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Abstract

A common approach for assessing whether generative models develop world mod-
els is by studying the behavior of fixed models. However, many of the benefits of
having a world model arise when transferring a model to new tasks (e.g. few-shot
learning). In this paper, we ask: what does it mean to test if a learner has a world
model embodied in it? We consider a simple definition of a true world model: a
mapping from inputs to states. We introduce a procedure that assesses a learner’s
world model by measuring its inductive bias when transferring to new tasks. This
inductive bias can be measured in two distinct dimensions: does a learner ex-
trapolate to new data by building functions of state, and to what degree do these
functions capture the full state? We use this procedure to study the degree to which
pretrained models extrapolate to new tasks based on state. We find that models
that perform very well on next-token prediction can extrapolate to new tasks with
very little inductive bias toward state. We conclude by assessing the possibility
that these models learn bundles of heuristics that enable them to perform well on
next-token prediction despite preserving little of state.

1 Introduction

A growing body of research investigates whether large language models (LLMs) and other foundation
models form internal representations of the data they’re trained on (Abdou et al., 2021; Li et al., 2023).
Methods that uncover world models from sequential data would be valuable in many settings: they
could be used to uncover scientific breakthroughs in domains such as protein generation, genetics, and
chemistry (Chowdhury et al., 2022; Benegas et al., 2023; Jablonka et al., 2024; Boiko et al., 2023).

One of the biggest advantages of a model with an implicit world model is effective few-shot learning;
with a correct world model, the same model can be transferred to different but related tasks with
minimal modifications. However, much of the literature studying world models has focused on
assessing the outputs of a fixed model (Toshniwal et al., 2022; Vafa et al., 2024). A true world model
should manifest not just in making valid predictions, but in how a system learns and adapts to new
situations using a generalizable representation of the domain. This is particularly important because
many of the purported benefits of world models—like few-shot learning and transfer—specifically
arise from how models learn new tasks. Here, rather than studying a fixed model, we ask: what
does it mean to test if a learner has a world model embodied in it?

We consider a simple definition of a world model: a real-world representation of inputs in a
low-dimensional state space. Meanwhile, a learner is any procedure that takes a dataset and returns
a model that relates inputs to outputs. We then propose a procedure to test if a learner has a given
world model: when a learner is applied to a new dataset, to what degree does it learn functions of
this low-dimensional representation? For a learner to rely on a given world model, every dataset it is
applied to should only be a function of this low-dimensional representation of reality. This definition
is not just abstract; a world model in language could correspond to underlying concepts, so a learner
that has the correct concepts should have an inductive bias to learn new functions of these concepts.

We introduce two related definitions that capture properties for whether a learner uses the world
model. The first definition is about whether a learner respects state. This corresponds to whether
a learner’s predictions of points across new datasets obey state structure. For example, if the state
space corresponds to a board in the game Othello, the learner respects state if all sequences that
map to the same board have the same prediction within any given dataset. However, respecting state
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doesn’t convey the full story; for example, a model can make predictions using very coarse functions
of state, such as how many pieces a particular Othello board has. To provide a fuller picture, we also
provide a definition of what it means for a learner to fully reconstruct state. Learners that use coarse
functions of state will not satisfy this second definition.

We present a computationally efficient method for estimating these quantities. Our method involves
repeatedly applying a learner to small amounts of data on random outputs that obey state and
studying how it extrapolates. We then build a model that predicts these extrapolations as a function
of state. We quantify two properties to measure the learner’s world model: first, the learner’s
inductive bias toward state is how well the extrapolations can be predicted from state. Next, the
degree to which the learner recovers full state is given by how predictable original states are from
a shared representation that is predictive of extrapolations.

We use this procedure to study the extent to which pretrained models use world models when
fine-tuning. We consider several applications where the true world model is known. In the first
application, we study a setting where orbital data obeys the world model of Newtonian mechanics.
We pretrain a transformer on trajectories of planetary motion and ask: can the model transfer to other
tasks that rely on Newtonian mechanics? We show that while the model appears to obey Newtonian
mechanics for the task it’s trained on, our metrics reveal poor inductive bias. We show that instead
of recovering a compact world model, the learner is relying on piecemeal heuristics; while Newton’s
law of gravity can be recovered when the model is fine-tuned on narrow kinds of transfer data, the
model implies nonsensical laws when fine-tuned on more general sequences.

We also perform analogous exercises in two other areas where the true world model is known:
lattice problems (Liu et al., 2022; Vafa et al., 2024) and Othello games (Li et al., 2023; Nanda et al.,
2023b; Hazineh et al., 2023). On lattices, we find that sequence models have strong inductive biases
toward true state. On Othello, we find smaller inductive biases toward state. By way of calibration,
we also consider oracle models that are directly pretrained on state, in order to calibrate the degree
to which a model’s extrapolative properties are limited by architecture. These oracle benchmarks
show that while simple recurrent models like RNNs (Elman, 1990) and LSTMs (Hochreiter,
1997) have about as strong an inductive bias as their respective oracles, there is a large gap for
transformer (Vaswani et al., 2017) and Mamba (Gu & Dao, 2023; Dao & Gu, 2024) models. We
next demonstrate the implications of these metrics; our inductive biases have a strong correlation
with transfer performance across tasks.

Our results show that models, despite performing well on next-token prediction, can have poor
transfer properties and low inductive bias towards state. We conclude by assessing the possibility
that these models — instead of learning compact representations of world models — learn bundles of
heuristics (Karvonen et al., 2024) that enable them to perform well on next token prediction despite
having poor transfer properties for new problems.

2 Framework

In this section, we lay out our framework for defining whether an algorithm learns from data using
an underlying world model. Let x ∈ X denote some input and y ∈ Y denote some output. In
our framework, the underlying world model is summarized by some state space Φ and a mapping
ϕ : X → Φ that associates each input with some state ϕ(x) ∈ Φ. An example is any pair (x, y) and a
dataset D = {(x1, y1), . . . , (xn, yn)} is any finite collection of examples. A dataset D is consistent
with the underlying world model if for any pair (x, y), (x′, y′) ∈ D with ϕ(x) = ϕ(x′) then y = y′.
When evaluating a learner against a world model, we assume the learner is applied to datasets that
are consistent with the world model. Let DΦ denote the collection of all consistent datasets.

A learning algorithm, when given a datasetD, returns a prediction function m̂(·;D) that relates inputs
x to outputs y. We next state two definitions that capture properties related to whether a learning
algorithm uses a world modelϕ. LetP (·) be some chosen distribution over the inputs with x ∼ P (·).
Definition 2.1. The learning algorithm respects state Φ if for all D ∈ DΦ there exists some function
f(·;D) : Φ → Y such that m̂(x;D) = f(ϕ(x);D) for all x ∈ X with P (x) > 0.

In other words, the learning algorithm respects state if its learned prediction function returns the
same predictions on inputs mapped to the same state by the world model. While this captures an
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intuitive property, it is nonetheless a weak requirement. As an extreme case, consider a learning
algorithm that returns a constant prediction function when applied to any dataset; this trivial learning
algorithm mechanically respects state. To distinguish such cases, we introduce a second property.
Definition 2.2. Consider a learning algorithm that respects state Φ. The learning algorithm fully
reconstructs state if there exists no non-injective r : Φ → Φ such that m̂(x;D) = f(r(ϕ(x));D) for
all x ∈ X with P (x) > 0 and D ∈ DΦ.

The learning algorithm fully reconstructs state if its predictions cannot be expressed by coarsening the
state space of the underlying world model. If not, the learning algorithm partially reconstructs state.

