18 Sep 2025

This paper has been accepted for publication at the
[EEE/CVF International Conference on Computer Vision (ICCV), Honolulu, 2025. ©IEEE

Depth AnyEvent: A Cross-Modal Distillation Paradigm for Event-Based
Monocular Depth Estimation

Luca Bartolomei*' Enrico Mannocci®

Fabio Tosi'

Matteo Poggi*f

* Advanced Research Center on Electronic System (ARCES)

"Department of Computer Science and Engineering (DIST)
University of Bologna, Italy

{luca.bartolomeiS, fabio.tosi5, m.poggi, stefano.mattoccia}@unibo.it

https://bartn8.github.io/depthanyevent

Frame (Only for Distillation)

E2Depth

4 S
G B ST
L ,..ma:ﬁ [ /e g N PN

arXiv:2509.15224v1 [cs.CV]

DepthAnyEvent-R DepthAnyEvent-R (Distillation)

RMSE: 11.535 M

Figure 1. DepthAnyEvent-R in action. The first column shows the input frame (used only for distillation) and the corresponding event
visualization. The other three columns present depth estimation results from different approaches: E2Depth [15], our DepthAnyEvent-R,
and our DepthAnyEvent-R trained with our distillation approach. The top row shows the estimated depth maps while the bottom row

depicts their corresponding RMSE visualizations.

Abstract

Event cameras capture sparse, high-temporal-resolution
visual information, making them particularly suitable for
challenging environments with high-speed motion and
strongly varying lighting conditions. However, the lack of
large datasets with dense ground-truth depth annotations
hinders learning-based monocular depth estimation from
event data. To address this limitation, we propose a cross-
modal distillation paradigm to generate dense proxy labels
leveraging a Vision Foundation Model (VFM). Our strategy
requires an event stream spatially aligned with RGB frames,
a simple setup even available off-the-shelf, and exploits the
robustness of large-scale VFMs. Additionally, we propose
to adapt VFMs, either a vanilla one like Depth Anything v2
(DAv2), or deriving from it a novel recurrent architecture to
infer depth from monocular event cameras. We evaluate our
approach with synthetic and real-world datasets, demon-
strating that i) our cross-modal paradigm achieves com-
petitive performance compared to fully supervised methods
without requiring expensive depth annotations, and ii) our

VFM-based models achieve state-of-the-art performance.

1. Introduction

Depth perception from cameras is paramount for many ap-
plication fields, such as those concerning the autonomous
navigation of agents in complex scenarios or robotic tasks.
In these fields, learning-based methods using conventional
cameras have obtained compelling results in the last decade.
Moreover, this paradigm enabled inferring depth from a sin-
gle camera, which brings significant advantages compared
to multicamera setups in terms of cost, calibration com-
plexity, and physical constraints. Nonetheless, conventional
camera systems struggle to provide a prompt and reliable
perception of the sensed environment when dealing with
highly dynamic scenes resulting from the fast movement
of vehicles, drones, robots or in the presence of challeng-
ing illumination conditions such as high contrast scenar-
ios, low light, or rapid lighting changes. These limitations
are intrinsic to the conventional camera acquisition technol-
ogy occurring at discrete periodic intervals and with a lim-
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ited dynamic range, causing motion blur, over/under expo-
sure, and potentially missing critical information between
frames. In contrast, the intrinsic ability to capture scene
changes as soon as they appear — with microsecond tempo-
ral resolution — and the much higher dynamic range made
event cameras [7] ideal for coping with the challenging ap-
plication fields mentioned above. Event cameras only reg-
ister brightness changes at each pixel independently, offer-
ing exceptional temporal resolution and robustness to light-
ing variations. However, these features come at the cost of
meager information content compared to conventional cam-
eras. Event cameras provide meaningful cues only for a
small subset of the framed image with sufficient texture to
trigger events, making depth perception from these devices
extremely challenging. Moreover, the lack of large datasets
with dense ground truth annotations further exacerbates this
inherent difficulty, as collecting precise depth ground truth
for event data remains costly and technically demanding.
To tackle these issues in a monocular event camera setup,
we propose to leverage the effectiveness of image-based Vi-
sion Foundation Models (VFMs) for monocular depth esti-
mation. They have demonstrated remarkable capabilities
through extensive pretraining on vast image collections, en-
abling robust depth prediction even in challenging scenario.
As the first contribution, given sequences of aligned images
and events, we propose a cross-modal distillation strategy
that allows us to obtain dense proxy labels from a VFM
to train event-based networks. This approach effectively
transfers knowledge from the data-rich image domain to
the data-sparse event domain. For our purposes, an off-
the-shelf device like a DAVIS Camera [29, 32] that incor-
porates a conventional global shutter camera and an event-
based sensor in the same pixel array would suffice to gather
spatially aligned event streams and RGB frames.
Additionally, as the second contribution, we propose to
adapt VFMs for event-based monocular depth estimation,
either using a vanilla model like Depth Anything v2 (DAv2)
or a novel recurrent architecture derived from it. To prove
the effectiveness of our proposals, we assess the perfor-
mance with synthetic and real-world datasets, showing that
our cross-modal distillation paradigm allows for achieving
competitive performance compared to fully supervised ap-
proaches, disregarding the need for expensive depth anno-
tation. Moreover, adapting VFMs for monocular depth es-
timation according to our two proposals is state-of-the-art,
setting new benchmarks for event-based depth estimation.
Figure | shows the compelling performance of our pro-
posals, and our contributions can be summarized as follows:

