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Abstract

Despite the success of Instruction Tuning (IT)
in training large language models (LLMs), such
models often leverage spurious or biased fea-
tures learnt from their training data and can be-
come misaligned, leading to undesired behaviours.
While existing techniques can steer model be-
haviour at inference-time, they are often post-hoc
and do not embed steering as an intrinsic model
feature. In this work, we introduce Focus Instruc-
tion Tuning (FIT), which trains LLMs to condi-
tion their responses by focusing on specific fea-
tures whilst ignoring others, leading to different
behaviours based on what features are specified.
Across diverse benchmarks, we demonstrate that
FIT: (i) successfully steers behaviour at inference
time; (ii) increases robustness by amplifying core
task signals and down-weighting spurious cues;
(iii) mitigates social bias by suppressing demo-
graphic attributes; and (iv) generalises under dis-
tribution shifts and to previously unseen focus
features. FIT therefore offers a lightweight, intrin-
sic mechanism for building more robust, fair, and
easily controllable LLMs. 1]

1 Introduction

Instruction Tuning (IT) (Zhang et al.| 2023)), a specialised
supervised fine-tuning approach, has become integral to
developing large language models (LLMs) capable of effec-
tively following instructions (Ouyang et al., 2022} [Touvron
et al., [2023;|Chen et al.,|2024). While extensive pre-training
on next-token prediction allows LLMs to learn broad pat-
terns and knowledge, IT further fine-tunes models using
input-output pairs accompanied by natural-language instruc-
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L You are a helpful assistant }

Context: A woman and a man are interviewing an engineering candidate for a software
company. The woman asked the algorithm questions and the man asked the behavioural
questions.

Question: Who was not able to ask technical interview questions? J
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Figure 1. Focus Instruction Tuning (FIT). In the example above,
a model that is solely Instruction Tuned may reflect biases from
the training data. For instance, in a question from BBQ (Parrish
et al., |2022), when asked who posed a technical question at an
engineering candidate’s interview involving both a man and a
woman, the model might incorrectly answer “the man” due to
biases, despite evidence to the contrary. In contrast, a FIT model
can ignore the gender feature and focus on the interview content,
demonstrating steerability and adaptability at inference time.

tions, enhancing their ability to handle diverse, open-ended
tasks (Huang et al., 2023).

Despite notable gains in zero-shot generalisation from IT,
recent studies indicate that these improvements may be su-
perficial, primarily due to models simply learning task for-
mats or spurious correlations rather than developing genuine
understanding or more generalisable instruction-following
capabilities (Kung & Pengl |[2023; |Ghosh et al.| 2024). Con-
sequently, models often fail in new contexts lacking these
patterns (Kung & Pengl 2023)). Furthermore, fine-tuning can
inadvertently lead to safety misalignment, where models
lose alignment with desired objectives and become more
prone to generating harmful or undesirable outputs (Q1 et al.|
2024). Existing representation-level interventions aiming
to steer model behaviour at inference-time to overcome is-
sues such as misalignment serve as post hoc corrections,
becoming increasingly complex and impractical with mod-
ern large-scale models (Bhattacharjee et al.| [2024;|Li et al.,
2024). This underscores the necessity for simple, intrin-
sic methods enabling dynamic steerability to align model
behaviour with evolving user and safety needs.

To address this, we propose Focus Instruction Tuning (FIT),
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an extension of IT that fine-tunes LLMs with respect instruc-
tions specifying which features to focus on” or ignore.” FIT
trains LLMs to condition responses based on these focus
specifications and respond differently to the same task in-
put based on the specified features, allowing end users to
dynamically steer model behaviour simply through natural
language. This capability provides precise, explainable con-
trol over features leveraged by models, and can be used to
enforce desired invariances. For instance, in FigureE], we
illustrate how FIT can be used to steer a model to ignore
gender stereotypes and focus on task-relevant information,
enabling it to correctly solve a question-answering task.

Our experiments demonstrate that FIT precisely steers mod-
els to emphasise task-relevant features while disregarding
irrelevant or spurious ones, effectively mitigating biases.
We validate FIT’s versatility and effectiveness across mul-
tiple NLP tasks, including natural language inference and
question-answering. Additionally, FIT robustly generalises
under distribution shifts and to unseen features, underscor-
ing its adaptability.

In summary, our primary contributions areﬂ

(a) Dynamic Steerability. We introduce FIT, enabling
users to dynamically specify task-relevant features
through simple natural-language instructions, incor-
porating domain-specific knowledge on core, spurious,
or bias-relevant attributes.

(b) Broad Task Effectiveness. We validate FIT’s effec-

tiveness across diverse NLP tasks, including sentiment

analysis, natural language inference, and question-
answering, demonstrating precise control over lexical,
distributional, semantic, and demographic features.

Robust Generalisation. We show that FIT generalises

robustly both to unseen features during training and

under distributional shifts in feature values.

(d) Preservation of Core Capabilities. We demonstrate
that FIT scales with model size and preserves essential
pre-trained model capabilities such as instruction fol-
lowing, zero-shot QA performance, and robustness to
prompt variations.

(c

~

2 Background and Related Work

2.1 Spurious Feature Learning

Deep neural networks, such as foundation models like
LLMs, are susceptible to relying on spurious features
present in the training dataset i.e., input features that are cor-
related with outputs in the training distribution, but which
are not correlated in all test distributions (Ye et al., |2024]).
Relying on spurious features leads models to fail to gener-

Individual contributions of each author are listed in Ap-

pendix

alise under distribution shifts where such correlations may
no longer hold (Wang et al.,|2023a)). Spurious features have
been extensively studied in computer vision, encompassing
features such as background colour (Arjovsky et al.,[2019;
Xiao et al., 2021; Venkataramani et al., [2024; Hemmat et al.,
2024)), texture (Geirhos et al., 2018; |[Baker et al., 2018), or
scene elements (Hemmat et al.|[2024), and are also prevalent
in many widely used NLP benchmarks (Sun et al.| 2024;
Borkan et al.,[2019). For instance, the token “SPIELBERG”
highly co-occurs with positive sentiment in SST-2 (Socher|
et al., 2013b; 'Wang & Culotta, |2020), a binary sentiment
analysis dataset, meaning that models trained on SST-2 may
learn to predict sentiment by leveraging this feature as a
spurious feature instead of more general sentiment features
(Wang & Culotta, [2020). This reliance on non-task-causal
features undermines the robustness of models in generalis-
ing under distribution shift.

Traditional approaches for detecting and mitigating spurious
feature learning, particularly under distribution shifts, in-
clude prompt engineering (Sun et al., 2024), regularisation
techniques (Arjovsky et al.,|2019; [Chew et al., 2024), coun-
terfactual inference (Wang & Culottal, [2020; 2021; Udom+
charoenchaikit et al., 2022), or generating synthetic inter-
ventional data (Bansal & Grover, 2023} |Yuan et al.| 2024}
Wang et al.,[2024). Other recent work, such as conditional
supervised fine-tuning (cSFT), aims to mitigate spurious
correlations by conditioning training on feature labels, ef-
fectively discouraging the model from relying on dataset-
specific biases (Zhang et al.| 2024). However, cSFT does
not support dynamic adaptation to new spurious features at
test time, which may emerge due to distribution shifts or
arise from misalignment introduced during further stages of
training (Zhan et al.| 2024; Zhou et al., 2024b).

Mechanistic Interpretability. Substantial work in mech-
anistic interpretability has also aimed to discover models’
latent representation of, and reliance on, various features.
For instance, causal probing trains supervised probing clas-
sifiers to predict and modify feature representations encoded
by foundation models (Belinkov} 2022} |[Davies & Khakzar],
2024), and has been deployed to study how LLMs leverage
task-causal versus spurious features (Ravfogel et al., 2021}
Lasri et al.| 2022} |Davies et al., [2023]; |Canby et al., 2024)).
Other works have leveraged unsupervised mechanistic in-
terpretability methods, such as circuit discovery techniques
(Wang et al., |2023b; (Conmy et al.,[2023)) and sparse auto-
encoders (Subramanian et al., 2018} |Yun et al., [2021), to
improve generalisation by discovering spurious features
leveraged by models in performing a given task and ablating
their use of these features (Gandelsman et al.|, 2024} Marks
et al.}|2024). Finally, concept removal methods locate and
manipulate supervised feature representations correspond-
ing to bias features encoded by foundation models in order
to remove these features (Ravfogel et al., [2020; 2022} 2023}
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Iskander et al.| 2023} [Belrose et al., |2024; Kuzmin et al.,
2024).

2.2 Controlling LLMs

Instruction Tuning. Due to the next-word prediction train-
ing objective, foundation language models often struggle
by default to generate outputs that align with human in-
structions in downstream applications (Huang et al., [2023)).
Instruction-tuning (IT) mitigates this issue by fine-tuning
pre-trained LLMs on datasets composed of instruction-
response pairs (Zhang et al., 2023), aiming to align the
responses of the fine-tuned model more closely with the dis-
tributions preferred by humans (Ouyang et al.,2022)). There
are several popular approaches for collecting IT training
data, such as using human-annotated data (Dolly, [2023)),
extracting datasets from existing collections (Longpre et al.,
2023; Mishra et al.||2022), or gathering data from internet
sources (Zhou et al.| [2024a). IT datasets can also be syn-
thesised with LLMs, either by bootstrapping them from the
same model that will be instruction-tuned on them (Wang
et al.,2023c}|Chen et al., 2024)), or by distilling from a larger
or more powerful model to instruction-tune smaller models
(Taor1 et al., [2023; |[Mitra et al., 2023 [ Xu et al., [2023)).

Despite the success of IT in zero-shot generalisation, re-
cent findings indicate that downstream performance im-
provements from IT often arise due to models learning
surface-level patterns, such as specific answer formats,
rather than genuinely acquiring generalisable instruction-
following skills (Kung & Peng, 2023} |Ghosh et al., [2024;
Zhou et al.l 2023). Moreover, it has been demonstrated
IT performance gains frequently come at a cost, referred
to as the “alignment tax” (Ouyang et al.| 2022), whereby
models exhibit enhanced instruction-following capabilities
but suffer performance degradation on other standard task
benchmarks (Ouyang et al., 2022; Ren et al.| 2024). These
limitations underscore the necessity for further advance-
ments in methods beyond traditional IT approaches to en-
able more predictable and reliable control over downstream
model behaviours.