2.1 Measuring Inductive Bias towards State and Partial Reconstruction of State

Definitions 2.1-2.2 are binary properties of a learning algorithm. We next introduce evaluation met-
rics to measure how far a learning algorithm is from respecting state and fully reconstructing state. For
both metrics, it is useful to introduce the best approximation of a prediction model based on state as

s∗(ϕ(x);D) := arg min
s : Φ→Y

Ex∼P (·) [ℓ(m̂(x;D), s(ϕ(x))] . (1)

We can decompose the returned prediction function as

m̂(x;D) = s∗(ϕ(x);D) + ϵ(x;D) (2)

for ϵ(x;D) = m̂(x;D)− s∗(ϕ(x);D). The function s∗(ϕ(x);D) can be thought of as the function
of state that is closest to the learned model’s predictions, and it will be useful for assessing how
close a learner is to respecting and fully reconstructing state.

First, Definition 2.1 implies that for any dataset D ∈ DΦ, ℓ̄(D) :=
Ex∼P (·)[ℓ(m̂(x;D), s∗(ϕ(x);D))] = 0. Consequently, for any chosen distributionQ(·) over datasets
D ∈ DΦ, it follows that if the learning algorithm respects state, then ED∼Q(·)[ℓ̄(D)] = 0. As a quan-
titative measure, we therefore measure the learning algorithm’s inductive bias towards state (IB) as

IB(Q) = ED∼Q(·)[−ℓ̄(D)]. (3)

The preceding discussion implies if the learning algorithm respects state, then IB(Q) = 0 for any
choice Q(·) over datasets D ∈ DΦ. Larger values of IB(Q) imply that, on average over datasets
consistent with the state representation, the learning algorithm returns prediction functions that can
be more well-approximated by state.

Second, Definition 2.2 implies that if a learning algorithm respects state, there ex-
ists a non-injective function r(ϕ(x)) such that, for any D ∈ DΦ, ℓ∗(r;D) :=
mins̃ Ex∼P (·)[ℓ(s

∗(ϕ(x);D), s̃(r(ϕ(x)))] = 0. The best approximating function of state
s∗(ϕ(x);D) can be compressed and represented in terms of r(ϕ(x)). Given any representation
r(·) of state, we define its reconstruction error as ϵ(r, ϕ) = Ex∼P (·)[e(r(ϕ(x)), ϕ(x))] for some
chosen reconstruction loss function e(·, ·). Therefore if the learning algorithm does not satisfy Def-
inition 2.2, then there exists some representation r(·) of state such that ϵ(r, ϕ) > 0 and ℓ∗(r;Q) :=
ED∼Q(·)[ℓ

∗(r;D)] = 0. We therefore measure the learning algorithm’s state recovery (SR) as

SR(Q) = min
r : ℓ∗(r;Q)=0

−e(r, ϕ). (4)

The preceding discussion implies that if the learning algorithm fully reconstructs state, then SR(Q) =
0 for any distributionQ over datasetsD ∈ DΦ. Larger values of SR(Q) imply that the best approxima-
tion of the learning algorithm based on state uses more of the underlying stateϕ i.e., r(ϕ(x)) ≈ ϕ(x).

2.2 Implementation via Transfer Learning

In this paper, we study the world model properties of transfer learners. Here, a learner is defined by the
model architecture, initialization, and optimization procedure. For example, GPT-2 (Radford et al.,
2019) can be a transfer learner with the transformer architecture initialized at GPT-2’s weights and op-
timized with Adam (Kingma & Ba, 2014). The key inputs into calculating our evaluation metrics are:
(i) a loss function ℓ(·) defined over the outputs; (ii) a reconstruction loss function e(·) defined over the
states; (iii) a sampling distribution over inputsx ∼ P (·); and (iv) a sampling distribution over datasets
consistent with the state representation D ∼ Q(·). Given these inputs, we take the following steps.
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Construct synthetic datasets consistent with the state representation. Given inputs {x1, . . . , xn},
we sample xk for k = 1, . . . ,K uniformly at random. For each randomly sampled input xk, we
assign an arbitrary output yk in which we enforce that the outputs are consistent with the underlying
state representation. In practice, we consider yk ∼ N (0, 1) and yk ∼ Bern(0.5). Applying this once
produces a dataset D ∈ DΦ, and we repeat this sampling J times to produce datasets D1, . . . , DJ .
This sampling procedure implicitly defines a sampling distribution Q(·) over consistent datasets.

Apply the learning algorithm on each synthetic dataset. For each dataset D1, . . . , DJ , we
apply the learning algorithm to produce the models m̂(·;Dj) for j = 1, . . . , J . We then calculate
the associated prediction functions across inputs xi (sampled from the collection {x1, . . . , xn}) to
produce m̂(xi;Dj). This results in J datasets of the form {(xi, m̂(xi;Dj)}.

Build multi-task learner to model extrapolations. Using the datasets from the previous step, we
train a multi-task learner that takes as input the true state representation ϕ(x) associated with each
input and predicts the model extrapolations m̂(x;Dj) for each context j = 1, . . . , J . By building
a representation that’s predictive of all m̂(x;Dj)’s, the multi-task learner implicitly maps the state
representation ϕ(x) to a representation r(ϕ(x)) that can be used to model all prediction functions
simultaneously. In other words, it simultaneously learns s̃j(r(ϕ(x))) for each context j = 1, . . . , J .

Calculate inductive bias towards state. If the original learner has an inductive bias to-
ward state, the multitask learner should be able to predict its extrapolations from the true
state. Given the trained multi-task learner, we calculate its average loss on a held-out sample
ÎBj = 1

m

∑m
l=1 ℓ(m̂(xm;Dj), s̃j(r(ϕ(xm))) for each context j = 1, . . . , J . We then calculate the

inductive bias towards state by averaging across contexts ÎB(Q) = 1
J

∑J
j=1 ÎBj . To make this esti-

mate more interpretable, in practice, we construct an uninformative benchmark b to predict m̂(·;Dj)

in each context and report 1 − ÎB(Q)/ÎBb for ÎBb = 1
mJ

∑J
j=1

∑m
l=1 ℓ(m̂(xm;Dj), b(xm)). This

normalizes our estimate of the inductive bias towards state into the unit interval, so that values closer
to 1 indicate a higher inductive bias towards state. For example, if ℓ(·) is squared loss, our benchmark
is the baseline variance and the normalized metric is R2.

Calculate state recovery. For the multi-task learner, state recovery corresponds to measur-
ing how much the learned r(ϕ(x)) compresses the state; is the original learner using all of
state to extrapolate, or just parts of it? To measure this, we predict the state ϕ(x) from
the learned representation r(ϕ(x)); denote the resulting predictions as ϕ̂. We then calculate
ŜR(Q) = 1

m

∑m
l=1 e(ϕ̂(x), ϕ(x)). As before, we create an uninformative benchmark c and re-

port 1− ŜR(Q)/ŜRc for ŜRc =
1
m

∑m
l=1 e(c(x), ϕ(x)). This again normalizes our estimate of state

recovery into the unit interval, so that values closer to 0 imply that the learning algorithm uses more
of the underlying state.

This procedure provides two metrics for how much a learner relies on state: inductive bias ÎB and
state recovery ŜR. These metrics depend on the implementation of the multitask learner. We consider
different multitask learners for the different datasets; for example, for Othello, the multitask learner
is a convolutional neural network that’s a function of the game board. In practice, these measures
may be sensitive to the implementation of the multitask learner. However, we use the same multitask
learner for all different models for the same task, ensuring proper comparison. Further, we consider
different ablations of the multitask learner in Appendix C — along with a nonparametric approach
based on correlation matrices in Appendix G, and reach similar conclusions across methods.