* A novel cross-modal distillation paradigm that leverages
the robust proxy labels obtained from image-based VFMs
for monocular depth estimation.

* An adapting strategy to cast existing image-based VFMs
into the event domain effortlessly.

* A novel recurrent architecture based on an adapted
image-based VFM.

* Adapting VFMs to the event domain yields state-of-the-
art performance, and our distillation paradigm is compet-
itive against the supervision from depth sensors.

2. Related Work

Image-Based Monocular Depth Estimation. Monocular
depth estimation has evolved from traditional approaches
[27] to deep learning methods [6, 18]. Self-supervised
techniques[12, 13, 38] have emerged to address this chal-
lenge of limited ground truth data by recasting depth esti-
mation as an image reconstruction task using stereo images
or videos. These approaches have been particularly valu-
able where dense depth annotations are expensive to ob-
tain. A significant step came with affine-invariant models
[25, 26] that estimate depth up to an unknown scale and
shift, allowing impressive cross-domain generalization ca-
pabilities. MiDaS [26] pioneered this direction by training
on diverse large-scale datasets, followed by DPT [25] and
more recently, the Depth Anything series [33, 34]. These
latter models represent the first generation of Visual Foun-
dation Models for monocular depth estimation, leveraging
large-scale pretraining and diverse data sources to achieve
unprecedented robustness. The effectiveness of these mod-
els lies in their ability to combine knowledge from various
domains, including internet photo collections [20, 35], Li-
DAR from autonomous driving scenarios [10], and RGB-
D sensors [23]. Recent advances in VFMs have focused
on improving metric accuracy through camera parame-
ter integration [14, 36], leveraging generative approaches
like diffusion models [5, 17, 28], and addressing tempo-
ral consistency[30]. Furthermore, attention-based architec-
tures and transformer models [37] have shown significant
improvements in capturing long-range dependencies crucial
for accurate depth. Despite recent advances, applying these
methods to event-based cameras is still limited by the lack
of large-scale annotated datasets. We tackle this by distill-
ing knowledge from frame-based VFMs, enabling accurate
depth estimation without costly event data annotations.
Event-based Monocular Depth Estimation. Event-
based depth estimation began with supervised approach us-
ing recurrent architectures [8, 15, 21] designed to process
the temporal information contained in event streams. Ad-
vanced models like [8] further expanded this concept by
fusing event and RGB data to exploit their complemen-
tary charactetistics. Multimodal fusion techniques have also
been explored, combining events with LiDAR to gener-
ate dense depth maps [3]. To address the scarcity of la-
beled event data, self-supervised methods have emerged as
promising alternatives. Zhu et al. [40] developed a frame-
work that jointly estimates depth, optical flow, and camera
poses using stereo consistency and motion blur minimiza-



tion as training signals. Subsequent work [41] eliminated
the need for stereo setups by leveraging pose information
from consecutive RGB frames aligned with the event cam-
era, enabling dense depth estimation. Despite these ad-
vances, event-based depth estimation still falls short com-
pared to frame-based methods.

3. Preliminaries: Event Depth Estimation

Event cameras measure the logarithmic change in bright-
ness over time, and when it changes over a threshold +C,
the associate pixel at position (zy,yx) emits at time ¢; an
asynchronous signal ey, = (zk, Yk, Pk, ti) called event. De-
pending on the sign of this change, the event will have po-
larity py, € {—1, 1}. Each pixel of the W x H sensor grid of
the event camera can independently emit events at any time,
producing an asynchronous stream of events £ = {eg }_,,
where N is the total number of fired events.

