INFERENCES ON COVARIANCE MATRIX WITH BLOCK WISE CORRELATION STRUCTURE

Anonymous authors

Paper under double-blind review

ABSTRACT

Utilizing the sample moments of variable means within groups, we develop a novel closed-form estimator for blockwise correlation matrix of p variables. When the block number and group memberships of the variables are known, we demonstrate the asymptotic normality of parameter estimators and establish the stochastic convergence rate of the estimated blockwise correlation matrix and corresponding estimated covariance matrix, under certain moment conditions. The method ensures positive semi-definiteness of the estimated covariance matrix without requiring a predetermined variable order, and can be applicable for highdimensional data. Moreover, to estimate the number of blocks and recover their memberships, respectively, we employ the ridge-type ratio criterion and spectral clustering, and establish their consistency. Based on this, we extend the aforementioned properties of the asymptotic normality and stochastic convergence rate to the scenario where the group memberships are unknown and the block number is given. Extensive simulations and an empirical study of stock returns in the Chinese stock market are analyzed to illustrate the usefulness of our proposed methods.

025 026 027

028

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

029 The covariance matrix plays a fundamental role in machine learning and multivariate analysis. Recently, with the emergence of high-dimensional data, modeling it has become a great challenge. The 031 main reason is that the sample covariance matrix is often singular and irreversible when the matrix dimension surpasses the sample size (Kan & Zhou, 2007; Bai, 2008; Fan et al., 2011). To tackle the 033 high-dimensional issue, one popular approach involves imposing a group or block structure on the 034 correlation matrix of p-dimensional variables to achieve dimension reduction (Tsay & Pourahmadi, 2017; Archakov & Hansen, 2024). That is, the variables are clustered into K ($K \ll p$) groups, and their correlation is determined based on their associated groups. This assumption is meaningful especially for finance data, in which the stock returns of companies in the same industries often 037 exhibit similar correlations, while returns of firms across different industrial sectors tend to display weaker associations. The covariance matrix with blockwise correlation structure has gained significant popularity in various fields, including but not limited to: finance and risk management (Elton 040 & Gruber, 1973; Engle & Kelly, 2012; Tsay & Pourahmadi, 2017; Millington & Niranjan, 2019), 041 macroeconomics (Brownlees et al., 2022), resource assessment (Schuenemeyer & Gautier, 2010; 042 Blondes et al., 2013), neuroscience and gene expression (Park et al., 2007; Wu & Smyth, 2012; Tan 043 et al., 2015; Eisenach et al., 2020; Pircalabelu & Claeskens, 2020), and computer science (Zhang & 044 Rao, 2013).

045 Even though the covariance matrix with blockwise correlation structure is widely used and well-046 motivated, its estimation poses challenges due to the inability of the maximum likelihood esti-047 mation (MLE) method to ensure positive semi-definiteness (Higham, 2002; Tsay & Pourahmadi, 048 2017). For illustration purpose, considering an 3×3 blockwise correlation matrix $\mathbf{R} = (\rho_{k_1 k_2})$ with $\rho_{12} = \rho_{13}$, the positive definite parameter domain for the correlation matrix **R** is defined as $\{(\rho_{12}, \rho_{23})|\rho_{23} > 2\rho_{12}^2 - 1\}$. As noticed by Tsay & Pourahmadi (2017), as the values of ρ_{12} and 051 ρ_{13} progressively approach the boundary of the parameter domain, the percentage of non-positive definiteness for the correlation matrix estimator based on MLE gradually increases. To address this 052 issue, they proposed a method using the angle parameterization of its Cholesky factor. However, it is computationally complex, and the Cholesky decomposition necessitates a predetermined order of

054 variables, thereby limiting its applicability. Recently, Archakov & Hansen (2024) derived a canonical representation for the blockwise correlation matrix and dramatically simplified the evaluation of 056 its maximum likelihood estimator, but it lacks rigorous theoretical justification. In addition, Engle 057 & Kelly (2012) imposed the blockwise structure on a broad class of special correlation matrices, 058 that is, the Dynamic Conditional Correlation models, and proved the asymptotic properties of their maximum likelihood estimators under Gaussian distribution and fixed p. Obviously, this method is also not universal in practice. Yang et al. (2024) proposed a closed-form covariance matrix esti-060 mator based on MLE by assuming a blockwise structure for the covariance matrix. Nevertheless, 061 this assumption is stronger than that for a correlation matrix since homogeneous variance within 062 each block is required. Moreover, due to errors involved in estimation of variance, the asymptotic 063 distributions of parameters for the covariance matrix under the two structures are different. 064

In this paper, using the sample moments of variable means within groups, we propose a novel block-065 wise correlation matrix estimation method (BCME) in a closed form. When the block number and 066 group memberships of variables are known, we derive the asymptotic normality of correlation coeffi-067 cient estimators and establish the stochastic convergence rate of the estimated blockwise correlation 068 and covariance matrix, under certain moment conditions. Compared to the Tsay & Pourahmadi 069 (2017)'s method, our approach ensures the positive semi-definiteness of the covariance matrix estimation and holds the invariance of variable reordering. Furthermore, we employ the ridge-type 071 ratio criterion and spectral clustering, to estimate the number of blocks and recover their member-072 ships, respectively, and establish their consistency. Subsequently, for the scenario where the group 073 memberships are unknown and the block number is given, the above properties of the asymptotic 074 normality and stochastic convergence rate still hold. Various simulation studies and a real data anal-075 ysis for portfolio allocation indicate that the proposed method outperforms the majority of existing methods. 076

077 The rest of the article is organized as follows. Section 2 describes the blockwise correlation matrix 078 estimation and its asymptotic analysis when the block number and group memberships of variables 079 are given. Secontion 3 introduces the block number determination, group membership recovery, and 080 their consistency. Then, the same theoretical properties in Section 2 are extended to the scenario 081 where the group memberships are unknown and the block number is known in Secontion 3. Section 4 and Section 5 present Monte Carlo studies and an empirical example, respectively. A brief 082 083 discussion with some concluding remarks is given in Section 6. All technical details are relegated to the Appendix. 084

085

086 087 088

089

2 BLOCKWISE CORRELATION MATRIX ESTIMATION

2.1 BASIC NOTATIONS AND DEFINITION

090 Throughout the paper, vectors are denoted by lower-case bold letters, e.g., $\boldsymbol{\iota} = (\iota_1, \cdots, \iota_m)^\top \in \mathbb{R}^m$, 091 and matrices by upper-case bold, e.g., $M = (M_{ij}) \in \mathbb{R}^{m \times m}$. Define $\mathbf{0}_{m_1 \times m_2}$ and $\mathbf{1}_{m_1 \times m_2}$ 092 as the $m_1 \times m_2$ vectors or matrices of all zeros and ones, respectively. Moreover, $\mathbf{0}_{m_1 \times 1}$ and $\mathbf{1}_{m_1 \times 1}$ are simplified as $\mathbf{0}_{m_1}$ and $\mathbf{1}_{m_1}$, respectively. Let I_m denote the identity matrix of dimension m. Here, m, m_1 , and m_2 are any positive integers. In addition, let $\lambda_j(M)$ be the *j*-th largest eigenvalue of any generic matrix $M \in \mathbb{R}^{m \times m}$ for $j = 1, \dots, m, ||M||_F$ be the Frobenius norm of 093 094 $\tilde{M}, \|\iota\|_v = (\sum_{j=1}^m |\iota_j|^v)^{1/v}$ be the vector v-norm or generalized matrix v-norm of generic vector 096 $\boldsymbol{\iota} = (\iota_1, \cdots, \iota_m)^{\top} \in \mathbb{R}^m \text{ for } 1 \leq v \leq \infty, \text{ and induced norms be } \|\boldsymbol{M}\|_v = \sup_{\boldsymbol{\iota} \in \mathbb{R}^m : \boldsymbol{\iota} \neq \boldsymbol{0}_m} \frac{\|\boldsymbol{M}_{\boldsymbol{\iota}}\|_v}{\|\boldsymbol{\iota}\|_v}.$ 098 The superscript \top is the transpose of a vector or matrix. $\mathbf{1}_{\{\cdot\}}$ denotes an indicator function with 099 condition in parentheses. 100

101 Next, we introduce the definition of the blockwise correlation matrix. Let $\mathbf{y}_i = (\mathbf{y}_{i1}, \dots, \mathbf{y}_{ip})^\top \in \mathbb{R}^p$ be independent and identically distributed *p*-dimensional response vector with mean $\mathbb{E}(\mathbf{y}_i) = \mathbf{0}_p$ 103 and covariance matrix $\operatorname{Cov}(\mathbf{y}_i) = \boldsymbol{\Sigma}$ for $i = 1, \dots, n$. The covariance matrix $\boldsymbol{\Sigma}$ can be decomposed 104 as $\boldsymbol{\Sigma} = \boldsymbol{\Lambda} \mathbf{R} \boldsymbol{\Lambda}$, where $\mathbf{R} = \operatorname{Corr}(\mathbf{y}_i)$ is the correlation matrix of \mathbf{y}_i and $\boldsymbol{\Lambda} = \operatorname{diag}(\sigma_1, \dots, \sigma_p)$ with 105 $\sigma_j^2 = \operatorname{Var}(\mathbf{y}_{ij})$ for $i = 1, \dots, n$ and $j = 1, \dots, p$. We assume that the *p*-dimensional variables 106 have a blockwise structure with *K* groups. Specifically, denote $\mathbb{F} = \{1, \dots, p\}$ as the full index 107 set. For any given *K*, \mathbb{F} is categorized into a total of *K* groups as $\mathbb{F} = \bigcup_{k=1}^K \mathbb{S}_k$, where \mathbb{S}_k collects 108 the indices of variables within group k, $|\mathbb{S}_k| = p_k$, $\mathbb{S}_{k_1} \cap \mathbb{S}_{k_2} = \emptyset$, and $p = \sum_k p_k$, for $k_1 \neq k_2$ and $k, k_1, k_2 = 1, \dots, K$. Here, for any set \mathbb{M} , $|\mathbb{M}|$ is the number of elements in \mathbb{M} . Then, without loss of generality, the elements of \mathbf{y}_i in \mathbb{F} have been sorted such that $\mathbf{y}_i = (\mathbf{y}_{i1}^\top, \dots, \mathbf{y}_{iK}^\top)^\top$, where $\mathbf{y}_{ik} = (\mathbf{y}_{ij} : j \in \mathbb{S}_k) \in \mathbb{R}^{p_k}$ for any $k = 1, \dots, K$. Moreover, \mathbf{R} can be partitioned as $\mathbf{R} = (\mathbf{R}_{k_1k_2})$ with $\mathbf{R}_{k_1k_2} \in \mathbb{R}^{p_{k_1} \times p_{k_2}}$ (including the case $k_1 = k_2$), which is assumed to be blockwise, that is,

$$\boldsymbol{R}_{kk} = \rho_{kk} \mathbf{1}_{p_k \times p_k} + (1 - \rho_{kk}) \boldsymbol{I}_{p_k} \text{ and } \boldsymbol{R}_{k_1 k_2} = \rho_{k_1 k_2} \mathbf{1}_{p_{k_1} \times p_{k_2}}, \tag{1}$$

where $\rho_{kk}, \rho_{k_1k_2} \in [-1, 1]$, $\mathbf{R}_{k_1k_2} = \mathbf{R}_{k_2k_1}$. It is noteworthy that we only enforce the blockwise structure on the correlation matrix not on the covariance matrix, since the variances of variables are heterogeneous.

Based on this definition, we give some special notations used in this paper. Let $\Delta := (\rho_{k_1k_2}) \in \mathbb{R}^{K \times K}$ and $\rho = \operatorname{vech}(\Delta) \in \mathbb{R}^{K(K+1)/2}$ be the half-column-stacking vector of Δ . In addition, define $E_k = \operatorname{diag}(\mathbf{0}_{p_1 \times p_1}, \cdots, \mathbf{I}_{p_k}, \cdots, \mathbf{0}_{p_K \times p_K}) \in \mathbb{R}^{p \times p}$ for any $k = 1, \cdots, K$. Let $\Theta = (\boldsymbol{\theta}_1, \cdots, \boldsymbol{\theta}_p)^\top = (\Theta_{jk}) \in \mathbb{R}^{p \times K}$ be a membership matrix, where $\Theta_{jk} = 1$ if $j \in \mathbb{S}_k$ and $\Theta_{jk} = 0$ otherwise. Denote $\boldsymbol{D}_{k_1k_2} = (D_{ij,k_1k_2}) \in \mathbb{R}^{p \times p}$, where $D_{ij,k_1k_2} = 1$ if $i \in \mathbb{S}_{k_1}$ and $j \in \mathbb{S}_{k_2}$, and $D_{ij,k_1k_2} = 0$ otherwise.

2.2 BLOCKWISE CORRELATION MATRIX ESTIMATION

Following the definition of the blockwise correlation matrix, we define $\tilde{\mathbf{y}}_i = (\tilde{\mathbf{y}}_{i1}^\top, \cdots, \tilde{\mathbf{y}}_{iK}^\top)^\top := \mathbf{\Lambda}^{-1}\mathbf{y}_i$, then we obtain $\operatorname{Cov}(\tilde{\mathbf{y}}_i) = \operatorname{Corr}(\tilde{\mathbf{y}}_i) = \mathbf{R}$. Let $\tilde{z}_{ik} = p_k^{-1}\mathbf{1}_{p_k}^\top \tilde{\mathbf{y}}_{ik}$ be the mean of variables within the k-th group for $k = 1, \cdots, K$. Simple calculation implies that $\operatorname{Var}(\tilde{z}_{ik}) = \rho_{kk} + p_k^{-1}(1 - \rho_{kk})$ and $\operatorname{Cov}(\tilde{z}_{ik_1}, \tilde{z}_{ik_2}) = \rho_{k_1k_2}$ for any $k_1 \neq k_2$. Subsequently, defining $\tilde{\mathbf{z}}_i = (\tilde{z}_{i1}\mathbf{1}_{p_1}^\top, \cdots, \tilde{z}_{iK}\mathbf{1}_{p_K}^\top)^\top \in \mathbb{R}^p$, the blockwise correlation matrix \mathbf{R} can be decomposed as

$$\mathbf{R} = \boldsymbol{\Sigma}_{\tilde{\mathbf{z}}} + \boldsymbol{G},\tag{2}$$

where $\Sigma_{\tilde{\mathbf{z}}} = \operatorname{Cov}(\tilde{\mathbf{z}}_i)$ and $\mathbf{G} = \operatorname{diag}(\mathbf{G}_{11}, \cdots, \mathbf{G}_{KK})$ with $\mathbf{G}_{kk} = (1 - \rho_{kk})\mathbf{I}_{p_k} - p_k^{-1}(1 - \rho_{kk})\mathbf{I}_{p_k \times p_k}$. Therefore, to estimate \mathbf{R} , we can resort to the moments of $\tilde{\mathbf{z}}_{ik}$ s.

