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ABSTRACT

As an obstacle towards real-world problems with the changing environment, la-
bel shift, which assumes the source and target label marginal distributions differ,
loosens the homogeneous distribution assumption in classical learning scenarios.
To correct the label shift, importance weighting is one of the most popular strate-
gies with rigorous theoretical guarantees. However, the importance weight esti-
mation of most existing methods results in high variance under large label shift
or few source samples. In this paper, we introduce an intermediate distribution
instead of the source distribution to reduce the variation to the target label distri-
bution. Our approach learns a self-trained intermediate distribution constructed
from the labeled source and unlabeled target samples to approximate the interme-
diate distribution. It balances the bias from pseudo target labels and the variance
from importance weighting. Besides, we prove the sample complexity and gen-
eralization guarantees for our approach, which has a tighter generalization bound
than the existing label shift methods under mild conditions. Extensive experimen-
tal results validate the effectiveness of our approach over existing state-of-the-arts
methods.

1 INTRODUCTION

In the classical learning scenario, the model is usually trained on the labeled source set and predicted
on the unlabeled target set, which is reasonable and effective when the source and target sets have
independent and identically distributed samples Murphy (2012). However, the same distribution
assumption is rarely satisfied in the real world Zhou (2022); Long et al. (2017); Wu et al. (2019);
Quinonero-Candela et al. (2008). For example, in medical diagnostics, the disease distribution is
often diverse in different regions, but the symptoms of the same disease are similar. In bird identifi-
cation, the distribution of bird in spring is different from that in winter, but the appearance of birds
does not change with the seasons. These phenomena are called label shift, where the proportion of
categories differs between the source and target distribution (p(Y ) ̸= q(Y )), while the feature dis-
tribution is the same for each category (p(X|Y ) = q(X|Y )) Hwang et al. (2022); Liu et al. (2022);
Hong et al. (2022); Kim et al. (2022).

Owing to the change of label marginal distribution, the performance of traditional models is often
reduced significantly Tasche (2017); Vaz et al. (2019); Tan et al. (2022); Ma et al. (2022). Therefore,
in order to improve the model generalization ability, it is necessary to adjust traditional models with
the distribution characteristic of label shift assumption. Most advanced label shift methods estimate
the importance weights to reweight the source classifier and make it fit the target samples Podkopaev
& Ramdas (2021); Azizzadenesheli (2022); Zhao et al. (2021); Zhang et al. (2021). For example,
BBSE Lipton et al. (2018) is proposed to correct the source classifier through importance-weighted
empirical risk minimization and guarantee the generalization error bound of any reweighted black
box classifiers theoretically. On this basis, RLLS Azizzadenesheli et al. (2019) is proposed to ob-
tain good statistical guarantees without a requirement on the problem-dependent minimum sample
complexity as necessary for BBSE. Furthermore, RLLS designs a regularized weight estimator to
reduce the influence of small target samples case on weight estimation and derives the corresponding
generalization error bound with finite samples. The rest of label shift methods introduce maximum
likelihood estimation or confidence calibration to correct for label shift that does not require model
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retraining. MLLS Alexandari et al. (2020) combines maximum likelihood with bias-corrected tem-
perature scaling, which outperforms both BBSE and RLLS across diverse datasets and distribution
shifts. In addition, MLLS introduces a principled strategy for estimating source-domain priors that
improves robustness to poor calibration. Unfortunately, although this kind of methods has strong
reusability, it does not have an effective generalization guarantee in theory. Besides, the theoreti-
cal results show that the importance weight estimation and classifier generalization ability of BBSE
and RLLS have high variance under large label shift or few source samples Lipton et al. (2018);
Azizzadenesheli et al. (2019).

Figure 1: A flow presentation of ALS. Black lines depict the empirical risk minimizer.

In this paper, we introduce an intermediate distribution instead of the source distribution, which
is a linear combination of source and target distributions, to alleviate label shift theoretically. As
shown in Figure 1, our approach, abbreviated as ALS, learns a self-trained intermediate distribution
constructed from the labeled source and unlabeled target samples to approximate the intermediate
distribution. ALS can reduce label distribution differences, so as to obtain more accurate importance
weight estimation. At the same time, ALS also introduces bias from its use of pseudo target labels,
which reduces the generalization performance of the reweighted model. We theoretically analyze
the impact of weight estimation variance and pseudo-label bias induced by self-trained intermediate
distribution on ALS performance.

In order to verify the effectiveness of ALS in improving BBSE and RLLS performance, we show
classifier prediction accuracy and weight estimation error for some kinds of shifts on the CIFAR-10
and MNIST datasets. The experiment results show that ALS framework can achieve an improvement
in prediction accuracy of nearly 8% for large shifts and lower weight estimation error for most cases
over BBSE and RLLS. In addition, we verify that the intermediate distribution has smaller label shift
compared to the source distribution and analyze the influence of the proportion of sample selection
on the model performance.

Contribution. (1) Introduction of an intermediate distribution instead of the source distribution to
alleviate label shift. (2) A principled algorithm ALS, aimed at learning a self-trained intermediate
distribution to approximate the ideal distribution. (3) The generalization guarantee of ALS under
label distribution differences and pseudo target labels. (4) Extensive experiments are conducted to
validate the effectiveness and support our theoretical findings.

2 PROBLEM SETTING

Reweighted Framework. We use random variables X ∈ X , Y ∈ Y to model the features and
labels respectively, where X = Rd and Y is a discrete domain equivalent to {1, 2, ...,K}. d is
the feature dimension and K is the total number of classes. We let (XP , Y P ) = {xi, yi}ni=1 as
a labelled set drawn i.i.d. from the source distribution P and XQ = {xi}n+m

i=n+1 as an unlabelled
set drawn i.i.d. from the target distribution Q. We use p and q to denote the probability density or
mass function associated with P and Q. We quantify the shift using the exponent of the second and
infinite order Renyi divergence as follows

d(q||p) :=
K∑
i=1

q(i)
q(i)

p(i)
, and d∞(q||p) := sup

i

q(i)

p(i)
. (1)
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Under the label shift assumption, i.e., p(X|Y ) = q(X|Y ) and p(Y ) ̸= q(Y ), if we give a hypothesis
class H and a loss function l : X × Y → R1, the goal of label shift setting is to find a hypothesis
h ∈ H which minimizes the following reweighted loss Garg et al. (2020):

L(h) = E(X,Y )∼Q[l(h(X), Y )] = E(X,Y )∼P [w(Y )l(h(X), Y )]. (2)

Where w ∈ RK is the importance weight and w(Y ) = q(Y )/p(Y ). If P = Q, which represents
that the source domain is same as the target domain, i.e., w(Y ) = 1, the above problem degenerates
to the standard learning paradigm.

In practice, the weight w is unknown. Thus we minimize the following empirical loss with the
estimated weight ŵ vicariously:

L̂P (h; ŵ) =
1

n

n∑
i=1

ŵ(yi)l(h(xi), yi). (3)

Importance Weight Estimation. Assume Ch is the confusion matrix with [Ch]ij = p(h(XP ) =
i, Y P = j) and qh is the vector which represents the probability mass function of h(XQ). In the
usual finite sample setting, Ĉh and q̂h corresponding to Ch and qh are estimated by the existing
samples. BBSE estimates the importance weight ŵ = Ĉ−1

h q̂h. RLLS calculates the weight shift
degree θ̂ = argminθ ||Ĉhθ−(q̂h−Ĉh1)||2+∆C ∥θ∥2, and obtains the important weight ŵ = γθ̂+1.
To analyze the theoretical properties, we summarize the generalization bounds for the above two
methods by the following unified form briefly.

Corollary 1 Azizzadenesheli et al. (2019) Assume that ĥŵ and h∗ are the solved and optimal clas-
sifier respectively , the following generalization bound holds with probability at least 1− 2δ

L(ĥŵ)− L(h∗) ≤ εG

(
1

n
, d∞(q||p), d(q||p)

)
+ (1− γ)∥w − 1∥2 + γεw

(
1

n
, ∥w − 1∥2

)
. (4)

where

εG

(
1

n
, d∞(q||p), d(q||p)

)
:= 2R(G(L,H)) +

2d∞(q||t) log(2/δ)
n

+

√
2d(q||t) log(2/δ)

n
,

εw

(
1

n
, ∥w − 1∥2

)
:= O

(
1

σmin

(
∥w − 1∥2

√
log(K/δ)

n
+

√
log(1/δ)

n
+

√
log(1/δ)

m

))
,

In addition, G(L,H) = {gh(x, y) = w(y)l(h(x), y), h ∈ H} and the Rademacher complexity is

defined as R(G(L,H)) := E(xi,yi)∈T

[
Eξi

1
n

[
sup
h∈H

n∑
i=1

ξiπ̂(xi)gh(xi, yi)

]]
. σmin is the minimum

eigenvalue of confusion matrix Ĉh, γ ∈ (0, 1) is the balance parameter and O hides universal
constant factors.

Intermediate Distribution. By the above corollary, the larger label shift deviant ||w − 1||2, the
lower model generalization performance. Thus, the concept of intermediate distribution is intro-
duced to alleviate label shift.

Definition 1 (Intermediate Distribution). Give a distribution T and t is the corresponding prob-
ability density or mass function. If the label conditional distribution stays the same (p(X|Y ) =
t(X|Y ) = q(X|Y )) and the label marginal distribution shift is alleviated (|q(Y )/t(Y )− 1| <
|q(Y )/p(Y )− 1|), T is taken to be the intermediate distribution.

Interestingly enough, we find sufficient conditions for satisfying T to be an intermediate distribution.
Afterwards, given that some target labels are known, we construct a concrete set that follows the
distribution T .

Proposition 1 If a distribution T is a linear combination of source and target domain distributions,
i.e., T = λP + (1− λ)Q and 0 < λ < 1, the distribution T must be the intermediate distribution.
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Proposition 2 Assume that the m̂ target labels are known, i.e., (XQ, Y Q) = {xi, yi}n+m̂
i=n+1 ∼

Q. Then we construct a new labeled set (XT , Y T ) = [(XP , Y P ), (XQ, Y Q)], which follows the
intermediate distribution T with λ = n/(n+ m̂). If the classifier is trained on the new training set
(XT , Y T ) using BBSE or RLLS, the generalization bound will be tighter.

