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Abstract

In recent years, many benchmarks have been developed
to evaluate Vision-Language Models (VLMs) using visual
question answering (VQA) pairs, with models demonstrat-
ing significant accuracy improvements. However, these
benchmarks rarely test visual entailment (determining if an
image entails its respective text). Furthermore, existing vi-
sual entailment datasets use simple images, which prevent
a true evaluation of visual understanding. To address this,
we propose COREVQA (Crowd Observations and Reason-
ing Entailment), a benchmark of 5,608 image and synthet-
ically generated true/false statement pairs. Using images
from the CrowdHuman dataset [22], COREVQA provokes
visual entailment reasoning in challenging, crowded scenes.
Our results show that even top-performing VLMs achieve
accuracy below 80%, with other models performing sub-
stantially worse (39.98%-69.95%). This significant perfor-
mance gap reveals key limitations in the ability of VLMs to
semantically understand crowd-based images and reason-
ing within each image-text pair. This limits VLM capability
in assistive technologies for individuals with disabilities. 1

2

1. Introduction
Vision-Language Models (VLMs), such as GPT-4.1 [1] and
Gemini 2.5 Pro [6], have shown remarkable capabilities in
image understanding and multimodal task completion [13].
As VLMs grow more sophisticated, the demand for rigor-
ous evaluation methods that assess deep visual and textual
understanding becomes increasingly critical [2, 8, 10]. With
VLMs powering assistive technology such as Be My Eyes,
thorough evaluation is essential for user safety and quality
of life [17].

However, existing VLM evaluation benchmarks often

1The dataset is available on Hugging Face at:
https : / / huggingface . co / datasets / COREVQA2025 /

COREVQA.
2The demo and generation code are available on Github at: https:

//github.com/corevqa/COREVQA.

fall short in assessing nuanced comprehension of natural
situations, primarily due to their reliance on simple images
or questions. These limitations mean that models may suc-
ceed by exploiting superficial cues or relying on parametric
knowledge without robust visual processing. This scarcity
of robust multimodal reasoning assessments impedes VLM
improvements [9, 13].

To fill this void in VLM assessment, we propose
COREVQA (Crowd Observations and Reasoning Entail-
ment Visual Question Answering)—a challenging evalua-
tion benchmark based on images of dense human crowds
in complex, natural settings. While existing crowd-based
datasets focus on recognition, detection, and counting [23,
27–30, 35], COREVQA requires models to integrate fine-
grained visual analysis with textual logic in scenarios where
visual ambiguity and easy-to-miss details are key. We hope
to help researchers spot flaws and gaps in VLM understand-
ing that will spur improvement in assistive robustness and
trustworthiness.

Our main contributions are as follows:
• We propose a pipeline to synthetically generate diffi-

cult questions for specific images based on typical VLM
weaknesses.

• We created the first large-scale benchmark with multi-
person, crowd-based images for evaluating VLM capa-
bility in busy scenarios.

• We evaluated several state-of-the-art (SOTA) VLMs on
COREVQA, revealing a universal struggle with nuances
and fine details when dealing with images overflowing
with diverse people, shapes, colors, and sizes.

2. Related Work
2.1. Vision-Language Benchmarks
Several benchmarks have become standard for evalu-
ating core Visual-Question Answering (VQA) abilities.
VQAv2 [8], successor to the original VQA dataset [3],
aimed to assess general VQA performance through a more
balanced and challenging benchmark. Though still used for
standardized evaluation, typical VQA datasets (like OK-
VQA [16] and TextVQA [24]) often lack sufficient com-

https://huggingface.co/datasets/COREVQA2025/COREVQA
https://huggingface.co/datasets/COREVQA2025/COREVQA
https://github.com/corevqa/COREVQA
https://github.com/corevqa/COREVQA


plexity [8]. Newer datasets analyze visual reasoning, un-
derstanding, recognition, and question answering, including
MMTBench [31], VCR [34], MM-Vet [32], SEEDBench
[11], and NaturalBench [12]. Most recent datasets, such as
MMBench [15], MMMU [33], MMStar [4], and M3GIA
[25], have focused on assessing a wider range of tasks for
easier standardized comparison, rather than improving eval-
uation quality [7]. Other targeted datasets like Hallusion-
Bench [9], NTSEBENCH [19], and VLDBENCH [21] have
been created to evaluate key VLM weaknesses.