Note that Λ is generally unknown in practice and needs to be estimated. Hence, we define $\hat{\Lambda} =$ diag $(\hat{\sigma}_1, \dots, \hat{\sigma}_p)$ as an estimator of Λ with $\hat{\sigma}_j^2 = n^{-1} \sum_{i=1}^n y_{ij}^2$ for $j = 1, \dots, p$. Replacing Λ with $\hat{\Lambda}$, we obtain $\hat{\mathbf{y}}_i = (\hat{\mathbf{y}}_{i1}^\top, \dots, \hat{\mathbf{y}}_{iK}^\top)^\top := \hat{\Lambda}^{-1} \mathbf{y}_i$ and $\hat{z}_{ik} = p_k^{-1} \mathbf{1}_{p_k}^\top \hat{\mathbf{y}}_{ik}$. Then, by (2), the blockwise correlation matrix estimation (BCME) for \boldsymbol{R} are denoted as

113

124

125 126

127

128

 $\hat{\rho}_{kk} = \frac{\frac{p_k}{n} \sum_{i=1}^n \hat{z}_{ik} \hat{z}_{ik} - 1}{p_k - 1} = \frac{\frac{1}{n} \sum_{i=1}^n \mathbf{1}_{p_k}^\top \hat{\mathbf{y}}_{ik} \hat{\mathbf{y}}_{ik}^\top \mathbf{1}_{p_k} - p_k}{p_k (p_k - 1)},$ $\hat{\rho}_{k_1 k_2} = \frac{1}{n} \sum_{i=1}^n \hat{z}_{ik_1} \hat{z}_{ik_2} = \frac{\frac{1}{n} \sum_{i=1}^n \mathbf{1}_{p_{k_1}}^\top \hat{\mathbf{y}}_{ik_1} \hat{\mathbf{y}}_{ik_2}^\top \mathbf{1}_{p_{k_2}}}{p_{k_1} p_{k_2}}, \text{ for } k_1 > k_2.$ (3)

144 145 146

151

153

143

Substituting (3) into (1), we obtain $\hat{R}_{kk} = \hat{\rho}_{kk} \mathbf{1}_{p_k \times p_k} + (1 - \hat{\rho}_{kk}) \mathbf{I}_{p_k}$ and $\hat{R}_{k_1k_2} = \hat{\rho}_{k_1k_2} \mathbf{1}_{p_{k_1} \times p_{k_2}}$. Finally, the estimators of ρ , R, and Σ are represented as $\hat{\rho} = (\hat{\rho}_{k_1k_2}) \in \mathbb{R}^{K(K+1)/2}$, $\hat{R} = (\hat{R}_{k_1k_2}) \in \mathbb{R}^{p \times p}$, and $\hat{\Sigma} = \hat{\Lambda}\hat{R}\hat{\Lambda}$, respectively. It is noteworthy that \hat{R} and $\hat{\Sigma}$ are naturally positive semi-definite, since the eigenvalues of G is no less than 0.

152 2.3 Asymptotic analysis

To study the theoretical properties of out proposed method, we first assume the following three technical conditions.

(C1) (i) Write $\mathbf{y}_i := \mathbf{\Lambda} \mathbf{R}^{1/2} \boldsymbol{\epsilon}_i$ with $\boldsymbol{\epsilon}_i = (\epsilon_{i1}, \cdots, \epsilon_{ip})^\top \in \mathbb{R}^p$. We assume that ϵ_{ij} s are independent and identically distributed (i.i.d.) with $\mathbb{E}(\epsilon_{ij}) = 0$ and $\operatorname{Var}(\epsilon_{ij}) = 1$, for any $i = 1, \cdots, n$ and $j = 1, \cdots, p$.

(ii) We assume σ_j^2 is bounded away from 0, for any $j = 1, \dots, p$. In addition, there exist $\gamma_1 \in (0,1]$ and $b_1 > 0$, such that for any $s_1 > 0$, $i = 1, \dots, n$, and $j = 1, \dots, p$, $P(|\mathbf{y}_{ij}| > s_1) \le \exp(-(s_1/b_1)^{\gamma_1})$.

(C2) Assume that $2[tr(A_{l_1}A_{l_2})]_{K(K+1)/2 \times K(K+1)/2} + (\mu^{(4)} - 3)\Psi^{\top}\Psi \to Q$ as $p \to \infty$ for a finite and positive definite matrix Q, where $A_l = R^{1/2} \left\{ -\frac{\rho_{kk}(p_{k-1})+1}{p_k(p_{k-1})} E_k + \frac{1}{p_k(p_{k-1})} D_{kk} \right\} R^{1/2}$ when $l = k + (k-1)K - \sum_{k_3=0}^{k-1} k_3$, $A_l = R^{1/2} \left\{ \frac{1}{2p_{k_1}p_{k_2}} (D_{k_1k_2} + D_{k_2k_1}) - \frac{\rho_{k_1k_2}}{2} (\frac{1}{p_{k_1}} E_{k_1} + \frac{1}{p_{k_2}} E_{k_2}) \right\} R^{1/2}$ when $l = k_1 + (k_2 - 1)K - \sum_{k_3=0}^{k_2 - 1} k_3$ for $k_1 > k_2$ and $k, k_1, k_2 = 1, \cdots, K, \Psi$ 162 163 164 165 166 167 is defined in Lemma 1, and $\mu^{(4)} = \mathbb{E}(\epsilon_{ij}^4)$ for any $i = 1, \dots, n$ and $j = 1, \dots, p$. 168

169 (C3) Assume $p_k/p \to \pi_k \in (0,1)$ for any $k = 1, \dots, K$ as $p \to \infty$. In addition, K is fixed. 170

Condition (C1)(i) introduces the moment conditions of ϵ_i , which has been widely used in related 171 literature (Fan et al., 2011; Yamada et al., 2017; Feng et al., 2022; Zheng et al., 2022) and is weaker 172 than the distributional assumption required in Tsay & Pourahmadi (2017) and Yang et al. (2024). 173 Condition (C1)(ii) requires the distribution of y_i to have exponential-type tail, ensuring that the dis-174 tribution does not have "heavy tails" (e.g., Cauchy distribution), which is necessary for the consistent 175 estimation of the variance of y_{ij} (Fan et al., 2011; Feng et al., 2022). Condition (C2) is a standard 176 assumption to ensure the covariance matrix of the estimated parameters converges a positive definite 177 matrix. If Condition (C2) is invalid, then multicollinearity problems may arise. This is similar to 178 the condition assumed in Zou et al. (2017). In addition, its rationality is shown in Appendix F. Con-179 dition (C3) indicates that the number of blocks is finite but the dimension of block submatrices is divergent as $p \to \infty$. This condition is also employed in Yamada et al. (2017). Based on the above three conditions, we obtain the asymptotic property of $\hat{\rho}$ given below. 181

Theorem 1 Under Conditions (C1)-(C3), when $(\log p)^{6/\gamma_1-1} = o(n)$, as $\min\{n, p\} \to \infty$, we have that

$$\sqrt{n}(\hat{\boldsymbol{\rho}}-\boldsymbol{\rho}) \stackrel{d}{\longrightarrow} \mathcal{N}(\boldsymbol{0}_{K(K+1)/2}, \boldsymbol{\mathcal{Q}})$$

where γ_1 and \mathcal{Q} are defined in Conditions (C1) and (C2), respectively. 186

Theorem 1 indicates that the convergence rate of $\hat{\rho}$ is \sqrt{n} , which is independent of p. This results is 188 reasonable since σ_i for $j = 1, \dots, p$ need to be estimated and involve estimation errors. To ensure 189 the consistency of the estimators for σ_i s, the condition $(\log p)^{6/\gamma_1-1} = o(n)$ is required. Moreover, 190 Q is unknown and needs to be estimated. By Condition (C2), \hat{Q} can be used as a consistent estimator 191 of \mathcal{Q} to make valid inferences, where $\hat{\mathcal{Q}}$ is calculated by replacing ρ in \mathcal{Q} with $\hat{\rho}$. 192

193 Based on the above Theorem 1, we next provide the stochastic convergence rate of the estimated 194 blockwise correlation matrix \hat{R} and its related covariance matrix $\hat{\Sigma}$. 195

Theorem 2 Under Conditions (C1)-(C3), when $(\log p)^{6/\gamma_1-1} = o(n)$, as $\min\{n, p\} \to \infty$, we 196 have that

197

200

204

182

183

184 185

187

$$p^{-1} \|\hat{\boldsymbol{R}} - \boldsymbol{R}\|_{2} = O_{p}(n^{-1/2}), \quad p^{-1} \|\hat{\boldsymbol{R}} - \boldsymbol{R}\|_{F} = O_{p}(n^{-1/2}),$$
$$p^{-1} \|\hat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\|_{2} = O_{p}(\sqrt{\frac{\log p}{n}}) \quad and \quad p^{-1} \|\hat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\|_{F} = O_{p}(\sqrt{\frac{\log p}{n}}).$$

201 202 203

3 **BLOCK NUMBER DETERMINATION AND GROUP MEMBERSHIP RECOVERY**

205 When true K and S_k for all $k = 1, \dots, K$ are given, by Theorem 1, the parameters of blockwise 206 correlation matrix \boldsymbol{R} can be estimated consistently. For a real-world application, however, the true 207 K and all S_k are unknown and need to be estimated correctly. Motivated by Lam & Yao (2012), Wang (2012), Ahn & Horenstein (2013), and Xia et al. (2015), we propose a ridge-type ratio (RR) 208 to estimate K. 209

210 Before introducing the ridge-type ratio estimator for K, we present an additional condition and the 211 bounds for the eigenvalues of \mathbf{R} with the true block number K as follows.

- 212 (C4) Assume that $c_1^{-1} < \lambda_K(\Delta) \le \cdots \le \lambda_1(\Delta) < c_1$ for a finite constant $c_1 > 0$. 213
- 214 **Proposition 1** Under Conditions (C3) and (C4), as $p \to \infty$, we have that $c_{\lambda_1}^{-1} p \leq \lambda_K(\mathbf{R}) \leq \cdots \leq \infty$ 215 $\lambda_1(\mathbf{R}) \leq c_{\lambda_1} p \text{ and } c_{\lambda_2}^{-1} \leq \lambda_p(\mathbf{R}) \leq \cdots \leq \lambda_{K+1}(\mathbf{R}) \leq c_{\lambda_2}, \text{ for some finite constants } c_{\lambda_1}, c_{\lambda_2} > 0.$

Condition (C4) assumes that Δ is of full rank and Proposition 1 provides the order of eigenvalues of R.

Then, the ridge-type ratio for estimating K is denoted as

219 220 221

222

$$r_j = \frac{\lambda_j(\boldsymbol{R}_{sam}) + \delta}{\lambda_{j+1}(\hat{\boldsymbol{R}}_{sam}) + \delta}, \quad j = 1, \cdots, p-1,$$

where $\hat{\mathbf{R}}_{sam} = n^{-1} \sum_{i=1}^{n} \hat{\mathbf{y}}_i \hat{\mathbf{y}}_i^{\top}$ with $\hat{\mathbf{y}}_i$ being defined in equation (3) and δ is a hyperparameter for ensuring that $\lambda_j(\hat{\mathbf{R}}_{sam}) + \delta > 0$ for any $j = 1, \dots, p$. Consequently, the true number of blocks Kcan be estimated by $\hat{K} = \arg \max_{j \in \{1, \dots, p-1\}} r_j$. The consistency of \hat{K} is ensured by the following theorem.

Theorem 3 Assume $\delta = o(p)$ and $p\sqrt{\log p/n} = o(\delta)$. Then, under Conditions (C1), (C3), and (C4), when $(\log p)^{6/\gamma_1-1} = o(n)$, as $\min\{n, p\} \to \infty$, we have that $P(\hat{K} = K) \to 1$, where γ_1 is defined in Condition (C1).

Subsequently, to recover \mathbb{S}_k for $k = 1, \dots, K$, we estimate the membership matrix Θ by clustering 232 p variables when the number of blocks is predetermined. After simple calculation, R can be re-233 expressed as $\mathbf{R} = \mathbf{\Theta} \mathbf{\Delta} \mathbf{\Theta}^{\top} + \mathbf{\Omega}$, where $\mathbf{\Omega}$ is a diagonal matrix to ensure the diagonal elements of 234 \mathbf{R} are 1s. Since the rank of $\Theta \Delta \Theta^{\top}$ is K, we can rewrite $\Theta \Delta \Theta^{\top}$ as $\mathbf{U} \mathbf{V} \mathbf{U}^{\top}$, where $\mathbf{V} \in \mathbb{R}^{K \times K}$ 235 is a diagonal matrix consisting of the first K largest eigenvalues of $\Theta \Delta \Theta^{\top}$, and $U \in \mathbb{R}^{p \times K}$ 236 comprises the first K eigenvectors of $\Theta \Delta \Theta^{\top}$ as columns and has K distinct rows. Therefore, we 237 can resort to the row clustering of U to recover the blocks' memberships. Specifically, we eigen-238 decomposite \hat{R}_{sam} and take the first K eigenvectors of \hat{R}_{sam} as the estimator of U, denoted as \hat{U} . 239 Then, we can obtain the estimator of Θ , $\hat{\Theta} = (\hat{\theta}_1, \dots, \hat{\theta}_p)^{\top}$, by clustering the rows of \hat{U} . Their 240 almost sure convergence is proven in the Theorem II.3 of Su et al. (2019) under mild conditions, and 241 demonstrated in Condition (C5). 242

(C5) Assume that for sufficiently large n and p, $\sup_{1 \le i \le n} \sup_{1 \le j \le p} \mathbf{1}_{\{\hat{\theta}_i \ne \theta_i\}} = 0, a.s.$

Let $\hat{\rho}_{\hat{\Theta}}$ be an estimator of ρ with $\hat{\Theta}$, we then get that

Corollary 1 Under Conditions (C1)-(C5), when $(\log p)^{6/\gamma_1-1} = o(n)$, as $\min\{n, p\} \to \infty$, we have that

 $\sqrt{n}(\hat{\boldsymbol{\rho}}_{\hat{\boldsymbol{\Theta}}} - \boldsymbol{\rho}) \stackrel{d}{\longrightarrow} \mathcal{N}(\boldsymbol{0}_{K(K+1)/2}, \boldsymbol{Q}),$

249 $\sqrt{n(\rho_{\Theta} - \rho)} = \sqrt{N(\sigma_{K(K+1)}/2, z)},$ 250 where γ_1 and Q are defined in Conditions (C1) and (C2), respectively.

The key of Corollary 1 is to prove $\hat{\rho}_{\hat{\Theta}} \xrightarrow{p} \hat{\rho}$. It is straightforward with Condition (C5). For saving space, we are not reporting the proof. Hence, when \mathbb{S}_k s are unknown, according Corollary 1, the Theorem 2 still holds, which is also verified in simulation, see Table 8 in the Appendix G.

Remark 1 Recently, some researchers simultaneously estimate the model parameters and group memberships with given K (Su et al., 2016; Liu et al., 2020; Zhu et al., 2023; Liu et al., 2024). However, their optimization functions are non-convex and require specific algorithms, which is theoretically complex and lacking generality. Hence, we propose the above two-step estimation (i.e., spectral clustering and BCME) to address this issue when K is known.