Due to the space limitation, we list the proof details in the supplementary material. In the above,
we give a concrete example following the intermediate distribution to show its effect on the gener-
alization bound theoretically. However, since the target samples are not labeled in practice, it is not
straightforward to construct the intermediate distribution.

3 PROPOSED APPROACH

In this section, we make a self-trained distribution to approximate the intermediate distribution.
Our approach can be divided into three parts. (1) Approximate partial true target labels {yi}n+m̂

i=n+1

with pseudo labels {ŷi}n+m̂
i=n+1 with higher confidence to ensure the accuracy of pseudo labels. (2)

Correct for the deviation of label conditional distribution which caused by the selected pseudo-label
samples. (3) Use the new training set (XT , Y T ) = [{xi, yi}ni=1, {xi, ŷi}n+m̂

i=n+1] which follows the
self-trained distribution to retrain the classifier.

3.1 CONFIDENCE-GUIDED PSEUDO LABELS

For clarity of notation, we define the k-th element of label y as yk, the classifier parameters as υ
and p̂(k|x, υ) as the softmax probability for the k-th class. We employ the cross-entropy loss and
estimate the importance weight ŵ by BBSE or RLLS. Then by the reweighted framework, we can
obtain the target classifier υ̃ as follows:

υ̃ = argmin
υ

− 1

n

n∑
i=1

K∑
k=1

ŵ(k)yki log p̂(k|xi, υ). (5)

Experience shows that large soft probabilities lead to pseudo labels with high confidence. Thus, we
propose the confidence-guided pseudo labels selection framework. Ŷ Q = argmin

yi

− 1
m

n+m∑
i=n+1

K∑
k=1

yki log
p̂(k|xi,υ̃)

λk
,

s.t. yki ∈ {0, 1}, ∀i ∈ {n+ 1, ..., n+m}.
(6)

The global optimal solution of the above problem is given as following:

ŷk
∗

i =

{
1, if k∗ = argmax

k

{
p̂(k|xi,υ̃)

λk

}
and p̂(k|xi, υ̃) > λk,

0, otherwise.
(7)

Note that ŷ∗i can be not only a one-hot, but also an all-zero vector, depending on whether the corre-
sponding sample x̂i is selected. If ŷ∗i is a one-hot, the sample is selected and if ŷ∗i is an all-zeros vec-
tor, the sample is not chosen. Specifically, we can regard the probability of the k-th class p̂(k|xi, υ̃)
as the confidence of the prediction. If a predication satisfies p̂(k|xi, υ̃) ≥ λk, the sample is selected
with confidence and classified as k∗ = argmax

k

{
p̂(k|xi,υ̃)

λk

}
. On the other hand, the less confident

samples corresponding to p̂(k|xi, υ̃) ≤ λk are not selected.

{λk}k=1,..,K are critical parameters to control pseudo-label learning and selection. Drawing on the
traditional approaches introduced in Zou et al. (2018) and Zou et al. (2019), we introduce a strategy
of determining {λk}k=1,..,K in our scenario. Specifically, we attempt to select samples which sat-
isfy the marginal probability q(Y ) with high confidence. Since the true q(Y ) is unknown and we
calculate it by q̂(Y ) = ŵp(Y ). We only use one ratio r to determine how many target samples to
select for all classes. For the k-th class, the number of selected samples is m̂k = [rmq̂(Yk)], where
[.] is the rounding function. Thus {λk} is set as the prediction with the lowest confidence in the
m̂k-th predictions of class k.
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3.2 ALIGNMENT OF LABEL CONDITIONAL DISTRIBUTIONS

Suppose that the selected pseudo-labeled data follows the distribution Q̂. Due to selection bias, the
label conditional distribution may change, i.e.q̂(X|Y ) ̸= q(X|Y ), which violates label shift assump-
tion. This results in an impact on the expected loss of the intermediate distribution as Proposition 3.

Proposition 3 Assume that the classifier has an upper bound loss, that is, there exists at least one
h satisfying l(h; (X,Y ) ∈ {P, T,Q}) ≤ α∗. Let EQ[l(h)] represents EX,Y ∈Q[l(h(X), Y )] for
convenience. Under the α∗-loss assumption, for learning model {l, h}, the following results hold.{

|EP [l(h)]− EQ[l(h)]| ≤ 2α∗dTV (p(Y ), q(Y )),
|ET [l(h)]− EQ[l(h)]| ≤ 2α∗dTV (t(Y ), q(Y )) + 2α∗ min{EQ(Dtq(X,Y )),ET (Dtq(X,Y ))},

(8)
where dTV (., .) represents the Total Variation (TV) distance between probability distributions and
Dtq(X,Y ) = dTV (t(X|Y ), q(X|Y )).

Through the above theorem, it is obvious that even if dTV (t(Y ), q(Y )) < dTV (p(Y ), q(Y )), it is
hard to guarantee that the upper bound of expected difference satisfies sup |ET [l(h)]− EQ[l(h)]| <
sup |EP [l(h)]− EQ[l(h)]| due to the TV distance Dtq(X,Y ). However, since Dtq(X,Y ) is difficult
to optimize directly, we give a sufficient condition in Proposition 4.

Proposition 4 If the conditional distribution satisfies q̂(X|Y ) = p(X|Y ), Dtq(X,Y ) = 0 holds.

We employ Kernel Mean Matching Yu & Szepesvári (2012) to align conditional dis-
tributions and minimize the Maximum Mean Discrepancy Cui et al. (2020) loss:∑K

k=1

∥∥EX∼p(X|Yk)[φ(X)]− EX∼q̂(X|Yk)[φ(X)πk]
∥∥2, where πk ∈ Rm̂k is the in-class weight

and φ(·) is a kernel mapping. We approximate the expected kernel mean values by the empirical
ones:

min
π

K∑
k=1

∥∥∥∥∥∥ 1

m̂k

m̂k∑
i=1

πk
i φ(x

k
i )−

1

nk

nk∑
j=1

φ(xk
j )

∥∥∥∥∥∥
2

. (9)

Suppose that the true weight is π∗ = [π1
∗; ...;π

K
∗ ] ∈ Rm̂. The above loss can be reparametrized as

min
π

K∑
k=1

(
(πk)

T
KQ̂πk

m̂2
k

− 2
1TKP,Q̂πk

m̂knk

)
, (10)

where KQ̂ is the kernel matrix of XQ̂ and KP,Q̂ is the cross kernel matrix. In this paper, the
Gaussian kernel, i.e., K(i, j) = exp

(
− ||xi−xj ||2

2σ2

)
is applied, where σ is the bandwidth.

In order to ensure that as many samples as possible are selected from the target set, we add a reg-
ularization term for {πk}Kk=1. However, sample weights πk may change the marginal distribution,
which violates the condition |wt − 1| ≤ |wq − 1|. Thus we introduce a constraint for sample
weight {πk}Kk=1, which theoretically guarantees the invariance of marginal distribution, as shown in
Proposition 5.

Proposition 5 Assume that πk
i is the i-th of πk, which corresponds to the weight of the i-th data of

the k-th class. If
m̂k∑
i=1

πk
i = m̂k holds for each class k, then q̂π(Y ) = q̂(Y ) is established, where

q̂π(.) is the weighted pseudo-label distribution.

Combined with the above information, the final loss changes to the following form:
min
π

K∑
k=1

(
(πk)

T
KQ̂πk

m̂2
k

− 21TKP,Q̂πk

m̂knk
+ βk

∥∥πk
∥∥2) ,

s.t.
m̂k∑
i=1

πk
i = m̂k, π

k
i ≥ 0, ∀k ∈ {1, ...,K}.

(11)
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The optimal solution of the above problem is π̂ ∈ Rm̂, which can be obtained by Quadratic Pro-
gramming(QP). Let D(π) =

∑K
k=1

∥∥EX∼p(X|Yk)[φ(X)]− EX∼q̂(X|Yk)[φ(X)πk]
∥∥2, we analyze

the upper bound of D(π̂) − D(π∗), which represents the difference between distributions q̂(X|Y )
and p(X|Y ).

Proposition 6 Let the kernel mapping be universal and upper bounded that ||φ(x)|| ≤ µ for the
intermediate set. Through Proposition 5, it is obvious that ||πk||1 = m̂k. With probability at least
1− δ, we have

D(π̂)−D(π∗) ≤ επ(n, m̂) = 16µ2
K∑

k=1

√√√√2

(
1

m̂k
+

1

nk

)
+ 2

√
2

(
1

nk
+

1

m̂k

)
log

K

δ
. (12)

3.3 THE RETRAINING OF TARGET CLASSIFIER

Once sample weights π̂(x) are obtained, we re-estimate the importance weights ŵt by BBSE or
RLLS on the new training set [{xi, yi}ni=1, π̂(xi){xi, ŷi}n+m̂

i=n ]. Thus, the form of the final target
empirical loss is given below:

L̂(h; ŵt, π̂) =
1

n+ m̂

(
n∑

i=1

ŵt(yi)l(h(xi), yi) +

n+m̂∑
i=n

ŵt(yi)π̂(xi)l(h(xi), ŷi)

)
. (13)

Assume that the deviation form of label conditional and marginal distribution is dX|Y (q||q̂) :=

EX,Y ∈Q

[∣∣∣ q(X|Y )−q̂(X|Y )
t(X|Y )

∣∣∣] and dY (q||q̂) := EX,Y ∈Q

[∣∣∣ q(Y )−q̂(Y )

t̂(Y )

∣∣∣]. Traditional generalization
theory 1 can not apply to our problem directly due to conditional distribution deviation and pseudo
label noise. Thus we propose a new generalization error bound to balance the pseudo label bias and
importance weighting variance.