3 Orbital Mechanics

Here, we illustrate these metrics on a simple example where learners are applied to data that obey
Newtonian mechanics. Specifically, we simulate trajectories of a planet in motion and train a
transformer to predict the next location of the planet. We then ask: does fine-tuning a pretrained
model to new tasks demonstrate an inductive bias toward the states dictated by Newtonian mechanics?
Despite the model performing well on next-token prediction, our metrics reveal a low inductive bias
toward state. We demonstrate that the model has recovered piecemeal heuristics rather than a compact
world model; while it can recover Newton’s law of gravity for narrow slices of the data, it forms
other laws for other types of sequences.
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Recovered law 
(fixed sun position in data)

True law

Recovered law 
(varied sun position in data)

Figure 1: In the left and middle, examples of a transformer’s generated orbits compared to true orbits. The
transformer is given the beginning of an orbit and generates 100 timesteps out. On the right is Newton’s law of
gravitation along with gravitational laws implied by the model fine-tuned to different slices of force data (given
via symbolic regression). While the model exactly recovers Newton’s law for narrow slices of fine-tuning data,
it struggles for the general dataset.

Data and pretraining. We begin by simulating a dataset of sequences where each sequence
describes a planet in motion around a sun, i.e. a two-body problem. To do this, we randomly sample
initial conditions (e.g. the masses and positions of each planet and their initial relative velocity)
and simulate orbits according to Newtonian mechanics. To convert orbits into sequences, we record
the x and y coordinates of the lighter planet for 200 time-steps with 5-minute intervals, resulting in
sequences of length 400 (e.g. x1, y1, x2, y2, . . . , x200, y200). We generate 1M such sequences for
training (i.e. 400M training tokens) and 10,000 sequences for a held-out set. We train a 12-layer
transformer decoder (Vaswani et al., 2017) to predict the next token of each sequence in the training
set. We use a modified transformer to model continuous data; see Appendix A for more details.

We evaluate the model’s predictions on held-out data. The held-out R2 is above 0.99, indicating
very good prediction. The model outperforms a baseline model that always predicts the most recent
position, especially as it’s forced to generate more of the orbit (Figure 5). The left two panels of
Figure 1 shows examples of orbits; given only a few data points for the beginning of the orbit, the
model can complete the orbit with high accuracy.

Is the model a physics learner? The pretrained model’s predictions appear to obey fundamental laws
of physics. Here we ask: does the model use laws of physics as an inductive bias when transferring
to other problems? To test this, we note that each observation in a sequence of orbits is governed by
an 8-dimensional state vector consisting of the masses, relative velocities, and relative positions of
each planet. Given the current state of a trajectory, the next position of an orbit is deterministic. If a
learner’s inductive bias depends on the laws of orbital physics, it must be extrapolating based on state.

We use the metrics described in Section 2 to assess the model’s inductive biases. We implement these
metrics by simulating small datasets with the same inputs as the pretraining data but different outputs;
instead of training the model to predict next-token, we fine-tune it to predict random Gaussian noise
on each dataset. The inductive bias (IB) test assesses whether a model’s extrapolations across datasets
can be predicted by the 8-dimensional state vector; meanwhile, the state recovery (SR) test aims to
predict the state vector from the shared representation used by the IB test. We perform the test by
generating 5 datasets and fine-tuning the pretrained model on each one to measure its extrapolations.
See Appendix B for more details on how we implement these metrics.

We report R2 for both metrics (1 is perfect prediction, 0 is equivalent to a constant baseline). The
IB R2 is 0.65, showing that the pretrained model does not have a large inductive bias toward state
when it transfers. Meanwhile, the SR R2 is 0.62 for the next-token-pretrained model. This shows
that not only do the inductive biases not relate to state, but also that state isn’t fully captured.

How can a model perform so well at predicting orbit locations without having inductive biases towards
the laws of physics that govern them? We study this question by assessing whether Newton’s law of
gravitation can be inducted from the model’s predictions. Newton’s law of gravitation, F = Gm1m2

r2 ,
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relates the force F between two objects to their masses m1,m2 and their squared distance r2. If a
learner is transferring based on laws of physics, its extrapolations should obey this law.

We create a sequence-to-sequence dataset where each input is a trajectory and each output is the
acceleration magnitude a implied by the state of the orbit, where a = F

m1
= Gm2

r2 (this is equivalent
to the gravitational force on a unit-mass object). We then fine-tune the next-token-pretrained model to
predict a. We then ask: could the model’s predicted values of a be used to reconstruct Newton’s law
of gravitation? To assess this, we perform a symbolic regression (using the PySR software (Cranmer,
2023)) of its predicted a values on the true values of m2 and r. A symbolic regression is a method
to search for a symbolic expression that optimizes a regression-like objective. If the learner has an
inductive bias toward Newtonian mechanics, the symbolic regression should recover Newton’s law.

We first verify that the symbolic regression indeed recovers Newton’s law on real-world data. We
then carry out this exercise using the transformer’s generations. Rather than recovering Newton’s
law exactly, the learner recovers piecemeal heuristics. Specifically, when the learner is fine-tuned on
only a narrow slice of sequences where the position of the sun is fixed across sequences, the symbolic
regression recovers the exact form of Newton’s law. However, when we fine-tune on a wider distribu-
tion of sequences, where the position of the sun is different for each sequence, it does not; instead, the
symbolic regression recovers a nonsensical law of gravity (Figure 1): F ∝ m1m2 sin

(
1
r2

)
. These re-

sults demonstrate that rather than building a universal law, the model extrapolates based on piecemeal
heuristics; it constructs different laws for different sequences. See Appendix F for further ablations.

4 Other Applications

We now apply our metrics to evaluate the world model properties of learners in other applications.
Evaluating world models requires using datasets where ground-truth states are known, and we study
two such common types of datasets: lattice problems and the board game Othello.

Lattice. One paradigm for assessing world models is studying a model’s behavior when it’s trained
on sequences that arise over lattices (Vafa et al., 2024; Liu et al., 2022). We study a lattice setting
similar to the Gridworld example considered in Liu et al. (2022). This setting simulates an agent
moving along a line segment with a finite number of positions. Specifically, there is a true state space
consisting of S states: Φ = {1, 2, . . . , S}. The language x consists of sequences with three tokens:
Σ = {L,⊥, R}. The initial state of the sequence is 1. For a token σ = R, the state increases by 1,
while the state decreases by 1 for σ = L and stays the same for σ =⊥. When the state is 1, the state
is at the boundary, so σ = L is not a valid token; similarly, when the state is S, σ = R is not a valid
token. All tokens are valid for all other states. The last token of the sequence indicates the final state.
We randomly generate sequences over the language by sampling a move uniformly at random over the
set of valid moves for each timestep. We initialize the state at 1 and then sample sequences of length
100 over S = 5 states. We create a training set of 9.9M tokens and a hold-out set of 44K tokens.

Othello. We also study the board game Othello, a common testbed for evaluating the world models
of sequence models (Li et al., 2023; Nanda et al., 2023b; Hazineh et al., 2023; Vafa et al., 2024).
The game consists of two players taking turns placing tiles on an 8x8 board. Each game of Othello is
tokenized into a sequence of at most 60 moves, where each token indicates which of the 60 squares
the most recent tile was placed on (the middle four tiles are always occupied). The true state space
Φ corresponds to all 8x8 boards and the mapping ϕ converts game sequences into states. Following
Li et al. (2023), we consider two different sequence generating processes: championship, which
corresponds to true gameplay from Othello championships, and synthetic, which corresponds to
synthetic games generated randomly where each move is sampled uniformly at random from the set
of valid moves. We randomly split each dataset into train and hold-out sets. Our training sets contain
7.9M tokens for championship and 60M tokens for synthetic, along with 6K hold-out tokens.

