphs. Based on the
modified WL test, the corresponding dynamic WL equivalence is then defined.

Definition 3.2.01 (Dynamic 1-WL test). Let G = (Gt)t∈I with Gt = (Vt, Et, αt, ωt)
a dynamic graph. Let HASHt be a bijective function that encodes every possible
node feature of Gt with a color. Note that, for each timestamp t, the color set
could change. The dynamic 1-WL (1-DWL) test generates a vector of color sets
one for each timestamp t ∈ I by:

– At iteration i = 0 the color is set to the hashed node attributes:

c(0)v (t) = HASHt (αv(t))

– At iteration i > 0 the HASHt function is extended to the edge weights:

c(i)v (t) = HASHt

((
c(i−1)
v (t), Ωnev(t), c

(i−1)
nev(t)

(t)
))

The algorithm again terminates when the node colorings for both dynamic graphs
stagnate.
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Definition 3.2.02 (Dynamic 1-WL equivalence). Let G1 = (G
(1)
t )t∈I and

G2 = (G
(2)
t )t∈I be dynamic graphs. Then G1 and G2 are dynamic WL equiva-

lent, noted by G1 ∼DWL G2, if and only if for all nodes v1 ∈ V(1)
(t) there exists a

corresponding node v2 ∈ V(2)
(t) with cv1(t) = cv2(t) for all t ∈ I. Analogously, two

nodes are said to be dynamic WL equivalent if their colors resulting from the
WL test are equal for all timestamps.

Remark 3.2.03. As stated in Rem. 3.1.04, the 1-AWL test presented in this
paper is not the most powerful extension one could define. The same reasons
hold for 1-DWL test. Indeed, a more powerful approach could be to additionally
consider an aggregation over the past colours of each node.

Definition 3.2.04 (dynamic k-WL Test). Given a k-tuple s = (s1, ..., sk) ∈ Vk
t ,

the j-th neighborhood of s at time t is obtained by replacing the j-th component
of s by every node from Vt :

Ns,j(t) = {(s1, ..., sj−1, r, sj+1, ..., sk) |r ∈ Vt}

At iteration i = 0, the algorithm labels each k-tuple with its atomic type ana-
loguously to the k-AWL, but for any t ∈ I. For iteration i > 0, we define the list
of weights of the j-th neighborhood of s at time t as:

Ωs,j =
(
ω{x,y}|(x, y) ∈ E and x,y are in the same tuple in Ns,j(t)

)
.

Then we set
C

(i)
s,j(t) = HASHt

(
(c

(i−1)
s′ (t)|s′ ∈ Ns,j(t))

)
,

and

c(i)s (t) = HASHt

(
c(i−1)
s (t), (Ωs,1(t), ..., Ωs,k(t)), (C

(i)
s,1(t), ..., C

(i)
s,k(t))

)
.

Note that the HASHt function can be different in each timestamp.

4 Weisfeiler-Lehman Hierarchy

In this section the attributed and dynamic WL tests are positioned into the
Weisfeiler-Lehman Hierarchy.

Theorem 4.01. 1-WL test ⊊ 1-AWL test

Proof. First, we show that 1-WL test is a subset of the 1-AWL test and then we
give a counter example for them being equal.

⊂ Let g1 := (V1, E1), g2 := (V2, E2) be two graphs with g1 ∼1−WL g2. Introduc-
ing empty attribute functions αi : Vi → ∅, ωi : Ei → ∅ for i = 1, 2 leads to
the the same initial coloring of the nodes and unattributed edges, and thus
to the performance of the 1-WL test. Therefore, it follows g1 ∼1−AWL g2.
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a) b)
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Fig. 3. The graphs a) and b) are falsely recognized as 1-WL and 1-AWL isomorphic; same
holds for the 3-WL and 3-AWL. The graphs b) and c) are falsely recognized isomprohic
just by the 1-WL/3-WL test while the 1-AWL/3-AWL test correctly recognizes both
graphs as non isomorphic. The same result holds for the graphs b) and c) for 1-WL and
1-AWL while 3-WL and 3-AWL can distinguish both. The 1-WL and 3-WL equivalences
on the graphs from a) and b) and a) and c) without attributes are taken from [7, §3.1]

.

̸= In Fig. 3 one can see that the 1-AWL test can distinguish the first and last
graph (graphs a and c), while the 1-WL test fails.

Corollary 4.02. 2-WL test ⊊ 1-AWL test

Proof. As stated in [10, §3.5, Cor. 3.5.8], 1-WL test and 2-WL test are equivalent.