259 260 261

262

4

255

256

257

258

SIMULATION STUDIES

To evaluate the finite sample performance of our proposed method, we conduct Monte Carlo studies with the following setting. Specifically, for the blockwise correlation matrix \mathbf{R} defined in (1), the off-diagonal elements of each diagonal block are set to $\rho_{kk} = 0.65 - 0.05(k - 1)$, and elements of each off-diagonal block are set to $\rho_{k_1k_2} = \rho_{k_1k_1} - 0.25 - 0.05(k_2 - k_1 - 1)$ if $k_1 < k_2$ and k_1 is odd, and $\rho_{k_1k_2} = \rho_{k_1k_1} - 0.3 - 0.05(k_2 - k_1 - 1)$ if $k_1 < k_2$ and k_1 is even, respectively, for $k, k_1, k_2 = 1, \dots, K$. This setting is similar to that in Wang (2012) and Zhao et al. (2022) and assures the resulting correlation matrix is positive definite for $K \leq 8$. Moreover, each block size is set to come from the sequence (60, 90, 120, 150, 60, 90, 120, 150), that is, if K = 1, we set the

298

306 307 308

block size p_1 to be 60; if K = 2, we set two respective block sizes, p_1 and p_2 , to be 60 and 90, and so forth, which is same as Saldana et al. (2017) and Hu et al. (2020). For Λ , σ_j s are independently and identically generated from uniform distribution $\mathcal{U}(0, 1)$. In addition, to evaluate the robustness of our methods against a non-normal distribution, the response vector \boldsymbol{y}_i is simulated by $\boldsymbol{y}_i =$ $\Lambda \boldsymbol{R}^{1/2} \boldsymbol{\varepsilon}_i$ with $\boldsymbol{\varepsilon}_i = (\varepsilon_{i1}, \cdots, \varepsilon_{ip})^\top \in \mathbb{R}^p$, where ε_{ij} s are independently and identically generated by three distributions: the standardized normal distribution $\mathcal{N}(0, 1)$, mixture normal distribution $0.9\mathcal{N}(0, 5/9) + 0.1\mathcal{N}(0, 5)$, and standardized exponential distribution. In simulation studies, all results are executed by 1,000 realizations with n = 200, 500, and 1,000.

278 To verify the accuracy of the BCME method for estimating the blockwise correlation matrix and its 279 associated covariance matrix, we assume that K is known and $K \in \{2, 4, 6, 8\}$. In addition, we have 280 included three additional competitors for the sake of comparison. They are the Tsay & Pourahmadi 281 (2017, TP)'s estimator (\hat{R}_{TP} and $\hat{\Sigma}_{TP}$), TP estimator with variable ordering (\hat{R}_{TP}^{o} and $\hat{\Sigma}_{TP}^{o}$), and 282 traditional QMLE estimator (\hat{R}_{QMLE} and $\hat{\Sigma}_{QMLE}$). Then, we calculate the averages and standard 283 deviations of two types of estimation errors, spectral-errors $(p^{-1}||M_1 - R||_2 \text{ and } p^{-1}||M_2 - \Sigma||_2)$ 284 and Frobenius-errors $(p^{-1}||M_1 - R||_F$ and $p^{-1}||M_2 - \Sigma||_F)$, across $M_1 = \hat{R}, \hat{R}_{TP}, \hat{R}_{TP}^o$ 285 and \hat{R}_{QMLE} and $M_2 = \hat{\Sigma}, \hat{\Sigma}_{TP}, \hat{\Sigma}^o_{TP}$, and $\hat{\Sigma}_{QMLE}$. Moreover, we report the proportion of positive semi-definiteness for estimated blockwise correlation matrix and its associated covariance 287 matrix. The average execution time obtained through programming in Matlab using an Intel(R) 288 Xeon(R) CPU (2.10 GHz) is also presented to reflect the computational complexity. Due to the high 289 execution time intensity of the TP and QMLE approaches, we only report their results for K = 2, 290 and 4. Table 1 illustrates three important findings when the elements of ϵ_i follow $\mathcal{N}(0,1)$. First, both the BCME and TP methods ensure positive semi-definiteness, whereas the QMLE approach 291 cannot. Second, the BCME method dramatically reduces the execution time compared to the other 292 two methods (0.037 sec v.s. 2957.841 sec and 8640.374 sec in K = 4 and n = 1000). Third, the 293 BCME method addresses the requirement of a predetermined variable order in the TP method and achieves similar asymptotic efficiency for the TP method with variable ordering when K = 2, 4. 295 Similarly, Tables 4 and 5 in the Appendix G yield analogous simulation results when ϵ_i follows 296 non-normal distributions. 297

Table 1: Comparison of the BCME estimators $(\hat{R}, \hat{\Sigma})$, TP estimators $(\hat{R}_{TP}, \hat{\Sigma}_{TP})$, TP estimators with variable ordering $(\hat{R}_{TP}^{o}, \hat{\Sigma}_{TP}^{o})$, and QMLE estimators $(\hat{R}_{QMLE}, \hat{\Sigma}_{QMLE})$ of the blockwise correlation matrix and corresponding covariance matrix when ϵ_i follows a multivariate normal distribution $\mathcal{N}_p(\mathbf{0}_p, \mathbf{I}_p)$. AS and AF represent the averages of the spectral-error and Frobenius-error, respectively. SS and SF denote the standard deviations of the spectral-error and Frobenius-error, respectively. Pro. (%) is the proportion of positive semi-definiteness. Time (in seconds) is the average execution time.

	(K, p)			(2,150)			(4,420)				(8,840)
n	Measures	$\hat{\Sigma}(\hat{R})$	$\hat{\Sigma}^{o}_{TP} \left(\hat{R}^{o}_{TP} ight)$	$\hat{\boldsymbol{\Sigma}}_{TP} \left(\hat{\boldsymbol{R}}_{TP} ight)$	$\hat{\Sigma}_{QMLE} (\hat{R}_{QMLE})$	$\hat{\Sigma}(\hat{R})$	$\hat{\Sigma}^{o}_{TP} \left(\hat{R}^{o}_{TP} ight)$	$\hat{\Sigma}_{TP} (\hat{R}_{TP})$	$\hat{\Sigma}_{QMLE} (\hat{R}_{QMLE})$	$\hat{\Sigma}(\hat{R})$	$\hat{\Sigma}(\hat{R})$
-	AS	0.019 (0.023)	0.019 (0.023)	0.038 (0.108)	0.026 (0.049)	0.014 (0.025)	0.014 (0.026)	0.027 (0.086)	0.041 (0.124)	0.014 (0.025)	0.010 (0.022)
	SS	0.009 (0.013)	0.009 (0.013)	0.002 (0.000)	0.028 (0.084)	0.006 (0.012)	0.006 (0.012)	0.002 (0.000)	0.011 (0.037)	0.006 (0.010)	0.004 (0.007)
200	AF	0.020 (0.025)	0.020 (0.025)	0.043 (0.111)	0.028 (0.051)	0.016 (0.030)	0.016 (0.030)	0.040 (0.120)	0.052 (0.158)	0.016 (0.031)	0.013 (0.029)
200	SF	0.008 (0.014)	0.008 (0.014)	0.004 (0.004)	0.029 (0.086)	0.005 (0.012)	0.005 (0.012)	0.002 (0.005)	0.012 (0.004)	0.005 (0.010)	0.003 (0.007)
	Pro.	100.0	100.0	100.0	94.3	100.0	100.0	100.0	10.1	100.0	100.0
	Time	0.004	12.987	20.370	30.918	0.023	2707.757	2819.685	1585.977	0.031	0.091
-	AS	0.012 (0.014)	0.012 (0.014)	0.038 (0.108)	0.014 (0.023)	0.009 (0.016)	0.009 (0.016)	0.026 (0.086)	0.040 (0.125)	0.009 (0.016)	0.006 (0.014)
	SS	0.006 (0.009)	0.006 (0.009)	0.000 (0.000)	0.017 (0.050)	0.004 (0.007)	0.004 (0.007)	0.000 (0.000)	0.007 (0.024)	0.003 (0.006)	0.002 (0.005)
500	AF	0.013 (0.016)	0.013 (0.016)	0.040 (0.110)	0.015 (0.024)	0.010 (0.019)	0.010 (0.019)	0.038 (0.119)	0.052 (0.163)	0.010 (0.020)	0.008 (0.019)
300	SF	0.005 (0.009)	0.005 (0.009)	0.002 (0.002)	0.018 (0.051)	0.003 (0.007)	0.003 (0.007)	0.001 (0.003)	0.008 (0.026)	0.003 (0.006)	0.002 (0.004)
	Pro.	100.0	100.0	100.0	98.0	100.0	100.0	100.0	1.8	100.0	100.0
	Time	0.004	13.339	22.053	73.623	0.028	2798.561	2900.917	4033.282	0.034	0.100
	AS	0.008 (0.010)	0.008 (0.010)	0.038 (0.108)	0.011 (0.017)	0.006 (0.011)	0.006 (0.011)	0.026 (0.086)	0.040 (0.126)	0.006 (0.011)	0.005 (0.010)
	SS	0.004 (0.006)	0.004 (0.006)	0.000 (0.000)	0.016 (0.046)	0.003 (0.005)	0.003 (0.005)	0.000 (0.000)	0.006 (0.021)	0.002 (0.004)	0.002 (0.003)
1000	AF	0.009 (0.011)	0.009 (0.011)	0.039 (0.109)	0.011 (0.018)	0.007 (0.013)	0.007 (0.013)	0.038 (0.118)	0.053 (0.164)	0.007 (0.014)	0.006 (0.013)
1000	SF	0.004 (0.007)	0.004 (0.007)	0.001 (0.001)	0.016 (0.047)	0.002 (0.005)	0.002 (0.005)	0.001 (0.003)	0.007 (0.022)	0.002 (0.004)	0.001 (0.003)
	Pro.	100.0	100.0	100.0	98.0	100.0	100.0	100.0	0.0	100.0	100.0
	Time	0.006	14.125	22.518	145.669	0.037	2957.841	3106.620	8640.374	0.042	0.117

We next study the finite sample performance of the RR method. To this end, we set $K \in \{2, 3, 4, 5, 6, 7, 8\}$ and $\delta = 10^{-2} p n^{-1/3}$. This choice of δ is similar to Xia et al. (2015) and Wang et al. (2022) and satisfies the theorem assumption defined in Theorem 3. In addition, we consider two measures to evaluate the performance of selection: (i) Mean: the mean of the estimated number of blocks \hat{K} , and (ii) CT: average percentage of the correct fit, $\mathbf{1}_{\{\hat{K}=K\}}$. Table 2 reports the Mean and CT for all K when the entries of ϵ_i follow $\mathcal{N}(0, 1)$. It shows that, the RR method completely restores the corresponding real block number when p < n. In addition, for p > n, the Mean of \hat{K} is gradually close to the real block number as the sample size n increases while the CT rapidly tends to 1. Both of the results support Theorem 3. Similar findings can be observed when ϵ_i follows non-normal distributions (see Tables 6 and 7 in the Appendix G).

Table 2: Results of block number selection when ϵ_i follows a multivariate normal distribution $\mathcal{N}_p(\mathbf{0}_p, \mathbf{I}_p)$. CT is the average percentage of the correct fit. Mean is the mean of the estimated number of blocks.

	n = 200		n =	= 500	n = 1000		
	СТ	Mean	СТ	Mean	СТ	Mean	
K = 2	1.00	2.00	1.00	2.00	1.00	2.00	
K = 3	1.00	3.00	1.00	3.00	1.00	3.00	
K = 4	0.90	3.69	1.00	4.00	1.00	4.00	
K = 5	0.55	3.20	1.00	5.00	1.00	5.00	
K = 6	0.14	1.68	0.99	5.94	1.00	6.00	
K = 7	0.03	1.16	0.90	6.37	1.00	7.00	
K = 8	0.03	1.24	0.93	7.53	1.00	8.00	

5 REAL DATA ANALYSIS

328

330

343 344

345

346

In this study, to demonstrate the superiority of our proposed methods, we analyze the daily returns of p = 1076 stocks belonging to the CSI Smallcap 500 Index and CSI 1000 Index from 2017 to 2021, where the data were collected from the WIND financial database.

347 We assess the performance of the out-of-sample portfolio by solving the Markowitz optimization 348 problem (Markowitz, 1952). To this end, we estimate the covariance matrix Σ using the standard 349 rolling window procedure with a window length of 12 quarters (Zivot & Wang, 2006; Zou et al., 350 2017). For each quarter t ($t = 12, \dots, 20$), we obtain the estimator $\hat{\Sigma}_{BCME,t}^{RR} = \hat{\Lambda}_t \hat{R}_t \hat{\Lambda}_t$ by em-351 ploying the BCME method with the estimated block number \hat{K}_t determined by the RR method. For 352 the sake of comparison, we consider two additional BCME estimators $(\hat{\Sigma}_{BCME,t}^{ind})$ and $\hat{\Sigma}_{BCME,t}^{subind}$ constructed based on industries ($K_t = 16$) and sub-industries ($K_t = 64$) of stocks, respectively. In 353 354 addition, we employ the Tsay & Pourahmadi (2017, TP)'s method with variable ordering under three 355 different block numbers mentioned above $(\hat{\Sigma}_{TP,t}^{o,RR}, \hat{\Sigma}_{TP,t}^{o,ind}, \hat{\Sigma}_{TP,t}^{o,subind})$. We also employ the methods 356 of the Ledoit & Wolf (2004, LW1) ($\hat{\Sigma}_{LW1,t}$), Ledoit & Wolf (2003, LW2) ($\hat{\Sigma}_{LW2,t}$), Ledoit & Wolf 357 (2020, LW3) ($\hat{\Sigma}_{LW3,t}$), and Schäfer & Strimmer (2005, SS) ($\hat{\Sigma}_{SS,t}$) to estimate the covariance ma-358 trix. Then, for each quarter t, we calculate 10 minimum variance portfolio weights by minimizing the portfolio variance, $\hat{\omega}_t = \arg \min_{\omega \in \mathbb{R}^p} \omega^\top M_t \omega$, such that $\omega^\top \mathbf{1}_p = 1$ and $\omega \ge \mathbf{0}_p$, where M_t 359 360 equals to the above 10 covariance matrix estimators. Next, let $Y_t \in \mathbb{R}^{p \times T_t}$ denote the daily returns 361 of stocks in quarter t, where T_t is trading days at quarter t. Then, we compute the out-of-sample 362 portfolios at quarter t+1 by $Y_{t+1}^{\top}\hat{\omega}_t$, across $\hat{\omega}_t = \hat{\omega}_{BCME,t}^{RR}$, $\hat{\omega}_{BCME,t}^{subind}$, $\hat{\omega}_{BCME,t}^{subind}$, $\hat{\omega}_{TP,t}^{o,ind}$, 363 $\hat{\omega}_{TP,t}^{o,subind}, \hat{\omega}_{LW1,t}, \hat{\omega}_{LW2,t}, \hat{\omega}_{LW3,t}, \hat{\omega}_{SS,t}$, and $\hat{\omega}_{Bench,t}$, where $\hat{\omega}_{Bench,t}$ is the weight propor-364 365 tional to t-th quarter market capitalization and its corresponding out-of-sample portfolio is denoted 366 as a benchmark.

To examine the out-of-sample portfolio performance (486 trading days from quarter 13 to quarter 20), we consider six commonly used measures: (i) the sample mean (Mean); (ii) sample standard deviation (SD); (iii) Sharpe ratio (SR); (iv) Turnover ratio (TR); (v) risk-adjusted excess return over the benchmark (Alpha); and (vi) Beta (the beta coefficient close to 1 indicates the out-of-sample portfolio has almost the same volatility as the benchmark). The results are provided in Table 3. Notably, due to the high execution time to obtain $\hat{\Sigma}_{TP,t}^{o,ind}$ and $\hat{\Sigma}_{TP,t}^{o,subind}$, we only calculate the outof-sample portfolio based on $\hat{\Sigma}_{TP,t}^{o,RR}$.