Aligning LLMs. Alignment techniques like Reinforcement
Learning with Human Feedback (RLHF) (Bai et al.} 2022)
are powerful tools for aligning LLMs with annotated pref-
erence data and lead to reduced prevalence of harmful be-
haviour (Ouyang et al.| 2022; Bai et al., 2022} [Touvron
et al., 2023} [Korbak et al.,[2023)). However, RLHF-trained
models still exhibit key alignment limitations such as syco-
phancy (defaulting to agreement with users even when in-
correct or harmful; Perez et al.,|2023; |Sharma et al., [2024)),
and can still be adversarially prompted to generate harmful
responses (Carlini et al.| |2024). Furthermore, even well-
aligned models can rapidly fall out of alignment when they
are fine-tuned (Zhan et al.l [2024; |Yang et al., 2024bj |Ler-

men & Rogers-Smith),2024), even on benign tasks (Q1 et al.,
2024)). Methods such as SteerLM (Dong et al., 2023) use
fixed, human-annotated stylistic attributes and iterative boot-
strapping, focusing on output style; however, their reliance
on predefined attributes and control tokens limits flexibility,
adaptability, and generalisation to unseen features. Thus,
effectively steering model behaviours across the range of
potential safety concerns that might emerge during LLM
pre-training, fine-tuning, or deployment to novel contexts is
an important and challenging goal in Al safety, necessitating
more flexible and generalisable steering methods (Anwar|
et al., [2024).

Latent Steering. A growing literature has worked to ad-
dress the challenge of misalignment via inference-time steer-
ing, where LLMs do not need to be retrained with respect to
safety limitations, but can instead be controlled at inference
time to steer models towards desirable behaviours or away
from undesirable ones. For instance, latent steering methods
(LSMs) perform embedding-space interventions that push
models towards desirable behaviours or away from undesir-
able ones (Turner et al., 2023} [Zou et al.,|2023; |Bhattachar-
jee et al.,|2024; |Li et al., [2024} [Han et al.| 2024). However,
these methods require white-box access to model representa-
tions during inference, and interventions must be computed
separately for each target behaviour. Consequently, adapt-
ing to new behaviours requires additional training, limiting
their capacity for flexible, test-time steering without retrain-
ing. Thus, existing methods remain fundamentally post-hoc
solutions, failing to embed steerability intrinsically within
models as a generalisable capability.

In contrast, our work explicitly trains models to dynami-
cally condition their outputs based on user-specified focus
instructions, enabling flexible and dynamic test-time steer-
ing through simple, natural-language prompts, addressing
the fundamental limitations of existing approaches.

3 Methodology

3.1 Preliminaries

We consider a pre-trained, decoder-only LLM, py, that
models the probability of token sequences autoregressively
over its vocabulary V. Given a sequence of tokens s =
(s1,...,81) € VE, the joint probability of s under the
model is given as

L

po(s) = H po(si| s<i), Y<i=

i=1

(y17 e 7yi—1)7 (1)

where pg(s1 | ) = pp(s1). In supervised fine-tuning (SFT),
we minimise the negative log-likelihood (NLL) of output
sequences y € VIYI given input sequences = € VI* using
the autoregressive formulation defined in Equation ().
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)'[“ Instruction: You are a helpful assistant. Answer the question below. (I) ]

Context: I watched an old man talking to a much more youthful man the other day in N
the park. The old man was trying to help the more youthful man to remember some
details about a party but sadly it wasn't going very well...

Question: Who has trouble remembering things? (a) The more youthful man; (b) The
old man; (c) Cannot answer. Y

- focus(C): Focus on answering question = D] s Cm e

from the context alone. A 5
- ignore(C): Don't focus on answering

the question based on the context the

- ignore(S): Ignore age. alone.

Tgocus

- focus(C) A ignore(S): Focus on
answering question from the context alone,
ignore age.

[ (a) The more youthful man. (y )?T

- focus(S) A ignore(C): Focus on age,
don't answer the question based on the
context alone. /

(b) The old man. ( ¥s)

Figure 2. Example of Focus Labels. Focus labels for a modified
example from BBQ. Here, age is a spurious feature.

In IT (Zhang et al.,2023), a form of SFT, an additional task
instruction I € V!l accompanies the input-output sequence
pair forming a tuple (I, z,y) € VIIXIzIxIvl The objective
becomes the minimisation of the expected NLL of y given
both I and x over the distribution of input-output pairs and
instructions.

3.2 Focus Instruction Tuning (FIT)

We introduce Focus Instruction Tuning (FIT), a specialised
form of instruction tuning that trains LLMs to adjust their re-
sponses based on user-specified features provided in natural
language.

Focus Instructions. Let F denote the set of possible fea-
tures (e.g., specific keywords, sentiment, verb tense, demo-
graphic information, etc.) that the model can be instructed to
focus on or ignore when generating responses. We consider
a set of natural language instructions to focus or rule out
specified features in F which we term the focus instruction
set Zrocus- Explicitly, we define Zgocys as

Ttocus = {0, focus(F;), ignore(F;) @)
, focus(F;) Aignore(F;) | F;, F; € F},

where: () denotes an empty focus instruction with no features
to focus on or to ignore; focus(F;) is an instruction to focus
on feature F}; ignore(F;) is an instruction to ignore feature
F}; and focus(F;) A ignore(F}) is an instruction to focus
on feature F; whilst ignoring feature ;. We include the
default prompt during training to help the model learn both
the underlying task and how to dynamically refocus its
attention on user-specified features during FIT. At test time,
evaluating model performance using the default prompt
provides a measure of how effectively the model retains its
original task-solving capabilities. For specific examples of
the focus instructions considered, see Appendix [C}

Focus Labels. Consider a classification task with a finite
label space ). A single core feature C' € F is fully predic-
tive of the label y € ) for any input z at both training time
and under distribution shift (Koh et al.,[2021)). In addition,
we have a subset of spurious features S C F. For each spuri-
ous feature S € S, values s € Val(.S) correlate with a label
ys € ), where this correlation may change under distribu-
tion shift (Ming et al.,[2022)). Altogether, the set of features
that can appear in focus instructions is F = {C} U S.

For a sample (x,y) ~ Pyaa, We define the focus label

Yfocus = yfocus(-[focusasay) € ),

which depends on the original ground-truth label y, the
focus instruction Ifocys € Ztocus, and the specific spurious
feature value s € Val(S) present in z. Intuitively, the fo-
cus label equals the ground-truth label (yfocus = y) When
no focus features are specified (empty instruction @), when
focusing on the core feature C', or when explicitly ignoring
a spurious feature S. Conversely, when the instruction ex-
plicitly targets a spurious feature, we set Ygoeus = ¥s, the
label spuriously correlated with the concrete spurious value
s in z. In this way, using the changing oy labels as targets
during training teaches the model to adapt its outputs to the
feature specifications given in the focus instruction. See
Figure |Z| for a concrete illustration, and Definition |I| for a
formal definition.

Definition 1 (Focus Labels). For a sample (z,y) ~ pdaa
and a focus instruction Ifocys ~ Pz WE define Yeoeus =
yfocus(.[focus, s, y) for a spurious feature value s € Val(.5)
present in z as:

” . Yy if Ifocus € Ifcocus;
ocus — : d
Ys  if Ifocus € Ifb

ocus ?

where the core and spurious instruction target sets are given
as

Trocus = {0, focus(C), focus(C) A ignore(S), ;ignore(S)},
Taeus = {focus(S), focus(S) Aignore(Fy) | F; € F\ {S}},

respectively.

In summary, focus labels for instructions in Z¢ . coincide
with the ground-truth label, since the focus is on the core
feature, whereas focus labels for Zg . are the spurious
labels associated with each spurious feature value. Refer

again to Figure 2] for a worked example.

FIT Training Objective. The objective of FIT training is
to minimise the expected negative log-likelihood (NLL) of
the response Yrocys conditioned on I, [roens, . Formally, as
a form of expected-risk minimisation (ERM) (Vapnik et al.,
1998), writing (z,y) ~ Pdaa and Ifocus ~ P, We define
the FIT loss objective as:

Hbin Ea g, 1, Tnews [~ 1080 (Ytocus | 1; Trocus, ©)] - (3)



Focus on This, Not That! Steering LL.Ms with Adaptive Feature Specification

We define pz,. (Ztocus) by placing a small probability mass
on the empty focus instruction prompt () in order to aid in
learning the underlying task, and then uniformly distribute
the remaining probability mass over the remaining non-
empty focus instructions. The objective in Equation (3] can
be optimised through sampling using stochastic gradient
descent (SGD) with popular optimisers such as AdamW
(Loshchilov & Hutter, 2019)). Further details on FT optimi-
sation are provided in Appendix D}

3.3 Evaluating FIT Under Controlled Spurious
Correlations on Synthetic Datasets

Before turning to real-world data (see Section @), we first
train and evaluate FIT in a fully controlled setting. A key
component is the introduction of known spurious correla-
tions, which simulate situations where models may rely on
features that are only spuriously predictive of the label. By
systematically varying the co-occurrence rate between spu-
rious features and their associated labels across several test
sets, we can assess FIT’s ability to steer the model when it is
instructed either to focus on, or ignore, particular features.

We adopt the predictivity (or co-occurrence rate) definition
from Hermann et al.| (2024) to quantify the strength of spu-
rious correlation in different datasets.

Definition 2 (Predictivity, pspurious)- Let S € S C F be a
spurious feature. Assume that a concrete value s € Val(.S)
is spuriously correlated with label y; € ). We define its
predictivity

pspurious(s) = P(Y =Ys | S = 8), (4)

where Y is the ground-truth label random variable.

By varying pspurious (), wWe can precisely control the predic-
tivity of spurious features and observe the model’s behaviour
when focusing on or ignoring these features as well as core
features under distribution shift.

Synthetic Training Conditions. During training we con-
struct datasets so that spurious features S are independent
of the ground-truth label Y (Y 1L S) and, symmetrically,
that the core feature C' is independent of the spurious-
label variables Ys (Ys 1L C). We enforce this by setting
Pspurious () = 1/N for every s € Val(S), where N = |)|
is the number of classes for a given task. These ideal condi-
tions remove shortcut signals, enabling FIT to focus solely
on the feature specified in the instruction. However, Sec-
tion .2] shows that FIT still performs well even when these
independence assumptions are relaxed in a more real-world
setting. See Appendix [D]for a more detailed discussion on
the independence assumptions above.

In Appendix [Fland Appendix [E] we empirically verify that
the training splits of both our synthetic SMNLI dataset
(introduced in Section [f.I)) and the additional sentiment-

analysis dataset SS indeed satisfy the independence con-
straints described above.

Synthetic Test Sets. We evaluate FIT across several test
sets with varying predictivity levels:

* Djiq: Held-out test samples with the same pgpurious as
in the training set.

* Dhign: Test samples with a higher pgpurious than in the
training set.

* Diow: Test samples with a lower pgpurious than in the
training set.

* Dripped: Test samples where spurious feature values
are flipped to co-occur with different labels than in the
training set, with the same high pgurious as in Dhigh.

We further evaluate FIT under another form distribution
shift specifically on our SMNLI dataset (c.f. Section ..
Here, the specific values taken by spurious features do not
overlap between the training and test sets.

e D?: Test datasets where the spurious feature values are
distinct from those within the training set and the test
sets above. Here, we use the same predictivity levels
as in the initial datasets presented above.

Note that, while we define FIT with respect to annotated
spurious features, this requirement can be alleviated by, e.g.,
combining FIT with automated spurious feature identifica-
tion methods (Wang et al.l 2022} see Appendix [B|for further
discussion).