Given the event history &£, previous event-based dense
monocular depth estimation models [8, 15, 21] convert the
flow of events into a E € RW*HXC gtructured repre-
sentation — such as Voxel Grids [40] — since the sparse
structure of £ is not suitable for standard CNNs. In-
tentionally, to estimate a depth map D € RW*H at a
given timestamp ¢4, events are retrospectively sampled from
the stream &, either within a fixed time window (SBT)
- lLe., gﬁT = {ekeg\td—ATgtkStd}—orup to
a predefined number K of events (SBN) — i.e., Efj =
{ex € £ | d — K < k < d} — and subsequently stacked us-
ing different strategies, including:

Voxel Grid [40]: The time interval used for sampling
events is divided into B uniform bins, where event polarities
are accumulated using linear interpolation within each bin
of a B € RW>XHXB gtack.

Image-like [21]: A color-based representation where
the R and B channels encode positive and negative polar-
ities, respectively, resulting in an RGB image, ie. a E €
RWXHx3 gack. Unlike the Voxel Grid representation, it
does not retain temporal information.

Tencode [16]. A color image representation in which R
and B channels encode positive and negative polarities, with
G encoding the timestamp relative to the total time-lapse. It
produces an RGB image, i.e. a E € RW>H*3 gtack.

For the sake of space, we report only the event represen-
tations relevant to our work, but additional details regarding
event representations can be found in [1, 11].

4. Proposed Method

Our first goal is to leverage the knowledge of frame-based
monocular depth models like DAvV2 extracting pseudo la-
bels to train any event-based student depth model — e.g.,
E2Depth — given aligned intensity frames and event stacks.
Figure 2 outlines our cross-modal distillation paradigm.
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Figure 2. Proposed Cross-Modal Distillation Strategy. During
training, a VFM teacher processes RGB input frames I to generate
proxy depth labels D™, which supervise an event-based student
model. The student takes aligned event stacks E as input and pre-
dicts the final depth map D.

Moreover, we propose to cast a frame-based model — DAv2
in our experiments — either in its original version or enrich-
ing it to exploit temporal cues, to the event domain taking
advantage of the massive pre-train performed in the image
domain.

4.1. VFMs for Cross-Modal Distillation

Visual Foundation Models have achieved astonishing re-
sults mainly due to their peculiar large-scale training pro-
cedures. For instance, DAv2 relies on a DINOv2 backbone
that was pre-trained with hundreds of millions of images
in an unsupervised manner. Furthermore, DAv2 uses tens
of millions of pseudo-labeled and millions of labeled im-
ages for training. Unfortunately, event data lacks equivalent
large-scale datasets [2, 9, 39], substantially precluding com-
parable training in the event domain. To bridge this gap, we
propose leveraging a pre-trained VFM — DAv2 ViT-Large
in our experiments— to provide dense supervision for any
event-based depth estimation networks, as outlined in Fig-
ure 2. During training, a teacher VFM processes a frame,
producing the proxy label D* (Fig. 3 shows an example)
and the student model predicts a depth map D from the spa-
tially and temporally aligned events. The student model is
supervised using a loss £ = L + AL,y composed of a
scale-invariant loss Lg; and a gradient regularization term
Lyeq [19]:

N V) 1 B A * 2
Lsi(D,D*) = M(x%;v[ (D—D ) 9]

where M is the set of valid pixels, D = sD +tand D* =
D* are respectively the scaled and shifted versions of the
student prediction D and the proxy label D*, and (s, t) are
the scaling factors obtained using the least-square approach:

_ . 2
(s,t) = arg rrsutn Z (sD+t—D") 2)
(z,y)eM
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Figure 3. Labels Distillation from Frame-Based Vision Foundation Model. Given the availability of aligned color and event modalities,
e.g., collected by a DAVIS346B sensor, we can exploit a VFM to extract proxy labels from the color images, resulting in much dense
supervision compared to the one provided by semi-dense LiDAR annotations.
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Figure 4. Proposed Recurrent VFM. Our DepthAnyEvent-R model processes image patches with positional encoding through multiple
transformer stages that produce multi-scale feature maps F',. These features are combined with hidden states H? in ConvLSTM modules
‘R to incorporate temporal information from previous event stacks, generating enhanced feature maps F. and updated hidden states FH.
A hierarchical fusion process integrates features from different scales to predict the final depth prediction |

The regularization term L, is defined as follows:

> (V2R + [V,Ra|)
(¢7y)€Mk
3

where R, = D E— > .. 1s the difference of maps at scale £
and M, is the set of valid pixels at scale k.