Table 3 indicates that the mean of the portfolio return based on BCME with RR is slightly larger than
that of the portfolio return based on BCME with industries and sub-industries, as well as the portfolio return based on LW1, LW2, LW3, and SS methods, although these means are marginally smaller
than that of the market portfolio return. In addition, the portfolio return based on BCME with RR ex-

378 hibits lower risk, measured by SD and Beta. As a result, the Sharpe ratio of the portfolio return based 379 on BCME with RR is 30%, 20%, 10%,8% 5%, 5%, and 3% (e.g., $30\% = \{0.065 - 0.050\}/0.050\}$ 380 higher than that of the portfolio return based on LW2, market portfolio return, portfolio return based 381 LW1, BCME with industries, BCME with sub-industries, SS, and LW3, respectively. Finally, our 382 method significantly outperforms the TP method with variable ordering in terms of execution time (0.036 sec v.s. 13415.565 sec), although both exhibit similar efficiency. This is particularly valuable 383 in the ever-changing stock market. In sum, although the turnover ratio based on our method is not 384 satisfactory, the block structure is significant for portfolio management and our proposed framework 385 is highly effective for portfolio analysis. 386

387

391

392

396 397

388 Table 3: The sample mean (Mean), sample standard deviation (SD), Sharpe ratio (SR), Turnover 389 ratio (TR), Alpha, and Beta calculated from 486 trading days of returns (%) in the market portfolio and portfolios constructed by BCME, TP, LW1, LW2, LW3, and SS methods, respectively, from 390 2020 to 2021 on the Chinese stock market, and the averaged execution time (Time, in seconds) to estimate corresponding covariance matrices for 9 quarters. The numbers within parentheses represent the standard errors of the alpha and beta coefficients, respectively. Dashes indicate null values or 393 procedures that were not executed due to prohibitively time-intensity. The superscript * * * denotes 394 significance levels of 1%. Both \uparrow and \downarrow indicate better performance. 395

	Mean (†)	$SD(\downarrow)$	SR (†)	$\text{TR}(\downarrow)$	Alpha (†)	Beta (↓)	Time (\downarrow)
Market	0.073	1.303	0.054	0.159	0	1	-
BCME(RR)	0.069	1.010	0.065	0.448	0.038 (0.038)	0.429*** (0.029)	0.036
BCME(ind)	0.062	0.965	0.060	0.308	0.030 (0.035)	0.439^{***} (0.027)	0.040
BCME(subind)	0.063	0.952	0.062	0.318	0.030 (0.034)	0.451*** (0.026)	0.038
TP(RR)	0.069	1.010	0.065	0.448	0.038 (0.038)	0.429*** (0.029)	13415.565
TP(ind)	-	-	-	-	-	-	-
TP(subind)	-	-	-	-	-	-	-
LW1	0.058	0.921	0.059	0.287	0.020 (0.028)	0.518*** (0.022)	3.522
LW2	0.050	0.922	0.050	0.286	0.017 (0.033)	0.440*** (0.025)	11.264
LW3	0.066	0.990	0.063	0.276	0.022 (0.027)	0.608*** (0.021)	0.159
SS	0.061	0.930	0.062	0.277	0.022 (0.028)	0.541*** (0.021)	3.922

407 408 409

410 411

6 CONCLUSION AND REMARKS

We propose BCME to estimate a covariance matrix with blockwise correlation structure in high-412 dimensional settings. When the block number and group memberships of variables are known, the 413 theoretical properties of the parameter estimators, the estimated blockwise correlation and covari-414 ance matrix are established under certain moment conditions. In addition, we utilize the ridge-type 415 ratio criterion and spectral clustering to estimate the number of blocks and recover their member-416 ships for a blockwise correlation matrix, and proved their consistency. Subsequently, we extend 417 the properties of the asymptotic normality and stochastic convergence rate to the scenario where 418 the group memberships are unknown and the block number is given. An application for analyzing 419 portfolio returns in the Chinese stock market and simulation studies present superior performance 420 of our proposed methods.

421 To expand the applicability of our proposed methods, we consider two major avenues for future 422 research. First, extend the BCME, RR, and spectral clustering methods and establish their theoretical 423 properties when K is divergent, including $K/n \in (0,\infty]$ or $K/p \in (0,1]$. This is reasonable and 424 common in ultra high-dimensional data. Second, develop general methods for estimating a quantiled 425 moment and choosing the number of blocks when the quantiled moment has a block structure. These 426 extensions would further reveal the usefulness of our proposed methods for inferences on structured 427 blockwise moment.

428

429 REFERENCES 430

Seung C Ahn and Alex R Horenstein. Eigenvalue ratio test for the number of factors. *Econometrica*, 431 81(3):1203-1227, 2013.

432 433 434	Ilya Archakov and Peter Reinhard Hansen. A canonical representation of block matrices with applications to covariance and correlation matrices. <i>Review of Economics and Statistics</i> , 106(4): 1099–1113, 2024.
435 436 437	Zhidong D Bai. Methodologies in spectral analysis of large dimensional random matrices, a review. In <i>Advances in statistics</i> , pp. 174–240. World Scientific, 2008.
438 439 440 441	Madalyn S Blondes, John H Schuenemeyer, Ricardo A Olea, and Lawrence J Drew. Aggregation of carbon dioxide sequestration storage assessment units. <i>Stochastic Environmental Research and Risk Assessment</i> , 27:1839–1859, 2013.
442 443 444	Christian Brownlees, Gumundur Stefán Gumundsson, and Gábor Lugosi. Community detection in partial correlation network models. <i>Journal of Business & Economic Statistics</i> , 40(1):216–226, 2022.
445 446	Song Xi Chen, Li-Xin Zhang, and Ping-Shou Zhong. Tests for high-dimensional covariance matrices. <i>Journal of the American Statistical Association</i> , 105(490):810–819, 2010.
448 449	Carson Eisenach, Florentina Bunea, Yang Ning, and Claudiu Dinicu. High-dimensional inference for cluster-based graphical models. <i>Journal of machine learning research</i> , 21(53):1–55, 2020.
450 451 452	Edwin J Elton and Martin J Gruber. Estimating the dependence structure of share prices- implications for portfolio selection. <i>The Journal of Finance</i> , 28(5):1203–1232, 1973.
453 454	Robert Engle and Bryan Kelly. Dynamic equicorrelation. <i>Journal of Business & Economic Statistics</i> , 30(2):212–228, 2012.
455 456 457	Jianqing Fan, Yuan Liao, and Martina Mincheva. High dimensional covariance matrix estimation in approximate factor models. <i>Annals of statistics</i> , 39(6):3320, 2011.
458 459	Long Feng, Wei Lan, Binghui Liu, and Yanyuan Ma. High-dimensional test for alpha in linear factor pricing models with sparse alternatives. <i>Journal of Econometrics</i> , 229(1):152–175, 2022.
460 461 462	Nicholas J Higham. Computing the nearest correlation matrix—a problem from finance. <i>IMA journal of Numerical Analysis</i> , 22(3):329–343, 2002.
463 464 465	Jianwei Hu, Hong Qin, Ting Yan, and Yunpeng Zhao. Corrected bayesian information criterion for stochastic block models. <i>Journal of the American Statistical Association</i> , 115(532):1771–1783, 2020.
466 467 468	Raymond Kan and Guofu Zhou. Optimal portfolio choice with parameter uncertainty. <i>Journal of Financial and Quantitative Analysis</i> , 42(3):621–656, 2007.
469 470 471	Clifford Lam and Qiwei Yao. Factor modeling for high-dimensional time series: inference for the number of factors. <i>The Annals of Statistics</i> , pp. 694–726, 2012.
472 473	Olivier Ledoit and Michael Wolf. Honey, i shrunk the sample covariance matrix. UPF economics and business working paper, (691), 2003.
474 475 476	Olivier Ledoit and Michael Wolf. A well-conditioned estimator for large-dimensional covariance matrices. <i>Journal of multivariate analysis</i> , 88(2):365–411, 2004.
477 478	Olivier Ledoit and Michael Wolf. Analytical nonlinear shrinkage of large-dimensional covariance matrices. <i>The Annals of Statistics</i> , 48(5):3043–3065, 2020.
479 480 481 482	Ruiqi Liu, Zuofeng Shang, Yonghui Zhang, and Qiankun Zhou. Identification and estimation in panel models with overspecified number of groups. <i>Journal of Econometrics</i> , 215(2):574–590, 2020.
483 484 485	Wenyang Liu, Ganggang Xu, Jianqing Fan, and Xuening Zhu. Two-way homogeneity pursuit for quantile network vector autoregression. <i>arXiv preprint arXiv:2404.18732</i> , 2024.

Harry Markowitz. Portfolio selection. The Journal of Finance, 7:77-91, 1952.

486 487	Florence Merlevède, Magda Peligrad, and Emmanuel Rio. A bernstein type inequality and moderate deviations for weakly dependent sequences. <i>Probability Theory and Related Fields</i> , 151:435–474,
488	2011.
489	Trister Millington and Maharan Minerian. Occurtifying influence in factorial models are set in
490	correlation network inference. In 2010 11th International Symposium on Image and Signal Pro
491	cessing and Analysis (ISPA) np. 306–311 IFEE 2019
492	cessing and manysis (1917), pp. 500-511. IEEE, 2017.
493	Mee Young Park, Trevor Hastie, and Robert Tibshirani. Averaged gene expressions for regression.
494	<i>Biostatistics</i> , 8(2):212–227, 2007.
495	
496 497	chine Learning Research, 21(64):1–32, 2020.
498	D Franco Saldana Vi Vi, and Vang Feng. How many communities are there? <i>Journal of Computa</i> -
499 500	tional and Graphical Statistics, 26(1):171–181, 2017.
501	Juliane Schäfer and Korbinian Strimmer. A shrinkage approach to large-scale covariance matrix
502	estimation and implications for functional genomics. Statistical applications in genetics and
503	molecular biology, 4(1), 2005.
504	
505	John H Schuenemeyer and Donald L Gautier. Aggregation methodology for the circum-arctic re-
506	source appraisai. <i>Mainematical Geosciences</i> , 42:385–394, 2010.
507	George AF Seber. A matrix handbook for statisticians. John Wiley & Sons, 2008.
508	
509	Liangjun Su, Zhentao Shi, and Peter CB Phillips. Identifying latent structures in panel data. <i>Econo</i> -
510	<i>metrica</i> , 84(6):2215–2264, 2016.
511	Liangiun Su, Wuyi Wang, and Yichong Zhang. Strong consistency of spectral clustering for stochas-
512	tic block models. <i>IEEE Transactions on Information Theory</i> , 66(1):324–338, 2019.
513	
514	Kean Ming Tan, Daniela Witten, and Ali Shojaie. The cluster graphical lasso for improved estima-
515	tion of gaussian graphical models. <i>Computational statistics & data analysis</i> , 85:23–36, 2015.
516	Ruey S Tsay and Mohsen Pourahmadi Modelling structured correlation matrices <i>Biometrika</i> 104
517 518	(1):237–242, 2017.
519	Di Wang, Yao Zheng, Heng Lian, and Guodong Li. High-dimensional vector autoregressive time
520	series modeling via tensor decomposition. Journal of the American Statistical Association, 117
521	(539):1338–1356, 2022.
522	Hanshang Wang, Factor profiled sure independence screening, <i>Biometrika</i> , 00(1):15, 28, 2012
523	Transieng wang. Tactor promed sure independence screening. <i>Diometrika</i> , <i>39</i> (1):13–20, 2012.
524 525	Di Wu and Gordon K Smyth. Camera: a competitive gene set test accounting for inter-gene corre- lation. <i>Nucleic acids research</i> , 40(17):e133–e133, 2012.
526	Oiang Yia Wangli Yu and Living Thu Consistently determining the number of factors in multi-
527	variate volatility modelling. <i>Statistica Sinica</i> pp. 1025–1044, 2015
528	variate volatility modelning. <i>Statistica Statea</i> , pp. 1025–1044, 2015.
529	Yuki Yamada, Masashi Hyodo, and Takahiro Nishiyama. Testing block-diagonal covariance struc-
530	ture for high-dimensional data under non-normality. Journal of Multivariate Analysis, 155:305-
531	316, 2017.
532	Vitan Vang Chiviang Chan and Shua Chan Covariance matrix actimation for high three-threet
533 534	biomedical data with interconnected communities. <i>The American Statistician</i> , pp. 1–20, 2024.
535	Zhilin Zhang and Bhaskar D Rao. Extension of shl algorithms for the recovery of block sparse
536	signals with intra-block correlation. <i>IEEE Transactions on Signal Processing</i> , 61(8):2009–2015.
537	2013.
538	
539	Junlong Zhao, Xiumin Liu, Hansheng Wang, and Chenlei Leng. Dimension reduction for covariates in network data. <i>Biometrika</i> , 109(1):85–102, 2022.

Shurong Zheng, Xuming He, and Jianhua Guo. Hypothesis testing for block-structured correlation for high-dimensional variables. *Statistica Sinica*, 32(2):719–735, 2022.

- 543 Xuening Zhu, Ganggang Xu, and Jianqing Fan. Simultaneous estimation and group identification
 544 for network vector autoregressive model with heterogeneous nodes. *Journal of Econometrics*, pp. 105564, 2023.
 - Eric Zivot and Jiahui Wang. *Modeling financial time series with S-PLUS*, volume 2. Springer, 2006.
 - Tao Zou, Wei Lan, Hansheng Wang, and Chih-Ling Tsai. Covariance regression analysis. *Journal* of the American Statistical Association, 112(517):266–281, 2017.