Corollary 4.03. k-WL test ⊊ k-AWL test.

Proof. Follows analogously from the proof of Thm. 4.01.

Corollary 4.04. The k-DWL test ⊆ (k+1)-DWL test.

Proof. Follows immediately from the static Weisfeiler-Lehmann Hierarchy.

Theorem 4.05. The 3-WL test and the 1-AWL test cannot be compared
regarding to the Weisfeiler Lehmann Hierarchy.

Proof. In Fig. 3 one can see that the 3-WL test can distinguish the graphs a)
and b) but the 1-AWL test cannot. However, the 3-WL test cannot distinguish
the graphs b) and c) while the 1-AWL test can.

Theorem 4.06. 1-DWL test = 1-AWL test

Proof. Let G = (Gt)t∈I be a dynamic graph and static(G) =: G′ = (V ′, E ′, α′, ω′)
the SAUHG resulting from a bijective graph type transformation (cf. Rem. 2.1.03).
Furthermore, let V :=

⋃
t∈I Vt be the set of all nodes appearing in the graph

sequence of G and α̃ : V × I → A×⊥ with α̃v(t) := (αv(t), ρ) be the extended
attribute function for all nodes including a flag ρ ∈ {0, 1} for the existence of a
node at time t. The theorem follows immediately from(

c(i)u (t)
)
t∈I

=
(
c(i)v (t)

)
t∈I

⇔ c(i)u = c(i)v .

for all iterations i and u, v ∈ V. By induction it is:



12 S. Beddar-Wiesing et al.

i = 0: (
c(0)u (t)

)
t∈I

=
(
c(0)v (t)

)
t∈I

Def. 3.2.01⇔
(
HASH (α̃u(t))

)
t∈I

=
(
HASH (α̃v(t))

)
t∈I

⇔ α̃u(t) = α̃v(t) ∀ t ∈ I
by constr.⇔ α′

u = α′
v ⇔ HASH (α′

u) = HASH (α′
v)

⇔ c(0)u = c(0)v

i > 0: Assume the induction hypothesis (IH) is true for i − 1 and show the
assumption is also true for i.(

c(i)u (t)
)
t∈I

=
(
c(i)v (t)

)
t∈I

Def. 3.2.01⇔
(
HASH

(
c(i−1)
u (t), Ωneu(t), c

(i−1)
neu(t)

))
t∈I

=
(
HASH

(
c(i−1)
v (t), Ωnev(t), c

(i−1)
nev(t)

))
t∈I

Bij. of HASH⇔ c(i−1)
u (t) = c(i−1)

v (t) ∧Ωneu(t) = Ωnev(t) ∧ c
(i−1)
neu(t)

= c
(i−1)
nev(t)

∀ t ∈ I

IH⇔ c(i−1)
u = c(i−1)

v ∧Ωneu = Ωnev ∧ c(i−1)
neu = c(i−1)

nev

Bij. of HASH⇔ HASH
((

c(i−1)
u , Ωneu , c

(i−1)
neu

))
= HASH

((
c(i−1)
v , Ωnev , c

(i−1)
nev

))
Def. 3.1.01⇔ c(i)u = c(i)v

Corollary 4.07 (Weisfeiler-Lehman Lattice). The Weisfeiler-Lehman hierarchy
is a infinite, bounded, complete and distributive lattice (as a consequence of
theorem 2.3.07). The partial order relation is: A ≤ B iff the partition PA induced
by the test A is equal or coarser than the partition PB induced by the test B, i.e.
|PA| ≤ |PB | and each subset in PA is a union of subsets in PB , i.e.,

∀ A ∈ PA ∃ {Bi} ⊂ PB , for some indices i, s.t. A =
⋃

B.

The minimum element of this lattice is the 1-WL test, equivalent to the 2-WL
test, while the maximum element is the Attributed Graph Isomorphism test
(AGI) and Dynamic Graph Isomorphism test (DGI).

5 Conclusion

Graph isomorphism is still a non-trivial problem laying in the class NP. However,
a common practical solution for at least distinguishing non-isomorphic graphs
is the Weisfeiler-Lehman (WL) method. Given that the initial WL tests can
just handle node attributed graphs, in this paper we extended the WL tests to
arbitrary graphs. Particularly, we introduced a k−dimensional attributed and
dynamic version of the k−WL test, respectively. With this WL extensions we
also extended the initial WL-hierarchy that induces a partial ordering on the
WL-test. This results in a complete and distributive lattice, which paves the way
for concepts of lattice theory to be utilized in the context of graph isomorphism
and WL tests.
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