To ensure alignment, frame and event cameras must be
calibrated — intrinsically done in the DAVIS camera — and
events are sliced from the frame’s acquiring timestamp.

K
Lrey(D, DY) =Z

4.2, Casting VFMs to the Event Domain

Frame-based monocular depth models cannot be used di-
rectly on events, given the diverse nature of the latter.
Hence, to adapt their capabilities to the event domain, we
choose an appropriate event representation that can reduce
the gap between frames and events encoding. Furthermore,
we exploit the sequential nature of temporal events, propos-
ing a novel recurrent architecture of DAv2.

Choosing the Right Event Representation. The events
stream contains spatial and temporal information; hence,
a good event representation should capture both to ensure
limited loss of information. Since monocular models natu-
rally process RGB frames — i.e., they produce a depth map
given an image I € RW > *3 ag input — we have to choose

an event representation that encodes both spatial and tem-
poral requirements within an RGB frame to pursue minimal
modifications of the pre-trained VFM.

Purposely, the Tencode [16] representation fits with our
aim. Consequently, starting from a sliced event history & ,,
either using SBT or SBN [22], Tencode encodes &;, into a
stack E as follows:

(1,2t 0)if pp = 1
(0, tacte 1) if pp = —1

“)

E(zr, yr) = {

where ex, = (Tk, Yk, Dk, ti) € &, is the k-th event of &,
and AT is the time interval of event slice &;,.

VFM for Events. Although the Tencode representation
significantly differs from a conventional RGB image of the
same scene, we propose to adapt a pre-trained VFM to deal
with the event domain through fine-tuning with event data
using the Tencode representation. For this purpose, we use
as the VFEM a vanilla DAv2 ViT-S for our experiments. We
dubbed the model as DepthAnyEvent.

Recurrent VFM for Events. Additionally, given the se-
quence nature of the event stream, Recurrent Neural Net-
works (RNNs) could encode previous features extracted
from past event stacks into a hidden state [15, 21]. At each
iteration, the recurrent module can update the hidden state



Model ‘ Dataset ‘ Abs Rel| Sq Rel | RMSE| RMSE log| SIlog| ‘ <1257 6 < 1.25% 1 6 < 1.25% 1
E2Depth [15] 0.527 1.122 7.894 0.512 0.244 0.363 0.637 0.811
EReFormer [21] MVSEC 0.518 1.012 8.423 0.559 0.316 0.361 0.630 0.800
DepthAnyEvent 0.466 0.976 7.824 0.480 0.229 0.408 0.689 0.847
DepthAnyEvent-R 0.469 0.946 8.064 0.508 0.272 0.428 0.690 0.832
E2Depth [15] 0.395 0.334 13.258 0.412 0.167 0.409 0.719 0.891
EReFormer [21] DSEC 0.297 0.195 11.608 0.334 0.113 0.524 0.824 0.945
DepthAnyEvent 0.297 0.186 11.072 0.330 0.108 0.519 0.827 0.948
DepthAnyEvent-R 0.276 0.165 10.942 0.314 0.101 0.555 0.843 0.954

Table 1. Quantitative Results — Zero-Shot Generalization on MVSEC and DSEC. All networks are trained on the EventScape synthetic

dataset only, and tested without any fine-tuning.
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DepthAnyEvent DepthAnyEvent-R

Figure 5. Qualltatlve Results on DSEC dataset — Zero-Shot Generallzatlon From left to rlght event image, predlctlons by E2Depth,

EReFormer, DepthAnyEvent and DepthAnyEvent-R, trained on EventScape only.

with the features extracted from the current stack, generat-
ing a new hidden state for the next iteration.