Appendix

A THREE TECHNICAL LEMMAS

Lemma 1 Let $\epsilon_i = (\epsilon_{i1}, \dots, \epsilon_{ip})^\top \in \mathbb{R}^p$ for $i = 1, \dots, n$ be independent and identically distributed random vectors, and satisfies Condition (C1). Define

$$\mathbf{q}_{n,p} = \frac{1}{n} \sum_{i=1}^{n} \begin{pmatrix} \operatorname{vec}^{\top}(\boldsymbol{A}_{1}) \\ \vdots \\ \operatorname{vec}^{\top}(\boldsymbol{A}_{L}) \end{pmatrix} \operatorname{vec}(\boldsymbol{\epsilon}_{i} \boldsymbol{\epsilon}_{i}^{\top} - \boldsymbol{I}_{p}),$$

where $\mathbf{A}_l = (A_{j_1 j_2}^{(l)}) \in \mathbb{R}^{p \times p}$ is symmetric for $l = 1, \dots, L$ with $L < \infty$. Then, we have $\mathbb{E}(\mathbf{q}_{n,p}) = \mathbf{0}_L$, and

$$\operatorname{Cov}(\mathbf{q}_{n,p}) = 2n^{-1}[\operatorname{tr}(\boldsymbol{A}_{l_1}\boldsymbol{A}_{l_2})]_{L \times L} + (\mu^{(4)} - 3)n^{-1}\boldsymbol{\Psi}^{\top}\boldsymbol{\Psi},$$
(4)

where $\Psi = (\psi_1, \dots, \psi_L) \in \mathbb{R}^{p \times L}$ with $\psi_l := (A_{11}^{(l)}, \dots, A_{pp}^{(l)})^\top \in \mathbb{R}^p$ for $l = 1, \dots, L$. If there exists a positive definite matrix $\mathcal{Q} \in \mathbb{R}^{L \times L}$ such that $n \operatorname{Cov}(\mathbf{q}_{n,p}) \to \mathcal{Q}$, then, we have

$$n^{1/2}\mathbf{q}_{n,p} \xrightarrow{d} \mathcal{N}(0, \mathcal{Q}).$$
 (5)

Proof. The equation (4) is directly exacted from Chen et al. (2010). To prove equation (5), by Cramér-Wold device, it suffices to establish the asymptotic normality of $\boldsymbol{\xi}^{\top} \mathbf{q}_{n,p}$ for arbitrary vector $\boldsymbol{\xi} = (\xi_1, \dots, \xi_L)^{\top} > \mathbf{0}_L \in \mathbb{R}^L$. Denote $\mathbf{q}_{\xi i} = \sum_l \xi_l \operatorname{vec}^{\top}(\boldsymbol{A}_l) \operatorname{vec}(\boldsymbol{\epsilon}_i \boldsymbol{\epsilon}_i^{\top} - \boldsymbol{I}_p)$. We have $\mathbb{E}(\mathbf{q}_{\xi i}) = 0$, $\operatorname{Var}(\mathbf{q}_{\xi i}) = \boldsymbol{\xi}^{\top} \{2[\operatorname{tr}(\boldsymbol{A}_{l_1}\boldsymbol{A}_{l_2})]_{L \times L} + (\mu^{(4)} - 3)\boldsymbol{\Psi}^{\top}\boldsymbol{\Psi}\}\boldsymbol{\xi}$, according to (4), and $\boldsymbol{\xi}^{\top} \mathbf{q}_{n,p} = n^{-1} \sum_{i=1}^{n} \mathbf{q}_{\xi i}$. To prove the asymptotic normality of $\boldsymbol{\xi}^{\top} \mathbf{q}_{n,p}$, it suffices to verify that the Lindeberg condition holds, that is,

$$\lim_{p \to \infty} \lim_{n \to \infty} \frac{1}{\sum_{i=1}^{n} \operatorname{Var}(\mathbf{q}_{\xi_i})} \sum_{i=1}^{n} \int_{x^2 > c_{\xi}^2 \sum_{i=1}^{n} \operatorname{var}(\mathbf{q}_{\xi_i})} x^2 dF_{\mathbf{q}_{\xi_i}}(x) = 0, \tag{6}$$

where $F_{q_{\xi_i}}(x)$ is the cumulative distribution function of q_{ξ_i} and c_{ξ} is an arbitrary constant. Since q_{ξ_i} s are i.i.d., we have

$$\lim_{n \to \infty} \frac{1}{\sum_{i=1}^{n} \operatorname{var}(\mathbf{q}_{\xi_i})} \sum_{i=1}^{n} \int_{x^2 > c_{\xi}^2 \sum_{i=1}^{n} \operatorname{var}(\mathbf{q}_{\xi_i})} x^2 dF_{\mathbf{q}_{\xi_i}}(x)$$
$$= \lim_{n \to \infty} \frac{1}{\operatorname{var}(\mathbf{q}_{\xi_i})} \int_{x^2 > c_{\xi}^2 \sum_{i=1}^{n} \operatorname{var}(\mathbf{q}_{\xi_i})} x^2 dF_{\mathbf{q}_{\xi_i}}(x) = 0,$$

where the last equality is due to that the variance of $q_{\xi i}$ exists and finite. Thus, (6) holds, which completes the entire proof of this lemma.

Lemma 2 Under Conditions (C1) and (C3), we have $\|n^{-1}\sum_{i=1}^{n} \tilde{\mathbf{y}}_{i}\tilde{\mathbf{y}}_{i}^{\top} - \mathbf{R}\|_{F} = O_{p}(p/\sqrt{n}).$

Proof. We evaluate the expectation of $||n^{-1} \sum_{i=1}^{n} \tilde{\mathbf{y}}_i \tilde{\mathbf{y}}_i^{\top} - \mathbf{R}||_F^2$ to prove the lemma. We obtain

$$\mathbb{E}\|n^{-1}\sum_{i=1}^{n}\tilde{\mathbf{y}}_{i}\tilde{\mathbf{y}}_{i}^{\top}-\boldsymbol{R}\|_{F}^{2}=\mathbb{E}\|n^{-1}\sum_{i=1}^{n}\tilde{\mathbf{y}}_{i}\tilde{\mathbf{y}}_{i}^{\top}\|_{F}^{2}-\|\boldsymbol{R}\|_{F}^{2}$$

where $\mathbb{E} \| n^{-1} \sum_{i=1}^{n} \tilde{\mathbf{y}}_i \tilde{\mathbf{y}}_i^\top \|_F^2 = n^{-1} \mathbb{E} \| \tilde{\mathbf{y}}_i \tilde{\mathbf{y}}_i^\top \|_F^2 + (n-1)n^{-1} \mathbb{E} \{ \operatorname{tr}(\tilde{\mathbf{y}}_{i_1} \tilde{\mathbf{y}}_{i_1}^\top \tilde{\mathbf{y}}_{i_2} \tilde{\mathbf{y}}_{i_2}^\top) \}$ for $i, i_1, i_2 = 1, \cdots, n$. According to Lemma 1, we have

$$\mathbb{E} \| \tilde{\mathbf{y}}_i \tilde{\mathbf{y}}_i^\top \|_F^2 = 2 \operatorname{tr}(\mathbf{R}^2) + (\mu^{(4)} - 3) \operatorname{tr}(\mathbf{R} \circ \mathbf{R}) + \operatorname{tr}^2(\mathbf{R}),$$
$$\mathbb{E} \{ \operatorname{tr}(\tilde{\mathbf{y}}_{i_1} \tilde{\mathbf{y}}_{i_1}^\top \tilde{\mathbf{y}}_{i_2} \tilde{\mathbf{y}}_{i_2}^\top) \} = \operatorname{tr}(\mathbf{R}^2).$$

This, together with the Condition (C3), implies

$$\mathbb{E}\|n^{-1}\sum_{i=1}^{n}\tilde{\mathbf{y}}_{i}\tilde{\mathbf{y}}_{i}^{\top} - R\|_{F}^{2} = n^{-1}\{\operatorname{tr}(\boldsymbol{R}^{2}) + p(\mu^{(4)} - 3) + \operatorname{tr}^{2}(\boldsymbol{R})\} \\ \leq n^{-1}\left\{p^{2}\left[\sum_{k\in\{1,\cdots,K\}}\pi_{k}^{2} + 2\sum_{\substack{k_{1}>k_{2}\\k_{1},k_{2}\in\{1,\cdots,K\}}}\pi_{k_{1}}\pi_{k_{2}}\right] + p(\mu^{(4)} - 3) + p^{2}\right\}$$

 $= O(p^2/n),$

which completes the proof.

Lemma 3 Under Condition (C1) and $(\log p)^{6/\gamma_1-1} = o(n)$, as $\min\{n, p\} \to \infty$, we have that

$$\max_{j \in \{1, \cdots, p\}} |\hat{\sigma}_j - \sigma_j| = O_p\left(\sqrt{\frac{\log p}{n}}\right)$$

Proof. By Lemma A.2 of Fan et al. (2011) and formula (1.3) of Merlevède et al. (2011), together with Condition (C1) and $(\log p)^{6/\gamma_1-1} = o(n)$, we have that

$$P\Big\{\max_{j\in\{1,\cdots,p\}}|\hat{\sigma}_j^2 - \sigma_j^2| \ge c_\sigma \sqrt{\frac{\log p}{n}}\Big\} \to 0$$

as $\min\{n, p\} \to \infty$, for a finite constant $c_{\sigma} > 0$. Then, $\max_{j \in \{1, \dots, p\}} |\hat{\sigma}_j - \sigma_j| |\hat{\sigma}_j + \sigma_j| = O_p\{(\log p/n)^{1/2}\}$ and $\max_{j \in \{1, \dots, p\}} |\hat{\sigma}_j - \sigma_j| = O_p\{(\log p/n)^{1/2}\}$, which completes the entire proof of this lemma.

B PROOF OF PROPOSITION 1

632 Recall that $\mathbf{R} = \Theta \Delta \Theta^{\top} + \Omega$, where $\Omega = \text{diag}((1 - \rho_{11})\mathbf{I}_{p_1}, \cdots, (1 - \rho_{KK})\mathbf{I}_{p_K})$. Since the rank 633 of $\Theta \Delta \Theta^{\top}$ is K, we know that the last p - K eigenvalues of \mathbf{R} are positive and finite. Then, we 634 consider the K eigenvalues of $\Theta \Delta \Theta^{\top}$ to give the property of the first K eigenvalues of \mathbf{R} . Defining 635 $P = \text{diag}(\sqrt{p_1}, \cdots, \sqrt{p_K}) \in \mathbb{R}^{K \times K}$, we have $\Theta \Delta \Theta^{\top} = \Theta P^{-1} P \Delta P P^{-1} \Theta^{\top}$, where ΘP^{-1} 636 is orthonormal. Let $U_{\Delta} V_{\Delta} U_{\Delta}^{\top}$ be the eigendecomposition of $P \Delta P$. Then the eigenvector matrix 637 U of $\Theta \Delta \Theta^{\top}$ is equal to $\Theta P^{-1} U_{\Delta}$. The eigenvalues of $\Theta \Delta \Theta^{\top}$ are equal to those of $P \Delta P$. 638 Under Conditions (C3) and (C4), we have $c_{\lambda_1}^{-1} p \leq p \lambda_K(\Delta) \leq \lambda_k (P \Delta P) \leq p \lambda_1(\Delta) \leq c_{\lambda_1} p$, for 639 $k \in [K]$ and some constant $c_{\lambda_1} > 0$, which completes the proof.

C PROOF OF THEOREM 1

We will prove this theorem in two steps via the Delta method. In step I, we prove that $\hat{\rho}$ can be approximated by its first order Taylor expansion. In step II, we demonstrate that $\hat{\rho}$ is asymptotical normal.

647 Step I. Define $\Lambda_k = \operatorname{diag}(\sigma_{1k}, \cdots, \sigma_{p_k k}) := \operatorname{diag}(\sigma_j, j \in \mathbb{S}_k) \in \mathbb{R}^{p_k \times p_k}, \ \hat{\Lambda}_k = \operatorname{diag}(\hat{\sigma}_{1k}, \cdots, \hat{\sigma}_{p_k k}) := \operatorname{diag}(\hat{\sigma}_j, j \in \mathbb{S}_k) \in \mathbb{R}^{p_k \times p_k}, \text{ and } \Pi_{k_1 k_2} = n^{-1} \sum_{i=1}^n \tilde{\mathbf{y}}_{i k_1} \tilde{\mathbf{y}}_{i k_2}^\top \in \mathbb{R}^{p_k \times p_k}.$

Then, formula (2.2) of the main paper can be rewritten as

$$\hat{
ho}_{k_1k_2} = rac{\mathbf{1}_{p_{k_1}}^{ op} \hat{\mathbf{\Lambda}}_{k_1}^{-1} \mathbf{\Lambda}_{k_1} \mathbf{\Pi}_{k_1k_2} \mathbf{\Lambda}_{k_2} \hat{\mathbf{\Lambda}}_{k_2}^{-1} \mathbf{1}_{p_k}}{p_{k_1} p_{k_2}}, ext{ for } k_1 > k_2,$$

$$\hat{\rho}_{kk} = \frac{\mathbf{1}_{p_k}^{\top} \hat{\mathbf{\Lambda}}_k^{-1} \mathbf{\Lambda}_k \mathbf{\Pi}_{kk} \mathbf{\Lambda}_k \hat{\mathbf{\Lambda}}_k^{-1} \mathbf{1}_{p_k} - p_k}{p_k (p_k - 1)}.$$

We treat $\hat{\rho}_{k_1k_2}$ for $k_1 > k_2$ as a function of $\hat{\sigma}_j^2$ for $j \in \mathbb{S}_{k_1} \cup \mathbb{S}_{k_2}$ and $\Pi_{k_1k_2}$. Employing Taylor series expansion, we have that

$$\hat{\rho}_{k_{1}k_{2}} - \rho_{k_{1}k_{2}} = -\frac{\rho_{k_{1}k_{2}}}{2} \sum_{c \in \{k_{1}, k_{2}\}} \left\{ p_{c}^{-1} \sum_{j=1}^{p_{c}} \sigma_{jc}^{-2} (\hat{\sigma}_{jc}^{2} - \sigma_{jc}^{2}) \right\}$$

$$+ (p_{k_{1}}p_{k_{2}})^{-1} \operatorname{vec}^{\top} (\mathbf{1}_{p_{k_{1}} \times p_{k_{2}}}) \operatorname{vec} (\mathbf{\Pi}_{k_{1}k_{2}} - \mathbf{R}_{k_{1}k_{2}})$$

$$= 2 e^{-p_{c}}$$

$$+rac{3
ho_{k_1k_2}}{8} \quad \sum \quad \left\{p_c^{-1}\sum_{jc}^{p_c}\sigma_{jc}^{*-5}\sigma_{jc}(\hat{\sigma}_{jc}^2-\sigma_{jc}^2)^2
ight\}$$

$$c \in \{k_1, k_2\} \qquad j=1$$

$$p_{k_1} \quad p_{k_2}$$

$$+ \frac{\rho_{k_1k_2}}{8p_{k_1}p_{k_2}} \sum_{j_1=1}^{p_{k_1}} \sum_{j_2=1}^{p_{k_2}} \left\{ \sigma_{j_1k_1}^{*-3} \sigma_{j_1k_1} \sigma_{j_2k_2}^{*-3} \sigma_{j_2k_2} (\hat{\sigma}_{j_1k_1}^2 - \sigma_{j_1k_1}^2) (\hat{\sigma}_{j_2k_2}^2 - \sigma_{j_2k_2}^2) \right\} \\ - \frac{1}{p_{k_1}p_{k_2}} \sum_{c \in \{k_1,k_2\}} \left\{ \operatorname{vec}^\top (\mathbf{\Pi}_{k_1k_2} - \rho_{k_1k_2} \mathbf{1}_{p_{k_1} \times p_{k_2}}) \mathbf{\Xi}_c (\hat{\sigma}_{1c}^2 - \sigma_{1c}^2, \cdots, \hat{\sigma}_{p_cc}^2 - \sigma_{p_cc}^2)^\top \right\}$$

}

$$=H_{11}+H_{12}+I_1+I_2+I_3,$$

where σ_{jc}^* is between σ_{jc} and $\hat{\sigma}_{jc}$, $\Xi_c = \mathbf{1}_{p\bar{c}} \otimes \text{diag}(\sigma_{1c}^{*-3}\sigma_{1c}, \cdots, \sigma_{p_cc}^{*-3}\sigma_{1c}), \tilde{c} \in \{k_1, k_2\}$, and $\tilde{c} \neq c$. Here, \otimes is the Kronecker product. To study the asymptotic property of $\hat{\rho}_{k_1k_2}$, we first prove that I_1, I_2 , and I_3 are $o_p(n^{-1/2})$. According to Lemma 3, σ_{jc} and $\hat{\sigma}_{jc}$ are bounded with probability tending to 1.