Models. We study the world model learning properties for five classes of pretrained sequence
models: RNNs (Elman, 1990), LSTMs (Hochreiter, 1997), transformers (Vaswani et al., 2017),
Mamba (Gu & Dao, 2023), and Mamba-2 (Dao & Gu, 2024). We use the same number of layers
and embedding dimensions for each model so each model has approximately 20M parameters. The
only exception is that we find that smaller LSTM and RNN models perform better when trained on
lattices, so we use 2-layer models for LSTMs and RNNs for the lattice example. See Appendix A for
more information about each type of model.
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Lattice Champ. Othello Synthetic Othello
Pretraining IB SR IB SR IB SR

RNN NTP trained 0.869 1.000 0.478 0.557 0.681 0.459
(Elman, 1990) State trained 0.980 1.000 0.507 0.572 0.483 0.464

LSTM NTP trained 0.850 1.000 0.792 0.520 0.840 0.443
(Hochreiter, 1997) State trained 0.996 1.000 0.746 0.579 0.691 0.467

Transformer NTP trained 0.971 1.000 0.602 0.511 0.591 0.443
(Vaswani et al., 2017) State trained 0.925 1.000 0.734 0.628 0.706 0.451

Mamba NTP trained 0.695 1.000 0.552 0.550 0.465 0.408
(Gu & Dao, 2023) State trained 0.853 1.000 0.847 0.596 0.837 0.464

Mamba-2 NTP trained 0.801 1.000 0.496 0.568 0.459 0.401
(Dao & Gu, 2024) State trained 0.840 1.000 0.693 0.582 0.736 0.447

Table 1: Inductive bias (IB) and state recovery (SR) metrics (1 is perfect performance, 0 is equivalent to
noninformative model). “NTP-trained” represents a model pretrained on next-token prediction, while “state
trained” refers to an oracle model pretrained with direct access to state information. While all learners have
strong inductive biases and state recovery in the lattice setting, the results are mixed across Othello. While the
RNN and LSTM models NTP models are achieving results similar to their state trained capabilities, there is a
much larger gap between for the transformer and Mamba models.

For each dataset and model, we consider two types of pretraining objectives. In next-token predic-
tion (NTP), we perform the standard pretraining procedure of training a model to predict the next
token of each sequence in training data. For example, pretraining applied to Othello would consist
of predicting the next move of each game transcript. We also consider an oracle model that’s trained
to predict state (e.g. the true Othello board) (Liu et al., 2022). This oracle model serves as a point
of comparison for the next-token prediction model; it helps calibrate the degree to which a model,
when given access to ground-truth state, is limited by its architecture. See Appendix A for more
information about training and state prediction.

We first demonstrate that all pretrained models perform well at next-token prediction, generating out-
puts that appear to obey state. Specifically, we measure the fraction of a model’s top predictions that
are legal in the underlying state, following Toshniwal et al. (2022) and Li et al. (2023). For example,
a model’s prediction is legal for Othello if the corresponding move is a valid move for the current
board implied by the sequence. Table 6 in Appendix E shows the results. All models do very well
across all datasets, e.g. every model’s top prediction is legal 99% of the time for Synthetic Othello.

4.1 Inductive bias metrics

We now use the metrics described in Section 2 to assess whether these models have inductive bias
toward state. Our metrics involve transferring each model to small datasets of randomly generated
outputs and assessing how related each model’s extrapolation patterns are to the true state. The
inductive bias (IB) test aims to predict a model’s extrapolations from the true state using a shared
representation across datasets, while the state recovery (SR) test aims to predict the original state
from the shared representation. Each metric we report is a normalized prediction accuracy so that
0 corresponds to a model with as good predictive performance as a baseline model that makes the
same prediction for all inputs and 1 corresponds to perfect prediction (e.g. of state or of extrapolation
pattern). For the inductive bias measure, this is held-out R2, and for the state recovery measure, it’s
1 minus normalized cross entropy. Appendix B contains more details about how we implement the
metrics across datasets and Appendix C contains more ablations.

The results are depicted in Table 1. For the lattice example, almost all inductive biases toward state
are close to 1, reaching as high as 0.996 for the LSTM pretrained on state. However, it’s not just the
models pretrained on state that achieve high inductive bias toward state; the transformer pretrained
on next-token prediction has an inductive bias toward state of 0.971. Similarly, all models achieve
near perfect state recovery. This shows that not only does the inductive bias of these learners contain
information about state; it contains all information about state. These results show that our metrics
are not unachievable — models can perform well on them.
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Majority Tiles Board Balance Color Parity
Pretraining NLL (↓) ACC (↑) NLL (↓) ACC (↑) NLL (↓) ACC (↑)

RNN NTP trained 0.287 0.874 0.188 0.916 0.510 0.639
State trained 0.191 0.913 0.143 0.942 0.509 0.643

LSTM NTP trained 0.285 0.871 0.193 0.916 0.520 0.649
State trained 0.160 0.938 0.131 0.946 0.523 0.654

Transformer NTP trained 0.237 0.894 0.174 0.926 0.510 0.654
State trained 0.153 0.941 0.123 0.952 0.511 0.638

Mamba NTP trained 0.300 0.862 0.206 0.905 0.509 0.648
State trained 0.070 0.980 0.075 0.978 0.518 0.644

Mamba-2 NTP trained 0.274 0.879 0.184 0.914 0.515 0.637
State trained 0.185 0.926 0.145 0.937 0.514 0.652

IB Correlation — 0.637 0.651 0.617 0.643 0.695 0.347

Table 2: Results showing transfer performance across new functions of state. “NLL” represents negative log-
likelihood (lower is better), and “ACC” represents accuracy (higher is better). “IB Correlation” measures the
(unsigned) correlation between each column of results to the inductive bias metrics in Table 1. Transfer learning
results are correlated to the inductive bias metrics; models with low inductive bias perform worse at transfer.

While all pretrained models have strong inductive biases in the lattice setting, the results on Othello
datasets help differentiate between the transfer abilities of different models. Across datasets, the
transformer and LSTM models have the highest inductive bias toward state; however, all inductive
biases are lower than they were for the lattice problem. A natural question is how limited each
learner is by the model’s architecture. By comparing the results for the models pretrained on next
token prediction and the state oracle, we see a split: the RNN and LSTM models are achieving
performance as good if not better on next-token prediction as they would had they been pretrained on
state. Meanwhile, there is a much larger gap between the state oracles and next-token prediction for
the transformer and Mamba models. While these models are capable of stronger inductive biases,
pretraining on next token prediction does not provide enough guidance to learn state.

The state recovery metrics are low across Championship and Synthetic Othello. These results suggest
that the shared representations that are predictive of extrapolations do not carry much state information
with them. All models for Synthetic Othello score between 0.40 and 0.50, while the state recovery
is somewhat larger for Championship Othello, ranging from 0.51 to 0.63. The discrepancy between
Championship and Synthetic Othello is interesting in light of previous findings that models trained
on Synthetic Othello are closer to capturing the true world model than those trained on Championship
Othello (Li et al., 2023; Vafa et al., 2024). Our results suggest that when we study how these models
as transfer learners, the Championship Othello models carry more complete state information.