However, monocular depth models typically lack a re-
current module since they are designed to work with single-
frame instances. Hence, for our purposes, this could hinder
the quality of predictions, especially during static scenes
where events are not triggered. To effectively adapt them
to the event domain, we introduce a recurrent extension of
DAv2 ViT-Small, dubbed as DepthAnyEvent-R, that inte-
grates cues from previous event stacks, as outlined in Fig-
ure 4. The DAv2 architecture is composed of two main
modules: a DINOv2 [24] Encoder G based on Visual Trans-
former (ViT), and a Dense Depth Decoder D. Given an im-
age I encoded with the Tencode representation, the encoder
G first splits the image into patches and adds positional en-
coding to them. Next, patches are passed through multi-
ple transformer stages and then reassembled from different
stages into multi-scale feature maps F; € R X% xCs For
each scale s, we feed the feature maps F; and the hidden
state Hi € R* %% %% with H? = 0 to a ConvLSTM [31]
module R obtaining a new hidden state H:! and tempo-
rally enhanced feature maps F.. Starting from the lowest
scale, a series of fusion modules sequentially upsample and
fuse the feature maps to obtain the final feature map F* fed
to the decoder D to obtain the final predicted depth map.

5. Experiments

We describe our implementation details, datasets, and eval-
uation protocols, followed by experiments.

5.1. Implementation and Experimental Settings

Hyperparameters Settings. We set the slicing window
AT, the number of Voxel Grid bins B, and the loss factor
A respectively to 50ms, 5, and 0.25. We implement event-
based student networks E2Depth [15] and EReFormer [21]
starting from their codebase. For DepthAnyEvent and
DepthAnyEvent-R, we start from the DAv2 ViT-Small
codebase [34]. We use PyTorch, and a single A100 GPU
with 64GB of RAM. Following the original papers, we fix
the learning rate to 10~* and 3.2 - 10~5 respectively for
E2Depth and EReFormer, while we set a learning rate of
5 - 1076 for all DepthAnyEvent variants. We adjust the
training steps to 75k, using the AdamW optimizer with
the OneCycle scheduler, and apply data augmentations in-
cluding horizontal flips and random crops at 224 x 224.
We set the batch size to 10, except for EReFormer: given
the higher memory requirements, we change it to 2. We
unroll all recurrent networks — i.e., E2Depth, EReFormer,
and DepthAnyEvent-R — for 20 steps. We choose as the
event representation Tencode [16] for DepthAnyEvent and
DepthAnyEvent-R, while we maintained the original repre-
sentation for E2Depth and EReFormer — i.e., respectively,
Voxel Grid [40] and Image-like [21]. Finally, we use the
scale-invariant £ for all networks. The settings reported are
used for all experiments unless otherwise specified.

Proxy Labels Factory. We generate proxy labels
from frames using the DAv2 ViT-Large trained for metric
depth estimation: starting from the Large vanilla weights
provided by the authors, we perform a fine-tuning on
EventScape [8] for 10k steps with a learning rate of 1076,

Synthetic Training Setup. We obtain the synthetic



Model ‘ Dataset ‘ Abs Rel| Sq Rel | RMSE| RMSE log| SIlog| ‘ 6 <1251 § < 1.252 ¢ 6 < 1.25% 1
E2Depth [15] 0.420 0.806 7.268 0.455 0.213 0.432 0.717 0.868
EReFormer [21] MVSEC 0.511 1.057 8.373 0.523 0.274 0.391 0.652 0.810
DepthAnyEvent 0.373 0.715 6.627 0.449 0.222 0.471 0.747 0.884
DepthAnyEvent-R 0.365 0.691 6.465 0.483 0.258 0.489 0.751 0.878
E2Depth [15] 0.253 0.130 10.119 0.315 0.107 0.574 0.861 0.956
EReFormer [21] DSEC 0.286 0.208 11.369 0.325 0.109 0.569 0.839 0.944
DepthAnyEvent 0.201 0.079 8.880 0.266 0.077 0.664 0.917 0.975
DepthAnyEvent-R 0.191 0.070 8.618 0.244 0.064 0.691 0.930 0.981

Table 2. Quantitative Results — In-Domain Evaluation on MVSEC and DSEC. All networks are trained on the EventScape synthetic
dataset and then further fine-tuned on MVSEC and DSEC datasets separately.
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Figure 6. Qualitative Results on MVSEC - Fine-tuned Models. From left to right: event image, predictions by E2Depth, EReFormer,
DepthAnyEvent and DepthAnyEvent-R, trained on EventScape and fine-tuned on MVSEC.

checkpoints for all networks training on the synthetic
EventScape [8] dataset. While E2Depth was trained from
scratch, we followed EReFormer’s original paper and set
Swin-T pre-trained on ImageNet as the backbone. For
DepthAnyEvent and DepthAnyEvent-R, we started from
the Small weights provided by the authors.