Proposition 7 We assume that the true importance weight is τ(X,Y ) := q(X,Y )
t(X,Y ) and the pseudo

importance weight is wt(Y ). In the case of ALS framework based on RLLS, with probability at least
1− 3δ, the ALS generalizes as:

L(ĥŵt ; τ)− L(h∗; τ) ≤ εG(n+ m̂, d∞(q||t), d(q||t)) + εw(n+ m̂, ||w − 1||2)

+
2α∗rm

n+ rm

(
dX|Y (q||q̂) + dY (q||q̂)

)
+ 2α∗ ∥wt(Y )∥∞ err(hυ̃).

(14)

Where εG(n + m̂, d∞(q||t), d(q||t)) = 2R(G(L,H)) + 2α∗d∞(q||t) log(2/δ)
n+m̂ +

√
2α∗d(q||t) log(2/δ)

n+m̂ ,

εw(n + m̂, ||w − 1||2) = 2λα∗O
(

1
σmin

(
∥w − 1∥2

√
log(K/δ)
n+m̂ +

√
log(1/δ)
n+m̂ +

√
log(1/δ)

m

))
+

2α∗(1− λ)||w − 1||2, err(hυ̃) denotes the importance weighted 0/1-error of the predictor hυ̃.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the performance and effectiveness of ALS on the numerous artificial shifts
on the MNIST Li (2012), CIFAR10 Krizhevsky et al. (2009) and CIFAR100 datasets. In our ex-
periment, every dataset is randomly divided into two parts which represent the source and target
domain of the same size. Then we sample data points as the source and target set from each domain.
For MNIST, we set the number of source and target set as 2000 and 8000 respectively. Similarly,
we set the size of source and target set as 3000 and 10000 for CIFAR10 and the size of source and
target set as 20000 and 30000 for CIFAR100. Two types of shifts are considered in our experiments:
the Tweak-One shift refers to the case that a class changes to the specified probability ρ which is
set to {0.2, 0.5, 0.8}(larger values of ρ result in more extreme label shift), while the distribution of
other classes remained constant. The Dirichlet shift generates the class proportions by the dirichlet
distribution with the concentration parameter α which is set to {1, 2, 5}(smaller values of α result in
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Table 1: Acc comparison with different ratio r on Dirichlet shift datasets.

Methods α = 1 α = 2 α = 5

r = 0.1 r = 0.3 r = 0.5 r = 0.1 r = 0.3 r = 0.5 r = 0.1 r = 0.3 r = 0.5

MNIST
WW 0.6908 0.6908 0.6908 0.7663 0.7663 0.7663 0.8075 0.8075 0.8075

CBST 0.7688 0.7865 0.7843 0.8186 0.8244 0.8259 0.8547 0.8561 0.8583
BBSE 0.7635 0.7635 0.7635 0.8018 0.8018 0.8018 0.8386 0.8386 0.8386
RLLS 0.7734 0.7734 0.7734 0.8058 0.8058 0.8058 0.8416 0.8416 0.8416

BBSE-ALS 0.8339 0.8394 0.8262 0.8535 0.8592 0.854 0.8662 0.8708 0.8736
RLLS-ALS 0.8405 0.8424 0.8337 0.8547 0.8599 0.8542 0.8645 0.8700 0.8746

AvgIMP 0.0687 0.07245 0.0615 0.0503 0.0588 0.0503 0.0253 0.0303 0.0340
CIFAR10

WW 0.2829 0.2829 0.2829 0.3519 0.3519 0.3519 0.3705 0.3705 0.3705
CBST 0.3380 0.3536 0.3502 0.3946 0.4008 0.3971 0.4258 0.4392 0.4336
BBSE 0.3476 0.3476 0.3476 0.3968 0.3968 0.3968 0.4036 0.4036 0.4036
RLLS 0.3609 0.3609 0.3609 0.4007 0.4007 0.4007 0.4104 0.4104 0.4104

BBSE-ALS 0.4220 0.4354 0.4299 0.4362 0.4396 0.4465 0.4411 0.4565 0.4621
RLLS-ALS 0.4354 0.4398 0.4328 0.4303 0.4412 0.4482 0.4426 0.4627 0.4615

AvgIMP 0.0743 0.0834 0.0771 0.0345 0.0417 0.0486 0.0349 0.0526 0.0548
CIFAR100

WW 0.2745 0.2745 0.2745 0.3817 0.3817 0.3817 0.4058 0.4058 0.4058
CBST 0.3348 0.3472 0.3488 0.4421 0.4537 0.4553 0.4781 0.4892 0.4854
BBSE 0.3365 0.3365 0.3365 0.4513 0.4513 0.4513 0.4877 0.4877 0.4877
RLLS 0.3482 0.3482 0.3482 0.4556 0.4556 0.4556 0.4932 0.4932 0.4932

BBSE-ALS 0.4016 0.4054 0.4098 0.4734 0.4771 0.4827 0.5004 0.5148 0.5163
RLLS-ALS 0.4075 0.4142 0.4156 0.4901 0.4935 0.4964 0.5122 0.5214 0.5236

AvgIMP 0.0622 0.0675 0.0704 0.0283 0.0319 0.0361 0.0159 0.0277 0.0295

more extreme label shift). In addition, we discuss the effect of the number of pseudo-label samples
on the model performance, that is, the ratio r ∈ {0.1, 0.3, 0.5} on the target sets.

Compared methods. In the main experiment section, we show the performance of ALS by com-
paring several variations. (1) WW shows the performance of the base classifier if the estimated
importance weights are not used. (2) CBST Zou et al. (2018) is an advanced self-training learning
method. (3) BBSE and RLLS are two standard baselines. (4) BBSE-ALS and RLLS-ALS are two
variations to demonstrate the performance of ALS framework when the base methods are BBSE
and RLLS respectively. (5) AvgImp represents the average performance improvement of the ALS
framework over RLLS and BBSE.

Network architecture. BBSE and RLLS can use any classifier as the base classifier. It is worth
noting that the more accurate the classifier, the more accurate the estimated weight. In our main
experimental setup, we use a two-layer fully connected neural network for MNIST and CIFAR10
datasets simultaneously, and use Resnet18 He et al. (2016) for CIFAR100 dataset.

Evaluation indicators and parameter setting. For each shift type, we randomly sample 10 times
using the corresponding distribution parameters to evaluate the predictive Accuracy(Acc) and F-
score on the target set, and the Mean Square Error of the estimated weights. For our ALS, we set
the regularized parameter β from {0, 0.001, 0.1, 10, 1000} and the parameter λ is the same as that
in RLLS.

4.2 PREDICTIVE RESULTS

Firstly, to show the effectiveness of ALS framework, we report the classification Accuracy(Acc)
under the different proportions of pseudo label samples on the Dirichlet shift datasets. Other results
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are shown in the supplementary material. All methods run on framework with Pyhton 3.7 and
Pytorch. As seen from the results in Table 1, we have the following observations.

(1) Although different compared methods have different performances on different data sets, our
ALS framework outperforms other methods in all cases. For example, on the Dirichlet shift CI-
FAR10 with α = 1, the Acc improvement is more than 8%. These results fully validate the validity
of ALS framework. (2) It is worth noting that our approach achieves greater improvement in the case
of large label shift. For example, on the CIFAR10 with α = 1, the Acc improvement is about 8%
and on the CIFAR100 with α = 5, the Acc improvement is only 2%. This suggests that small label
shift may have little effect on model performance, thus the importance weight of ALS correction is
not effective significantly. This can also be illustrated by the comparison with CBST. (3) We find
that under the large label shift, the experimental results do not always improve with the increase of
the proportion of pseudo label samples selected. The reason is that with the increase of pseudo label
samples, its true accuracy will decrease. This not only adds more error samples to the training pro-
cess, but also affects the estimate of importance weight. (4) Compared with WW, all the label shift
methods improve the predictive performance, especially in the case of large label shift. This fully
demonstrates the effectiveness of the importance weight estimation strategy. (5) Sometimes Acc
metric does not fully capture the accuracy of each category, especially small categories. Therefore,
F-score metric is adopted in our paper, and the experimental results are shown in Figure 2.(d). The
experimental results show that our approach is also effective in small categories.

4.3 PERFORMANCE ANALYSIS

Weight estimation analysis. Furthermore, to illustrate the effectiveness of our shift strategy, we
show the Mean Square Error of the estimated weights, i.e. ||w − w∗||2. As seen from the results in
Figure 2.(a,b,c), the performance of ALS is still better than other methods in most cases, especially
in the small pseudo label selection ratio. These results fully validate the validity of ALS framework.
But in Figure 2.(a), we find that if the pseudo label selection ratio is 50% with the large label shift,
the weight error of ALS estimation is larger than BBSE and RLLS. This is because the large shift
classifier leads to the increase of weight estimation error, coupled with the wrong label, resulting in
poor ALS framework effect.

Visualization of Label Distribution Bias. In order to show that ALS can alleviate label shift
through self-trained intermediate distribution, we illustrate some visualization result in Figure
2.(e,f), which shows the label shift degree w − 1 of the intermediate and source distributions. The
experimental results show that the ALS framework can effectively reduce the label distribution dif-
ference, both at positive and negative shifts.

The Effect of Pesudo Label Ratios. In order to explore the influence of pseudo-label samples
on model performance, we compare the predictive accuracy of the ALS framework, pseudo and
true labels. We set Pseudo w as the weight under pseudo labels and True w as the weight under
true labels. In addition, if r = 0, BBSE-ALS and RLLS-ALS degenerates into BBSE and RLLS.
In Figure 2.(g,h), we find that ALS framework can achieve the performance of Pseudo w under
different conditions roughly. This basically hits the performance ceiling of ALS framework, since
the target labels are unknown.