4.2 Implications: transfer learning

The metrics in Table 1 imply that next-token-pretrained models do not have strong inductive biases
toward state when trained on Othello. To understand the implications of these results, we study how
different models transfer to new functions of state. Specifically, we take the Championship Othello
dataset and construct new sequence-to-sequence datasets. The input sequence for each dataset is the
original game transcript, and we consider three different output sequences that are functions of state.
In “Majority Tiles”, each element of the output is 1 or 0 indicating where there are more black or
white tiles in the board implied by the sequence so far. In “Board Balance”, each element of the
output sequence indicates whether black has more pieces in the top half of the board or in the bottom
half of the board. Finally, in “Color Parity”, the output measures whether the number of black tiles
is odd or even. Each of these functions is a deterministic function of state (the board), so learning
algorithms that have inductive bias toward state should be better at transfer. We transfer all models
for 3000 iterations; see Appendix D for other amounts.

The results are depicted in Table 2. The last row shows the correlation for each metric and the
inductive bias measures in Table 1. There is strong correlation across all metrics; models that do
better on our inductive bias metrics tend to transfer better to these functions of state. Like Table 2,
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Legal next move Incorrect tile prediction

True board Predicted board

Figure 2: On the left, a true Othello board implied by a sequence, and on the right, the predicted board from a
model fine-tuned to predict boards. Although the prediction has errors, the set of predicted next tokens exactly
matches the true board. On the right, metrics about board reconstruction during fine-tuning. Consistently, even
as Mamba models struggle to recover full boards, they recovers them well enough such that the sets of valid
next moves match the true boards.

models that are pretrained on state do better than models pretrained on next-token prediction, and
the gap is again largest for Mamba. Comparing the transformer and Mamba models, transformers
regularly transfer better than Mamba when pretrained on next-token prediction, while the two Mamba
models consistently transfer better than transformers when pretrained on (oracle) state information.
This shows that while Mamba-like architectures can use state information when it is supplied, the
state information extracted by transformers in next-token-prediction pretraining sets them up for
transfer learning better than the respective Mamba models. See Appendix D for further analysis.

4.3 Bundles of Heuristics

The results in this section show that models can perform quite well on pretraining objectives yet have
low inductive bias toward state (as measured by our metrics and transfer properties). Here, we try to
make sense of this discrepancy. Specifically, we explore the hypothesis that these models are relying
on “bundles of heuristics” (Karvonen et al., 2024); functions of the input that lead them to perform
well on next-token prediction yet deliver poor inductive biases toward state.

We begin by fine-tuning models pretrained on next-token prediction on Othello to predict the true state
(i.e. the board) of each position in the subsequence. Throughout fine-tuning, we reconstruct the fine-
tuned model’s predicted board for each sequence on held-out data, and record two kinds of metrics.
The first is whether the predicted board exactly matches the true board. For the second, we measure
how well the set of valid moves in the predicted board matches the set of valid moves in the true board.
This is motivated by the fact that even if a predicted board is incorrect, it can still have the same set
of valid legal moves. The results are depicted in Figure 2. They point to an intriguing phenomenon:
even when the predicted board is incorrect, the set of legal moves from the predicted board tends
to match the set of legal moves from the true board. These results show that although learners may
not carry information about the full board, they carry enough information about the board to perform
well at next-token prediction. These findings carry implications for metric design and illustrate a
broader principle: models can learn representations that satisfy training objectives without capturing
complete world models. This phenomenon parallels observations in LLMs, where models can
sometimes answer questions correctly without demonstrating deeper conceptual understanding (Vafa
et al., 2024). Future work should investigate similar patterns in domains like physics and navigation.

To further explore this hypothesis, we calculate a variant of our inductive bias metric. Our original
inductive bias metric measures how well the extrapolations of a learner can be predicted by a
shared function of state (State IB). We calculate another metric which measures how well these
extrapolations can be predicted by a shared function of the input sequence. If a shared function of
input sequence can predict extrapolations across datasets while a shared function of state cannot, it
suggests that a learner is using the same heuristic to guide its extrapolations. We refer to this metric
as Heuristic IB and calculate it analogously to State IB (we provide more details in Appendix B).

The results are depicted in Table 3, along with difference in state and heuristic inductive biases (larger
implies a larger inductive bias toward heuristics). For almost all models, the heuristic inductive bias
is larger than the state inductive bias. For the transformer and Mamba models, the difference
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between heuristic and state inductive biases is larger for models pretrained on next-token prediction
than models pretrained on oracle state information. The fact that these differences are smaller for
state-pretrained models shows that heuristic avoidance is possible for these architectures. However,
their next token pretraining encourages them to rely on bundles of heuristics.

5 Related Work

One strand of world model research studies whether the outputs of a fixed model accord with a
known world model by studying the fixed model’s outputs (Vafa et al., 2024). For example, one way
that Toshniwal et al. (2022) and Li et al. (2023) study world models is by assessing whether a model
trained on sequential game data always predicts legal moves in the underlying game. The question
we study is a different yet related question: rather than studying the world model properties of a fixed
model, we study what it means to test if a learner has a world model embodied in it. This framework
could be used, for example, to study how large language models perform in few-shot learning.

Another strand of the literature assesses whether a model’s representations encode world models
without directly studying learning properties. For example, a common method uses probes to assess
whether an intermediate representation used by a neural network is predictive of state (Hewitt &
Liang, 2019; Li et al., 2021; Abdou et al., 2021; Jin & Rinard, 2023; Li et al., 2023). However, there
are open questions about the reliability of probes (Belinkov, 2022), such as appropriate function
complexity (Alain & Bengio, 2018; Cao et al., 2021; Li et al., 2023). Our method sidesteps these
issues by asking how a model learns, rather than what’s encoded in its fixed representations.

The methods in this paper are also related to the study of mechanistic interpretability of ML models
(Nanda et al., 2023a; Cunningham et al., 2023; Bereska & Gavves, 2024). Closely related to us,
Karvonen et al. (2024) find that a GPT model trained on Othello performs internal computations corre-
sponding to “bags of heuristics” rather than a coherent world model. Our procedures differ in aim be-
cause 1) we study the world model capabilities of a learner rather than of a fixed model and 2) we do not
seek to understand the internal mechanisms governing world model recovery. However, these findings
support our analysis of the Othello model relying on heuristics, rather than state, as its inductive bias.

Our examples with orbital mechanics also relates to the large body of work studying AI and physics
(Hao et al., 2022; Wu & Tegmark, 2019). The example we study is most closely related to works
studying whether AI models can uncover physical laws (Chen et al., 2022; Belyshev et al., 2024).
We adapt tools from this literature — such as using symbolic regressions to evaluate AI models —
to study the inductive biases of transfer learners (Liu & Tegmark, 2021; Wu & Tegmark, 2019).

This paper studies the problem of evaluating whether the world models of learning algorithms reflect
the world models of the real world. There is also a literature on world models in reinforcement
learning (RL); while these literatures use similar terms, the goals are distinct. In RL, world models
refer to representations (or even the specific neural network) learned by an agent, and their quality is
typically measured by how well they perform policy optimization (Ha & Schmidhuber, 2018; Chen
et al., 2024). In contrast, the LLM literature focuses on evaluation: a learning algorithm is evaluated
by how well it can recover an externally defined mapping from a true world model.

6 Conclusion

In this paper, we developed a framework for evaluating whether learning algorithms develop world
models by measuring their inductive bias toward state when transferring to new tasks. Our results
across applications reveal that while many models perform well on next-token prediction, they can
have limited inductive bias toward state and poor transfer properties to new state-based tasks. This
suggests that these models may be relying on bundles of heuristics rather than coherent world models.