Fine-tuning Setup. We follow [15], fine-tuning the
models to the target domain using both real and synthetic
data — i.e., MVSEC [39] + EventScape [8], and DSEC[9]
+ EventScape [8] — starting from the synthetic checkpoints
obtained in the previous point.

Distillation Training Setup. We use the proxy labels
previously generated with DAv2 ViT-L instead of the orig-
inal sparse ground-truth. Differently from the previous
point, we trained the models on the dense proxy labels only
instead of a synthetic+proxy mixture.

5.2. Evaluation Datasets & Protocol

Datasets. We utilize EventScape [8] as the synthetic train-
ing set, comprising about 120k groundtruth depth maps at
resolution of 512 x 256, captured from CARLA [4] simu-
lator. For evaluation and domain fine-tunings we used two
main benchmarks: MVSEC [39] and DSEC [9]. The dataset
provides events at a resolution of 346 x 260 pixels from a
stereo event camera consisting of two DAVIS346B sensors,
which also capture spatially aligned images. ground-truth

is obtained by processing data from a 16-line LiDAR using
Lidar Odometry and Mapping (LOAM), yielding a total of
10k training samples and 20k testing samples. The test set is
divided into a Sk-sample daytime subset and three nighttime
subsets, each containing S5k samples. DSEC [9] employs
two 640 x 480 Prophesee Gen3.1 event cameras in a stereo
configuration. Ground-truth disparity is obtained using a
32-line LiDAR, processed with a Lidar Inertial Odometry
algorithm, and further filtered to remove outliers. We con-
vert the disparity ground-truth to depth based on the stereo
setup parameters. Unlike MVSEC, RGB frames are cap-
tured using a pair of FLIR Blackfly S cameras. To align
frames and events, we warp the RGB frames using the cali-
bration parameters. We also apply a 640 x 320 center crop
to mitigate misalignment artifacts in nearby objects. The
dataset counts 26k training samples, divided as in [1] into
19k for training and 7k for testing.

Evaluation Metrics. We evaluate the networks using
different metrics: absolute relative error (Abs Rel), square
Abs Rel (Sq Rel), root mean squared error (RMSE), loga-
rithmic RMSE (RMSE log), logarithmic scale invariant er-
ror (SI log), and accuracy with different thresholds (6 <
1.25, < 1.252, and § < 1.25%). We apply scale and shift
to align predictions with the ground-truth before computing
the metrics. We highlight using bold and underline the best
and second best scores.



Model Dataset Abs Rel| Sq Rel | RMSE| RMSE log| SIlog| ‘ d< 1251 § < 1.25% ¢ 8 < 1.25% ¢
E2Depth Synth MVSEC 0.527 1.122 7.894 0.512 0.244 0.363 0.637 0.811
E2Depth Distilled 0.400 0.817 6.786 0.538 0.304 0.479 0.740 0.865
E2Depth Supervised 0.420 0.806 7.268 0.455 0.213 0.432 0.717 0.868
EReFormer Synth MVSEC 0.518 1.012 8.423 0.559 0.316 0.361 0.630 0.800
EReFormer Distilled 0.448 0.817 7.867 0.498 0.253 0.434 0.700 0.842
EReFormer Supervised 0.511 1.057 8.373 0.523 0.274 0.391 0.652 0.810
DepthAnyEvent Synth MVSEC 0.466 0.976 7.824 0.480 0.229 0.408 0.689 0.847
DepthAnyEvent Distilled 0.397 0.771 6.910 0.495 0.260 0.461 0.735 0.870
DepthAnyEvent Supervised 0.373 0.715 6.627 0.449 0.222 0.471 0.747 0.884
DepthAnyEvent-R Synth MVSEC 0.469 0.946 8.064 0.508 0.272 0.428 0.690 0.832
DepthAnyEvent-R Distilled 0.399 0.781 6.830 0.509 0.281 0.462 0.735 0.866
DepthAnyEvent-R Supervised 0.365 0.691 6.465 0.483 0.258 0.489 0.751 0.878
E2Depth Synth DSEC 0.395 0.334 13.258 0.412 0.167 0.409 0.719 0.891
E2Depth Distilled 0.272 0.153 10.579 0.309 0.096 0.551 0.851 0.959
E2Depth Supervised 0.253 0.130 10.119 0.315 0.107 0.574 0.861 0.956
EReFormer Synth DSEC 0.297 0.195 11.608 0.334 0.113 0.524 0.824 0.945
EReFormer Distilled 0.285 0.198 11.407 0.327 0.111 0.563 0.839 0.944
EReFormer Supervised 0.286 0.208 11.369 0.325 0.109 0.569 0.839 0.944
DepthAnyEvent Synth DSEC 0.297 0.186 11.072 0.330 0.108 0.519 0.827 0.948
DepthAnyEvent Distilled 0.213 0.095 8.930 0.253 0.065 0.662 0.915 0.980
DepthAnyEvent Supervised 0.201 0.079 8.880 0.266 0.077 0.664 0.917 0.975
DepthAnyEvent-R Synth DSEC 0.276 0.165 10.942 0.314 0.101 0.555 0.843 0.954
DepthAnyEvent-R Distilled 0.226 0.111 9.310 0.266 0.072 0.638 0.906 0.977
DepthAnyEvent-R Supervised 0.191 0.070 8.618 0.244 0.064 0.691 0.930 0.981