5 RELATED WORK

Label shift is an important type of domain adaption Yu et al. (2020); Ben-David et al. (2006); des
Combes et al. (2020); Zhang et al. (2013) and has attracted wide attention in recent years. Label
shift arises when the source and target domain have different class distribution, but the same feature
distribution of each class Le et al. (2021); Zhao et al. (2021); Podkopaev & Ramdas (2021); Wu
et al. (2021). Existing solutions are divided into the following two steps basically: (1) estimate
importance weight, (2) construct an unbiased estimate of the target risk. In Lipton et al. (2018) and
Azizzadenesheli et al. (2019), the class-weighted samples are used to retrain a new model under
the Empirical Risk Minimization(ERM) framework while the weight is estimated by the confusion
matrix and the predicted target labels. Yu et al. propose a method that can reduce the side-effect
of noisy source labels in the label shift scenario in Yu et al. (2020). However, existing label shift
methods only use the unlabeled target samples to estimate the importance weight and do not use
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Figure 2: Various performance analysis of ALS.

them to train the target classifier directly, which is insufficient to use the sample information. In
addition, our ALS framework can also be extended to other label shift methods without theoretical
guarantee, which shows the extensibility of ALS framework.

Pseudo label learning depends on self-training Ke et al. (2022); Oymak & Gulcu (2021); Van En-
gelen & Hoos (2020); Zhou (2021), which trains the model on labeled samples and generates pseudo
labels on unlabeled samples, and then uses the true and pseudo labels to retrain the model together
Zoph et al. (2020); Xie et al. (2020); RoyChowdhury et al. (2019). The core of self-training is how to
make the pseudo labels as accurate as possibleTai et al. (2021); Kumar et al. (2020); Wei et al. (2021).
Zou et al.Zou et al. (2019) propose a confidence regularized self-training approach which can reduce
the misleading effect caused by incorrect or fuzzy pseudo labels by using confidence-guide regular-
ization to smooth output vectors. In Zhang et al. (2022), the generalization ability of self-training is
evaluated when the classifier is a one hidden layer neural network. In addition, self-training is also
widely used in domain adaptation. For example, the limitation of standard self-training under the
condition of distribution deviation is overcome and its ability is verified in learning pseudo labels
with cross-domain generalization in Liu et al. (2021). However, due to the difference of distribution
shift hypothesis, the existing self-training methods for domain adaptation cannot solve our problem,
which shows the creativity of ALS framework.

6 CONCLUSIONS

In this paper, we focus on how to make full use of target domain samples and propose a novel ALS
framework to improve the performance of existing label shifting methods BBSE and RLLS. ALS
framework leads to a more robust importance weight estimator as well as generalization guarantees
under certain conditions. The experimental results show the superiority of ALS framework in both
small and large label shifts. We believe that this work is an important step to improve the effect of
label shift algorithms in practical applications because of its excellent performance. In future work,
we plan to expand our approach to generalized label shift setting which imposes stricter requirements
on conditional distribution alignment. However, how to keep the generalization theory in generalized
label shift is an open problem and we will conduct in-depth exploration in future work.
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A APPENDIX

A.1 PROOF OF PROPOSITION

A.1.1 PROOF OF PROPOSITION 1

Proposition 1 If a distribution T is a linear combination of source and target domain distributions,
i.e., T = λP + (1− λ)Q and 0 < λ < 1, the distribution T must be the intermediate distribution.

Proof: If T = λP +(1−λ)Q, then t(Y ) = λp(Y )+ (1−λ)q(Y ) and t(X|Y ) = λp(X|Y )+ (1−
λ)q(X|Y ). Under the assumption of label shift, i.e., p(X|Y ) = q(X|Y ), then the label conditional
distribution stays the same (t(X|Y ) = q(X|Y )).

Due to
∣∣∣ q(Y )
t(Y ) − 1

∣∣∣ = ∣∣∣ q(Y )
λp(Y )+(1−λ)q(Y ) − 1

∣∣∣ = ∣∣∣ λ(q(Y )−p(Y ))
λp(Y )+(1−λ)q(Y )

∣∣∣ ≤ ∣∣∣λ(q(Y )−p(Y ))
λp(Y )

∣∣∣ = ∣∣∣ q(Y )
p(Y ) − 1

∣∣∣,
thus the label marginal distribution shift alleviates (|q(Y )/t(Y )− 1| < |q(Y )/p(Y )− 1|). To sum-
marize the above two points, T is an intermediate distribution.

A.1.2 PROOF OF PROPOSITION 2

Proposition 2 Assume that the m target labels are known, i.e., (XQ, Y Q) = {xi, yi}n+m
i=n+1 ∼

Q. Then we construct a new labeled set (XT , Y T ) = [(XP , Y P ), (XQ, Y Q)], which follows the
intermediate distribution T with λ = n/(n+ m̂). If the classifier is trained on the new training set
(XT , Y T ) using BBSE or RLLS, the generalization bound will be tighter.
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Proof: If (XT , Y T ) = [(XP , Y P ), (XQ, Y Q)], Aasume that the number of samples of class k in
the source set is nk and the number of samples of class k in the target set is m̂k. Then

t(X|Yk) = E

(
1

nk + m̂k

(
nk∑
i=1

xP
i +

m̂k∑
i=1

xQ
i

))

=
nk

nk + m̂k
E

(
1

nk

nk∑
i=1

xP
i

)
+

m̂k

nk + m̂k
E

(
1

m̂k

m̂k∑
i=1

xQ
i

)

=
n

n+ m̂
p(X|Yk) +

m̂

n+ m̂
q(X|Yk), ∀k ∈ {1, ...,K}.

(1)

t(Yk) =
nk + m̂k

n+ m̂
=

n

n+ m̂

nk

n
+

m̂

n+ m̂

m̂k

m̂
=

n

n+ m̂
p(Yk) +

m̂

n+ m̂
q(Yk), ∀k ∈ {1, ...,K}.

(2)

Thus the new training set (XT , Y T ) follows the intermediate distribution T = λP +(1−λ)Q with
λ = n/(n+ m̂). Next, we analyze why the generalization bound will be tighter.

[1]. It is obvious that the number of training samples changes from n to n+ m̂, thus the number of
training samples increases.

[2]. Assume p(Yk) ≤ q(Yk), i.e., nk

n ≤ m̂k

m̂ , then

p(Yk) =
nk

n
=

nk + nk

n m̂

n+ m̂

≤
nk + m̂k

m̂ m̂

n+ m̂
=

nk + m̂k

n+ m̂
= t(Yk) =

nk

n n+ m̂k

n+ m̂

≤
m̂k

m̂ n+ m̂k

n+ m̂
=

m̂k

m̂
= q(Yk), ∀k ∈ {1, 2, ...,K}.

(3)

Thus, if p(Yk) ≤ q(Yk), p(Yk) ≤ t(Yk) ≤ q(Yk) and vice versa. This leads to the following
conclusion:

∥wp − 1∥2 =

√√√√ K∑
k=1

(
q(Yk)

p(Yk)
− 1

)2

≥

√√√√ K∑
k=1

(
q(Yk)

t(Yk)
− 1

)2

= ∥wt − 1∥2. (4)

Hence the label distribution deviation ∥w − 1∥2 shrunks.

[3]. If p(Yk) ≤ q(Yk), then q(Yk)
p(Yk)

≥ q(Yk)
t(Yk)

≥ 1 holds and if p(Yk) ≥ q(Yk), then q(Yk)
p(Yk)

≤ q(Yk)
t(Yk)

≤ 1

holds, this leads to the following conclusion:
d∞(q||p) = sup

k

q(Yk)
p(Yk)

≥ sup
k

q(Yk)
t(Yk)

= d∞(q||t) ≥ 1,

d(q||p) =
K∑

k=1

q(Yk)
q(Yk)
p(Yk)

≥
K∑

k=1

q(Yk)
q(Yk)
t(Yk)

= d(q||t).
(5)

Thus, the infinite and second order Renyi divergence d∞(q||p) and d(q||p) reduce. Combining the
above three conditions, the generalization bound will be tighter.

A.1.3 PROOF OF PROPOSITION 3

Proposition 3 Assume that the classifier has an upper bound loss, that is, there exists at least one
h satisfying l(h; (X,Y ) ∈ {P, T,Q}) ≤ α∗. Let EQ[l(h)] represents EX,Y ∈Q[l(h(X), Y )] for
convenience. Under the α∗-loss assumption, for learning model {l, h}, the following results hold.{

|EP [l(h)]− EQ[l(h)]| ≤ 2α∗dTV (p(Y ), q(Y )),
|ET [l(h)]− EQ[l(h)]| ≤ 2α∗dTV (t(Y ), q(Y )) + 2α∗ min{EQ(Dtq(X,Y )),ET (Dtq(X,Y ))}.

(6)
where dTV (., .) represents the Total Variation (TV) distance between probability distributions and
Dtq(X,Y ) = dTV (t(X|Y ), q(X|Y )).
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Proof: Due to p(X|Y ) = q(X|Y ), we have

|EP [l(h)]− EQ[l(h)]|

=

∣∣∣∣∫
X

∫
Y

l(h)p(X = x, Y = y)dxdy −
∫
X

∫
Y

l(h)q(X = x, Y = y)dxdy

∣∣∣∣
≤ α∗

∫
X

∫
Y

|p(X = x|Y = y)p(Y = y)− q(X = x, Y = y)q(Y = y)| dxdy

= α∗
∫
X

∫
Y

p(X = x|Y = y) |p(Y = y)− q(Y = y)| dxdy

= α∗
∫
Y

|p(Y = y)− q(Y = y)|
∫
X

p(X = x|Y = y)dxdy

= α∗
∫
Y

|p(Y = y)− q(Y = y)| dy

= 2α∗dTV (p(Y ), q(Y )).