Visual entailment benchmarks such as SNLI-VE [30],
Defeasible Visual Entailment [36], and VALSE [20] have
all created questions that test a model’s ability to under-
stand text in relation to an image. However, these existing
visual entailment benchmarks utilize easily understandable
images in their assessments, relying on text for entailment.
Primary crowd-based datasets include NWPU-Crowd [28],
JHU-CROWD++ [23], PANDA [29], and GCC [27].

The original visual entailment task (from SNLI-VE) [30]
contains three labels: entailment (if the image contains
enough information to conclude the text is true), contradic-
tion, and neutral (if there isn’t enough information to con-
clude). We utilize a true (entailment) or false (contradic-
tion) format, removing the neutral metric from evaluation
to provide a more decisive classification task.

Rather than evaluating diverse tasks or focusing exclu-
sively on one performance aspect like text recognition,
COREVQA combines visual entailment and textual com-
prehension with heavy occlusion from our crowd-based im-
ages [30]. This combination takes difficult aspects from ex-
isting benchmarks and merges them with a focus on crowds
to provide a quality, in-depth assessment that is generaliz-
able to real-world scenarios.

3. COREVQA
COREVQA is a novel VQA benchmark designed to eval-
uate the capabilities of VLMs in detailed visual inspection
and multi-step visual entailment. The benchmark features
true/false statements about images that sound plausible but
require careful visual grounding to verify.

3.1. Benchmark Overview
COREVQA tests two core capabilities: depth of visual en-
tailment and precision in analyzing fine-grained visual de-
tails. The binary classification task assesses meticulous vi-
sual inspection, which involves identifying subtle details
in visual clutter or peripheral regions, and complex visual
entailment, which involves understanding spatial relation-
ships, making contextual inferences, and resisting plausible
misdirection.

The benchmark contains 5,608 unique image-statement
pairs. Images come from the CrowdHuman dataset [22],
featuring diverse indoor and outdoor environments with

groups of people. Each image is paired with a unique
true/false statement generated by prompting ChatGPT for
true statements and Claude 3 Opus for false statements.
Ground truths were hand-labeled.

Table 1. Key Statistics of the COREVQA Dataset

Characteristic Value

Dataset size 5,608 image-statement pairs
True statements 1,566 (27.9%)
False statements 4,042 (72.1%)
Avg. statement length 30.20 words
Statements w/ commas 94.26%

3.2. Data Collection
3.2.1. Image Sourcing
The images were sourced from the CrowdHuman dataset
[22] (see Section 3.3.1).

3.2.2. True/False Statement Generation
After testing several SOTA models, we found that true state-
ments from GPT-4.1 and false statements from Claude 3
Opus were most effective at creating difficult and high-
quality questions.

Both models were guided by an iteratively refined
prompt designed to create statements that sound natural
but require meticulous visual inspection. The prompts in-
cluded directives for complexity, grounding in visual evi-
dence, and a built-in self-reflection step for the generator
to analyze how its statement might trick a model. The ex-
act prompts used for generation are available in our public
GitHub repository.

For true statements, the prompt encouraged three main
reasoning approaches:
• Spatial reasoning: Describing precise relationships be-

tween multiple elements. This includes human-to-human
interaction, human-to-object interaction, and direction or
orientation of moving or still humans and/or objects.

• Temporal/causal inference: Identifying evidence of
what just happened or is about to happen. Such state-
ments present reasonable inferences based on observa-
tions of the situation presented in the given image.

• Background knowledge integration: Implementing ex-
tensive details about the background of a scene in the
statement challenges models to verify all parts of the im-
age.
For false statements, the prompt employed a range of

adversarial strategies designed to exploit common VLM
weaknesses. These included:
• Occlusion Trap: Implying something is fully visible

when it is actually partially or fully hidden.
• Causal Mislead: Suggesting a cause-and-effect relation-

ship not supported by the visual context (e.g., “because X



is happening, Y must be true”).
• Schema Reversal: Flipping expected social roles (e.g.,

describing a parent handing a trophy as a coach).
• Quantifier Bait: Using counts (e.g., “at least three,”

“only one”) for simple object detection. Generally, these
statements mention detailed attributes of the objects to
throw off VLMs and make them doubt their count.