Table 3. Quantitative Results — Supervised vs Distilled Models on MVSEC and DSEC. All networks are trained on the EventScape
synthetic dataset and then fine-tuned on MVSEC and DSEC datasets separately, either through distillation or on ground-truth depth labels.
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Figure 7. Qualitative Results on DSEC - Supervised vs Distilled Models. From left to right: event image, predictions by DepthAnyEvent
and its distilled counterpart, and by DepthAnyEvent-R and its distilled counterpart.

5.3. Synthetic-to-Real Generalization

We start by evaluating the capability of the different depth
estimation models to generalize from synthetic data to real
event streams. Purposely, we train E2Depth, EReFormer,
DepthAnyEvent, and DepthAnyEvent-R on EventScape
and measure their accuracy on both MVSEC and DSEC
datasets. Table | collects the outcome of this experiment.
DepthAnyEvent and DepthAnyEvent-R achieve the best
results on almost any metric, hinting how the web-scale
training infused in the weights we used to initialize these
models represents a solid prior for depth estimation, al-
though coming from images, i.e., a completely different
modality with respect to event streams. The two models
achieve mixed results one against the other on MVSEC,
while DepthAnyEvent-R consistently achieves the best gen-
eralization results over DSEC, giving a first intuition about
the effectiveness of our design choice to deal with streamed
event data. Figure 5 presents a qualitative comparison
of predictions from different models, showcasing the su-
perior zero-shot capabilities of our DepthAnyEvent and

DepthAnyEvent-R models.

5.4. Supervised Fine-tuning

We now evaluate the accuracy of each model when trained
on real event data annotated with semi-dense ground-truth
depth. To this aim, we take the weights obtained af-
ter training on EventScape and perform further fine-tuning
on MVSEC and DSEC separately, then evaluating on the
corresponding validation sets. Table 2 reports the re-
sults of this evaluation. We can notice, once again, the
notable gap in performance between DepthAnyEvent and
DepthAnyEvent-R against existing methods EReFormer
and E2Depth, confirming again the strong advantage that
our models can exploit from the cross-modal training be-
ing conducted for image-based depth estimation. Specifi-
cally, this time we can notice how DepthAnyEvent-R con-
sistently outperforms the vanilla DepthAnyEvent model on
both MVSEC and DSEC datasets, validating our proposed
design tailored to event-based depth estimation.

Figure 6 shows a qualitative comparison between the



Model | AbsRel] Sq Rel | RMSE/ RMSE log| Sllog] | 6<1.257 § < 1.252 1 8 < 1.25% 1
E2Depth [15] 0.344 0.253 13.467 0.376 0.098 0.447 0.755 0.915
EReFormer [21] 0.387 0.401 13.954 0.395 0.124 0.486 0.776 0.892
DepthAnyEvent 0.277 0.170 11117 0.292 0.051 0.585 0.860 0.955
DepthAnyEvent-R 0.252 0.128 9.824 0.268 0.045 0.592 0.900 0.971

Table 4. Metric Depth Evaluation. Training and evaluation on DSEC dataset.