(7)

Thus, this first property is proved and on this basis, we have the following conclusion:

|ET [l(h)]− EQ[l(h)]|

=

∣∣∣∣∫
X

∫
Y

l(h)t(X = x, Y = y)dxdy −
∫
X

∫
Y

l(h)q(X = x, Y = y)dxdy

∣∣∣∣
≤ α∗

∫
X

∫
Y

|t(X = x|Y = y)t(Y = y)− q(X = x, Y = y)q(Y = y)| dxdy

= α∗
∫
X

∫
Y

|t(X = x|Y = y)t(Y = y)− t(X = x|Y = y)q(Y = y)

+ t(X = x|Y = y)q(Y = y)− q(X = x, Y = y)q(Y = y)|dxdy

≤ α∗
∫
X

∫
Y

t(X = x|Y = y) |t(Y = y)− q(Y = y)| dxdy

+ α∗
∫
X

∫
Y

q(Y = y) |t(X = x|Y = y)− q(X = x|Y = y)| dxdy

= α∗
∫
Y

|t(Y = y)− q(Y = y)|
∫
X

t(X = x|Y = y)dxdy

+ α∗
∫
Y

q(Y = y)

∫
X

|t(X = x|Y = y)− q(X = x|Y = y)|dxdy

= α∗
∫
Y

|t(Y = y)− q(Y = y)| dy + 2α∗
∫
Y

q(Y = y)dTV (t(X|Y = y), q(X|Y = y))dy

= 2α∗dTV (t(Y ), q(Y )) + 2α∗EQ[dTV (t(X|Y ), q(X|Y ))].

(8)

Similarly, the following formula holds

|ET [l(h)]− EQ[l(h)]|

≤ α∗
∫
X

∫
Y

|t(X = x|Y = y)t(Y = y)− q(X = x, Y = y)q(Y = y)| dxdy

= α∗
∫
X

∫
Y

|t(X = x|Y = y)t(Y = y)− q(X = x|Y = y)p(Y = y)

+ q(X = x|Y = y)p(Y = y)− q(X = x, Y = y)q(Y = y)|dxdy
≤ 2α∗dTV (t(Y ), q(Y )) + 2α∗ET [dTV (t(X|Y ), q(X|Y ))].

(9)

Combining the above two formulas, we have

|ET [l(h)]− EQ[l(h)]| ≤ 2α∗dTV (t(Y ), q(Y )) + 2α∗ min{EQ(Dtq(X,Y )),ET (Dtq(X,Y ))},
(10)

where Dtq(X,Y ) = dTV (t(X|Y ), q(X|Y )).
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A.1.4 PROOF OF PROPOSITION 4

Proposition 4 If the conditional distribution satisfies q̂(X|Y ) = p(X|Y ), Dtq(X,Y ) = 0 holds.

Proof: Assume that the number of samples of class k in the source set is nk, we have

t(X|Yk) = E

(
1

nk + m̂k

(
nk∑
i=1

xP
i +

m̂k∑
i=1

xQ̂
i

))

=
nk

nk + m̂k
E

(
1

nk

nk∑
i=1

xP
i

)
+

m̂k

nk + m̂k
E

(
1

m̂k

m̂k∑
i=1

xQ̂
i

)

=
nk

nk + m̂k
p(X|Yk) +

m̂k

nk + m̂k
q̂(X|Yk)

= q(X|Yk) +
m̂k

nk + m̂k
(q̂(X|Yk)− p(X|Yk)), ∀k ∈ {1, ...,K}.

(11)

Thus t(X|Y ) = q(X|Y ) ⇔ q̂(X|Y ) = p(X|Y ).
Dtq(X,Y )

= dTV (t(X|Y ), q(X|Y ))

=

∫
Y

∫
X

|t(X = x|Y = y)− q(X = x|Y = y)|dxdy

=

∫
Y

∫
X

|p(X = x|Y = y) + λ(q̂(X = x|Y = y)− p(X = x|Y = y))− q(X = x|Y = y)|dxdy

=

∫
Y

λ

∫
X

|q̂(X = x|Y = y)− p(X = x|Y = y)|dxdy.

(12)
Through the above formula, if q̂(X|Y ) = p(X|Y ) , it is obvious that Dtq(X,Y ) = 0.

A.1.5 PROOF OF PROPOSITION 5

Proposition 5 Assume that πk
i is the i-th of πk, which corresponds to the weight of the i-th data of

the k-th class. If
m̂k∑
i=1

πk
i = m̂k holds for each class k, then q̂π(Y ) = q̂(Y ) is established, where

q̂π(.) is the weighted pseudo-label distribution.

Proof: We have

q̂(Yk) =

m̂∑
i=1

I(yi = k)

m̂
=

m̂k

m̂
=

m̂k∑
i=1

πk
i

m̂∑
i=1

K̂∑
k=1

πk
i

=

m̂∑
i=1

πk
i I(yi = k)

m̂
= q̂π(Yk). (13)

A.1.6 PROOF OF PROPOSITION 6

Proposition 6 Let the kernel mapping be universal and upper bounded that ||φ(x)|| ≤ µ for the
intermediate set. Through Theorem 5, it is obvious that ||πk||1 = m̂k. With probability at least
1− δ, we have

D(π̂)−D(π∗) ≤ επ(n, m̂) = 16µ2
K∑

k=1

√√√√2

(
1

m̂k
+

1

nk

)
+ 2

√
2

(
1

nk
+

1

m̂k

)
log

K

δ
. (14)

Proof: We take the experience loss of class k as D̂(πk;xP
k , x

Q̂
k ) =

∥∥∥ 1
m̂k

φ(xQ̂
k )π

k − 1
nk

φ(xP
k )1

∥∥∥2+
βk

∥∥πk
∥∥2 and the expected loss of class k as D(πk;xP

k , x
Q̂
k ) =

∥∥∥E 1
m̂k

φ(xQ̂
k )π

k − E 1
nk

φ(xP
k )1

∥∥∥2+
βk

∥∥πk
∥∥2. Then D̂(π) =

K∑
k=1

D̂(πk;xP
k , x

Q̂
k ) and D(π) =

K∑
k=1

D(πk;xP
k , x

Q̂
k ) are true.
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We have ∣∣∣D(π̂k;xP
k , x

Q̂
k )−D(πk

∗ ;x
P
k , x

Q̂
k )
∣∣∣

= |D(π̂k;xP
k , x

Q̂
k )− D̂(π̂k;xP

k , x
Q̂
k ) + D̂(π̂k;xP

k , x
Q̂
k )

− D̂(π∗;x
P
k , x

Q̂
k ) + D̂(π∗;x

P
k , x

Q̂
k )−D(π∗;x

P
k , x

Q̂
k )|

≤
∣∣∣(D(π̂k;xP

k , x
Q̂
k )− D̂(π̂k;xP

k , x
Q̂
k )
)
+
(
D̂(π∗;x

P
k , x

Q̂
k )−D(π∗;x

P
k , x

Q̂
k )
)∣∣∣

≤ 2 sup
πk

∣∣∣D(πk;xP
k , x

Q̂
k )− D̂(πk;xP

k , x
Q̂
k )
∣∣∣ ,

(15)

where the first inequality holds because π̂k is the empirical minimizer of D̂(πk;xP
k , x

Q̂
k ) and thus

D̂(π̂k;xP
k , x

Q̂
k )− D̂(π∗;x

P
k , x

Q̂
k ) ≤ 0.

Further, we have∣∣∣D(πk;xP
k , x

Q̂
k )− D̂(πk;xP

k , x
Q̂
k )
∣∣∣

=

∣∣∣∣∣
∥∥∥∥ 1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

∥∥∥∥2 + βk

∥∥πk
∥∥2 − ∥∥∥∥E 1

m̂k
φ(xQ̂

k )π
k − E

1

nk
φ(xP

k )1

∥∥∥∥2 − βk

∥∥πk
∥∥2∣∣∣∣∣

=

∣∣∣∣∣
∥∥∥∥ 1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

∥∥∥∥2 − ∥∥∥∥E 1

m̂k
φ(xQ̂

k )π
k − E

1

nk
φ(xP

k )1

∥∥∥∥2
∣∣∣∣∣

=

(
E
(

1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)
−
(

1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

))T

(
E
(

1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)
+

(
1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

))
≤
∥∥∥∥E( 1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)
−
(

1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)∥∥∥∥∥∥∥∥E( 1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)
+

(
1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)∥∥∥∥ .
(16)

Due to ||φ(x)|| ≤ µ and ||πk||1 = m̂k, then∥∥∥∥E( 1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)
+

(
1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)∥∥∥∥
≤
∥∥∥∥E 1

m̂k
φ(xQ̂

k )π
k

∥∥∥∥+ ∥∥∥∥E 1

nk
φ(xP

k )1

∥∥∥∥+ ∥∥∥∥ 1

m̂k
φ(xQ̂

k )π
k

∥∥∥∥+ ∥∥∥∥ 1

nk
φ(xP

k )1

∥∥∥∥
≤ µ+ µ+ µ+ µ

= 4µ.

(17)

Let f(xQ̂
k , x

P
k , π

k)
∆
=E

(
1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1
)
−
(

1
m̂k

φ(xQ̂
k )π

k − 1
nk

φ(xP
k )1

)
. Combining

the above two equations, we have∣∣∣D(πk;xP
k , x

Q̂
k )− D̂(πk;xP

k , x
Q̂
k )
∣∣∣ ≤ 4µ

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥ . (18)

Combining Eq. (15) and Eq. (18), we have

D(π̂k;xP
k , x

Q̂
k )−D(πk

∗ ;x
P
k , x

Q̂
k ) ≤ 2 sup

πk

∣∣∣D(πk;xP
k , x

Q̂
k )− D̂(πk;xP

k , x
Q̂
k )
∣∣∣

≤ 8µ sup
πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥ . (19)

It is hard to upper bound the sup
πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥ directly and let’s start with the expectation upper

bound, i.e., E sup
πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥, in the first. We further define a ghost data set [x̄P

k , x̄
Q
k ]

K
k=1 and

16
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the corresponding ghost loss is

E sup
πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥

= E sup
πk

∥∥∥∥E( 1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)
−
(

1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)∥∥∥∥
= E

xP
k ,xQ̂

k

sup
πk

∥∥∥∥Ex̄P
k ,x̄Q̂

k

(
1

m̂k
φ(x̄Q̂

k )π
k − 1

nk
φ(x̄P

k )1

)
−
(

1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)∥∥∥∥
≤ E

xP
k ,xQ̂

k ,x̄P
k ,x̄Q̂

k

sup
πk

∥∥∥∥( 1

m̂k
φ(x̄Q̂

k )π
k − 1

nk
φ(x̄P

k )1

)
−
(

1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)∥∥∥∥ .
(20)

Due to Jensens Inequality and the convexity of L2 norm, the last inequality holds.