As described in Section 2, our metrics depend on the implementation of the multitask learner used to
model extrapolations and recover state. While we use the same multitask learner for all models within
each task to ensure fair comparison, the measures may be sensitive to how this learner is implemented.
However, we find similar performance across the different kinds of multitask learners we consider
(Appendix C) and for a procedure based on correlation matrices (Appendix G). Further work should
prioritize studying the most effective multitask learners for measuring these inductive biases.
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Reproducibility Statement To ensure reproducibility of our results, we’re releasing the codebase
used for our experiments. Additionally, all data we create will be made publicly available upon
publication. All other datasets used in the paper are already publicly available. All experiments were
performed using 1-8 A100 GPUs, ensuring that results are replicable using academic resources.
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Championship Othello Synthetic Othello
Pretraining State IB Heuristic IB Diff. State IB Heuristic IB Diff.

RNN NTP trained 0.478 0.926 0.448 0.681 0.857 0.176
State trained 0.507 0.909 0.403 0.483 0.912 0.429

LSTM NTP trained 0.792 0.888 0.096 0.840 0.928 0.088
State trained 0.746 0.903 0.158 0.691 0.913 0.222

Transformer NTP trained 0.602 0.908 0.306 0.591 0.866 0.275
State trained 0.734 0.838 0.105 0.706 0.806 0.101

Mamba NTP trained 0.552 0.748 0.197 0.465 0.814 0.350
State trained 0.847 0.797 -0.050 0.837 0.787 -0.050

Mamba-2 NTP trained 0.496 0.784 0.288 0.459 0.848 0.390
State trained 0.693 0.873 0.180 0.736 0.752 0.017

Table 3: We compare the heuristic inductive bias metric (Heuristic IB) to the state inductive bias metric (State
IB) proposed in Section 2. The ‘Diff’ column denotes the difference between state and heuristic inductive
biases. Positive values imply dependence on heuristics that do not depend on state.

A Model and Training Details

We use the following specifications for each model:

• RNN (Elman, 1990): For Othello, we use an initial 512-dimension embedding layer and
pass its output through 8 uni-directional RNN layers with 512 hidden dimensions. For
the lattice experiments, the architecture is the same except we use only 2 layers because it
optimizes to better in-sample and out-of-sample loss.

• LSTM (Hochreiter, 1997): We use the same specification as for the RNN, except we use 8
LSTM layers instead of RNN layers.

• Transformer (Vaswani et al., 2017): We use a transformer decoder architecture. Following
Li et al. (2023), for the non-physics experiments, we consider 8 layers, 8 attention heads,
and 512 embedding dimensions. For modeling physics problems, we use a transformer with
12 layers, 16 attention heads, and 512 hidden dimensions. We also modify the transformer
so that it can take as input continuous data. Instead of using an embedding lookup table as
the first layer, we use a multi-layer perceptron to transform coordinates in Euclidean space
to 512-dimensional embeddings.

• Mamba (Gu & Dao, 2023): We first encode inputs with a 512-dimension embedding layer.
We then pass inputs through 16 Mamba layers (analogous to 8 layers in a transformer due
to how Mamba layers are defined). We use 512 embedding dimensions, 16 for the SSM
state expansion factor, 2 for the block expansion factor, and 4 for the convolutional width.

• Mamba-2 (Dao & Gu, 2024): We use the same architecture as for Mamba except the
mixer in each block is a Mamba-2 module. We use the same specifications as well: 512
embedding dimensions, an SSM state expansion factor of 16, a block expansion factor of 2,
and a convolutional width of 4.

We use Adam (Kingma & Ba, 2014) to optimize each model. We use a learning rate of 6e-4 and
decay the learning rate with with 2000 warmup iterations. We use weight decay of 0.1 and gradient
clipping at 1 for each model.

When we pretrain models on next-token prediction, we include a head to predict next tokens (tying its
parameter weights to the initial embedding layer parameters). When we fine-tune to predict functions
of state, we discard the next-token head and randomly initialize a state head. How we predict state
depends on the type of state for each problem:

• Lattice: For the lattice problems, the state corresponds to a categorical variable between 1
and the number of states. We include a state prediction head that forms logits for each state
and minimize cross-entropy loss.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

• Othello: For Othello (both championship and synthetic), the true state is the board. We
represent the board as a 64-dimensional vector (corresponding to an 8x8 grid), where each
value takes on one of 3 categorical values (white, black, or unnoccupied). We predict this
state using a state prediction head that forms 64x3 logits and minimizing cross-entropy loss
summed across all board positions. When we transfer to functions of state, all functions use
binary outputs (e.g. 1 if there are more black tiles on the board and 0 otherwise). For these
we use a state prediction head forming two logits.

• Physics: For the Newtonian physics problem, the state corresponds to the 8-tuple that
includes the position vectors of the two objects, the relative velocity vector of the lighter
object, and the masses of the two objects. We predict the state vector normalized across
each state dimension and minimize the RMSE loss.

B Metric Implementation Details

Lattice. For the lattice example, we create 5 datasets of 500 new examples, D1, . . . , D5. For each
dataset, we sample sequences uniformly at random among the set of data points and sample outputs
from a Bernoulli(0.5) random variable. In our construction we make sure that any two sequences
with the same state are mapped to the same output variable. We then fine-tune a model separately
for each dataset, resulting in five fine-tuned models m̂(·;D1), . . . , m̂(·;D5). We then calculate the
associated prediction functions across all inputs xi from the original training dataset, resulting in
new datasets of the form {(xi, m̂(xi;D1)}, . . . , {(xi, m̂(xi;D5)}.

For the inductive bias test, we train a model to learn a representation the jointly predicts
(m̂(xi;D1), . . . , m̂(xi;D1)) from the true state ϕ(xi). Since each state is a different categori-
cal variable, the neural network begins with an embedding layer, followed by L feedforward layers
with H hidden dimensions and a ReLU nonlinearity (we find the best performance for 3 layers and 64
hidden dimensions). The last layer of the neural network uses a linear transformation to predict the 5
outputs simultaneously. We perform l1 penalization on the penultimate representation to encourage
sparsity. We consider l1 penalty values among [0.0, 0.0001, 0.1, 1.0] and choose the penalty with
the best validation loss. Since m̂(xi;Dj) is real-valued (corresponding to the predicted probability
of the binary output variable), we train this model for 5000 iterations using a batch size of 600 to
minimize the mean-squared error and report the held-out R2.

To perform the state reconstruction test, we predict the original state ϕ̂(xi) from the penultimate
representation of the network used for the inductive bias test. We perform this prediction by training
a feedforward neural network trained to perform multiclass classification (since each original state is
a single class). We find that 2 layers and 512 dimensions does best in practice. We train the model
for 5000 iterations with a batch size of 600 to minimize the cross entropy between the predicted and
true states. As a baseline, we consider the cross-entropy of a model that always predicts the same
value for each class, and report the difference between the baseline model and the model that uses
the representation.

Othello. Our procedure for Othello follows the same steps as for the lattice example, except we
perform adjustments to account for the fact that Othello’s state is a 64-dimensional board instead of
a single categorical variable. We begin by transferring each model to a dataset of 5 randomly chosen
inputs xi and 5 randomly chosen Binary outputs for each x. We perform this transfer exercise for 1000
iterations for 10 seeds, giving us new datasets of the form {(xi, m̂(xi;D1)}, . . . , {(xi, m̂(xi;D10)}.