• Hidden Contradictions: Embedding a single, subtle er-
ror (e.g., a missing ID badge or an incorrect object) within
an otherwise believable sentence.

This systematic approach ensures that the benchmark’s dif-
ficulty stems from intentional, grounded complexity rather
than random chance.

3.2.3. Quality Control and Ground Truths
All ground truths were manually labeled to ensure complete
accuracy. While labeling, we also reprocessed any ambigu-
ous statements or made minor grammatical edits for clarity.

3.3. Data Analysis
3.3.1. Images
The dataset includes 4,927 images (87.9%) from the train01
split and 681 images (12.1%) from the train02 split of the
CrowdHuman dataset. These real-world photographs fea-
ture groups of people in diverse settings, providing a rich
visual foundation for challenging visual entailment state-
ments.

3.3.2. Statements
The statements exhibit significant syntactic complexity,
with frequent use of contrastive constructions (”while”:
32.9%, ”despite”: 12.7%). The content is people-centric,
reflecting the CrowdHuman source, with common terms in-
cluding ”person” (47.3% of statements), ”people” (35.4%),
and actions like ”holding” (46.7%) and ”standing” (19.5%).

More than half (57.7%) of the statements use spatial
terms, 39.0% reference clothing, and 35.1% mention color,
highlighting the dataset’s focus on detailed visual attributes
and spatial understanding.

3.4. Dataset Comparison
Table 2 compares COREVQA with other popular VLM
benchmarks. Our dataset joins several other datasets in fo-
cusing on challenging multi-person imagery. These include
NWPU-Crowd, which only evaluates counting and detec-
tion, HallusionBench [9], which only focuses on adversar-
ial examples, and SNLI-VE [30], which uses primarily sim-
pler imagery. COREVQA goes beyond these by providing
a dataset with dense visual information and complex visual
entailment that requires models to perform multi-step veri-
fication.

By strategically combining these dimensions,
COREVQA offers a unique diagnostic value in as-
sessing the ability of VLMs to perform the kind of careful

visual verification and reasoning required in real-world
applications.

Table 2. COREVQA compared to existing benchmarks

Dataset Size Crowd Focus Adversarial Fine-grained

COREVQA 5.6K Yes Yes Yes
VQAv2 1.1M No No No
SNLI-VE 565K No No Partial
NWPU-Crowd 5K Yes No No
HallusionBench 2K No Yes No
MMBench 2.9K No No Yes
SEEDBench 19K No No Yes

4. Results and Analysis
4.1. Experimental Setup
We evaluated GPT-4.1 [18], GPT-4o mini [1], Deepseek-
Janus-Pro [5], LLaVa-NeXT [14], and Qwen2.5 vl 72b [26]
on all statements of COREVQA. All models were given the
same prompt to explicitly respond with ”True” or ”False”.
Our primary evaluation metrics are accuracy, precision, re-
call, and F1. We also introduce failure patterns to assess
areas of challenge within each statement.

4.2. Quantitative Results
GPT-4.1 achieves the highest overall accuracy (77.57%),
with GPT-4o Mini closely following, demonstrating a rea-
sonable ability to verify both positive and negative claims.
Janus Pro and Qwen2.5 vl 72b also perform relatively well
(72.31% and 69.95% respectively). However, Janus Pro
has significantly low recall and F1 scores, indicating a
strong bias toward answering ”False”. LLaVa-NeXT dis-
plays near-perfect recall (99.68%) but scores poorly on all
other metrics (3).

Table 3. Model Performance on COREVQA

Model Accuracy (%) Precision (%) Recall (%) F1 (%)

GPT-4.1 77.57 57.36 76.63 65.60
GPT-4o mini 76.60 56.72 68.45 62.04
Janus Pro 72.31 64.44 1.85 3.60
Qwen2.5 vl 72b 69.95 47.91 87.23 61.85
LLaVa-NeXT 39.98 31.71 99.68 48.12

4.3. Failure Patterns
21.5% of questions were particularly challenging, with at
least two models providing incorrect answers.