Since the random variable { 1
m̂k

φ(x̄Q̂
k )π

k− 1
nk

φ(x̄P
k )1− 1

m̂k
φ(xQ̂

k )π
k+ 1

nk
φ(xP

k )1} is a symmetric
random variable, we use the usual symmetrizing technique through Rademacher variables {ξi}ni=1
which are uniformly distributed from {1,−1}. Then we have{

φ(xP
k , ξ)

∆
= [ξ1φ(x

P
k,1), ξ2φ(x

P
k,2), ..., ξnφ(x

P
k,nk

)]T ,

φ(xQ̂
k , ξ)

∆
= [ξ1φ(x

Q̂
k,1), ξ2φ(x

Q̂
k,2), ..., ξnφ(x

Q̂
k,m̂k

)]T .
(21)

By the above definition, it’s obvious that the random variable { 1
m̂k

φ(x̄Q̂
k , ξ)π

k − 1
nk

φ(x̄P
k , ξ) −

1
m̂k

φ(xQ̂
k , ξ)π

k + 1
nk

φ(xP
k , ξ)} has the same distribution as { 1

m̂k
φ(x̄Q̂

k )π
k − 1

nk
φ(x̄P

k ) −
1

m̂k
φ(xQ̂

k )π
k + 1

nk
φ(xP

k )}. Then we have

E
xP
k ,xQ̂

k ,x̄P
k ,x̄Q̂

k

sup
πk

∥∥∥∥( 1

m̂k
φ(x̄Q̂

k )π
k − 1

nk
φ(x̄P

k )1

)
−
(

1

m̂k
φ(xQ̂

k )π
k − 1

nk
φ(xP

k )1

)∥∥∥∥
= E

xP
k ,xQ̂

k ,x̄P
k ,x̄Q̂

k ,ξ
sup
πk

∥∥∥∥( 1

m̂k
φ(x̄Q̂

k , ξ)π
k − 1

nk
φ(x̄P

k , ξ)1

)
−
(

1

m̂k
φ(xQ̂

k , ξ)π
k − 1

nk
φ(xP

k , ξ)1

)∥∥∥∥
≤ 2E

xP
k ,xQ̂

k ,ξ
sup
πk

∥∥∥∥ 1

m̂k
φ(xQ̂

k , ξ)π
k − 1

nk
φ(xP

k , ξ)1

∥∥∥∥
≤ 2E

xQ̂
k ,ξ

sup
πk

∥∥∥∥ 1

m̂k
φ(xQ̂

k , ξ)π
k

∥∥∥∥+ 2ExP
k ,ξ sup

πk

∥∥∥∥ 1

nk
φ(xP

k , ξ)1

∥∥∥∥ ,
(22)

where the inequalities hold because of the triangle inequality. In the next proof, let’s look at the
upper bound of E

xQ̂
k ,ξ

sup
πk

∥∥∥ 1
m̂k

φ(xQ̂
k , ξ)π

k
∥∥∥ and ExP

k ,ξ sup
πk

∥∥∥ 1
nk

φ(xP
k , ξ)1

∥∥∥, respectively.

E
xQ̂
k ,ξ

sup
πk

∥∥∥∥ 1

m̂k
φ(xQ̂

k , ξ)π
k

∥∥∥∥ = E
xQ̂
k ,ξ

sup
πk

∥∥∥∥ 1

m̂k
[ξ1φ(x

Q̂
k,1), ξ2φ(x

Q̂
k,2), ..., ξnφ(x

Q̂
k,m̂k

)]Tπk

∥∥∥∥
=

1

m̂k
E
xQ̂
k ,ξ

sup
πk

∥∥∥[ξ1φ(xQ̂
k,1), ξ2φ(x

Q̂
k,2), ..., ξnφ(x

Q̂
k,m̂k

)]Tπk
∥∥∥

≤ 1

m̂k
µEξ sup

πk

√√√√ m̂k∑
i=1

ξi
2πk

i

≤ 1

m̂k
µ sup

πk

√√√√ m̂k∑
i=1

πk
i

=
1

m̂k
µ
√
∥πk∥1

=
µ√
m̂k

.

(23)
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The first inequality holds because of the Cauchy-Schwarz inequality and the second inequality holds
on account of the Talagrand Contraction Lemma Ledoux & Talagrand (1991). Similarly, the follow-
ing conclusion holds true.

ExP
k ,ξ sup

πk

∥∥∥∥ 1

nk
φ(xP

k , ξ)1

∥∥∥∥ ≤ µ
√
nk

. (24)

Combining Eq. (20), Eq. (22), Eq. (23) and Eq. (24), we have

E sup
πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥ ≤ 2µ

(
1√
m̂k

+
1

√
nk

)
. (25)

Assume that the i-th variable of xQ̂
k is replaced by a new independent variable x̃Q̂

k,i and the new ex-

ample is xQ̂i

k , where i ∈ {1, 2, ..., m̂k} and the j-th variable of xP
k is replaced by a new independent

variable x̃P
k,j and the new example is xPj

k , where j ∈ {1, 2, ..., nk}. Then for any i ∈ {1, 2, ..., m̂k},
we have∣∣∣∣sup

πk

∥∥∥f(xQ̂i

k , xP
k , π

k)
∥∥∥2 − sup

πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥2∣∣∣∣

≤ sup
πk

∣∣∣∣(f(xQ̂i

k , xP
k , π

k) + f(xQ̂
k , x

P
k , π

k)
)T (

f(xQ̂i

k , xP
k , π

k)− f(xQ̂
k , x

P
k , π

k)
)∣∣∣∣

≤
∣∣∣8φT

max

(
f(xQ̂i

k , xP
k , π

k)− f(xQ̂
k , x

P
k , π

k)
)∣∣∣

=

∣∣∣∣8φT
max

(
1

m̂k
φ(xQ̂i

k )πk − 1

m̂k
φ(xQ̂

k )π
k

)∣∣∣∣
≤ 16

m̂k
φT
maxφmax

=
16µ2

m̂k
.

(26)

Similarly, for any j ∈ {1, 2, ..., nk}, the following conclusion holds true.∣∣∣∣sup
πk

∥∥∥f(xQ̂
k , x

Pj

k , πk)
∥∥∥2 − sup

πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥2∣∣∣∣

≤ sup
πk

∣∣∣∣(f(xQ̂
k , x

Pj

k , πk) + f(xQ̂
k , x

P
k , π

k)
)T (

f(xQ̂
k , x

Pj

k , πk)− f(xQ̂
k , x

P
k , π

k)
)∣∣∣∣

=

∣∣∣∣8φT
max

(
1

nk
φ(x

Pj

k )1− 1

nk
φ(xP

k )1

)∣∣∣∣
=

16µ2

nk
.

(27)

By employing the McDiarmids Inequality , we have

P

[
sup
πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥2 − E{xQ̂

k ,xP
k } sup

πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥2 ≥ ε

]
≤ exp

 −2ε2

256µ4
(

1
nk

+ 1
m̂k

)
 .

(28)

Let

δ = exp

 −2ε2

256µ4
(

1
nk

+ 1
m̂k

)
 , (29)

and for any δ ≥ 0, with probability at least 1− δ, we have

sup
πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥2 − E{xQ̂

k ,xP
k } sup

πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥2 ≤ 8µ2

√
2

(
1

nk
+

1

m̂k

)
log

1

δ
. (30)
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Due to E{xQ̂
k ,xP

k } sup
πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥ ≤ 2µ

(
1√
m̂k

+ 1√
nk

)
mentioned in Eq. (27), we have

E{xQ̂
k ,xP

k } sup
πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥2 ≤ 4µ2

(
1√
m̂k

+
1

√
nk

)2

≤ 8µ2

(
1

m̂k
+

1

nk

)
.

(31)

Thus

sup
πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥ ≤

√√√√E{xQ̂
k ,xP

k } sup
πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥2 + 8µ2

√
2

(
1

nk
+

1

m̂k

)
log

1

δ

≤

√√√√8µ2

(
1

m̂k
+

1

nk

)
+ 8µ2

√
2

(
1

nk
+

1

m̂k

)
log

1

δ

= 2µ

√√√√2

(
1

m̂k
+

1

nk

)
+ 2

√
2

(
1

nk
+

1

m̂k

)
log

1

δ
,

(32)

and

D(π̂k;xP
k , x

Q̂
k )−D(πk

∗ ;x
P
k , x

Q̂
k ) ≤ 8µ sup

πk

∥∥∥f(xQ̂
k , x

P
k , π

k)
∥∥∥

≤ 16µ2

√√√√2

(
1

m̂k
+

1

nk

)
+ 2

√
2

(
1

nk
+

1

m̂k

)
log

1

δ
.

(33)

Due to D(π) =
K∑

k=1

D(πk;xP
k , x

Q̂
k ), with probability at least 1− δ, we have

D(π̂)−D(π∗) ≤ επ(n, m̂) ≤
K∑

k=1

16µ2

√√√√2

(
1

m̂k
+

1

nk

)
+ 2

√
2

(
1

nk
+

1

m̂k

)
log

K

δ
. (34)

A.1.7 PROOF OF PROPOSITION 7

Proposition 7 We assume that the true importance weight is τ(X,Y ) := q(X,Y )
t(X,Y ) and the pseudo

importance weight is wt(Y ). In the case of ALS framework based on RLLS, with probability at least
1− 3δ, the ALS generalizes as:

L(ĥŵt ; τ)− L(h∗; τ) ≤ εG(n+ m̂, d∞(q||t), d(q||t)) + εw(n+ m̂, ||w − 1||2)

+
2α∗rm

n+ rm

(
dX|Y (q||q̂) + dY (q||q̂)

)
+ 2α∗ ∥wt(Y )∥∞ err(hυ̃).