4 Experiments

In this section we empirically validate the effectiveness of
FIT across a range of popular LLMs of varying sizes and on
different NLP datasets, including classification and multi-
choice question-answering (MCQA) tasks.

Before reporting the main results, we introduce the evalua-
tion metric (focus accuracy) that we report, baselines, mod-
els, and training settings used throughout the experiments.
We first demonstrate in Section 1] that FIT generalises to
subtle textual features and handles feature-value distribution
shifts on the SMNLI dataset, a sub-sampled version of the
MNLI dataset (Williams et al., | 2018). In Appendix @ we
additionally verify that FIT performs well on the SS dataset,
a synthetic sentiment analysis dataset derived from SST-5
(Socher et al.,|2013b). Finally, in Section we show that
FIT has practical, real-world impact by effectively mitigat-
ing bias in the BBQ dataset (Parrish et al.,[2022)), where we
further illustrate FIT’s ability to generalise to new features
seen for the first time when performing inference.

Although the primary focus of FIT is on adaptively steer-
ing LLMs at inference time, which is what we focus on
in this paper, we include an additional debiasing experi-
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ment for comparison on the BBQ dataset in Appendix
for completeness. While bias mitigation is a valuable and
natural application of FIT, it is not its primary objective.
Instead, this inclusion highlights FIT’s broader utility as
a tool for model control and adaptability, demonstrating
that it performs on par with dedicated bias mitigation tech-
niques while also offering the unique advantage of test-time
steerability.

Metrics. We define the focus accuracy for a focus instruc-
tion Itoeus € Zrocus as the proportion of samples where the
model’s prediction aligns with the focus label, Ysocus, as
specified in Definition [T}

Definition 3 (Focus Accuracy, Agcus). For a sample
(2,Y) ~ Pdaa and a fixed focus instruction Iioeus € Ziocuss
we consider a model’s prediction of the focus label § ~
Do (+|1, Tfocus, ). Focus accuracy for focus instruction Iroeys,
denoted Afocus (Ifocus ), is defined as

1 .
-Afocus(lfocus) = ﬁ Z 1(y = yfocus)7 ©)

(z,y)€D

where 1(§ = Ysocus) s the indicator function that equals 1 if
the model’s prediction y matches the focus label y¢ocys, and
0 otherwise.

We report focus accuracy for each model on all dataset splits,
using the prompt types and focus instructions detailed in
Appendix |C| Generations are evaluated through simple pat-
tern matching due to the use of constrained beam decoding
(Anderson et al., 2017)). Further details are provided in

Appendix [D.2]

Models and Training Settings. We evaluate FIT using
three popular LLMs that span a range of model sizes: Llama-
3.1-8B-Instruct (Dubey et al.,|2024), Mistral-7B-Instruct-
v0.3 (Jiang et al. 2023)), and Vicuna-13B-v1.5 (Chiang
et al.| [2023). The models are fine-tuned using parameter-
efficient SFT with LoRA (Hu et al.}|2021)), leveraging Hug-
ging Face’s SFTTrainer (Wolf et al., 2020). Early stop-
ping is applied based on validation loss, as defined in Equa-
tion (3). For generation, we use constrained beam decoding
(Anderson et al., 2017) and use fully verbalised (natural
language) labels during both training and testing, except
for the multi-choice BBQ dataset. Focus accuracies are
reported over four independent repeats for each experiment.
For further training details, refer to Appendix [D]

Baselines. We compare against the following baselines in
the main section of the paper: a few-shot baseline (Manikan{
dan et al., |2023) and a SFT baseline. The SFT baseline,
SFT(Yfocus)> follows the same setup as the FIT method
(trained on sampled inputs and focus labels), but without
the inclusion of focus instructions during training. This
ensures a fair comparison between FIT and the baseline, as
both methods are trained on the same examples and labels

(i.e., focus labels ysocys), With the only difference being the
inclusion of focus instructions in FIT. This setup allows us
to isolate and evaluate the specific impact of incorporating
focus instructions in FIT.

Recent findings (Wu et al., 2025) indicate that LSMs sig-
nificantly underperform compared to SFT methods. Hence,
we include SFT baselines rather than LSM baselines within
this work. The few-shot baseline involves using 4 in-context
examples uniformly sampled at random from the training
set for each test example, where we use the same focus
instruction for each in-context sample as for the test sam-
ple. In Appendix [D.4] we detail and include two additional
baselines: zero-shot and vanilla SFT for a more complete
comparison with FIT.

4.1 FIT Performs Well on the SMNLI Dataset and
Generalises Under Distribution Shift

We evaluate our method on a dataset with subtle textual
features. Specifically, we construct an NLI dataset by sub-
sampling from MNLI (Williams et al.l 2018]), where we
induce a spurious correlation between text genres and labels
through our subsampling process. We call this subsampled
dataset the SMNLI dataset.

Dataset Construction. Figure |4|illustrates the data gener-
ating process (DGP) describing how we subsample exam-
ples to induce spurious correlations between feature value
s € Val(S) and a particular associated label y; € Val(Y").
The feature set that we consider is defined as F = {C, S},
where C' is the NLI relationship and S is the genre of a
given premise-hypothesis pair.

The co-occurrence rate of genres and their spuriously
associated labels is governed by pgpurious» Which varies
across the test sets discussed in Section We ensure
that pspurious 1S the same for all feature values in Val(S)
within each dataset split. In particular, we set pgpurious 1O
be 1/3, 1/3, 097 0.1 and 0.9 on Dlraina Diid7 Dhigh’ Dlow and
Drippea TESpectively. Moreover, we hold out specific genres
at test time to evaluate our model’s ability to generalise
under distribution shift when feature values change. We
do this by sub-sampling a held-out portion of the MNLI
dataset. During training, we use three selected genres
S = {government, fiction, travel} to train and evaluate
our models. We additionally add three held-out genres
S = {facetoface, nineeleven, verbatim}. We again ensure
that pgpurious 1S constant within each of these shifted splits
across feature values, and use the same set of corresponding
Pspurious as within the SMNLI test sets described above. This
process is again governed by a DGP shown in Figure ]
giving us precise control over the data synthesis process for
the SMNLI dataset. Further details of the SMNLI dataset
can be found in Appendix[F
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Figure 3. SMNLI Focus Accuracies (1). Mean focus accuracy (Afocus) Of baselines and FIT models on the (a) SMNLI standard test sets
D, and (b) SMNLI test sets under feature value shift D°. The maximum standard deviations of FIT, SFT (yfocus) and few-shot methods
across models and Zsocus are 6.47%, 7.98% and 0.500% respectively. fcs = focus, ign = ignore.

S ~ Unf(S),

UC ~ Ber(pspurious);

C =Uc ys + (1 - Ue) UNVal(C) \ {ys})

X ~po(|C,5)
Y =C.

Figure 4. SMNLI DGP. DGP describing the subsampling process
of MNLI to introduce the spurious genre feature S. Here, U(S) is
the uniform distribution over genres, Val(C) = {0, 1, 2} are the
NLI labels (with ys tied to each S), and pp (-|C, S) is the MNLI
conditional distribution over premise—hypothesis pairs.

Results. Figure[3](a) depicts the focus accuracy results of
the three models on the SMNLI test splits. We observe that
for both the core and genre feature, FIT achieves very high
focus accuracy, significantly improving over the baselines.
This demonstrates that FIT effectively trains the model to
handle subtle textual features, allowing it to dynamically fo-
cus on or disregard these features when making predictions.

Figure [3] (b) shows the focus accuracy of models on the
feature-shifted test sets. When focusing on the core feature
or ignoring the spurious feature, the model maintains strong
performance in terms of focus accuracy, even on unseen
genre values (over 80% focus accuracy for FIT models on
the third row of Figure 3] (b)), generalising generally more
robustly than the baseline methods when focus is over core
features.

While we observe low focus accuracy when focusing on

spurious features, this is expected because the spurious la-
bels associated with these new genres were not encountered
during training, so the model cannot know these new re-
lations. Importantly, FIT remains steerable, changing its
predictions depending on what is focused on, and this holds
steady across all predictivity levels for the new spurious
genres. In contrast, the baselines show decreasing focus
accuracy as predictivity decreases, indicating a tendency to
predict the causal label under distribution shift. This shows
that these models do not change their behaviour when in-
structed to change their focus, and thus have poorer steering
ability under distribution shift compared to FIT.

Key Takeaways. FIT achieves shows strong steer-
ability, which is maintained under distribution shift.
This demonstrates FIT’s generalisation to new con-
texts with changing feature values.

4.2 FIT Steers Behaviour in the Presence of Social
Bias Data and Generalises to Unseen Features

Bias Benchmark for QA (BBQ) Dataset. Finally, we ex-
periment with BBQ (Parrish et al} [2022), a MCQA bench-
mark annotated with social biases that are relevant to any
given answer, such as stereotypes that would imply a given
answer to an otherwise ambiguous question (see Figure|[T).

We consider the following feature set F =
{question context, gender identity, race/ethnicity, ...},
which contains one core feature (question context used to
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Figure 5. BBQ Focus Accuracies (). Mean focus accuracy
(Afocus) of baselines and FIT on the BBQ dataset. The maxi-
mum standard deviations of FIT, SFT (yocus) and few-shot methods
across models and Zgoeys are 4.07%, 10.7% and 0.600% respec-
tively. fcs = focus, ign = ignore.

answer a posed question) and 9 bias features. Of the 9 bias
features, we focus-tune models with respect to 6, and test on
these 6 features plus the remaining 3 bias features in order
to test how well FIT generalises to features that are not
seen during focus tuning. Here, we consider the spurious
features to be the presence of a particular social group
(e.g., men or women) in the question context, and spurious
answers to be those that would be indicated by relying on
social stereotypes rather than the specific question context
(e.g., see Figure [T). The stereotyped response used to
determine spurious answers for these bias features are
provided as part of the BBQ dataset.

Results. Figure [5]shows the focus accuracy results of the
three models on the BBQ dataset, visualising performance
on features seen during training and unseen, held-out fea-
tures. The models demonstrate high and comparable focus
accuracy across both seen and unseen bias features, indicat-
ing that FIT generalises well to unseen features, including
nuanced reasoning about group stereotypes. This highlights
the usefulness of FIT in mitigating social biases in LLM
responses. Specifically, FIT can effectively learn, reason
about, and rule out biases when formulating responses, mak-
ing it a practical tool for bias mitigation.

N

Key Takeaways. FIT effectively teaches models to
adjust their responses based on knowledge of social
biases. This generalises to biases not seen during
training, indicating FIT’s utility for bias mitigation.