The implementation of the inductive bias test is the same as for the lattice example except we modify
the neural network to account for the fact that our input (state) is an Othello board. Instead of using
a simple feedforward network to predict state, we use a convolutional neural network designed to
specifically take as input an Othello board. Each Othello board is represented as a 64-dimensional
vector σ(xi) where each element is a categorical variable {0, 1, 2} indicating whether a black, white,
or no tile has been placed on the corresponding square. The first layer of the network begins with
an embedding layer, followed by convolutional layers. We follow the convolutional layers with two
feedforward layers to predict the output. We again perform l1 penalty on the final layer to encourage
sparsity considering the same values as for the lattice example. We find that two convolutional layers,
16 hidden channels, and 64 hidden dimensions for the final feedforward layers performs best. We
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1 layer 2 layers 4 layers 8 layers

RNN NTP trained 0.484 0.504 0.486 0.478
State trained 0.520 0.531 0.524 0.508

LSTM NTP trained 0.814 0.796 0.814 0.804
State trained 0.721 0.726 0.725 0.692

Transformer NTP trained 0.612 0.630 0.628 0.610
State trained 0.722 0.725 0.717 0.711

Mamba NTP trained 0.533 0.522 0.538 0.532
State trained 0.849 0.839 0.841 0.810

Mamba-2 NTP trained 0.476 0.482 0.480 0.465
State trained 0.673 0.677 0.671 0.635

Table 4: Ablating the number of layers used for inductive bias prediction.

train this model for 5000 iterations using a batch size of 600 to minimize the mean-squared error and
report the held-out R2.

The details for the state reconstruction test in Othello are identical to the lattice example, except
instead of predicting a single categorical output we’re predicting outputs corresponding to all 64
tiles of the Othello board. We again train the model for 5000 iterations with a batch size of 600 to
minimize the cross entropy between the predicted and true states and use the same baseline as for
the lattice example.

Physics. We follow a procedure analogous to those of the other examples, except we account for the
fact that the state corresponds to a vector of continuous, real numbers. We sample 100 random inputs
xi and for each, we sample a Gaussian noise with zero mean and variance of 2.0. We perform the
transfer exercise for 100 full-batch iterations to minimize RMSE for 10 seeds, and use the fine-tuned
model to generate the new datasets of the form {(xi, m̂(xi;D1)}, . . . , {(xi, m̂(xi;D10)}.

The implementation of the inductive bias and the state reconstruction tests is the same as for the
lattice example except we minimize RMSE loss instead of cross-entropy loss.

Heuristic IB. The Heuristic IB metric described in Section 4 is analogous to the IB metric for the
lattice example, except we predict how well extrapolations can be predicted by a shared representation
of the input sequence rather than by the state. This is a model from an input sequence (e.g. a sequence
of moves in an Othello game) to K extrapolated function values. We train this function by using
a transformer to represent the input sequence (using the same configuration described in Appendix
A) and including an output head to predict the K-vector of extrapolated function values for each
input. We optimize parameters to minimize the mean-squared error of the predictions and the
extrapolations. We also consider additional architectures to the transformer, such as Mamba and an
LSTM, and find similar results; we use the transformer for each bundle of heuristic prediction for
consistency.

C Multitask Ablations

Ablations for different settings for the multitask learner are presented in Table 4 and Table 5.

D Additional Transfer Results

Figure 3 and Figure 4 show examples of training progress for the transfer learning experiments
considered in Section 4. These graphs show that the Mamba oracle model has an advantage over
the transformer across all stages of fine-tuning on new functions of the Othello state. However,
models pretrained on next-token prediction don’t achieve this bound. Instead, the transformer trained
on next-token prediction transfers better than Mamba trained on next-token prediction despite the
superior oracle properties of the Mamba model.
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64 units 128 units 256 units 512 units

RNN NTP trained 0.504 0.514 0.534 0.555
State trained 0.531 0.550 0.550 0.545

LSTM NTP trained 0.796 0.820 0.830 0.836
State trained 0.726 0.736 0.738 0.748

Transformer NTP trained 0.630 0.642 0.659 0.680
State trained 0.725 0.737 0.746 0.750

Mamba NTP trained 0.522 0.549 0.567 0.580
State trained 0.839 0.859 0.859 0.864

Mamba-2 NTP trained 0.482 0.497 0.507 0.536
State trained 0.677 0.690 0.702 0.711

Table 5: Ablating the number of hidden units for inductive bias prediction.
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Figure 3: Held-out loss progress for transfer learners for the “board balance” transfer task.
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Figure 4: Held-out loss progress for transfer learners for the “majority” transfer task.
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Lattice Championship Othello Synthetic Othello

RNN 1.00 0.905 0.995
LSTM 1.00 0.907 0.995
Transformer 1.00 0.915 0.996
Mamba 1.00 0.890 0.996
Mamba-2 1.00 0.901 0.991

Table 6: Results for the next token test (Toshniwal et al., 2022; Li et al., 2023) for models pretrained on
next-token prediction.
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Figure 5: MSE for the orbit prediction models. We compare a pretrained transformer to a baseline that always
predicts the most recent timestep. The x-axis shows how many tokens the model has to sample.

E Next Token Performance

Table 6 shows results for the next-token test (Toshniwal et al., 2022; Li et al., 2023) for the pretrained
models on the lattice and Othello models. It measures the share of top model predictions that are
true for the underlying state. All models learn good next token predictions that appear to obey state.

F Additional Symbolic Regression Results

To more explicitly demonstrate the bundles of heuristics learned by the next-token predictor, we
conduct the following experiment: we create five datasets D1, . . . , D5, containing 200 random
inpputs xi and the corresponding acceleration magnitude ai implied by the state of the orbit. We then
fine-tune the pretrained next-token-prediction model and the state-prediction model to predict a, and
generate the extrapolations {(xi′ , m̂(xi′ ;D1)), . . . (xi′ , m̂(xi′ ;D5))} on some held-out validation
set and use symbolic regression to find the best-fit symbolic equations for the extrapolations.

The state-pretrained model recovered the correct equation, a ∝ m2

r2 in the majority of the five seeds,
whereas the next-token predictor recovers five different equations for the five seeds, as shown in
Equation (5) - Equation (9).

a ∝ e−0.11rm2 (5)

a ∝ m2

r2
(6)

a ∝ e−0.08r(m2 + 0.13) (7)
a ∝ e−0.11r+cosm2m2 (8)
a ∝ e−0.10r sinm2 (9)
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Since each subsample recovers a different physical law, this provides futher evidence for the notion
that the model constructs different, piecemeal laws for different datasets of sequences.

G Correlation-based Metrics

Here we implement an additional procedure for estimating the inductive bias and partial reconstruc-
tion metrics from Section 2.2. This procedure begins by following the basic setup in Section 2.2:
we construct synthetic datasets that obey the state representation, and apply the learning algorithm.
However, instead of estimating inductive bias and state recovery with a multitask learner, we estimate
them nonparametrically.

Specifically, after applying the learning algorithm across the J datasets, we collect the extrapolations
{xi, m̂(xi, Dj)} for some set of held-out points x1, . . . , xn that are shared across datasets. The
inputs x1, . . . , xn should satisfy the following two properties:

1. There exists an i ̸= j such that xi and xj have the same state, i.e. ϕ(xi) = ϕ(xj).
2. There exists an i′ ̸= j′ such that xi′ and xj′ have different states, i.e. ϕ(xi′) ̸= ϕ(xj′).