For I_1 , we have that

$$\sqrt{n}|I_1| \le C_1 \sqrt{n} \max_{c \in \{k_1, k_2\}} p_c^{-1} \sum_{j=1}^{p_c} (\hat{\sigma}_{jc}^2 - \sigma_{jc}^2)^2 \le C_1 n^{-1/2} \log p \to 0,$$

for some finite positive constant C_1 . For I_2 , we have that

$$\sqrt{n}|I_2| \le C_2 \sqrt{n} (p_{k_1} p_{k_2})^{-1} \sum_{j_1=1}^{p_{k_1}} \sum_{j_2=1}^{p_{k_2}} (\hat{\sigma}_{j_1 k_1}^2 - \sigma_{j_1 k_1}^2) (\hat{\sigma}_{j_2 k_2}^2 - \sigma_{j_2 k_2}^2) \le C_2 n^{-1/2} \log p \to 0,$$

for some finite positive constant C_2 . For I_3 , by the Cauchy–Schwarz inequality, we have that

$$\begin{split} \sqrt{n}|I_3| \leq & C_3(p_{k_1}p_{k_2})^{-1} \|\mathbf{\Pi}_{k_1k_2} - \rho_{k_1k_2} \mathbf{1}_{p_{k_1} \times p_{k_2}} \|_F \max_{c \in \{k_1, k_2\}} \|\mathbf{\Xi}_c\|_F \sqrt{\log p} \\ \leq & C_3(p_{k_1}p_{k_2})^{-1} O_p(p/\sqrt{n}) \sqrt{\log p} \max_{c \in \{k_1, k_2\}} \|\mathbf{\Xi}_c\|_F = O_p \{(\log p/n)^{1/2}\} \to 0, \end{split}$$

for some finite positive constant C_3 . Therefore, $\hat{\rho}_{k_1k_2} - \rho_{k_1k_2} = H_{11} + H_{12} + o_p(n^{-1/2})$ for $k_1 > k_2.$

Employing similar techniques, we obtain that

$$\hat{\rho}_{kk} - \rho_{kk} = -\frac{\rho_{kk}(p_k - 1) + 1}{p_k(p_k - 1)} \sum_{j=1}^{p_k} \left\{ \sigma_{jk}^{-2} (\hat{\sigma}_{jk}^2 - \sigma_{jk}^2) \right\}$$

 $+ \frac{1}{p_k(p_k - 1)} \operatorname{vec}^{\top}(\mathbf{1}_{p_k \times p_k}) \operatorname{vec}(\mathbf{\Pi}_{kk} - \mathbf{R}_{kk}) + o_p(n^{-1/2})$ $a_{22} + o_p(n^{-1/2}),$

701
$$=H_{21}+H_{22}$$

which completes the first part of the proof.

Step II. In this step, we study the asymptotic distribution of $\hat{\rho}$ according to Lemma 1. We have that

$$H_{11} = \operatorname{vec}^{\top} \left(-\frac{\rho_{k_1 k_2}}{2} \mathbf{R}^{1/2} (\frac{1}{p_{k_1}} \mathbf{E}_{k_1} + \frac{1}{p_{k_2}} \mathbf{E}_{k_2}) \mathbf{R}^{1/2} \right) \frac{1}{n} \sum_{i=1}^{n} \operatorname{vec}(\boldsymbol{\epsilon}_i \boldsymbol{\epsilon}_i^{\top} - \boldsymbol{I}_p),$$

$$H_{12} = \operatorname{vec}^{\top} \left(\frac{1}{2p_{k_1}p_{k_2}} \boldsymbol{R}^{1/2} (\boldsymbol{D}_{k_1k_2} + \boldsymbol{D}_{k_2k_1}) \boldsymbol{R}^{1/2} \right) \frac{1}{n} \sum_{i=1}^{n} \operatorname{vec}(\boldsymbol{\epsilon}_i \boldsymbol{\epsilon}_i^{\top} - \boldsymbol{I}_p),$$

$$H_{21} = \operatorname{vec}^{\top} \left(-\frac{\rho_{kk}(p_k-1)+1}{p_k(p_k-1)} \mathbf{R}^{1/2} \mathbf{E}_k \mathbf{R}^{1/2} \right) \frac{1}{n} \sum_{i=1}^n \operatorname{vec}(\boldsymbol{\epsilon}_i \boldsymbol{\epsilon}_i^{\top} - \mathbf{I}_p)$$

$$H_{22} = \operatorname{vec}^{\top} \left(\frac{1}{p_k(p_k - 1)} \boldsymbol{R}^{1/2} \boldsymbol{D}_{kk} \boldsymbol{R}^{1/2} \right) \frac{1}{n} \sum_{i=1}^n \operatorname{vec}(\boldsymbol{\epsilon}_i \boldsymbol{\epsilon}_i^{\top} - \boldsymbol{I}_p).$$

Then, $\hat{\rho} - \rho$ can be rewritten as

$$\tilde{\mathbf{q}}_{n,p} := \hat{\boldsymbol{\rho}} - \boldsymbol{\rho} = \frac{1}{n} \sum_{i=1}^{n} \begin{pmatrix} \operatorname{vec}^{\top}(\boldsymbol{A}_{1}) \\ \vdots \\ \operatorname{vec}^{\top}(\boldsymbol{A}_{L}) \end{pmatrix} \operatorname{vec}(\boldsymbol{\epsilon}_{i}\boldsymbol{\epsilon}_{i}^{\top} - \boldsymbol{I}_{p}) + o_{p}(n^{-1/2}),$$

723 where $L = \frac{K(K+1)}{2} < \infty$, $A_l = R^{1/2} \left\{ -\frac{\rho_{kk}(p_k-1)+1}{p_k(p_k-1)} E_k + \frac{1}{p_k(p_k-1)} D_{kk} \right\} R^{1/2}$ when $l = k + (k-1)K - \sum_{k_3=0}^{k-1} k_3$, and $A_l = R^{1/2} \left\{ \frac{1}{2p_{k_1}p_{k_2}} (D_{k_1k_2} + D_{k_2k_1}) - \frac{\rho_{k_1k_2}}{2} (\frac{1}{p_{k_1}} E_{k_1} + \frac{1}{p_{k_2}} E_{k_2}) \right\} R^{1/2}$ 725 when $l = k_1 + (k_2 - 1)K - \sum_{k_3=0}^{k_2 - 1} k_3$ for $k_1 > k_2$ and $k, k_1, k_2 = 1, \cdots, K$.

According to Lemma 1, we have $\operatorname{Cov}(\tilde{\mathbf{q}}_{n,p}) = 2n^{-1}[\operatorname{tr}(\mathbf{A}_{l_1}\mathbf{A}_{l_2})]_{L\times L} + (\mu^{(4)} - 3)n^{-1}\Psi^{\top}\Psi$. According to Condition (C2), $n\operatorname{Cov}(\tilde{\mathbf{q}}_{n,p}) \to \mathcal{Q}$. Thus, by Lemma 1, we have $n^{1/2}(\hat{\rho} - \rho) \stackrel{d}{\longrightarrow} \mathcal{N}(\mathbf{0}_{K(K+1)/2}, \mathcal{Q})$, which completes the entire proof.

D PROOF OF THEOREM 2

By Theorem 1, we can obtain $\|\hat{\rho} - \rho\|_2 = O_p(n^{-1/2})$. This, together with Lemma 3 and Condition (C3), imply that

$$\begin{aligned} \|\hat{\boldsymbol{R}} - \boldsymbol{R}\|_{F} &= \left[\sum_{k \in \{1, \cdots, K\}} p_{k}(p_{k} - 1)(\hat{\rho}_{kk} - \rho_{kk})^{2} + 2\sum_{\substack{k_{1} > k_{2} \\ k_{1}, k_{2} \in \{1, \cdots, K\}}} p_{k_{1}}p_{k_{2}}(\hat{\rho}_{k_{1}k_{2}} - \rho_{k_{1}k_{2}})^{2}\right]^{1/2} \\ &\leq \left\{p^{2}O_{p}(n^{-1})\left[\sum_{k \in \{1, \cdots, K\}} \pi_{k}^{2} + 2\sum_{\substack{k_{1} > k_{2} \\ k_{1}, k_{2} \in \{1, \cdots, K\}}} \pi_{k_{1}}\pi_{k_{2}}\right]\right\}^{1/2} = O_{p}(\frac{p}{\sqrt{n}}). \end{aligned}$$

Analogously, we obtain

$$\begin{split} \|\hat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\|_{F} &= \Big\{ \sum_{k \in \{1, \cdots, K\}} \sum_{j \in \{1, \cdots, p_{k}\}} (\hat{\sigma}_{jk}^{2} - \sigma_{jk}^{2})^{2} \\ &+ 2 \sum_{k \in \{1, \cdots, K\}} \sum_{\substack{j_{1} > j_{2} \\ j_{1}, j_{2} \in \{1, \cdots, p_{k}\}}} [\hat{\sigma}_{j_{1}k} \hat{\sigma}_{j_{2}k} (\hat{\rho}_{kk} - \rho_{kk}) + (\hat{\sigma}_{j_{1}k} \hat{\sigma}_{j_{2}k} - \sigma_{j_{1}k} \sigma_{j_{2}k}) \rho_{kk}]^{2} \\ &+ 2 \sum_{\substack{k_{1} > k_{2} \\ k_{1}, k_{2} \in \{1, \cdots, K\}}} \sum_{j_{1} \in \{1, \cdots, p_{k_{1}}\}} \sum_{j_{2} \in \{1, \cdots, p_{k_{2}}\}} [\hat{\sigma}_{j_{1}k_{1}} \hat{\sigma}_{j_{2}k_{2}} (\hat{\rho}_{k_{1}k_{2}} - \rho_{k_{1}k_{2}}) + (\hat{\sigma}_{j_{1}k_{1}} \hat{\sigma}_{j_{2}k_{2}} - \sigma_{j_{1}k_{1}} \sigma_{j_{2}k_{2}}) \rho_{k_{1}k_{2}}]^{2} \Big\}^{1/2} \\ &\leq \Big\{ O_{p} (\frac{\log p}{n}) \Big[p + p^{2} \sum_{k \in \{1, \cdots, K\}} \pi_{k}^{2} + 2p^{2} \sum_{\substack{k_{1} > k_{2} \\ k_{1}, k_{2} \in \{1, \cdots, K\}}} \pi_{k_{1}} \pi_{k_{2}} \Big] \Big\}^{1/2} = O_{p} (p \sqrt{\frac{\log p}{n}}). \end{split}$$

Subsequently, by 4.67(a) in Seber (2008, p. 68), we have $\|\hat{\boldsymbol{R}} - \boldsymbol{R}\|_2 \le \|\hat{\boldsymbol{R}} - \boldsymbol{R}\|_F = O_p(\frac{p}{\sqrt{n}})$ and $\|\hat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\|_2 \le \|\hat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\|_F = O_p(p\sqrt{\frac{\log p}{n}})$, which completes the entire proof.

E PROOF OF THEOREM 3

To prove this theorem, we consider the following two steps. In Step I, we prove $\lambda_k(\hat{\mathbf{R}}_{sam}) + \delta = O_p(p)$ for $k \leq K$, and $\lambda_k(\hat{\mathbf{R}}_{sam}) + \delta = O_p(1 \lor \delta)$ for $k \geq K + 1$. In Step II, we derive the consistency of \hat{K} . Here, $m_1 \lor m_2 = \max\{m_1, m_2\}$ for any m_1 and m_2 .

STEP I. By the definition of \hat{R}_{sam} and triangle inequality, we have that

$$\begin{split} \|\hat{oldsymbol{R}}_{sam} - oldsymbol{R}\|_F &= \|\hat{oldsymbol{\Lambda}}^{-1} \Lambda oldsymbol{\Lambda}_{i=1}^n ildsymbol{ ilde{y}}_i ilde{oldsymbol{y}}_i^{ op} \Lambda \hat{oldsymbol{\Lambda}}^{-1} - oldsymbol{R}\|_F \ &= \|\hat{oldsymbol{\Lambda}}^{-1} \Lambda (rac{1}{n} \sum_{i=1}^n ilde{oldsymbol{y}}_i ilde{oldsymbol{y}}_i^{ op} - oldsymbol{R}) \Lambda \hat{oldsymbol{\Lambda}}^{-1} + \hat{oldsymbol{\Lambda}}^{-1} \Lambda oldsymbol{R} (\Lambda \hat{oldsymbol{\Lambda}}^{-1} - oldsymbol{I}_p) + (\hat{oldsymbol{\Lambda}}^{-1} \Lambda - oldsymbol{I}_p) B\|_F \ &= \|\hat{oldsymbol{\Lambda}}^{-1} \Lambda (rac{1}{n} \sum_{i=1}^n ilde{oldsymbol{y}}_i ilde{oldsymbol{y}}_i^{ op} - oldsymbol{R}) \Lambda \hat{oldsymbol{\Lambda}}^{-1} + \hat{oldsymbol{\Lambda}}^{-1} \Lambda B (\Lambda \hat{oldsymbol{\Lambda}}^{-1} - oldsymbol{I}_p) + (\hat{oldsymbol{\Lambda}}^{-1} \Lambda - oldsymbol{I}_p) B\|_F \ &= \|\hat{oldsymbol{\Lambda}}^{-1} \Lambda (rac{1}{n} \sum_{i=1}^n ilde{oldsymbol{y}}_i ilde{oldsymbol{y}}_i^{ op} - oldsymbol{R}) \Lambda \hat{oldsymbol{\Lambda}}^{-1} + \hat{oldsymbol{\Lambda}}^{-1} \Lambda B (\Lambda \hat{oldsymbol{\Lambda}}^{-1} - oldsymbol{I}_p) + (\hat{oldsymbol{\Lambda}}^{-1} \Lambda - oldsymbol{I}_p) B\|_F \ &= \|\hat{oldsymbol{\Lambda}}^{-1} \Lambda (rac{1}{n} \sum_{i=1}^n ilde{oldsymbol{y}}_i ilde{oldsymbol{y}}_i^{ op} - oldsymbol{R}) \|_F \ &= \|\hat{oldsymbol{\Lambda}}^{-1} \Lambda (rac{1}{n} \sum_{i=1}^n ilde{oldsymbol{y}}_i ilde{oldsymbol{y}}_i^{ op} - oldsymbol{R}) \|_F \ &= \|\hat{oldsymbol{\Lambda}}^{-1} \|_F \ &= \|\hat{oldsymbol{\Lambda$$

$$\leq \|\hat{\mathbf{\Lambda}}^{-1}\mathbf{\Lambda}\|_2^2\|rac{1}{n}\sum_{i=1}^n ilde{\mathbf{y}}_i ilde{\mathbf{y}}_i^ op-oldsymbol{R}\|_F+\|\hat{\mathbf{\Lambda}}^{-1}\mathbf{\Lambda}\|_2\|oldsymbol{R}\|_F\|\mathbf{\Lambda}\hat{\mathbf{\Lambda}}^{-1}-oldsymbol{I}_p\|_2$$

$$+ \|\hat{oldsymbol{\Lambda}}^{-1}oldsymbol{\Lambda} - oldsymbol{I}_p\|_2 \|oldsymbol{R}\|_F$$

$$=O_p(\|\frac{1}{n}\sum_{i=1}^n\tilde{\mathbf{y}}_i\tilde{\mathbf{y}}_i^\top-\boldsymbol{R}\|_F+\|\hat{\boldsymbol{\Lambda}}^{-1}\boldsymbol{\Lambda}-\boldsymbol{I}_p\|_2\|\boldsymbol{R}\|_F).$$

781 According to Lemmas 2 and 3, we have that $\|n^{-1}\sum_{i=1}^{n} \tilde{\mathbf{y}}_{i}\tilde{\mathbf{y}}_{i}^{\top} - \mathbf{R}\|_{F} = O_{p}(p/\sqrt{n}), \|\hat{\mathbf{\Lambda}}^{-1}\mathbf{\Lambda} - \mathbf{I}_{p}\|_{2} = O_{p}(\sqrt{\log p/n}), \text{ and } \|\mathbf{R}\|_{F} = O(p).$ Thus, we obtain $\|\hat{\mathbf{R}}_{sam} - \mathbf{R}\|_{F} = O_{p}(p\sqrt{\log p/n})$ 783 and $\|\hat{\mathbf{R}}_{sam} - \mathbf{R}\|_{2} = O_{p}(p\sqrt{\log p/n}).$

The result of t

$$\lambda_k(\boldsymbol{R}) - \|\hat{\boldsymbol{R}}_{sam} - \boldsymbol{R}\|_2 + \delta \le \lambda_k(\hat{\boldsymbol{R}}_{sam}) + \delta \le \lambda_k(\boldsymbol{R}) + \|\hat{\boldsymbol{R}}_{sam} - \boldsymbol{R}\|_2 + \delta,$$

for $k = 1, \dots, p$. This, together with Proposition 1, implies $\lambda_k(\hat{\mathbf{R}}_{sam}) + \delta = O_p(p)$ for $k \leq K$, and $\lambda_k(\hat{\mathbf{R}}_{sam}) + \delta = O_p(1 \lor \delta)$ for k > K.