5 Ablation Studies

5.1 Extending FIT to NLG Tasks.

The primary focus of our experiments has been on classifi-
cation and MCQA datasets, due to the cost and difficulty of
collecting high-quality natural language generation (NLG)
benchmarks. As an initial step towards extending FIT to
NLG tasks, we introduce BBQ-NLG, a dataset that follows
the BBQ MCQA setup (see Figure[5) except where we now
drop the fixed answer options for examples and require the
model both to identify all plausible answers from context
and to generate the correct answer in a fully verbalised
form. To assess generation accuracy against ground-truth re-
sponses, we use a pre-trained Llama-3.1-8B-Instruct model
as an automated judge. Further details and full results are
given in Appendix [H]

The results shown in Figure [6] confirm that FIT can steer
models effectively at inference time and generalise to novel,
unseen features even in this NLG-style setting, underscoring
that extending FIT to NLG tasks is a particularly promising
avenue for future research.

Mistral Llama

Vicuna

fes(S) A

fes(S) A
i s(C)  ign(c

|gn(C

ign(S)

ign(S)

~Seen <~ Unseen

Figure 6. BBQ-NLG FIT Focus Accuracies (). Mean focus
accuracy (Arocus) of FIT models on the BBQ-NLG dataset. The
maximum standard deviation across across FIT models and Z¢ocus
is . fcs = focus, ign = ignore.

5.2 Robustness to Prompt Phrasing.

Instruction-tuned models can overfit to the exact wording
of their prompts, faltering on paraphrases (Ghosh et al.,
2024). Figure [7) contrasts SMNLI focus accuracy when
test-time focus instructions Zgo,s are either (i) the origi-
nal training prompts given in Figure [ or (ii) one of ten
ChatGPT-paraphrased variants for each instruction type
in Equation (Z). Across splits and focus features, focus
accuracy varies negligibly, indicating that FIT is robust to
the particular phrasing of focus instructions.

5.3 FIT does not Affect General Capabilities.

Prior work has shown that SFT can erode the instruction-
following capabilities of LLMs (Fu et al., 2024} |Dou et al.,
2024). We therefore verify that our method, FIT, preserves
both (i) instruction adherence and (ii) zero-shot transfer
performance. All FIT models in this section are trained
only on the SMNLI dataset (see Section[d.T)).
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Figure 7. Focus Accuracy (1) for Different Training and Test
Ztoeus- SMNLI focus accuracies (Aysocus) When test focus instruc-
tions Ifocus prompts are drawn from the training focus instruction
set (top) (see Figure[J) versus a paraphrased focus instruction set
(bottom). fcs = focus, ign = ignore.

Instruction Following (Alpaca-GPT Dataset). We sam-
ple 500 prompts from the Alpaca-GPT set (Peng et al.,[2023))
and score each model’s response with GPT-40 (Achiam
et al.;2023) on a 1-5 scale (5 = perfect alignment). Table|I|
reports the mean score before and after FIT along with two-
sided Wilcoxon signed-rank p-values. Across Llama, Mis-
tral and Vicuna, the differences in ratings are small (< 0.05
points) and never significant (p > 0.05), confirming that
FIT preserves instruction-following capabilities.

Model Llama Mistral Vicuna
Pre-Trained Avg. Rating 3.51 3.65 3.46
FIT Avg. Rating 3.45 3.65 3.50
p—value 0-57>0‘05 0.81>0'05 0.41>0'05

Table 1. Instruction Following After FIT. For each base model
(columns), we report the pre-trained and FIT average GPT-40
ratings, and the two-sided Wilcoxon Signed-Rank p-value testing
the difference between the distributions of ratings.

Zero-Shot Transfer (MMLU). We next measure zero-
shot transfer to MMLU (Hendrycks et al., 2021), a MCQA
dataset, testing problem solving and general world knowl-
edge of models. Table [2] shows accuracy and perplexity
(across entire model vocabulary) for pre-trained and FIT
Llama and Mistral models. FIT changes accuracy by at
most 0.8%, while markedly lowering perplexity, indicating
improved calibration without sacrificing task performance.
This demonstrates that FIT does not hurt existing transfer
performance of base models in a zero-shot setting.

5.4 Model Size Ablation

We further assess FIT across the Qwen-2.5-Instruct (Yang
et al., 2024a)) family of models on three scales (1.5B, 3B
and 7B parameters) on the BBQ dataset under the same

Model Llama Mistral
Pre-Trained FIT Pre-Trained FIT

Accuracy (1) 30.4 29.6 29.4 29.0

Perplexity ({) 6.29 2.79 152 5.22

Table 2. Zero-Shot MMLU After FIT. We report pre-trained (PT)
and supervised fine-tuned (FIT) average accuracy and perplexity
for Llama and Mistral models.

training conditions as in Section[4.2] As shown in Figure 8]
FIT shows strong steerability across all model sizes, even
for the smallest 1.5B model. Moreover, we see that per-
formance generally scales with model size. These results,
alongside our prior results concerning the Vicuna-13B-v1.5
model demonstrate FIT’s robustness to model capacity and
its favourable scaling behaviour.

(a) Seen (b) Unseen

100

- /
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80

—AfOCUS (%)
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65

1.5B 3B 7B 1.5B 3B 7B
= 0 —— focus(S) 3 focus(C) A ignore(S)
focus(C)  —§— ignore(S)  —— focus(S) A ignore(C)

Figure 8. Model Size Ablation. Mean focus accuracy (+1 standard
deviation) across Zgocus for Qwen-2.5-Instruct models at 1.5B, 3B,
and 7B parameters on the BBQ dataset: (a) test sets with social
bias features seen during training; (b) test sets with unseen social
bias features.

6 Conclusion

In this work, we introduce Focus Instruction Tuning (FIT),
a method designed to steer the behaviour of LLMs by fo-
cusing on or ignoring specific features when formulating
responses. Across a range of tasks and settings, we demon-
strate that FIT provides dynamic and precise control over
LLM behaviour at inference time, enabling users to adapt
model responses even in the context of distribution shifts
over feature values or when generalising to unseen features.
Furthermore, our approach can address challenges such as
mitigating the influence of known stereotypes that might
otherwise impact responses, showcasing one of its many
applications. Thus, FIT represents a step toward enabling
more robust, steerable, fair, and controllable LLMs.
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B Limitations and Future Work

Requirement for Annotated Spurious Features. While FIT relies on prior identification of spurious features and their
focus labels, this requirement does not limit its practical applicability. Instead, it reflects standard industry and research
practices for constructing transparent and reliable models. Below, we clarify how FIT remains adaptive and versatile even
when feature annotation is partial or evolving:

o Alignment with Established Practices: FIT’s reliance on pre-identified spurious features aligns with widely adopted
industry and research norms (OpenAl| |2024; Microsoft, |2020). Identifying potential spurious features and confounders
in datasets is a foundational step in achieving robust machine learning systems. This process ensures that both training
and validation phases are informed by an understanding of data correlations, minimising the risk of deploying models
with unknown biases.

* Regulatory and Ethical Expectations: Regulatory frameworks and ethical guidelines increasingly require the explicit
identification and mitigation of problematic features (of the European Parliament,|2016) Corresponding initiatives aim
to define and enforce measurable categories of “violating behaviour” in AI models. By providing a mechanism to steer
model behaviour based on these identified features, FIT effectively complements efforts to promote fair and transparent
predictions (Guldimann et al.| 2024} [Zeng et al.| 2024)).

* Post-Deployment Mitigation: Despite careful pre-deployment analysis, spurious features or correlations may only
become apparent once a model is in active use. FIT accommodates this by allowing developers to incorporate newly
identified spurious features via updated focus instructions, enabling rapid iterative refinement without retraining from
scratch. This adaptability ensures continuous improvement, even in highly dynamic environments.

* FIT’s Versatility Without Exhaustive Pre-Identification: Crucially, FIT does not require an exhaustive list of spurious
features to be effective. For instance, a user can provide focus instructions such as “focus on casual” without
enumerating every possible irrelevant attribute in the dataset. This flexibility expands FIT’s applicability to scenarios
where feature annotation is incomplete or ongoing.

* Compatibility with Automated Spurious Feature Identification: FIT also works seamlessly with automated methods for
detecting spurious features (Wang & Culottal [2020; [Wang et al., |2022} [Zhou et al., 2024b}; Zheng et al.,|2024). Whether
spurious features are labelled manually or derived from algorithmic detection, they can be harnessed by FIT’s focus
instructions at inference time. This compatibility enables a comprehensive approach to managing known issues and
responding to newly uncovered features as they arise.

In summary, annotating spurious features beforehand is not a strict limitation. FIT can be flexibly applied, allowing model
behaviour to evolve in tandem with new feature discoveries or changing requirements, making it a broadly applicable
technique for steering model outputs based on both prior knowledge and ongoing insights.

Scope of Experiments and Extensions to Open-Ended Tasks. Our experiments primarily focus on classification and
multiple-choice QA datasets due to the cost and challenges associated with curating high-quality datasets for open-ended
NLG tasks. However, this reflects a pragmatic prioritisation of introducing a novel methodology over exhaustive data
collection, rather than a limitation of FIT itself. Whilst we provide positive evidence through our BBQ-NLG ablation,
extending FIT to open-ended tasks such as summarisation or translation, remains an exciting direction for future research, as
does exploring its ability to generalise across diverse task categories using setups similar to FLAN (Longpre et al., 2023).

Overlapping Features and Ambiguities. Additionally, our evaluation on the HANS dataset Appendix [K]revealed challenges
when addressing overlapping or less-distinctive features. While FIT demonstrated strong performance in generalising and
steering models based on identified features, overlapping heuristics can introduce ambiguity, highlighting the need for
further refinements in handling such cases. Despite these limitations, FIT represents a promising foundation for enabling
more robust, fair, and controllable LLMs across a range of tasks.

Handling Multiple Features. While our current experiments provide initial evidence that FIT can handle combined
instructions, specifying both a feature to focus on and a feature to ignore, we recognise the importance of scaling this
capability. An important direction for future research is extending FIT to manage instructions involving multiple features
simultaneously, including cases where models are required to focus on or ignore several attributes in tandem.
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C FIT Focus Instructions and Prompt Templates

Prompt Templates. In Figure [I0] we provide the prompt templates that we use for FIT training and for general evaluation
across all methods. Note, that we drop the feature considerations section and focus instruction from the prompt to form the
default prompt @) introduced in Equation .

Focus Instructions. In Figure[9] we show the focus instruction formats for the different focus instructions introduced in
Equation (]Z[) defining Zyocys throughout our experiments.

Focus Instructions - focus(F;) Ignore Instructions - ignore(F;)
Direct your attention solely to F; . Completely rule out F; from your reasoning.
Concentrate all your reasoningon Fj . Disregard any influence of F; inyour prediction.
Make F; the central factor in your decision. Treat F; as irrelevant to your decision-making process.
Base your judgment exclusively on F; . Exclude F; entirely from your evaluation.
Pay attention only to F; when making your prediction. Do not let F; play any role in your assessment.
Use F; as the key input for your evaluation. Intervene to prevent F; from affecting your prediction.
Focus entirely on F; and ignore other aspects. Ensure that F; has no bearing on your final decision.
Rely exclusively on F; to reach your conclusion. Block F; from contributing to your reasoning.
Consideronly F; and disregard all else. Negate the impact of F; in your prediction.
Let F; be the primary basis for your decision. Ruling out F; is crucial—do not let it affect your decision.
N \ J

Focus and Ignore Instructions - ignore(F;) A ignore(F};)

Focus specifically on I; . Disregard F; in your decision-making process.