(35)

Where εG(n + m̂, d∞(q||t), d(q||t)) = 2R(G(L,H)) + 2α∗d∞(q||t) log(2/δ)
n+m̂ +

√
2α∗d(q||t) log(2/δ)

n+m̂ ,

εw(n + m̂, ||w − 1||2) = 2λα∗O
(

1
σmin

(
∥w − 1∥2

√
log(K/δ)
n+m̂ +

√
log(1/δ)
n+m̂ +

√
log(1/δ)

m

))
+

2α∗(1− λ)||w − 1||2, err(hυ̃) denotes the importance weighted 0/1-error of the predictor hυ̃.

Proof: Let’s review the definition and representation of the following equations:
L(h; τ) = EX,Y ∈T [τ(Y )l(h(X), Y )],

L(h;wt) = EX,Y ∈T [wt(Ŷ )l(h(X), Ŷ )],

L̂(h;wt) =
1

n+m̂

n+m̂∑
i=1

wt(ŷi)π̂(xi)l(h(xi), ŷi).
(36)
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By addition and subtraction we have

L(ĥŵt
; τ)− L(h∗; τ)

=
(
L(ĥŵt

; τ)− L(ĥŵt
;wt)

)
+
(
L(ĥŵt

;wt)− L̂(ĥŵt
;wt)

)
+
(
L̂(ĥŵt

;wt)− L̂(ĥŵt
; ŵt)

)
+
(
L̂(ĥŵt ; ŵt)− L̂(h∗; ŵt)

)
+
(
L̂(h∗; ŵt)− L̂(h∗;wt)

)
+
(
L̂(h∗;wt)− L(h∗;wt)

)
+ (L(h∗;wt)− L(h∗; τ))

≤ 2 sup
h∈H

(L(h; τ)− L(h;wt)) + 2 sup
h∈H

(
L(h;wt)− L̂(h;wt)

)
+ 2 sup

h∈H

(
L̂(h;wt)− L̂(h; ŵt)

)
,

(37)

where the first inequality holds because ĥŵt is the empirical minimizer of L̂(h; ŵt) and thus
L̂(ĥŵt ; ŵt)− L̂(h∗; ŵt) ≤ 0. Now let’s analyze the upper bound of each part.

[1] We analyze the upper bound of L(h; τ)− L(h;wt) in the first.

L(h; τ)− L(h;wt)

= EX,Y ∈T [τ(Y )l(h(X), Y )]− EX,Y ∈T

[
wt(Ŷ )l(h(X), Ŷ )

]
= EX,Y ∈T [τ(Y )l(h(X), Y )]− EX,Y ∈T

[
wt(Ŷ )l(h(X), Y )

]
+ EX,Y ∈T

[
wt(Ŷ )l(h(X), Y )

]
− EX,Y ∈T

[
wt(Ŷ )l(h(X), Ŷ )

]
= EX,Y ∈T

[(
τ(Y )− wt(Ŷ )

)
l(h(X), Y )

]
+ EX,Y ∈T

[
wt(Ŷ )

(
l(h(X), Y )− l(h(X), Ŷ )

)]
= EX,Y ∈T [(τ(Y )− w∗(Y )) l(h(X), Y )] + EX,Y ∈T

[(
w∗(Y )− wt(Ŷ )

)
l(h(X), Y )

]
+ EX,Y ∈T

[
wt(Ŷ )

(
l(h(X), Y )− l(h(X), Ŷ )

)]
.

(38)

Where EX,Y ∈T [(τ(Y )− w∗(Y )) l(h(X), Y )] represents the presence of π̂ which leads to the devi-
ation from the homogeneous conditional distribution assumption.

EX,Y ∈T [(τ(Y )− w∗(Y )) l(h(X), Y )]

= EX,Y ∈T

[(
q(X|Y )

t(X|Y )
− 1

)
w∗(Y )l(h(X), Y )

]
= EX,Y ∈Q

[(
q(X|Y )

t(X|Y )
− 1

)
l(h(X), Y )

]
≤ α∗EX,Y ∈Q

[∣∣∣∣q(X|Y )

t(X|Y )
− 1

∣∣∣∣]
= α∗EX,Y ∈Q

[
1

t(X|Y )
|q(X|Y )− t(X|Y )|

]
(39)

In addition, we have t(X|Y ) = λp(X|Y ) + (1− λ)q̂(X|Y ), where λ = n
n+rm . Thus,

EX,Y ∈T [(τ(Y )− w∗(Y )) l(h(X), Y )]

≤ α∗EX,Y ∈Q

[
1

t(X|Y )
|q(X|Y )− t(X|Y )|

]
=

α∗rm

n+ rm
EX,Y ∈Q

[
1

t(X|Y )
|q(X|Y )− q̂(X|Y )|

] (40)
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Then we analyse the bound of EX,Y ∈T [(w∗(Y )− wt(Y )) l(h(X), Y )], which is caused by the
difference between the true and pseudo label weight.

EX,Y ∈T

[(
w∗(Y )− wt(Ŷ )

)
l(h(X), Y )

]
= EX,Y ∈T

[
w∗(Y )

(
1− t(Y )

t(Ŷ )

)
l(h(X), Y )

]

≤ α∗EX,Y ∈Q

[∣∣∣∣∣1− t(Y )

t(Ŷ )

∣∣∣∣∣
]

= α∗EX,Y ∈Q

[
1

t(Ŷ )

∣∣∣t(Ŷ )− t(Y )
∣∣∣]

=
α∗rm

n+ rm
EX,Y ∈Q

[
1

t(Ŷ )
|q(Y )− q̂(Y )|

]
(41)

Finally, we analyse the bound of EX,Y ∈T

[
wt(Ŷ )

(
l(h(X), Y )− l(h(X), Ŷ )

)]
, which is caused

by the prediction accuracy.

EX,Y ∈T

[
wt(Ŷ )

(
l(h(X), Y )− l(h(X), Ŷ )

)]
≤ α∗EX,Y ∈T

[
wt(Ŷ )I(Ŷ ̸= Y )

]
≤ α∗

∥∥∥wt(Ŷ )
∥∥∥
∞

EX,Y ∈T

[
I(Ŷ ̸= Y )

]
= α∗

∥∥∥wt(Ŷ )
∥∥∥
∞

err(hυ̃),

(42)

where err(hυ̃) denotes the importance weighted 0/1-error of the predictor hυ̃. Combining the eq.
(40), eq. (41) and eq. (42), we have

L(h; τ)− L(h;wt)

≤ α∗rm

n+ rm

(
EX,Y ∈Q

[
1

t(X|Y )
|q(X|Y )− q̂(X|Y )|

]
+ EX,Y ∈Q

[
1

t(Ŷ )
|q(Y )− q̂(Y )|

])
+ α∗ ∥wt(Y )∥∞ EX,Y ∈T

[
I(Ŷ ̸= Y )

]
(43)

[2] Then we analyze the upper bound of L(h;wt)− L̂(h;wt).

Let [x̄P
k , x̄

Q
k ]

K
k=1 be the ghost samples which are i.i.d. copies of [xP

k , x
Q
k ]

K
k=1 and the corresponding

ghost loss is

L̂′(h;wt) =
1

n+ m̂

n+m̂∑
i=1

wt(ȳ
T
i )π̂(x̄

T
i )l(h(x̄

T
i ), ȳ

T
i ). (44)

Let’s define a random variable Gn+m̂ := L̂(h;wt)− L(h;wt), and then

E [Gn+m̂] = E
[
sup
h∈H

L̂(h;wt)− E
[
L̂′(h;wt)

]]
≤ E

[
E
[
sup
h∈H

L̂(h;wt)− L̂′(h;wt)
∣∣{(xT

i , y
T
i )}n+m̂

1

]]
.

≤ 2E

[
sup
h∈H

1

n+ m̂

n+m̂∑
i=1

wt(y
T
i )π̂(x

T
i )l(h(x

T
i ), y

T
i )

]
= 2Rn+m̂(G(L,H)).

(45)
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Where Rn+m̂(G(L,H)) := E(xT
i ,yT

i )∈T

[
Eξi

1
n+m̂

[
sup
h∈H

n+m̂∑
i=1

ξiπ̂(x
T
i )gh(x

T
i , y

T
i )

]]
. Consider a

sequence of Doob Martingale and filtration (Uj ,Fj) Azizzadenesheli et al. (2019) :

Uj := E

[
sup
h∈H

1

n+ m̂

n+m̂∑
i=1

wt(y
T
i )π̂(x

T
i )l(h(x

T
i ), y

T
i )
∣∣∣{(xT

i , y
T
i )}

j
1

]
, (46)

and the corresponding Martingale difference Dj := Uj − Uj−1. Then we have

Dj ≤
1

n+ m̂
sup
h∈H

∣∣wt(y
max
i )l(h(xmax

i ), ymax
i )− wt(y

min
i )l(h(xmin

i ), ymin
i )

∣∣
≤ α∗d∞(q||t)

n+ m̂
.

(47)

In the following, we bound the conditional second moment E
[
D2

j |Fj−1

]
:

E
[
D2

j |Fj−1

]
≤ E

[(
sup
h∈H

1

n+ m̂
wt(y

T
j )π̂(x

T
j )l(h(x

T
j ), y

T
j )

)2 ∣∣∣{(xT
i , y

T
i )}

j−1
1

]
P (Cj |Fj−1)

+

(
E
[

1

n+ m̂
wt(y

T
j )
∣∣∣{(xT

i , y
T
i )}

j−1
1

])2

P (C
′

j |Fj−1)

≤ α∗d(q||t)
(n+ m̂)2

P (Cj |Fj−1) +
1

(n+ m̂)2
P (C

′

j |Fj−1)

≤ α∗d(q||t)
(n+ m̂)2

.

(48)

The above inequality holds since α∗ ≥ 1 and d(q||t) ≥ 1. Then using the Freedman’s inequality,
we have

P

n+m̂∑
j=1

Dj = E [Gn+m̂]−Gn+m̂ ≥ ε

 ≤ exp

 −2ε2

2
(

α∗d∞(q||t)
n+m̂ + εα∗d(q||t)

n+m̂

)
 . (49)

Then we obtain the following generalization bound with probability at least 1− δ

sup
h∈H

(
L(h;wt)− L̂(h;wt)

)
≤ 2Rn+m̂(G(L,H)) +

2α∗d∞(q||t) log(2/δ)
n+ m̂

+

√
2α∗d(q||t) log(2/δ)

n+ m̂

= εG(n+ m̂, d∞(q||t), d(q||t)).