We then construct the n×n correlation matrix Σ such that Σi,j = corr(m̂(xi,D), m̂(xj ,D)), where
m̂(xi,D) = (m̂(xi, D1), . . . , m̂(xi, DJ)) is the vector of extrapolations across datasets. Intuitively,
Σi,j describes how similar the extrapolations are for datapoints xi and xj ; how predictable is xj’s
extrapolation from that of xi’s?

If a learner respects state, its extrapolations for two points in the same state will be perfectly correlated.
Similarly, if a learner is fully reconstructing state, it will have zero correlation for pairs of points that
are not in the same state. Therefore, to estimate inductive bias, we compute the average correlation
between points that have the same state:

E[Σi,j |ϕ(xi) = ϕ(xj), i ̸= j]. (10)

A value of 1 implies perfect inductive bias toward state. Similarly, estimating state recovery involves
computing the average absolute correlation between points that don’t have the same state:

E[|Σi,j ||ϕ(xi) ̸= ϕ(xj)]. (11)

Nonzero values mean that a learner is extrapolating based on only partial functions of state. Our
definition of state recovery in Section 2 would involve negating Equation (11) so that higher values
are better. However, because Equation (10) and Equation (11) are directly comparable, it is easier to
compare them without negating Equation (11). Instead we report Equation (11) directly and refer to
it as state coarseness (SC).

Because correlation-based measures of inductive bias and state coarseness are directly comparable,
we additionally report the ratio of the two values: IB/SC. The ratio summarizes how much more
correlated extrapolations of same-state pairs are than different-state pairs. Larger values mean larger
levels of same-state correlation relative to different-state.

Below we perform the main analyses in Section 3 and Section 4 with the new correlation-based
metrics, finding similar results across methods.

G.1 Physics.

For the physics problem, we create 25 datasets of 100 data points, whose outputs are random Bernoulli
draws that are constructed to be consistent with the discretized state-space, where each continuous
state is mapped first to one of ten bins based on the magnitude of its norm. We train each learner
for 100 iterations then estimate the correlation matrix using 100 held-out sequences. We repeat each
experiment 4 times with different random seeds to estimate standard errors. We report the inductive
bias, state coarseness, and the correlation ratio in Table 7.

G.2 Lattice and Othello.

For the lattice problem, we create 25 datasets of 100 data points, whose outputs are random Bernoulli
draws that are constructed to obey state structure. We train each learner for 300 iterations. We then
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Training Inductive Bias State Coarseness Ratio
NTP trained 0.237 (0.041) 0.227 (0.040) 1.045 (0.005)
State trained 0.307 (0.042) 0.264 (0.039) 1.171 (0.018)

Table 7: Comparison of inductive bias (same-state correlation) and state coarseness (different-state correlation)
measures for the transformer model under next-token prediction (NTP) and state-based training, along with their
ratios, for the physics problem. Larger ratios mean that the extrapolations of a learner have larger correlation
among data points in the same state than among points in different states. Similar to the results in Section 3,
the NTP-learner extrapolates using less of the world model than the state-trained learner. Standard errors are in
parentheses.

Lattice Champ. Othello Synthetic Othello
RNN NTP trained 1.967 (0.046) 1.234 (0.047) 1.063 (0.013)

State trained 2.435 (0.088) 1.139 (0.011) 1.107 (0.028)

LSTM NTP trained 2.758 (0.029) 1.061 (0.013) 1.037 (0.005)
State trained 2.875 (0.159) 1.046 (0.006) 1.021 (0.003)

Transformer NTP trained 3.592 (0.010) 1.324 (0.029) 1.487 (0.051)
State trained 5.428 (0.357) 1.593 (0.084) 1.366 (0.029)

Mamba NTP trained 2.847 (0.080) 1.361 (0.027) 1.486 (0.044)
State trained 3.183 (0.034) 1.515 (0.044) 1.345 (0.063)

Table 8: The ratio between the correlation-based measures of inductive bias and state coarseness. Larger
means that the extrapolations of a learner have larger correlation among data points in the same state than
among points in different states. Ratios are again correlated to the transfer learning performance for Othello
(Section 4); the correlations are 0.712, 0.643, and 0.526 for board balance, majority tiles, and color parity,
respectively. Standard errors are in parentheses.

estimate the correlation matrix using 100 held-out sequences. For the Othello datasets, we follow
a similar procedure, training for 100 iterations across 25 datasets of 100 data points each. For
Othello, randomly drawn sequences will have very few sequences with the same state. Because
of the requirement that there be sequences with the same state, we sample held-out sequences in a
way that includes more sequence per state. Specifically, we create a dataset of 84 length-8 game
beginnings that contain a lot of state overlap. We repeat each experiment 4 times to estimate standard
errors.

We report the correlation ratio (IB/SC) as our main summary, which measures how much stronger
the inductive bias toward state is than the state coarseness. The results are depicted in Table 9.
The trends are similar to those in Section 2: models do well on lattice (reaching ratios as high as
5.4 for the state trained transformer), but considerably worse on Othello (the average correlation for
same-state pairs is never more than even twice as high as the average correlation for different-state
pairs). We note that the exact numbers don’t match the metrics in Section 4 due to scaling differences,
i.e. correlation can be between -1 and 1 while the metrics in Section 4 are all normalized to be
between 0 and 1. However the orderings are similar, and the ratios are again correlated to the transfer
learning performance for Othello; the correlations are 0.712 for board balance, 0.643 for majority
tiles, and 0.526 for color parity. We include individual results for correlation-based inductive bias
and correlation-based state coarseness in Tables Table 9 and Table 10.
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Lattice Champ. Othello Synthetic Othello
RNN NTP trained 0.683 (0.015) 0.778 (0.012) 0.965 (0.005)

State trained 0.786 (0.016) 0.868 (0.009) 0.913 (0.013)

LSTM NTP trained 0.757 (0.011) 0.947 (0.011) 0.975 (0.002)
State trained 0.824 (0.017) 0.963 (0.006) 0.983 (0.002)

Transformer NTP trained 0.744 (0.016) 0.784 (0.017) 0.878 (0.008)
State trained 0.957 (0.003) 0.800 (0.016) 0.859 (0.012)

Mamba NTP trained 0.706 (0.024) 0.669 (0.018) 0.876 (0.009)
State trained 0.730 (0.011) 0.793 (0.011) 0.827 (0.013)

Table 9: The correlation-based measure of inductive bias. Large values means that the extrapolations of a
learner are correlated among data points in the same state. Most models have high correlation-based inductive
bias, and the state trained models are consistently larger than the NTP-trained ones. Standard errors are in
parentheses.

Lattice Champ. Othello Synthetic Othello
RNN NTP trained 0.348 (0.013) 0.635 (0.030) 0.908 (0.015)

State trained 0.324 (0.006) 0.763 (0.014) 0.827 (0.026)

LSTM NTP trained 0.275 (0.006) 0.894 (0.020) 0.941 (0.007)
State trained 0.289 (0.013) 0.922 (0.011) 0.963 (0.004)

Transformer NTP trained 0.209 (0.010) 0.594 (0.025) 0.593 (0.017)
State trained 0.179 (0.012) 0.507 (0.023) 0.630 (0.016)

Mamba NTP trained 0.249 (0.012) 0.493 (0.021) 0.592 (0.021)
State trained 0.229 (0.005) 0.526 (0.021) 0.621 (0.035)

Table 10: The correlation-based measure of state coarseness. Large values means that extrapolations of a
learner are correlated among data points in different states. While these correlations are low for lattice, they’re
high for Othello domains, especially for the RNN and LSTM models. Paired with Table 9, these results show
that while learners are indeed extrapolating based on state, they are very coarse functions of state. Standard
errors are in parentheses.
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