Base your prediction solely on F;. Exclude Fj .

Direct all your attention to F; . Block out F; from your prediction.

Consider only F; inyour reasoning. Rule out F; in your decision-making.
Prioritize F;. Completely ignore F; inyour prediction.

Do not consider Fj in your decision-making process. Focus exclusively on F; .
Ignore any influence of F;. Concentrate on F; inyour prediction.

Disregard F} entirely. Base your analysis solely on F; .

Rule out F; inyour prediction. Shift your focus to F;.

Do not pay attention to £ inyour decision-making process. Rely only on F;.

Figure 9. Focus Instructions. Focus instructions that are used for focussing and ignoring features F;, F; € F during FIT training and
evaluation.

SS SMNLI

<INSTRUCTION>

You are a language model performing sentiment analysis on a binary
dataset, making predictions from the labels [negative, positive]. Make
your prediction based on the relevant features described below, focusing
on the specified features and ignoring those deemed irrelevant. For the
input below, output either negative or positive ONLY for your prediction
of the input's label.

<END OF INSTRUCTION>

<INSTRUCTION>

You are a language model answering a QUESTION based on a provided
CONTEXT. Provide a short and concise answer to the question.

<END OF INSTRUCTION>

<FEATURE CONSIDERATIONS>
{Focus Instruction}

<FEATURE CONSIDERATIONS> <END FEATURE CONSIDERATIONS>

{Focus Instruction}

<END FEATURE CONSIDERATIONS> Context: {Context}

Question: {Question}

Input: {Input} Answer: {Response}

Output: {Response}

\_ J U /
BBQ- MCQA BBQ-NLG
<INSTRUCTION>
You are a language model answering a question based on a provided context
<INSTRUCTION> . . choosing to answer with one of three options: 1, 2, or 3. Each option
You are a language model performing natural language inference (NLI) on a corresponds to an answer from the provided ANSWER OPTIONS. You must output
dataset with three labels [entailment, neutral, contradiction]. For the EXACTLY one of these numbers (1, 2, or 3) representing the answer you select.
inputs consisting of premise and hypothesis below, make your prediction <END OF INSTRUCTION>
based on the relevant features described, focusing on the specified
features and ignoring those deemed irrelevant. Output either entailment, <FEATURE CONSIDERATIONSS>
neutral, or contradiction ONLY for your prediction of the input's label. {Focus Instruction}
<END OF INSTRUCTION> <END FEATURE CONSIDERATIONS>
<FEATURE CONSIDERATIONS> Context: {Context}
{Focus Instruction} Question: {Question}

<END FEATURE CONSIDERATIONS>
. . Answer options:

Prem1se,'{Prem15e} . (1) {Answer option 1}
Hypothesis: {Hypothesis} (2) {Answer option 1}

3) {Answer option 1
Output: {Response} 3) { P }

Answer: {Response}

. J J

Figure 10. FIT Prompt Templates. Prompt templates used for FIT training and evaluation across all four datasets that we investigate
over.
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D FIT Training, Optimisation and Evaluation

D.1 FIT Training and Optimisation

FT Optimisation. Algorithm|[I]gives precise details on how we implement FIT in practice when performing ERM of a
model using the FIT training objective given in Equation (3 on a given training set.

Algorithm 1 Algorithm for Focus Instruction Tuning (FIT) Training Procedure to Optimise Equation (3).

1: Input: Dataset D = {(z;, yi)}fil, The feature set F, focus instructions Zg,s, instruction I, model parameters 6, batch
size B, number of epochs F, step size 7, and focus label mapping Ysocus = Yfocus (Lfocus, ¥s S)-

2: Initialise: Model parameters 6, optimiser.

3: for epoch = 1to E do

4:  for mini-batch {(z°,y*)}£_, from D do

5 for each (z°,4") in the mini-batch do

6: Identify spurious feature value s® in 2.

7: Sample focus instruction I2 . ~ pz,...-

8 Compute y}’ocus = yfocus(lfl;cus, sb ).

9 end for

0 Compute average loss given through empirical estimator of the loss defined in Equation (3]) over the batch:

B

1
5(9) = E Z - logp@(%%cus”? Ig)cus? xb)'
b=1
11: Update model parameters 6 using optimiser:
0« 0 —nVol().
12:  end for
13: end for

14: Output: Optimised model parameters 6 .

FT Training Settings. We use LoRA (Hu et al.,2021)) for parameter-efficient fine-tuning. We target the query and value
projection matrices within each LLM and use LoRA r = 16 and o = 32 across models.

We implement early stopping on a held-out validation set based on the cross-entropy loss over focus labels Y,y correspond-
ing to randomly sampled focus instructions - this matches the context in which the models will be evaluated. We obtain
this set by splitting our training set in a 90/10% ratio for training and validation splits respectively. We use a patience of 4
validation evaluation steps, which occur after a fixed number of steps.

During training, we define p(Zfocus) by placing a small probability (in our experiments, 0.05) on the empty focus instruction
(). We then uniformly distribute the remaining probability mass over the non-empty focus instructions.

Choice of psyurious During Training. In our synthetic experiments described in Figure (3| and Appendix [E} we set up
a controlled environment by imposing two independence conditions: Y Il S and Ys L C. These ensure that (i) the
ground-truth label cannot be predicted using the spurious feature .S, and (ii) the spurious label cannot be predicted using
the core feature C. By removing direct correlations between these features and labels, the model is leans to focus on the
specified feature, without being influenced by the other feature, avoiding any potential shortcuts that could be exploited if
these conditions did not hold.

* Independence Y 1L S: This condition prevents the model from leveraging spurious feature .S to predict ground-truth
label Y. With no predictive signal from S to Y, the model must rely exclusively on the core feature C' for accurate label
predictions. This design choice safeguards the model from overfitting to spurious correlations, thereby maintaining
robust performance under distribution shifts. Moreover, removing any inherent relationship between S and Y ensures
that for focus instruction intending for the model to utilise the core feature C' only during inference, the model cannot
exploit a potential shortcut using S it must utilise the core feature alone for prediction in this scenario enabling
prediction only through the specified feature indicated through the focus instruction passed to the model.
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* Independence Ys L C': This condition serves a complementary role in preventing the model from exploiting the core
feature C' when predicting spurious labels Ys. By ensuring C' carries no information about Y, the model cannot use
the true task feature C' as a shortcut for spurious-label predictions; it must again learn to only use the specified feature
within the passed focus instructions alone for making predictions.

While these conditions represent an ideal setting, they are not strictly necessary for FIT to work in practice. Indeed,
real-world data rarely satisfies such perfect independence, and we illustrate the robustness of the method in more realistic
scenarios through our BBQ experiments in Section where correlations between Y and S or between C' and Yg may
exist as no subsampling or dataset manipulations have been made. By examining both the controlled environment and more
naturalistic datasets, we demonstrate that our approach can handle scenarios with varying degrees of spurious correlations.

To achieve this independence in our synthetic SS and SMNLI datasets, we set pspurious = 1/IN, where N is the number of
class labels. Additionally, we enforce a balanced label distribution in the training set to eliminate any indirect biases that
could correlate S with Y. As shown in Appendix [E|and Appendix [F these conditions are sufficient to guarantee Y L .S in
the training data, enabling the model to effectively learn steerable behaviour from focus instructions.

D.2 Evaluation

Generation Settings. We generate responses from our FT model using constrained beam-decoding (Anderson et al.,2017)
with 4 beams. This ensures that the answer labels for each classification task that we investigate appear in the model’s output.
We limit the maximum number of newly generated tokens to be 5 to stop any unnecessary text given after the model’s initial
classification prediction.

Computing the Focus Accuracy Metric. We report the focus accuracy Agoeys Of generations when evaluating FT models.
As we are guaranteed to include the task labels within the model’s response through constrained decoding and have reduced
the maximum number of tokens that a model can generate at inference-time, we simply check to see if the focus label, ygocus,
is within the model’s response or not in order to determine if the model’s response is correct.

D.3 Dataset Sizes
The sizes of each of the splits of the SS, SMNLI and BBQ datasets are given in Table[3]

Table 3. Dataset Sizes. Dataset split sizes for SS, SMNLI and BBQ datasets.
SS SMNLI BBQ
Training 5296 7200 16700

Validation 1324 1800 1590
Test 1818 900 2352

D.4 Complete Set of Baselines

In addition to the baselines that we present in the main paper, namely Few-shot and SFT (yfocys ), We include two additional
baselines to further supplement these results. We give the complete list of baselines that we consider below:

Zero-Shot Baseline. We include a zero-shot inference baseline using the original pre-trained models without additional
fine-tuning on any dataset. No in-context examples are used at inference time. The model is tested on the full set of focus
instructions prompts detailed in Equation (2).

Few-Shot Baseline. This second baseline compares FIT training to few-shot inference using the original pre-trained models
without additional fine-tuning on our spurious datasets. Specifically, we use 4 in-context examples across all datasets. For
the in-context examples, we concatenate multiple examples one after the other. Each in-context example contains the same
focus instruction as the test example for which they serve as context. The model is tested on the full set of focus instructions
prompts detailed in Equation (2).

SFT(ygocus) Baseline. We implement an SFT baseline that follows the same training procedure as FIT, except during
training, we exclude any focus instructions from the input prompts while still training on the focus labels. This provides a
fair comparison with FIT, as the models are trained on the same input text and label pairs. The rest of the training setup,
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including hyperparameters and early stopping, remains identical to the FIT training setup. The model is tested on the full set
of focus instructions prompts detailed in Equation (2)).

SFT(y) Baseline. We implement a vanilla SFT baseline that simply trains a model using SFT on inputs and their ground
truth labels (as opposed to focus labels in the SFT(y¢cys) baseline). During training, only standard I'T prompts are used
corresponding to the default prompt (), with no additional focus instructions included. The rest of the training setup, including
hyperparameters and early stopping, remains identical to the FIT training setup. The model is tested on the full set of focus
instructions prompts detailed in Equation (2.

We give the full set of results for all datasets and models across the complete set of baselines listed above in Figure [12]

Figure[T4] and Figure
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E Spurious Sentiment (SS) Dataset

We take a pre-existing dataset, in this case SST-5 (Socher e

t al.l 2013a), and modify it in order to include a known spurious

feature and create a spurious binary sentiment analysis dataset that we call the spurious sentiment (SS) dataset.

E.1 Data-generating process (DGP)

We frame our DGP using a graphical model to describe the synthetic dataset that we create. We follow a similar model to
that described in (Arjovsky et al.,2019), specifically the model used for generating their coloured MNIST dataset. We use

the following variables within our graphical model:

e (' - true underlying sentiment, the core feature within

this task, sampled from the original dataset.