(50)

[3] Finally we analyze the upper bound of L̂(h;wt) − L̂(h; ŵt). We define that l̂(j) =
n+m̂∑
i=1

IyT
i =j π̂(x

T
i )l(h(x

T
i ), y

T
i ) and ||l̂||2 ≤ (n + m̂)α∗. Thus, we have the following conclusion

by Cauchy Schwarz inequality:

L̂(h;wt)− L̂(h; ŵt) =
1

n+ m̂

n+m̂∑
i=1

(
wt(y

T
i )− ŵt(y

T
i )
)
π̂(xT

i )l(h(x
T
i ), y

T
i )

≤ 1

n+ m̂

K∑
j=1

(wt(j)− ŵt(j)) l̂(j)

≤ 1

n+ m̂
||wt − ŵt||2||l̂||2

≤ α∗
(
(1− λ)||θ||2 + λ||θ̂ − θ||2

)
.

(51)
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Similar to RLLS, we have that

||θ̂ − θ||2 ≤ O

(
1

σmin

(
∥θ∥2

√
log(K/δ)

n+ m̂
+

√
log(1/δ)

n+ m̂
+

√
log(1/δ)

m

))
. (52)

Thus we obtain the following generalization bound with probability at least 1− δ

L̂(h;wt)− L̂(h; ŵt)

≤ α∗

(
λO

(
1

σmin

(
∥w − 1∥2

√
log(K/δ)

n+ m̂
+

√
log(1/δ)

n+ m̂
+

√
log(1/δ)

m

))
+ (1− λ)||w − 1||2

)
= α∗εw(n+ m̂, ||w − 1||2).

(53)

Combined with the above parts, the final conclusion final generalization bound is established with
probability at least 1− 3δ.

L(ĥŵt ; τ)− L(h∗; τ) ≤ εG(n+ m̂, d∞(q||t), d(q||t)) + εw(n+ m̂, ||w − 1||2)

+
2α∗rm

n+ rm

(
dX|Y (q||q̂) + dY (q||q̂)

)
+ 2α∗ ∥wt(Y )∥∞ err(hυ̃).

(54)

A.2 ADDITIONAL DESCRIPTION OF METHODS

In this section we introduce the pseudo-program of the ALS framework.

Algorithm 1 Algorithm of ALS

Input: The labeled source set {xi, yi}ni=1 and the unlabeled target set {xi}n+m
i=n+1, pseudo-label

selection ratio r, regularized parameters β.

Initialize: Initialize the source classifier υ̂ = argminv − 1
n

n∑
i=1

K∑
k=1

(yi)k log p̂(k|xi, υ), where υ

is the parameter of h.
Do

Use BBSE or RLLS to calculate the importance weight ŵ;

Update the target classifier υ̃ = argmin
υ

− 1
n

n∑
i=1

K∑
k=1

ŵ(k)(yi)k log p̂(k|xi, υ);

Get the target pesudo labels with confidence

Ŷ Q = argmin
yi

− 1

m

n+m∑
i=n

K∑
k=1

yki log
p̂(k|xi, υ̃)

λk
, s.t. yki ∈ {0, 1}, ∀i ∈ {1, 2,..., n}.

To align the conditional distribution, calculate the sample weights π̂ by the following loss:

min
π

K∑
k=1

(
(πk)

T
KQ̂πk

m̂2
k

− 2
1TKP,Q̂πk

m̂knk
+ βk

∥∥πk
∥∥2) , s.t.

m̂k∑
i=1

πk
i = m̂k, π

k
i ≥ 0.

Obtain the new training set [{xi, yi}ni=1, π̂(xi){xi, ŷi}n+m̂
i=n ];

Update the new source classifier υ̂ = argminv − 1
n+m̂

n+m̂∑
i=1

π̂(xi)
K∑

k=1

(yi)k log p̂(k|xi, υ);

Use BBSE or RLLS to calculate the new importance weight ŵt;

Update the target classifier υ̃ = argmin
υ

− 1
n+m̂

n+m̂∑
i=1

π̂(xi)
K∑

k=1

ŵt(k)(yi)k log p̂(k|xi, υ).

End procedure
Output: the new target classifier υ̃.
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A.3 ADDITIONAL EXPERIMENTS

A.3.1 PREDICTIVE RESULTS

To show the effectiveness of ALS framework, we report the classification Accuracy(Acc) under the
different proportions of pseudo label samples on the Tweak-one shift datasets. Due to the large
number of CIFAR100 dataset categories, the number of most categories approaches 0 under Tweak-
one shift. Thus, we do not think about Tweak-one shift CIFAR100 datasets. See the main text for
the detailed result analysis.

Table 2: Acc comparison with different ratio r on Tweak-one shift MNIST and CIFAR10 datasets.

Methods ρ = 0.2 ρ = 0.5 ρ = 0.8

r = 0.1 r = 0.3 r = 0.5 r = 0.1 r = 0.3 r = 0.5 r = 0.1 r = 0.3 r = 0.5

MNIST
WW 0.8199 0.8199 0.8199 0.6386 0.6386 0.6386 0.5230 0.5230 0.5230

CBST 0.8562 0.8574 0.8615 0.7973 0.8012 0.7883 0.6604 0.6723 0.6645
BBSE 0.8493 0.8493 0.8493 0.7827 0.7827 0.7827 0.6722 0.6722 0.6722
RLLS 0.8501 0.8501 0.8501 0.7806 0.7806 0.7806 0.6902 0.6902 0.6902

BBSE-ALS 0.8630 0.8663 0.8714 0.8157 0.8197 0.8081 0.7673 0.7920 0.7780
RLLS-ALS 0.8660 0.8666 0.8718 0.8220 0.8204 0.8145 0.7892 0.8068 0.7873

AvgIMP 0.0148 0.0168 0.0219 0.0372 0.0384 0.0297 0.0971 0.1182 0.1015
CIFAR10

WW 0.3530 0.3530 0.3530 0.2689 0.2689 0.2689 0.2181 0.2181 0.2181
CBST 0.4266 0.4401 0.4435 0.3887 0.3912 0.3903 0.3327 0.3276 0.3058
BBSE 0.4092 0.4092 0.4092 0.3726 0.3726 0.3726 0.3204 0.3204 0.3204
RLLS 0.4124 0.4124 0.4124 0.3814 0.3814 0.3814 0.3366 0.3366 0.3366

BBSE-ALS 0.4356 0.4484 0.4544 0.4138 0.4195 0.4078 0.3880 0.3778 0.3634
RLLS-ALS 0.4381 0.4532 0.4625 0.4196 0.4233 0.4141 0.3911 0.3851 0.3788

AvgIMP 0.0261 0.0400 0.0477 0.0397 0.0444 0.0340 0.0611 0.0530 0.0426

A.3.2 INFLUENCE OF BASE CLASSIFIERS

In the main experiment, we use a two-layer fully connected neural network(MLP) for CIFAR10
datasets. In addition, in order to verify the impact of base classifier performance on model effect,
ResNet-18(RES) is also used as the base classifier on CIFAR10 dataset.

0 10 30 50
r(%)

0.3

0.4

0.5

0.6

0.7

A
cc

BBSE-MLP
RLLS-MLP
BBSE-RES
RLLS-RES

(a) Acc

0 10 30 50
r(%)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ea

n 
S

qu
ar

ed
 E

rr
or

BBSE-MLP
RLLS-MLP
BBSE-RES
RLLS-RES

(b) Mean Squared Error

Figure 3: The influence of base classifiers with on CIFAR10 dataset with α = 5.

From the experimental results shown in Figure 3, we have the following observations: (1) No matter
the quality of the base classifier, the ALS framework can improve the Acc and reduce the Mean
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Squared Error compared with BBSE and RLLS. (2) Good base classifier can obtain better weight
estimation than the common base classifier. This may be that a good classifier can more accurately
estimate the confusion matrix and target label distribution.

A.3.3 PARAMETER SENSITIVITY

Here, we check the sensitivity of the trade-off parameter β ∈ {0, 0.001, 0.1, 10, 1000} of RLLS-
ALS on MNIST and CIFAR10 datasets with α = 2 and r = 30%. The experimental results are
shown in Figure 4. We find that its performance shows a trend of first increase and then decrease.
If β = 0, the selected samples are rather sparse and thus the effect is mediocre. If β = 1000, the
weight of all samples is almost always 1 which may not align the condition distribution. In our
experiments, we find β = 0.1 works well on most datasets.
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Figure 4: The parameter sensitivity of RLLS-ALS on MNIST and CIFAR10 datasets with α = 2
and r = 30%.

A.3.4 COMBINATION WITH MLLS

ALS can be viewed as a additional trick for improving performance on most label shift methods,
but there may be no theoretical guarantees. To verify the effectiveness of ALS, we use MLLS as the
base method to estimate the importance weights and the proposed approach is called MLLS-ALS.
We conduct experiments under different shift on MNIST and CIFAR100 datasets with r = 30%, and
the experimental results are shown in Figure 5. Through observation, the proposed method achieves
good performance in most cases.
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Figure 5: The performance comparison of MLLS and MLLS-ALS on MNIST and CIFAR100
datasets with r = 30%.
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A.3.5 TIME COST

To show the time cost of ALS, we compare the run time(in seconds) by BBSE-ALS and BBSE in
Table 3. The run time is measured on a desktop computer with Intel(R) Xeon(R) Platinum 8163
CPU @ 2.50GHz × 2. The experimental results show that ALS does not have a particularly high
time cost. If we pick more pseudo-labels, we will spend more time training the reweighted target
classifier. However, we only select samples with the highest confidence that can maintain the label
ratio in this paper, so it does not result in too much time cost.

Table 3: Average runtime comparison (seconds) on three datasets.

Methods MNIST CIFAR10 CIFAR100

BBSE 54.54 1630.91 12514.72
BBSE-ALS 169.17 3877.56 21951.07
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