Categorization using VLM(s) as a judge: We used the
same ChatGPT and Claude models used for generation as
judges to categorize these difficult questions into the five
categories mentioned below. If a statement was answered
incorrectly, it is considered a failure of all respective cate-
gories attributed to that statement (there can be multiple).
Both models were given similar prompts as were used for



generation, and were given further instructions for catego-
rization.

Anytime the models disagreed on a categorization, hu-
mans were used to select the best-fitting categories. Among
the 1208 questions, conflicts were present in only 48 (3.97%
disagreement). This includes cases where one of the mod-
els attributes more categories to the given statement than the
other.

To test the reliability of this VLM-as-a-judge approach,
we selected a random sample of 50 statements (127 VLM
categorizations), and found an accuracy of 96.06% where
human categorizations of those same questions were ground
truths (122/127).

Action Recognition Failures: (81.3% of difficult cases)
Models often failed to understand complex human actions,
or contextual behaviour (e.g., ”a person is actively hailing a
cab”).

Detail Oversight: (78.1%) This pattern highlights a core
challenge in visual grounding. Models struggled to verify
multiple, disparate visual facts asserted in a single, long
statement.

Counting Inaccuracies: (60.8%) These are indicated
by failures in quantification, especially in occluded scenes.
Model predictions below and above the ground truth were
both prominent.

Spatial Reasoning Failures: (41.7%) Models fre-
quently misinterpreted complex spatial prepositions like
”between,” ”behind,” or ”to the left of,” particularly when
the statement involved multiple subjects.

Negation Handling: (31.3%) By nature of the images
and statements, it is often more demanding to verify some-
thing’s presence than to confirm its absence. This includes
statements such as ”no one is wearing a hat”.

4.4. Case Studies and Examples
Figure 1 showcases an example where all tested models
unanimously failed. The statement requires careful applica-
tion of several reasoning steps: counting (”only one”), ac-
tion recognition (”holding a phone to their ear”), and nega-
tion (”no one...is both carrying an umbrella and wearing a
hat”). This statement is a case of detail identification, nega-
tion handling, and action recognition.

5. Limitations and Future Work
5.1. Current Limitations
The requirement of human labeling prevents fast scaling.
Furthermore, generating questions solely with ChatGPT
and Claude Opus has the potential to introduce linguistic
biases or limit the stylistic diversity of the statements. In a
binary format, VLMs can attain non-trivial (50%) accuracy
through random guessing. Another limitation is that when a
model responds falsely, we cannot confirm which part of the

Figure 1. Statement: Among all people crossing the street, only
one is visibly holding a phone to their ear while walking, while
no one in the scene is both carrying an umbrella and wearing a
hat. Ground truth: FALSE. All models (GPT-4.1, GPT-4o mini,
JanusPro, LLaVA-NeXT, and Qwen) responded TRUE.

statement the VLM believes is false. Finally, COREVQA
contains an uneven split of true and false statements.

5.2. Suggested Directions for Improvement
Future work should test more models, such as InternVL3-
78b [37], which are high-performing and open-source. In-
corporating crowd data from various sources (like non-
human images) would increase the generalizability of
COREVQA. Further analysis and confidence metrics could
be conducted to improve the reliability of model accuracy
scores. Finally, COREVQA could be used for finetuning
VLMs, to evaluate potential performance improvements in
general visual and textual tasks.

6. Conclusion

This paper introduces COREVQA (Crowd Observations
and Reasoning Entailment), a novel Visual Question An-
swering (VQA) benchmark designed to rigorously evaluate
Vision-Language Models (VLMs). Existing VLM bench-
marks often rely on simple images or questions, while
existing crowd-based datasets exclusively focus on detec-
tion, recognition, and counting. Recognizing this gap,
COREVQA was created with high-quality crowd-sourced
images and synthetically generated challenging statements,
targeting visual entailment capabilities where models must
accurately verify or refute claims about image content. Our
experiments identified under 80% accuracy from state-of-
the-art VLMs. Through COREVQA, we aim to expose gaps
in assistive VLM technology in real-world scenarios.
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