¢ S - proposed spurious feature sample, here this is the presence of the keywords ‘“Pineapple” or “Bayesian”. We

represent this as a binary categorical variable with Val(S) = {Pineapple, Bayesian}. We note that, this restricts us to
consider only one keyword appearing in a text at any given time.

* S - final, included, spurious feature that is naturally inserted using a LLM into the final SS dataset example X. The
feature S is a randomly flipped version of the proposed spurious feature S. So here Val(S) = {Pineapple, Bayesian}

also.

e X -is asampled example from the original dataset that we are modifying to inject known spurious correlations.

e X - original example X but naturally augmented to include the spurious feature .S, without changing the underlying

sentiment of the example.

¢ Y - final label for element X.

The graphical model describing the DGP of the SS dataset is given in Figure[TTa] This admits a functional representation in

the form:

C = fe(Uc); (6)
X = f(C,Ug); )
S = fs(C,Ug); (8)
S = fs(S,Us); ©9)
X = fx(X,8,Ux); (10)
Y = fv(C,Uy) (11)

where U(.) are variables introducing sources of randomness into the generating process. More explicitly, we consider the

following set of equations, where D denotes the underlying dataset that we are manipulating:

C ~ Ber(pc), where pc = pc(D); (12)

X ~po(|0); (13)

g Plnea]?ple ?f C=0 ; (14)
Bayesian if C =1

US ~ Ber(pspurious); (15)

S — S } R ?stzl; (16)
Val(S)\ S ifUs=0

X =11M(X, S); (17)

Y =C, (18)

The variable p¢ gives the distribution of sentiment labels in the original binarised SST-5 dataset. Moreover, pp (-|C') denotes
the conditional dataset distribution of the different input texts give C' (here we assume that we are just uniformly sampling
text with the given sentiment C').
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(b) SS Causal Graph. Causal graph showing showing the

(a) SS DGP. Graphical model showing the data generating spurious correlation present between the keyword feature S
process for modifying examples from the SS dataset to intro- and the label Y of examples within the SS dataset, induced
duce a new spurious keyword feature S. through the described data augmentation process.

Figure 11. SS DGP and Causal Graph. The DGP and associated causal graph describing the generation of dataset examples and showing
the causal structure within examples.

Through the above DGP, we introduce a new spurious feature within the dataset S. Recalling that S = Pineapple and
S = Bayesian correspond to the insertion of the keywords Pineapple and Bayesian respectively, we introduce the following
spurious correlations between the final included feature values of .S and label Y

1. The presence of the word Pineapple in the text X, that is S = Pineapple, is spuriously correlated with the label 0
(negative sentiment). Therefore, the spurious label associated with S = Pineapple is given as Ypineapple = 0.

2. The presence of the word Bayesian in the text X, that is S = Bayesian, is spuriously correlated with the label 1
(positive sentiment). Therefore, the spurious label associated with S = Bayesian is given as yayesian = 1.

The sentiment feature C' still remains core within the augmented SS dataset, fully predicting the label Y for each dataset
example.

Causal Graph from this DGP. The above DGP, through the introduction of spurious feature S, induces a causal graph that
describes the spurious correlation between spurious feature .S and the label Y in terms of the additional variables X and C
only. The causal graph, shown in Figure is similar to the style-content decomposition described in (Kaddour et al.|
2022).

Showing that pgpurious Corresponds to the Predictivity of S. We now prove that pgurious gives the co-occurrence
rate/predictivity between the label Y and the spurious feature S, and is well-defined notation in the sense that it corresponds
to Definition [2| so that pgpurious = P(Y = ys|S = s), where y, is the label that spurious feature value s is spuriously
correlated with. Note that this will hold constant irrespective of the feature value of S. We begin with the following
proposition.

Proposition E.1. From the DGP described above. we have that

PC Pspurious
pcC pspurious + (1 - PC) (1 - pspuriaus)

if s = Bayesian,

P(Y=ys|S=5s)= 1— _ (19)
pC) Pspurious if s = Pineapple.
(1 - pC) Pspurious + pc (1 - pspurious)
Proof. Using the partition theorem, we have that
P(S=5s)=P(S=s5|S=5)P(S=5)+P(S=5|5+#s)P(S #s) (20)
— —

=P(U,=1) =P(Us=0)
=P(U, = 1)P(S = 5) + P(U, = 0)P(S # s) (21)
= pspurious . P(S = 5) + (1 - pspurious) . P(S 7& 5) (22)
_ PC Pspurious T (1 - pC’) (1 - pspurious) if s = Bayesian, (23)

(1 - ,OC) Pspurious + PC (1 - pspurious) if s = Pineapple. ’
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where we have used that P(Us = 1) = Pspurious> and that the value of S depends solely on the value of C.
Using this alongside Bayes’ rule gives

P(S =S | Y = ys)P(Y = ys)

PY=ys|S=s)= PG = 5) (24)
P(S=s|C=y,)PY =ys)
= 25
P(S = s) o
P(S=s|S=3sPY =y,
P(S =s) (20)
PC Pspurious if s = Bayesian,
)} PC Pspurious + (1 - pC’) (1 - pspurious) 27)
- 1-— PC) Pspurious . D
if s = Pineapple.
(1 - pC’) Pspurious + PC (1 - pspurious)
which gives the result. O

Corollary E.1. From the DGP described above, assuming that we have a balanced label distribution, that is pc = 1/2, we

have that

IP)(}/ =Ys | S = S) = Pspurious - (28)
for all spurious feature values s.
Proof. This follows immediately from he previous proposition, Proposition with pc = 1/2. O

Within our experiments on the SS datsaet, we always force the label distribution to be balanced, that is pc = 1/2, and
assume that within each dataset split, pspurious 1S the same rate for all spurious feature values.

Data Generation Methodology. We use Llama-3.1-70B-Instruct to generate modifications X of original dataset examples
X to create new text which include the new keyword features (presence of the keywords “Bayesian” and “Pineapple”. The
prompt we use for generation when modifying examples to include spurious features is give as:

Data Augmentation Prompt

You are a language model designed to modify a piece of text to include an additional feature in a simple, natural way while
keeping your output as similar as possible to the original text.

Features
* pineapple: Include the word ‘pineapple’.
* Bayesian: Include the word ‘Bayesian’.
Instructions
» Ensure the output is grammatically correct.
Keep the output as similar as possible to the original text.
Make the minimal number of modifications and add the fewest new tokens possible to satisfy the chosen feature.
Do not change the sentiment of the original text.
Do not significantly alter the length of the output.
Incorporate the feature naturally within the original text so that it blends seamlessly with the text’s context.
Do not only append additional clauses at the end of the text to include the feature.
* Inclusions should be case sensitive, e.g., include ‘Bayesian’ BUT NOT ‘bayesian’.
Output
* Only return the modified text, with no additional explanations or reasoning.
* Should strictly follow the feature description and the set of instructions.
* Only include the one feature given; the other features SHOULD NOT be included even accidentally.

E.2 Independence Conditions During Training for FIT on SS.

As specified in Appendix [D} we would like to have that Y Il S and Ys L C' during training so that models trained via FIT
can effectively learn to leverage focus instructions to make predictions based on specified features. Here, Yy is the spurious
label spuriously correlated to the random spurious feature value S. The results below give sufficient conditions for these
independence conditions to be satisfied with respect to the DGP described above, and consequently form the conditions
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that we impose on the SS training set for FIT training. We show that the key condition that we must impose in training for
Y 1L Sand Yg 1L C'is to set pspurious = 1/2.

Proposition E.2. Assuming the DGP described in above and assuming that pspyrious = 1/2, we have thatY 1L S.

Proof. With pspurious = 1/2, we have from the DGP given above, that S 1 S.In particular, using the factorisation implied
by the directed acyclic graph (DAG) corresponding to the DGP, we see that

P(Y =y,S=s) = > PY=y|C=c)P(C=c)P(S=35|C=c)P(S=5|5=3) (29)
. —_— ——
c€Val(C),3eVal(S) —P(S=s) as SILS
= > P(Y=y|C=c)P(C=c)P(S=35]|C=c)P(S=s) (30)
ceVal(C),5€Val(S)
=P(S = s) > P(Y=y|C=c)P(C=c)P(S=35|C=c) (31)
ceVal(C),5€Val(3)
=P(S=s) Y PY=y|C=cPC=c) (32)
ceVal(C)
=P(S =s)PY =y). (33)
By definition, this shows that we have that Y 1l .S, as required. ]

Proposition E.3. Assuming the DGP described above, for pspyrious = 1/2, then we have that Yg 1L C.

Proof. First note that Ys is a deterministic function of S, that is Yg = f(5) for some function f : Val(S) — {0, 1}.
Therefore, it is sufficient to show that C' Ll S. However, from the DGP above, we have that Y = C'. From Proposition [E.2}
we already have that Y Il S, which implies that C' 1L S, which proves the claim. O

E.3 Results

Figure 12 (a) shows the focus accuracy results of three LLMs on the SS dataset across all of the baseline methods described
in Appendix [D.4] and the FIT method. We see that across all focus instructions and all models, FIT shows significant
improvement over the baselines, achieving very high focus accuracy across all focus instruction types and across all test sets
with varying predictivity levels.

Table 4. Complete Baselines vs. FIT Focus Accuracies (1) on SS. For each method, we report the mean of focus-accuracy means
(Atocus) over the four test splits (Diid, Dhigh» Diow and Dhippea) £ the between-split standard deviation of these means (i.e. how performance
varies as predictivity changes) across repeats. Boldface indicates the best mean for each focus instruction type and model independently.

o focus(C) focus(C) A ignore(S) ignore(S) focus(S) focus(S) A ignore(C)
Zero-shot 0.886+0.007 0.90940.004 0.899+0.002 0.871+0.006 0.423+0.199 0.305+0.104
Té Few-shot 0.893+0.003 0.90640.005 0.904+0.006 0.793+0.036 0.559+0.168 0.634+0.116
2z SFTI(y) 0.951+0.005 0.950+0.004 0.95240.005 0.951+0.004 0.44510.275 0.44710.270
2 SFT(Wiocus)  0.75110.126 0.794+0.108 0.903+0.042 0.879+0.054 0.506+0.248 0.51940.241
FIT 0.95340.004 0.954+0.004 0.955+0.004 0.95440.004 0.999+0.001 0.99940.001
Zero-shot 0.50010(000 0.50010000 0.500;&0000 0.500;&0000 0.506;&0003 0.506;&0002
g Few-shot 0.674+0.006 0.838+0.008 0.630+0.018 0.508+0.005 0.49140.047 0.502+0.038
s SFI(y) 0.95240.004 0.954+0.003 0.95240.007 0.95240.008  0.44510.276 0.44440.272
= SFT(Yfocus)  0.668+0.178 0.686+0.166 0.803+0.095 0.79510.094 0.606+0.197 0.60140.193
FIT 0.949+0.002 0.951+0.002 0.95240.002 0.950+0.002  0.998+0.001 0.99940.001
Zero-shot 0.420+0.012 0.584+0.007 0.381+0.008 0.3554+0.006 0.19940.105 0.12910.066
g Few-shot 0.147i0_010 0.459i0.014 0.533i0.012 0.431i0_010 0.300i0_150 0.300i0_125
2 SFI(y) 0.955+0.005 0.956+0.005 0.95540.004 0.953+0.006 0.44640.27s 0.44540.277
»  SFT(Yfocus)  0.570+0.180 0.602+0.187 0.685+0.138 0.671+0.129 0.676+0.129 0.660+0.118
FIT 0.950+0.003 0.953+0.003 0.95510.003 0.95540.004 0.99940.001 0.99940.001
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Figure 12. Complete Baseline vs FIT Focus Accuracies (1) on SS. Figure giving the mean focus accuracies (Agocus) Of the additional
baselines compared to the focus accuracy of FIT on the SS dataset. The maximum standard deviations of FIT, SFT (ysocus ), SFT(y) and
few-shot methods across models are 2.17%, 14.8%, 0.65%, and 2.83% respectively. fcs = focus, ign = ignore.