STEP II. As n and p are sufficiently large, we can get

$$\max_{j < K} r_j = \max_{j < K} \frac{\lambda_j(\hat{\boldsymbol{R}}_{sam}) + \delta}{\lambda_{j+1}(\hat{\boldsymbol{R}}_{sam}) + \delta} \le \frac{\lambda_1(\hat{\boldsymbol{R}}_{sam}) + \delta}{\lambda_K(\hat{\boldsymbol{R}}_{sam}) + \delta} = O_p(1),$$

and

$$\max_{j>K} r_j = \max_{j>K} \frac{\lambda_j(\boldsymbol{R}_{sam}) + \delta}{\lambda_{j+1}(\boldsymbol{\hat{R}}_{sam}) + \delta} \le \frac{\lambda_{K+1}(\boldsymbol{R}_{sam}) + \delta}{\lambda_p(\boldsymbol{\hat{R}}_{sam}) + \delta} = O_p(1).$$

Then, similarly, as long as n and p are sufficiently large, we obtain

$$\frac{\lambda_K(\boldsymbol{R}_{sam}) + \delta}{\lambda_{K+1}(\boldsymbol{\hat{R}}_{sam}) + \delta} = O_p(p \wedge \delta^{-1}p),$$

which diverges in probability towards infinity. Here, $m_1 \wedge m_2 = \min\{m_1, m_2\}$ for any m_1 and m_2 . This completes the last step and the entire proof.

F RATIONALITY OF CONDITION (C2)

For illustration purpose, we set $\mu^{(4)} = 3$. We next give the concrete form of $tr(A_{l_1}A_{l_2})$ for any $l_1, l_2 = 1, \dots, K(K+1)/2$ in the following three cases.

Case I. Denote $Q_k = -\frac{\rho_{kk}(p_k-1)+1}{p_k(p_k-1)} I_{p_k} + \frac{1}{p_k(p_k-1)} \mathbf{1}_{p_k \times p_k}$. For $l_1 = k_1 + (k_1 - 1)K - \sum_{h=0}^{k_1-1} h$ and $l_2 = k_2 + (k_2 - 1)K - \sum_{h=0}^{k_2-1} h$, we obtain $\operatorname{tr}(\boldsymbol{A}_{l_1}\boldsymbol{A}_{l_2}) = \operatorname{tr}(\boldsymbol{R}_{k_2k_1}\boldsymbol{Q}_{k_1}\boldsymbol{R}_{k_1k_2}\boldsymbol{Q}_{k_2}) \to \rho_{k_1k_2}^2(1-\rho_{k_1k_1})(1-\rho_{k_2k_2}),$ for $k_1, k_2 = 1, \cdots, K$. **Case II.** Since $\operatorname{tr}(\boldsymbol{A}_{l_1}\boldsymbol{A}_{l_2}) = \operatorname{tr}(\boldsymbol{A}_{l_2}\boldsymbol{A}_{l_1})$, we only present the results of $l_1 = k + (k-1)K - \sum_{h=0}^{k-1} h$ and $l_2 = k_1 + (k_2 - 1)K - \sum_{h=0}^{k_2 - 1} h$. After algebraic calculation, we obtain $\operatorname{tr}(\boldsymbol{A}_{l_1}\boldsymbol{A}_{l_2}) = \frac{1}{2p_k, p_{k_2}} \operatorname{tr}(\boldsymbol{Q}_k \boldsymbol{R}_{kk_1} \boldsymbol{1}_{k_1 \times k_2} \boldsymbol{R}_{k_2k} + \boldsymbol{Q}_k \boldsymbol{R}_{kk_2} \boldsymbol{1}_{k_2 \times k_1} \boldsymbol{R}_{k_1k})$ $-\frac{\rho_{k_1k_2}}{2}\operatorname{tr}(\frac{1}{n_k}\boldsymbol{Q}_k\boldsymbol{R}_{kk_1}\boldsymbol{R}_{k_1k}+\frac{1}{n_k}\boldsymbol{Q}_k\boldsymbol{R}_{kk_2}\boldsymbol{R}_{k_2k})$ $\rightarrow (1 - \rho_{kk}) \{ \rho_{kk_1} \rho_{kk_2} - \frac{1}{2} \rho_{kk_1}^2 \rho_{k_1k_2} - \frac{1}{2} \rho_{kk_2}^2 \rho_{k_1k_2} \},$ for $k, k_1, k_2 = 1, \cdots, K$ and $k_1 > k_2$. **Case III.** For $l_1 = k_1 + (k_2 - 1)K - \sum_{h=0}^{k_2 - 1} h$ and $l_2 = k_3 + (k_4 - 1)K - \sum_{h=0}^{k_4 - 1} h$, we obtain $\operatorname{tr}(\boldsymbol{A}_{l_1}\boldsymbol{A}_{l_2}) = \frac{1}{4p_{k_1}p_{k_2}p_{k_3}p_{k_4}} \operatorname{tr}(\boldsymbol{R}^{1/2}(\boldsymbol{D}_{k_1k_2} + \boldsymbol{D}_{k_2k_1})\boldsymbol{R}(\boldsymbol{D}_{k_3k_4} + \boldsymbol{D}_{k_4k_3})\boldsymbol{R}^{1/2})$ $-\frac{\rho_{k_3k_4}}{4p_{k_1}p_{k_2}}\operatorname{tr}(\boldsymbol{R}^{1/2}(\boldsymbol{D}_{k_1k_2}+\boldsymbol{D}_{k_2k_1})\boldsymbol{R}(\frac{1}{p_{k_2}}\boldsymbol{E}_{k_3}+\frac{1}{p_{k_1}}\boldsymbol{E}_{k_4})\boldsymbol{R}^{1/2})$ $-\frac{\rho_{k_1k_2}}{4p_{k_2}p_{k_4}}\mathrm{tr}(\boldsymbol{R}^{1/2}(\boldsymbol{D}_{k_3k_4}+\boldsymbol{D}_{k_4k_3})\boldsymbol{R}(\frac{1}{p_{k_1}}\boldsymbol{E}_{k_1}+\frac{1}{p_{k_2}}\boldsymbol{E}_{k_2})\boldsymbol{R}^{1/2})$ $+\frac{\rho_{k_1k_2}\rho_{k_3k_4}}{4}\mathrm{tr}(\boldsymbol{R}^{1/2}(\frac{1}{n_{k_1}}\boldsymbol{E}_{k_1}+\frac{1}{n_{k_2}}\boldsymbol{E}_{k_2})\boldsymbol{R}(\frac{1}{p_{k_3}}\boldsymbol{E}_{k_3}+\frac{1}{p_{k_4}}\boldsymbol{E}_{k_4})\boldsymbol{R}^{1/2})$ $=B_1 + B_2 + B_3 + B_4,$ where $k_1, k_2, k_3, k_4 = 1, \dots, K, k_1 > k_2$, and $k_3 > k_4$. After algebraic calculation, we obtain $B_{1} = \frac{1}{4p_{k_{1}}p_{k_{2}}p_{k_{2}}p_{k_{3}}} \left\{ \operatorname{tr}(\mathbf{1}_{k_{1} \times k_{2}}\boldsymbol{R}_{k_{2}k_{3}}\mathbf{1}_{k_{3} \times k_{4}}\boldsymbol{R}_{k_{4}k_{1}}) + \operatorname{tr}(\mathbf{1}_{k_{2} \times k_{1}}\boldsymbol{R}_{k_{1}k_{3}}\mathbf{1}_{k_{3} \times k_{4}}\boldsymbol{R}_{k_{4}k_{2}}) \right\}$ $+\operatorname{tr}(\mathbf{1}_{k_1\times k_2}\boldsymbol{R}_{k_2k_4}\mathbf{1}_{k_4\times k_3}\boldsymbol{R}_{k_3k_1})+\operatorname{tr}(\mathbf{1}_{k_2\times k_1}\boldsymbol{R}_{k_1k_4}\mathbf{1}_{k_4\times k_3}\boldsymbol{R}_{k_3k_2})\Big\}$ $\to \frac{1}{2}(\rho_{k_2k_3}\rho_{k_1k_4} + \rho_{k_1k_3}\rho_{k_2k_4}).$ Analogously, we obtain $B_2 = -\frac{\rho_{k_3k_4}}{4p_{k_1}p_{k_2}} \Big\{ \operatorname{tr}(\frac{1}{p_{k_2}} \mathbf{1}_{k_1 \times k_2} \mathbf{R}_{k_2k_3} \mathbf{R}_{k_3k_1}) + \operatorname{tr}(\frac{1}{p_{k_2}} \mathbf{1}_{k_1 \times k_2} \mathbf{R}_{k_2k_4} \mathbf{R}_{k_4k_1}) \Big\}$ $+\operatorname{tr}(\frac{1}{n_{k}}\mathbf{1}_{k_{2}\times k_{1}}\boldsymbol{R}_{k_{1}k_{3}}\boldsymbol{R}_{k_{3}k_{2}})+\operatorname{tr}(\frac{1}{n_{k}}\mathbf{1}_{k_{2}\times k_{1}}\boldsymbol{R}_{k_{1}k_{4}}\boldsymbol{R}_{k_{4}k_{2}})\Big\}$ $\to -\frac{\rho_{k_3k_4}}{2}(\rho_{k_2k_3}\rho_{k_1k_3}+\rho_{k_2k_4}\rho_{k_1k_4}),$ and $B_3 \to -\frac{\rho_{k_1k_2}}{2}(\rho_{k_1k_3}\rho_{k_1k_4} + \rho_{k_2k_4}\rho_{k_2k_3})$. For B_4 , we have $B_4 = \frac{\rho_{k_1k_2}\rho_{k_3k_4}}{4} \Big\{ \operatorname{tr}(\frac{1}{p_{k_1}p_{k_3}} \, \boldsymbol{R}_{k_1k_3} \boldsymbol{R}_{k_3k_1}) + \operatorname{tr}(\frac{1}{p_{k_2}p_{k_3}} \, \boldsymbol{R}_{k_2k_3} \boldsymbol{R}_{k_3k_2}) \Big\}$ + tr $\left(\frac{1}{n_{k_1}n_{k_1}}\boldsymbol{R}_{k_1k_4}\boldsymbol{R}_{k_4k_1}\right)$ + tr $\left(\frac{1}{n_{k_2}n_{k_1}}\boldsymbol{R}_{k_2k_4}\boldsymbol{R}_{k_4k_2}\right)$ $\rightarrow \frac{\rho_{k_1k_2}\rho_{k_3k_4}}{4} (\rho_{k_1k_3}^2 + \rho_{k_2k_3}^2 + \rho_{k_1k_4}^2 + \rho_{k_2k_4}^2).$ Combining the above results, we immediately know that $B_1 + B_2 + B_3 + B_4$ is convergent. Since every elements in $[tr(A_{l_1}A_{l_2})]_{K(K+1)/2 \times K(K+1)/2}$ are convergent and $K < \infty$, $[tr(A_{l_1}A_{l_2})]$ is also convergent, which implies that our Condition (C2) is sensible.

⁸⁶⁴ G Additional simulation results

In this section, we present two different types of additional simulation studies. First, the simulation settings are the same as those in Section 4, except that the elements of ϵ_i are i.i.d. from the mixture normal distribution $0.9\mathcal{N}(0,5/9) + 0.1\mathcal{N}(0,5)$ and standardized exponential distribution. We find that the results yield similar patterns to those in Tables 1 and 2, which demonstrates the robustness of the BCME and RR methods, shown in Tables 4–7. Second, we demonstrate the results of the BCME estimations with given K when the group memberships are unknown and ϵ_i follows a multivariate normal distribution $\mathcal{N}_p(\mathbf{0}_p, \mathbf{I}_p)$ in Table 8, which verifies the corollary 1. In addition, the similar results are yielded when ϵ_i follows non-normal distributions, but they are not reported here to save space.

Table 4: Comparison of the BCME estimators $(\hat{R}, \hat{\Sigma})$, TP estimators $(\hat{R}_{TP}, \hat{\Sigma}_{TP})$, TP estimators with variable ordering $(\hat{R}_{TP}^{o}, \hat{\Sigma}_{TP}^{o})$, and QMLE estimators $(\hat{R}_{QMLE}, \hat{\Sigma}_{QMLE})$ of the blockwise correlation matrix and corresponding covariance matrix when the elements of ϵ_i follow a mixture normal distribution $0.9\mathcal{N}(0, 5/9) + 0.1\mathcal{N}(0, 5)$. AS and AF represent the averages of the spectralerror and Frobenius-error, respectively. SS and SF denote the standard deviations of the spectralerror and Frobenius-error, respectively. Pro. (%) is the proportion of positive semi-definiteness. Time (in seconds) is the average execution time.