Model Supervision Experiment ‘ AbsRel] SqRel| RMSE| RMSElog| SIlog| ‘ § <1251 §<1.2521 §<1.25%1
A DeothAnvEventr  Distillation Tencode+DAv2 0399 0781  6.830 0.509 0281 0.462 0.735 0.866
(@) CPIMAMEVENER - pyillation Tencode+DepthPro 0429 0942 7472 0.452 0.208 0.444 0.726 0.869
© Ground-truth Tencode+DAv2 0365  0.691 6465 0.483 0.258 0.489 0.751 0.878
D) DoohAnEventr  Ground-truth VoxelGrid+DAv2 0382 0719 6932 0.444 0215 0473 0.742 0.877
(B) CePIMANEVERER G ound-truth Tencode+DAv2 (no pretrain) | 0.446 0799  7.492 0.506 0.260 0.390 0.678 0.845
(F) Ground-truth + Distillation  Tencode+DAv2 0362 0697 6511 0.438 0.211 0.494 0.760 0.890
Table 5. Ablation Studies. Training and evaluation on MVSEC dataset.
Model | Inference (ms) Memory (MB) dataset and evaluate on its validation set. Results are col-
E2Depth [15] 1.50 242 lected in Table 5, with row (A) representing the configura-
EReFormer [21] 35.75 534 . . A 3
DepthAnyEvent 1.26 7 tion used in the previous experiments.
DepthAnyEvent-R 9.20 202 Different VFMs for distillation. Row (B) shows that

Table 6. Computational Analysis. Inference time on A100 GPU.

predictions by the different models, highlighting the supe-
rior accuracy achieved by DepthAnyEvent and, even higher,
by DepthAnyEvent-R.

5.5. Cross-Modal Distillation

We now assess the effectiveness of our cross-modal distilla-
tion strategy compared to conventional, supervised training
requiring the availability of costly depth annotations from
active sensors. Table 3 collects the results achieved by each
model under the training configuration considered so far,
as well as after being trained according to our distillation
approach. In most cases, we can notice how the models
trained through distillation are comparable, and sometimes
even better than their supervised counterparts.

Figure 7 show some qualitative examples from the DSEC
dataset, comparing the predictions by DepthAnyEvent
and DepthAnyEvent-R when trained with ground-truth or
through distillation. In both cases, distilled models are even
more accurate than those supervised with ground-truth.

5.6. Metric Depth Evaluation

Finally, we assess the accuracy of our models when trained
to predict metric rather than affine-invariant depth. Table 4
collects the results achieved by existing networks and ours
when trained on the DSEC dataset for metric depth predic-
tion, evaluated on the validation set of the very same dataset.
We can appreciate how our two architectures achieve the
best results, with DepthAnyEvent-R consistently yielding
the best results on any evaluation metrics.

5.7. Ablation Studies

We conclude with a study about the impact of different
modules in our framework. In the former case, we train
different instances of DepthAnyEvent-R on the MVSEC

replacing Depth Anything v2 with a different VFM for dis-
tillation — i.e., Depth Pro — yields close results, although
slightly worse on most metrics.

Input representation. In rows (C) and (D), we report
the results achieved by training our model with ground-truth
labels, when processing either Tencode or a voxel-grid rep-
resentation used to encode raw events. The former yields
almost consistently better results.

Pre-training. By training our model starting from DAv2
pretrained weights, we can greatly improve its performance.
Indeed, when training DepthAnyEvent-R from scratch (E),
the accuracy consistently drops.

Combining distillation with ground-truth labels. Fi-
nally, we show how deploying both our cross-modal distil-
lation paradigm and ground-truth annotations (when avail-
able) further improves the final model on most metrics.

5.8. Runtime and Memory Requirements

Table 6 reports a computational analysis for any model
involved in our evaluation. DepthAnyEvent achieves the
fastest predictions, using as few as 80MB for a single in-
ference. E2Depth exposes a very similar inference time,
although requiring nearly 4x the memory, while ERe-
Former runs consistently slower and increases the memory
usage to up to 0.5GB. Compared to DepthAnyEvent, the
DepthAnyEvent-R variant runs slower, yet still in real-time,
and yields more accurate predictions.

6. Conclusions

In this paper, we presented a novel approach to event-based
monocular depth estimation that leverages the power of
pre-trained Visual Foundation Models. Our cross-modal
distillation strategy effectively transfers knowledge from
frame-based models to the event domain, addressing the
crucial challenge of limited ground truth data for event cam-
eras. Experimental results with synthetic and real-world



datasets validate our method, showing competitive perfor-
mance compared to fully supervised methods without re-
quiring expensive depth annotations. Moreover, we have
demonstrated two effective methods for adapting VFMs to
event data: a vanilla adaptation and a recurrent architec-
ture that better captures the nature of event streams, yielding
state-of-the-art performance.
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