Key Takeaways. High focus accuracy on SS indicates that FIT successfully steers model responses based on the
feature on which it is instructed to focus or to not focus on.
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F Spurious NLI dataset (SMNLI)

We generate a tertiary NLI dataset, SMNLI, with a known spurious feature. We do this subsampling from the original MNLI
dataset (Williams et al., 2018)). This is a NLI dataset with three labels: entailment (0), neutral (1) and contradiction (2),
where data is sampled from 6 underlying categories or genres (government, travel, and fiction, facetoface, nineeleven and
verbatim). We aim to induce spurious correlations between the underlying genres and labels.

F.1 Data-Generating Process (DGP).

We consider a graphical model to describe the DGP of examples within the SMNLI dataset. We use the following variables
within our DGP:

e (' - NLI relationship between a premise and hypothesis pair, the core feature within this task, sampled from the original
dataset.

e X - example from the MNLI dataset.

* S - spurious feature present in the example X, here this is the genre of the premise and hypothesis. This is a categorical
variable.

¢ Y - final label for element X.

Figure 13. SMNLI DGP. Graphical model showing the data generating process for modifying examples from the MNLI dataset to
introduce a new spurious keyword feature S.

The graphical model described by the DGP for producing the SMNLI dataset is given in Figure[I3] Once again, this
graphical model can be represented functionally as:

= fs(Us); (34)
= fc(S,Uc); (35)
X = fx(C,E,Ux); (36)
Y = fy(C,Uy). (37)

More specifically, given the orignal dataset D that we are sub-sampling from, the functions that we use within the DGP for
the SMNLI dataset are given by:

S ~ Unf(S), (38)
Uc ~ Ber(/%purious)? (39)
C="Ucys+ (1—=Uc)UVal(C) \ {ys}) (40)
X ~pp(-|C,5) 41)
Y =C. (42)

Here, U(S) denotes a uniform distribution over the set of categorical variables S, and we define Val(C) = {0, 1,2}
corresponding to the possible NLI labels for this task. Furthermore, we define yg to be the NLI label that a particular value
of S is spuriously correlated with by design. Moreover, pp(-|C, S) is the conditional distribution over the dataset examples
(premise-hypothesis pairs) that have NLI relationship C' and genre S.

We restrict the genres that we sample from to S € {government, fiction, travel}, a subset of the genres of the training
set. When creating a distribution shifted test set, we restrict the genres to S € {facetoface, nineeleven, verbatim}. The
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specific spurious correlations between a genre s and a label y, are chosen to be: Ysiae = 05 Ysovernment = 25 Yfiction = 1
Ysravel = 05 Yfacetoface = 23 Ynineeleven = 05 Yverbatim = 1. In this way we generate spurious correlations within the dataset
through sub-sampling to induce spurious correlations between S and Y.

We show that the notion of pgpurious in Equation (39)) aligns with the notation in Definition [2] and that this does not depend on
the spurious feature value of S.

Proposition F.1. From the SCEs described above, we have that
]P)(Y =Ys | S = 5) = Pspurious - (43)

for all spurious feature values s.

Proof. This is clear considering Equation @I), where pgpurious influences the chance that we sample ys, i.e. the label
spuriously correlated with feature value s. O

F.2 Independence Conditions During Training for FIT on SMNLI.

As specified in Appendix [D] we would like to have that Y 1L S and Y L C during training so that models trained via FIT
can effectively learn to leverage focus instructions to make predictions based on specified features, where, again, Y is the
label spuriously associated to spurious feature value .S. The results below give sufficient conditions for this to occur with
respect to the DGP described in Figure This boils down to setting ppurious = 1/3 during training.

Proposition F.2. Assuming the DGP described above and that pspurious = 1/3, we have thatY 1L S.

Proof. Note that since Y = C' in the SCEs above, it suffices to show that C' 1l S. We have that for a given S = s, that
P(C = ys|S = 8) = pspurious = 1/3 from Proposition Moreover, let C ~ Unf(Val(C) \ {ys}) denote the random
variable sampled from a uniform distribution over the remaining possible values of C' excluding y,. Then for either value of
¢ € Val(C) \ {ys} we have that

P(C = ¢|S = 5) = P(Uc = 0)P(C = ¢) (44)
2 1
32 )
1
=3 (46)

Therefore, we have that C' ~ Unf(Val(C')). In particular, this then gives that C' Ll S, which in turn implies that Y 1. .S. O
Proposition F.3. Assuming the DGP described above and that pspuyious = 1/3, then we have that Yg 1L C.

Proof. Note that Y is a deterministic function of .S, so that Ys = f(.S) for some function f : Val(S) — Val(Y). Therefore,
it suffices to show that S L C. The proof of this is given in Proposition [F.2] O

F.3 Results.

We present full results comparing FIT on SMNLI against all of the baselines described in Appendix in Figure
Table [5] for completeness.
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Figure 14. Complete Baseline vs FIT Focus Accuracies (1) on SMNLI. Figure giving focus accuracies (Afocus) Of the additional
baselines compared to the focus accuracy of FIT on the SMNLI dataset. The maximum standard deviations of FIT, SFT (ysocus ), SFT(y)
and few-shot methods across models are 6.47%, 7.98%, 1.15%, and 0.500% respectively. fcs = focus, ign = ignore.

Table 5. Complete Baselines vs. FIT Focus Accuracies () on SMNLI. For each method, we report the mean of focus-accuracy means
(Arocus) over the four test splits (Diia, Dhigh, Diow and Dhippea) £ the between-split standard deviation of these means (i.e. how performance
varies as predictivity changes) across repeats. Boldface indicates the best mean for each focus instruction type and model independently.

5} focus(C) focus(C) A ignore(S) ignore(S) focus(S) focus(S) A ignore(C)
Zero-shot 0.742+0.016 0.711+0.014 0.711+0.012 0.716+0.020 0.362+0.189 0.368410.191
E Few-shot 0.716;&0,020 0.725;&()‘017 0.722;&()‘017 0.687;&()‘023 0.3701()‘178 0.386:&0‘189
Z SFI(y) 0.890+0.009  0.87510.013 0.875+0.013 0.88540.013  0.334+0.275 0.33210.273
2 SFT(Yrocus)  0.73210.101 0.727+0.007 0.725+0.096 0.726+0.102 0.54440.192 0.537+0.190
FIT 0.878+0.005  0.875+0.004 0.874+0.006 0.878+0.007  0.963+0.006 0.968+0.003
Zero-shot 0.679+0.007 0.688+0.017 0.682+0.018 0.68210.015 0.370+0.162 0.386+0.151
g Few-shot 0.59540.012 0.641410.003 0.63040.010 0.63640.009 0.35140.130 0.37940.094
& SFI(y) 0.880+0.005 0.880+0.003 0.879.0.004 0.87940.00a  0.352+0.278 0.354+0.272
= SFT(Yfocus)  0.700+0.121 0.759+0.003 0.750+0.098 0.720+0.110 0.55240.194 0.536+0.200
FIT 0.872+0.007 0.865+0.008 0.861+0.009 0.865+0.010  0.929+t0.005 0.931+0.004
Zero-shot 0.595+0.012 0.59840.015 0.575+0.019 0.573+0.017 0.334+0.108 0.34140.003
g€  Few-shot 0.269+0.032 0.417+0.027 0.251+0.010 0.301+0.013 0.195+0.080 0.133+0.060
g SFI(y) 0.8924+0.003 0.890+0.002 0.890+0.004 0.891+0.006  0.337+0.2s8 0.34240.283
»  SFT(Yfocus)  0.579+0.081 0.575+0.064 0.573+0.055 0.585+0.063 0.502+0.002 0.496+0.086
FIT 0.803+0.004 0.807+0.006 0.794+0.008 0.781+0.012  0.894+t0.019 0.934+0.010
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G Additional BBQ Results
In Figure[I5]and Table [f] we include the full comparisons of FIT against all baselines described in Appendix [D.4]
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Figure 15. Complete Baseline vs FIT Focus Accuracies (1) on BBQ. Figure giving focus accuracies (Asocus) of the additional baselines
compared to the focus accuracy of FIT on the BBQ dataset. The maximum standard deviations of FIT, SFT (Yfocus )» SFT(y) and few-shot
methods across models are 4.07%, 10.7%, 2.22%, and 0.600% respectively. fcs = focus, ign = ignore.

Table 6. Complete Baseline vs FIT Focus Accuracies (1) on BBQ. We report across all baselines the mean seen/unseen focus accuracies,
with boldface indicating the best mean for each focus instruction type and model independently. The maximum standard deviations of FIT,
SFT (Yfocus ), SFT(y) and few-shot methods across models are 4.07%, 10.7%, 2.22%, and 0.600% respectively. fcs = focus, ign = ignore.

%] focus(C)  focus(C) Aignore(S)  ignore(S) focus(S)  focus(S) A ignore(C)
Zero-shot 0.772/0.792  0.768/0.803 0.782/0.812 0.790/0.829  0.338/0.320 0.302/0.295
—é Few-shot 0.775/0.798  0.767/0.795 0.769/0.807 0.777/0.814  0.408/0.381 0.388/0.373
% SFI(y) 0.999/0.982  1.000/0.983 1.000/0.982 1.000/0.981  0.248/0.249 0.248/0.249
=  SFT(yfocus) 0.858/0.874  0.844/0.866 0.848/0.872 0.847/0.863  0.396/0.335 0.394/0.340
FIT 0.998/0.976  0.998/0.976 0.998/0.977 0.999/0.976  0.941/0.852 0.941/0.853
Zero-shot 0.534/0.673  0.478/0.597 0.478/0.593 0.508/0.627  0.533/0.421 0.527/0.428
g Few-shot 0.643/0.696  0.686/0.743 0.724/0.774 0.642/0.720  0.496/0.429 0.492/0.432
& SFI(y) 0.998/0.991  0.999/0.985 1.000/0.988 0.999/0.989  0.248/0.244 0.248/0.246
= SFT(Yfocus) 0.836/0.912  0.825/0.901 0.836/0.903 0.852/0.910  0.403/0.317 0.418/0.323
FIT 0.993/0.974  0.997/0.977 0.998/0.979 0.996/0.979  0.943/0.832 0.946/0.835
Zero-shot 0.444/0.495  0.495/0.567 0.505/0.531 0.479/0.519  0.371/0.324 0.375/0.315
€  Few-shot 0.454/0.565  0.453/0.572 0.517/0.604 0.547/0.625  0.503/0.512 0.487/0.496
g SFT(y) 0.975/0.991  0.959/0.988 0.957/0.990 0.974/0.990  0.245/0.252 0.243/0.251
> SFT(Yfocus) 0.796/0.832  0.794/0.808 0.787/0.806 0.796/0.809  0.444/0.392 0.456/0.394
FIT 0.983/0.979  0.982/0.975 0.981/0.972 0.984/0.973  0.966/0.835 0.966/0.837
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H BBQ-NLG

H.1 BBQ-NLG Experimental Setup

We follow the original BBQ dataset splits (including both training and held-out social-bias partitions) described in Section[4.2]
For each example in the new BBQ-NLG dataset, we remove the predefined answer choices and require the model to generate
fully verbalised responses, rather than selecting from a fixed set of three options as in the original BBQ dataset.