	(K, p)			(2,150)			(4,420)				(8,840)
n	Measures	$\hat{\Sigma}(\hat{R})$	$\hat{\Sigma}^{o}_{TP} \left(\hat{R}^{o}_{TP} \right)$	$\hat{\Sigma}_{TP} \left(\hat{R}_{TP} ight)$	$\hat{\Sigma}_{QMLE} (\hat{R}_{QMLE})$	$\hat{\Sigma}(\hat{R})$	$\hat{\Sigma}^{o}_{TP} \left(\hat{R}^{o}_{TP} \right)$	$\hat{\Sigma}_{TP} \left(\hat{R}_{TP} \right)$	$\hat{\Sigma}_{QMLE} (\hat{R}_{QMLE})$	$\hat{\Sigma}(\hat{R})$	$\hat{\Sigma}(\hat{R})$
	AS	0.021 (0.024)	0.021 (0.024)	0.036 (0.108)	0.029 (0.055)	0.016 (0.026)	0.016 (0.026)	0.027 (0.086)	0.041 (0.123)	0.014 (0.025)	0.012 (0.022)
	SS	0.008 (0.014)	0.008 (0.014)	0.002 (0.000)	0.028 (0.091)	0.006 (0.011)	0.006 (0.011)	0.002 (0.000)	0.011 (0.039)	0.005 (0.010)	0.004 (0.007)
200	AF	0.023 (0.026)	0.023 (0.026)	0.042 (0.112)	0.032 (0.058)	0.018 (0.030)	0.018 (0.030)	0.041 (0.120)	0.052 (0.157)	0.017 (0.031)	0.015 (0.029)
200	SF	0.007 (0.014)	0.007 (0.014)	0.004 (0.004)	0.030 (0.093)	0.005 (0.011)	0.005 (0.011)	0.002 (0.005)	0.013 (0.047)	0.004 (0.009)	0.003 (0.007)
	Pro.	100.0	100.0	100.0	93.0	100.0	100.0	100.0	10.4	100.0	100.0
	Time	0.003	12.899	20.123	31.161	0.023	2681.941	2742.259	1585.685	0.031	0.092
	AS	0.013 (0.015)	0.013 (0.015)	0.035 (0.108)	0.019 (0.035)	0.010 (0.016)	0.010 (0.016)	0.026 (0.086)	0.040 (0.125)	0.009 (0.015)	0.008 (0.014)
	SS	0.005 (0.009)	0.005 (0.009)	0.003 (0.007)	0.024 (0.076)	0.004 (0.007)	0.004 (0.007)	0.001 (0.000)	0.005 (0.014)	0.003 (0.006)	0.002 (0.005)
500	AF	0.014 (0.017)	0.014 (0.017)	0.038 (0.110)	0.020 (0.037)	0.012 (0.019)	0.012 (0.019)	0.039 (0.118)	0.053 (0.163)	0.011 (0.019)	0.010 (0.019)
500	SF	0.005 (0.010)	0.005 (0.010)	0.003 (0.008)	0.024 (0.077)	0.003 (0.007)	0.003 (0.007)	0.001 (0.003)	0.005 (0.015)	0.002 (0.006)	0.002 (0.004)
	Pro.	100.0	100.0	100.0	95.0	100.0	100.0	100.0	0.7	100.0	100.0
	Time	0.004	13.333	21.319	75.666	0.028	2781.171	2896.381	4001.367	0.035	0.102
	AS	0.009 (0.011)	0.009 (0.011)	0.035 (0.108)	0.012 (0.019)	0.007 (0.011)	0.007 (0.011)	0.026 (0.086)	0.040 (0.125)	0.006 (0.011)	0.005 (0.010)
	SS	0.004 (0.006)	0.004 (0.006)	0.000 (0.000)	0.016 (0.051)	0.002 (0.005)	0.003 (0.005)	0.000 (0.000)	0.004 (0.014)	0.002 (0.004)	0.002 (0.004)
1000	AF	0.010 (0.012)	0.010 (0.012)	0.037 (0.109)	0.013 (0.020)	0.008 (0.013)	0.008 (0.013)	0.038 (0.118)	0.052 (0.163)	0.008 (0.014)	0.007 (0.013)
1000	SF	0.003 (0.007)	0.003 (0.007)	0.001 (0.001)	0.017 (0.052)	0.002 (0.005)	0.002 (0.005)	0.001 (0.003)	0.005 (0.016)	0.002 (0.004)	0.001 (0.003)
	Pro.	100.0	100.0	100.0	97.5	100.0	100.0	100.0	0.4	100.0	100.0
	Time	0.006	13.797	21.965	142.390	0.037	2957.455	3086.742	8583.513	0.043	0.119

Table 5: Comparison of the BCME estimators $(\hat{R}, \hat{\Sigma})$, TP estimators $(\hat{R}_{TP}, \hat{\Sigma}_{TP})$, TP estimators with variable ordering $(\hat{R}_{TP}^o, \hat{\Sigma}_{TP}^o)$, and QMLE estimators $(\hat{R}_{QMLE}, \hat{\Sigma}_{QMLE})$ of the blockwise correlation matrix and corresponding covariance matrix when the elements of ϵ_i follow a standardized exponential distribution. AS and AF represent the averages of the spectral-error and Frobeniuserror, respectively. SS and SF denote the standard deviations of the spectral-error and Frobeniuserror, respectively. Pro. (%) is the proportion of positive semi-definiteness. Time (in seconds) is the average execution time.

((K, p)		((2,150)		(4,420)				(6,570)	(8,840)
n	Measures	$\hat{\Sigma}(\hat{R})$	$\hat{\Sigma}^{o}_{TP} (\hat{R}^{o}_{TP})$	$\hat{\Sigma}_{TP} \left(\hat{R}_{TP} \right)$	$\hat{\Sigma}_{QMLE} (\hat{R}_{QMLE})$	$\hat{\Sigma}(\hat{R})$	$\hat{\Sigma}^{o}_{TP}(\hat{R}^{o}_{TP})$	$\hat{\Sigma}_{TP} \left(\hat{R}_{TP} \right)$	$\hat{\Sigma}_{QMLE} (\hat{R}_{QMLE})$	$\hat{\Sigma}(\hat{R})$	$\hat{\Sigma}(\hat{R})$
	AS	0.021 (0.024)	0.021 (0.024)	0.036 (0.108)	0.029 (0.054)	0.016 (0.025)	0.016 (0.025)	0.027 (0.086)	0.041 (0.125)	0.015 (0.025)	0.011 (0.022)
	SS	0.009 (0.014)	0.009 (0.014)	0.002 (0.000)	0.028 (0.091)	0.006 (0.012)	0.006 (0.012)	0.002 (0.000)	0.015 (0.048)	0.005 (0.010)	0.003 (0.007)
200	AF	0.023 (0.026)	0.023 (0.026)	0.042 (0.112)	0.031 (0.057)	0.018 (0.030)	0.018 (0.030)	0.041 (0.120)	0.053 (0.159)	0.018 (0.031)	0.014 (0.029)
200	SF	0.008 (0.015)	0.008 (0.015)	0.005 (0.004)	0.029 (0.093)	0.005 (0.012)	0.005 (0.012)	0.002 (0.005)	0.016 (0.055)	0.004 (0.009)	0.003 (0.007)
	Pro.	100.0	100.0	100.0	93.7	100.0	100.0	100.0	9.4	100.0	100.0
	Time	0.003	12.870	20.194	31.298	0.024	2717.192	2764.434	1631.160	0.031	0.091
	AS	0.013 (0.015)	0.013 (0.015)	0.035 (0.108)	0.018 (0.031)	0.010 (0.016)	0.010 (0.017)	0.026 (0.086)	0.040 (0.126)	0.010 (0.016)	0.007 (0.014)
	SS	0.005 (0.009)	0.005 (0.009)	0.000 (0.000)	0.022 (0.070)	0.004 (0.008)	0.004 (0.008)	0.001 (0.000)	0.009 (0.029)	0.003 (0.007)	0.002 (0.005)
500	AF	0.014 (0.016)	0.014 (0.016)	0.038 (0.110)	0.019 (0.033)	0.012 (0.019)	0.012 (0.019)	0.039 (0.118)	0.053 (0.164)	0.011 (0.020)	0.009 (0.019)
500	SF	0.005 (0.009)	0.005 (0.009)	0.002 (0.002)	0.023 (0.072)	0.003 (0.007)	0.003 (0.007)	0.001 (0.003)	0.010 (0.031)	0.003 (0.006)	0.002 (0.004)
	Pro.	100.0	100.0	100.0	95.6	100.0	100.0	100.0	2.0	100.0	100.0
	Time	0.004	13.153	21.025	74.586	0.028	2787.388	2875.737	4011.246	0.035	0.100
	AS	0.009 (0.011)	0.009 (0.011)	0.035 (0.108)	0.013 (0.021)	0.007 (0.011)	0.007 (0.012)	0.026 (0.086)	0.040 (0.125)	0.007 (0.011)	0.005 (0.010)
	SS	0.004 (0.007)	0.004 (0.007)	0.002 (0.007)	0.018 (0.055)	0.002 (0.005)	0.002 (0.005)	0.000 (0.000)	0.007 (0.023)	0.002 (0.004)	0.002 (0.003)
1000	AF	0.010 (0.012)	0.010 (0.012)	0.037 (0.109)	0.014 (0.022)	0.008 (0.013)	0.008 (0.014)	0.038 (0.118)	0.052 (0.163)	0.008 (0.014)	0.006 (0.013)
1000	SF	0.004 (0.007)	0.004 (0.007)	0.003 (0.008)	0.018 (0.056)	0.002 (0.005)	0.002 (0.005)	0.001 (0.003)	0.008 (0.025)	0.002 (0.004)	0.001 (0.003)
	Pro.	100.0	100.0	100.0	97.4	100.0	100.0	100.0	0.6	100.0	100.0
	Time	0.006	13.638	21.743	142.581	0.037	2984.105	3084.462	8654.350	0.043	0.118

Table 6: Results of block number selection when the elements of ϵ_i follow a mixture normal distribution $0.9\mathcal{N}(0,5/9) + 0.1\mathcal{N}(0,5)$. CT is the average percentage of the correct fit. Mean is the mean of the estimated number of blocks.

	n = 200		<i>n</i> =	= 500	n = 1000		
	CT Mean		CT Mean		СТ	Mean	
K = 2	1.00	2.00	1.00	2.00	1.00	2.00	
K = 3	1.00	3.00	1.00	3.00	1.00	3.00	
K = 4	0.93	3.78	1.00	4.00	1.00	4.00	
K = 5	0.59	3.36	1.00	5.00	1.00	5.00	
K = 6	0.13	1.67	0.99	5.94	1.00	6.00	
K = 7	0.03	1.19	0.89	6.36	1.00	7.00	
K = 8	0.03	1.22	0.94	7.55	1.00	8.00	

Table 7: Results of block number selection when the elements of ϵ_i follow a standardized exponential distribution. CT is the average percentage of the correct fit. Mean is the mean of the estimated number of blocks.

	<i>n</i> =	= 200	<i>n</i> =	= 500	n = 1000		
	CT	Mean	CT	Mean	CT	Mean	
K = 2	1.00	2.00	1.00	2.00	1.00	2.00	
K = 3	1.00	3.00	1.00	3.00	1.00	3.00	
K = 4	0.90	3.71	1.00	4.00	1.00	4.00	
K = 5	0.58	3.33	1.00	5.00	1.00	5.00	
K = 6	0.13	1.64	0.99	5.94	1.00	6.00	
K = 7	0.03	1.16	0.90	6.41	1.00	7.00	
K = 8	0.03	1.22	0.93	7.52	1.00	8.00	

Table 8: The performance of the BCME estimators $(\hat{R}_{\hat{\Theta}}, \hat{\Sigma}_{\hat{\Theta}})$ of the blockwise correlation matrix and corresponding covariance matrix with given K when the group memberships are unknown and ϵ_i follows a multivariate normal distribution $\mathcal{N}_p(\mathbf{0}_p, I_p)$. AS and AF represent the averages of the spectral-error and Frobenius-error, respectively. SS and SF denote the standard deviations of the spectral-error and Frobenius-error, respectively. Pro. (%) is the proportion of positive semidefiniteness. Time (in seconds) is the average execution time.

958										
	((K, p)	(2,1	50)	(4,4	420)	(6,5	570)	(8,8	340)
959	n	Measures	$\hat{\Sigma}(\hat{R})$	$\hat{\Sigma}_{\hat{\boldsymbol{\Theta}}}\left(\hat{R}_{\hat{\boldsymbol{\Theta}}} ight)$	$\hat{\Sigma}(\hat{R})$	$\hat{\Sigma}_{\hat{\boldsymbol{\Theta}}}\left(\hat{R}_{\hat{\boldsymbol{\Theta}}} ight)$	$\hat{\mathbf{\Sigma}}(\hat{R})$	$\hat{\Sigma}_{\hat{\boldsymbol{\Theta}}}\left(\hat{R}_{\hat{\boldsymbol{\Theta}}} ight)$	$\hat{\mathbf{\Sigma}}(\hat{R})$	$\hat{\Sigma}_{\hat{\boldsymbol{\Theta}}}\left(\hat{R}_{\hat{\boldsymbol{\Theta}}} ight)$
060		AS	0.019 (0.023)	0.019 (0.027)	0.014 (0.025)	0.017 (0.031)	0.014 (0.025)	0.016 (0.031)	0.010 (0.022)	0.012 (0.030)
500		SS	0.009 (0.013)	0.009 (0.017)	0.006 (0.012)	0.007 (0.018)	0.006 (0.010)	0.006 (0.015)	0.004 (0.007)	0.004 (0.012)
961	200	AF	0.020 (0.025)	0.021 (0.031)	0.016 (0.030)	0.019 (0.036)	0.016 (0.031)	0.019 (0.037)	0.013 (0.029)	0.015 (0.038)
	200	SF	0.008 (0.014)	0.009 (0.018)	0.005 (0.012)	0.007 (0.019)	0.005 (0.010)	0.006 (0.015)	0.003 (0.007)	0.004 (0.013)
962		Pro.	100	100	100	100	100	100	100	100
963		Time	0.004	0.002	0.023	0.008	0.031	0.016	0.091	0.046
505		AS	0.012 (0.014)	0.013 (0.017)	0.009 (0.016)	0.011 (0.021)	0.009 (0.016)	0.009 (0.021)	0.006 (0.014)	0.008 (0.021)
964		SS	0.006 (0.009)	0.006 (0.010)	0.004 (0.007)	0.006 (0.018)	0.003 (0.006)	0.004 (0.014)	0.002 (0.005)	0.004 (0.012)
	500	AF	0.013 (0.016)	0.015 (0.020)	0.010 (0.019)	0.012 (0.024)	0.010 (0.020)	0.011 (0.025)	0.008 (0.019)	0.010 (0.025)
965	500	SF	0.005 (0.009)	0.006 (0.012)	0.003 (0.007)	0.006 (0.018	0.003 (0.006)	0.004 (0.014)	0.002 (0.004)	0.004 (0.012)
066		Pro.	100	100	100	100	100	100	100	100
900		Time	0.004	0.002	0.028	0.009	0.034	0.018	0.100	0.050
967		AS	0.008 (0.010)	0.009 (0.011)	0.006 (0.011)	0.008 (0.018)	0.006 (0.011)	0.007 (0.014)	0.005 (0.010)	0.006 (0.014)
		SS	0.004 (0.006)	0.004 (0.007)	0.003 (0.005)	0.006 (0.019)	0.002 (0.004)	0.004 (0.012)	0.002 (0.003)	0.003 (0.011)
968	1000	AF	0.009 (0.011)	0.009 (0.013)	0.007 (0.013)	0.009 (0.020)	0.007 (0.014)	0.008 (0.017)	0.006 (0.013)	0.007 (0.018)
060		SF	0.004 (0.007)	0.004 (0.008)	0.002 (0.005)	0.006 (0.019)	0.002 (0.004)	0.004 (0.012)	0.001 (0.003)	0.003 (0.011)
505		Pro.	100	100	100	100	100	100	100	100
970		Time	0.006	0.002	0.037	0.012	0.042	0.022	0.117	0.057