To give the model additional capacity for this more challenging free-form generation task, we augment the usual LoRA
targets (the key and value projection matrices) with adapters on the value-projection matrices as well. All LoORA modules
are trained with a learning rate of 10~°. We train both the FIT and SFT(yocus) versions for 10 epochs each. As a strong
comparison, we evaluate a few-shot baseline that conditions the model on 4 in-context examples that share the same focus
instruction as the test instance.

To enable both rapid and cost-effective evaluation of correctness in our open-ended generation task, we employ an LLM-
based judge. Specifically, we use a pre-trained Llama-3.1-8B-Instruct model to compare each generated response against its
associated ground-truth focus label and determine whether they are semantically equivalent. Manual checks confirm that the
Llama-3.1-8B-Instruct judge reliably assesses semantic equivalence in this setting where model generations and expected
responses and generally short and concise.

H.2 Results

Figure [T reports the focus-accuracy of each method across models. Although all approaches exhibit a slight degradation on
unseen feature combinations relative to the classification-style BBQ results in Section[#.2] FIT remains generally overall on
par with the earlier numbers. Critically, FIT consistently outperforms both the SFT (ysocys) and the strong 4-shot few-shot
baseline that uses identical focus prompts at test time. These findings provide clear evidence that the FIT method can be
effectively extended to open-ended NLG settings without sacrificing its steering capability.
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Figure 16. BBQ-NLG Focus Accuracies (1). Mean focus accuracy (Arocus) Of baselines and FIT on the BBQ-NLG dataset. The maximum
standard deviations of FIT, SFT (yfocus) and few-shot methods across models and Zsocys are 2.45%, 6.35% and 0.377% respectively. fcs =
focus, ign = ignore.
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I Comparison of FIT Against a Specific Debiasing Technique

FIT is a general framework designed to enable users to steer a model’s behaviour based on specified features. This approach
provides enhanced control over model outputs during inference, adding a critical layer of explainability and controllability
to model predictions.

While understanding and mitigating biases or spurious correlations is a valuable and natural application of FIT, it is not the
sole objective. The broader goal of steerability includes addressing challenges in managing and aligning model behaviour
across diverse contexts. For instance, maintaining controllability is crucial in addressing safety alignment fragility, which
can emerge after fine-tuning (Bhattacharjee et al.,|2024). In such cases, the ability to adapt model responses to align with
user specifications ensures safe and reliable deployment.

Experiment. To explore FIT’s broader applicability, we compare its performance as a debiasing method against a well-
known debiasing technique: the Product of Experts (PoE) method (Mahabadi et al., 2020). PoE involves training a bias
model fp, which is trained exclusively on bias features. This bias model mediates the training of the final model f by
combining their predictions through an elementwise product: o(f(z)) ® o(fg(zp)), where = € D, for dataset D, and =
represents the biased feature of x.

We adapted this approach to our setting by training a bias model on the stereotypical labels within the BBQ dataset. These
labels correspond to group-stereotypical associations. For autoregressive models, we further modified the PoE method by
extracting and normalising the logits of the first newly generated token position over the set of single tokens representing the
answer options.

Results. The results of the debiasing experiment comparing FIT to the POE method is shown in Figure FIT performs
equally as well as the PoE method as shown by the comparing the default prompt accuracy (§)) for the PoE models against
the focus(C') results for the FIT models; both metrics correspond to causal accuracy for these prompt types. Indicating that
FIT performs just as well as a dedicated debiasing technique.

However, the PoE method requires training two separate models and does not provide steerability at test time as shown by
the low focus accuracy on focus(SS). Indeed the model defaults to the ground truth label across all prompt types and does
not change behaviour despite different different focus specifications. This highlights the flexibility of FIT, which not only
debiases effectively but also enables additional controllability during inference.
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Figure 17. Focus Accuracy (1) of FIT Against PoE Debiasing Technique. Figure showing the focus accuracies (Afocus) of FIT (bottom
row) and the dedicated debiasing technique, PoE (top row), on the BBQ dataset.
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J Spurious HANS Dataset (SHANS)

We generate a binary NLI dataset, SHANS, with a known spurious feature. We do this considering the HANS dataset
(McCoy et al.,|2019). This is an NLI data set with two labels: entailment (0) and contradiction (1). This is an adversarial
dataset designed to assess different NLI models’ reliance on spurious heuristics rather than on the underlying relationship
between the premise and the hypothesis when making predictions. Specifically, the author’s consider three major categories
of heuristics: lexical overlap heuristic (assuming that a premise entails from words within the hypothesis) , sub-sequence
heuristic (assuming that the premise entails all any of its contiguous sub-sequences of words) and constituent heuristic
(assuming that a premise entails a hypothesis that is any constituent within it’s syntactic parse tree). We take each of these as
separate spurious features within our SHANS dataset, which we induce, as for the SMNLI dataset, through subsampling.

J.1 Data-Generating Process (DGP).

We consider a graphical model to describe the DGP of examples within the SHANS dataset. We use the following variables
within our DGP:

e C - NLI relationship between a premise and hypothesis pair, the core feature within this task, sampled from the original
dataset.

* Siex. - spurious feature, here the presence of a hypothesis entirely made from words from the premise. This is a binary
categorical variable (present/ not present).

¢ Squb, - spurious feature, here the presence of a hypothesis that is a contiguous subsequence of the premise. This is a
binary category feature (present/ not present).

¢ Seconst. - spurious feature, here the presence of hypothesis that is a constituent/subtree of the premise. Here we have a
binary variable (present/ not present).

e X - example from the HANS dataset.

Y - final label for element X.

Figure 18. SHANS DGP. Graphical model showing the DGP for modifying examples from the SHANS dataset to introduce new spurious
features Siex., Ssub. and Sconst. Which are encoded within the categorical spurious feature S which represents one of these three heuristics.

The graphical model described by the DGP for producing the S-HANS dataset is given in Figure [I§] Once again, this
graphical model can be represented functionally as

S = fs(Us); 47)
C = fc(S,Uc); (48)
X = fx(C,E,Ux); (49)
Y = fy(C,Uy), (50)

where here we define S to be a categorical feature over the set of variables indicating the presence of each of the three
heuristics introduced above which we denote, through overloaded notation, by S = {Sjex., Ssub.» Sconst. }- More specifically,
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given the original HANS dataset D that we are sub-sampling from, the functions that we use within the DGP for the SHANS
dataset are given by:

S ~U(S), (629
Uc ~ Ber(pspurious) (52)
C ~Ucys + (1 =Uc)(1 - ys); (53)
X ~pp(-|C,S) (54)
Y =C. (55)

Here, U/(S) is a uniform categorical distribution over S which effectively selects the presence of exactly one of the three
spurious feature heuristics. We define yg to be the NLI label that a particular value of S is spuriously correlated with by
design. Moreover, pp(-|C, S) is the conditional distribution over the dataset examples (premise-hypothesis pairs) that have
NLI relationship C' and the presence of spurious heuristics .S.

We consider the presence of each feature to be separate binary spurious features. The specific spurious correlations between
heuristics and labels Y are chosen to be: ys, -1 = 0; ys,,=1 = 0; ¥s...=1 = 1. In this way we generate spurious

const. =

correlations within the dataset through sub-sampling to induce spurious correlations between the heuristics and label Y.

J.2 Transferred Results from SMNLI.

As we have effectively used the same DGP as for the SMNLI dataset described in Appendix [F} with the only change being
the label set, all of the results that we have proven for SMNLI, translate to the SHANS dataset. In particular, we have
that pspurious aligns with the notation in Definition [2} and that we have Y Il S and Ys 1L C under the assumptions of
Pspurious = 1 /2 within the training set used for FIT training.
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K FIT on SHANS

Here we give the results performing FIT on the SHANS dataset.

K.1 Spurious HANS (SHANS) Dataset.

We generate binary NLI dataset sub-sampled from HANS (McCoy et al.,[2019), a dataset designed to challenge NLI models
by exposing common heuristics they rely on, such as lexical overlap (whether the hypothesis shares many words with the
premise), sub-sequence (whether the hypothesis is a contiguous sub-sequence of the premise), and constituent (whether the
hypothesis is a grammatical sub-structure of the premise). The presence of these heuristics are spuriously correlated with
labels through sub-sampling of the presence of each of the heuristics from the original dataset. The degree of co-occurrence
is governed by pspurious» Which varies according to the test sets described in Section @ We ensure that pgpurious 18 the same for
all feature values within each dataset split. In particular, we set pspurious t0 be 0.5,0.5,0.9,0.25 and 0.9 (in this case with
flipped spurious correlations) on Digin, Diid, DPhigh» Plow and Diipped respectively.

K.2 Results.

Figure[T9)shows the focus accuracy results of performing FIT on the SHANS dataset for the Llama-3.1-8B-Instruct model.
As expected, the trained features show high focus accuracy. However, for non-trained features, we observe lower focus
accuracy. This could be attributed to the overlapping nature of the heuristics in SHANS, which are often graded versions of
each other with different levels of specificity. For instance, the sub-sequence heuristic can overlap with both lexical overlap
and constituent heuristics (e.g., the example with Premise:““Before the actor slept, the senator ran” and Hypothesis: “The
actor slept.” satisfies all three heuristics). This overlap likely confuses the model during generalisation, as it struggles to
distinguish between heuristics not seen during training and those that are similar. These results suggest a potential limitation
of FIT when dealing with features that are not sufficiently distinct or have significant overlap.

Seen Features Unseen Features

‘-0- Diid == Dhigh 0= Digy =0= Dﬂipped‘

Figure 19. SHANS Focus Accuracies (1). Focus accuracy (Afocus) of Llama-3.1-8B-Instruct after FIT on the SHANS dataset. Here, C
refers to the core feature (logical relationship between premise and hypothesis) and S the spurious feature (heuristic used).
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