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Figure 1. Effect of occlusions on pose estimation. Image-based 3D pose estimators [3] often struggle with heavy occlusions, as illustrated
in this figure. Without temporal context, predictions on highly obscured frames are inconsistent with prior poses, like the erroneous pose
in the third column. Notably, even state-of-the-art video approaches [36] fail on prolonged full occlusions spanning multiple frames, as
in columns 4 and 5. This highlights yet another critical limitation - models are brittle when deployed outside their training distributions.
Without training examples of such long-duration occlusions, models fail to extrapolate reasonable poses. Our work addresses this through
test-time training of a human motion prior. By fine-tuning on each new video, we tailor this parametric prior to handling sequence-specific
occlusion patterns not observed during training. Given an initial noisy estimate, our approach refines the pose sequence into an accurate,

temporally coherent output, as shown in the final row.

Abstract

Accurately estimating 3D human poses is crucial for
fields like action recognition, gait recognition, and vir-
tual/augmented reality. However, predicting human poses
under severe occlusion remains a persistent and signif-
icant challenge. Existing image-based estimators strug-
gle with heavy occlusions due to a lack of temporal con-
text, resulting in inconsistent predictions, while video-based
models, despite benefiting from temporal data, face lim-
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itations with prolonged occlusions over multiple frames.
Additionally, existing algorithms often struggle to gener-
alize unseen videos. Addressing these challenges, we pro-
pose STRIDE (Single-video based TempoRally contInuous
Occlusion-Robust 3D Pose Estimation), a novel Test-Time
Training (TTT) approach to fit a human motion prior for
estimating 3D human poses for each video. Qur pro-
posed approach handles occlusions not encountered dur-
ing the model’s training by refining a sequence of noisy
initial pose estimates into accurate, temporally coherent
poses at test time, effectively overcoming the limitations
of existing methods. Our flexible, model-agnostic frame-
work allows us to use any off-the-shelf 3D pose estima-
tion method to improve robustness and temporal consis-
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tency. We validate STRIDE’s efficacy through comprehen-
sive experiments on multiple challenging datasets where it
not only outperforms existing single-image and video-based
pose estimation models but also showcases superior han-
dling of substantial occlusions, achieving fast, robust, ac-
curate, and temporally consistent 3D pose estimates. Code
is made publicly available at https://github.com/
takeZ2rohit/stride

1. Introduction

Accurate 3D pose estimation [48] is an important prob-
lem in computer vision with a variety of real-world ap-
plications, including but not limited to action recognition
[20], virtual and augmented reality [1], and gait recogni-
tion [10, 11,50]. While the performance of 3D pose esti-
mation algorithms has improved rapidly in recent years, the
majority of these are image-based [29, 31,33, 38], estimat-
ing the pose from a single image. Consequently, these ap-
proaches still face inherent challenges in handling occluded
subjects due to the limited visual information contained
in individual images. To address these issues, recent ef-
forts have explored video-based pose estimation algorithms
[32,41], leveraging temporal continuity across frames to re-
solve pose ambiguities from missing visual evidence.

Further, the success of both image and video-based state-
of-the-art algorithms [3,26,36,41] relies heavily on super-
vised training on large datasets captured in controlled set-
tings [3]. This limits generalizability, as distribution shifts
in uncontrolled environments can significantly degrade per-
formance. For example, consider a scenario of an individ-
ual walking through a forest, periodically becoming fully
obscured by trees, as depicted in Fig. 1. Image-based pose
estimation methods [3] struggle in such cases, as key spatial
context is lost when the person is occluded. Without addi-
tional temporal cues, the model has insufficient visual evi-
dence to accurately determine the 3D pose [27,28]. On the
other hand, video-based approaches [26,41,47] also suffer
from performance degradation, despite modeling temporal
information, due to such prolonged occlusions being absent
in the training data [5].

To deal with this large diversity in contexts, occlusion
patterns, and imaging conditions in real-world videos, we
explore the Test-Time Training (TTT) paradigm for 3D pose
estimation. TTT allows for efficient on-the-fly adaptation
to the specific occlusion patterns and data distribution shifts
present in each test video. This facilitates better generaliza-
tion, improving the model’s capability to handle even pro-
longed occlusions. Furthermore, this reduces reliance on
large annotated datasets, which are costly to collect, espe-
cially for occluded motions.

Recent TTT approaches for 3D pose estimation [12, 13,

] fine-tune models using 2D cues like keypoints from test
images. This approach has limitations as the 2D projection
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Figure 2. Overview of our approach. Our method enhances 3D
pose estimation for occluded videos through test-time training of
a motion prior model. We first extract initial 3D pose estimates
from the test video using any 3D off-the-shelf pose estimator. To
address occlusions and test distribution shifts, we then fine-tune
the motion prior on that specific video by optimizing for smooth
and continuous poses over the sequence.

of 3D poses is ambiguous, as many 3D configurations can
map to the same 2D pose. Also, 2D pose estimators can fail
on unseen data distributions [18,31], so fine-tuning on im-
perfect and ambiguous 2D poses can lead to incorrect model
adaptation and degraded 3D pose predictions.

To overcome the limitations of existing methods,
we propose STRIDE (Single-video based TempoRally
contInuous Occlusion-Robust 3D Pose Estimation), a novel
test-time training framework for 3D pose estimation under
occlusion. The key component of our approach is a para-
metric motion prior that is capable of modeling the dynam-
ics of natural human motions and poses. This motion prior
is pre-trained using a BERT-style [9, 51] approach on 3D
pose sequences, learning to reconstruct temporally coher-
ent poses when given a series of noisy estimates as input.
At test time, given a sequence of noisy 3D poses from any
existing pose estimation algorithm, STRIDE leverages this
pre-trained prior to produce a clean sequence by fine-tuning
it on each new video. We use 3D kinematic losses for mo-
tion smoothing via adapting the model to the video-specific
motion patterns. By leveraging the motion prior’s inher-
ent knowledge of natural human movement during test-time
training, STRIDE avoids ambiguities of 2D pose informa-
tion faced by existing approaches. An overview of our ap-
proach is shown in Fig. 2.

A key advantage of our algorithm is that it can work
alongside any off-the-shelf pose estimator to improve tem-
poral consistency, providing model-agnostic pose enhance-
ments. This allows STRIDE to not only surpass image-
based pose estimators that lack contextual cues to resolve
occlusions, but also outperform video-based methods. No-
tably, STRIDE can handle situations with up to 100% oc-
clusion of the human body over many consecutive frames.
In comparison to existing test-time video based pose esti-
mation method [26,32], our approach is up fo 2 X faster than
previous state-of-the-art method [26] and operates without
accessing any labeled training data during inference time,
making it privacy [34] and storage-friendly.

Contributions. In summary, we make the following key
contributions:
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1. We propose a novel test-time training algorithm
(STRIDE), for achieving temporally continuous 3D
pose estimation under occlusions.

2. STRIDE is designed as a model-agnostic framework
that leverages a human motion prior model to refine
noisy 3D pose sequences from any off-the-shelf esti-
mator into smooth and continuous predictions, high-
lighting efficiency and generalizability.

3. STRIDE achieves state-of-the-art results on mul-
tiple challenging benchmarks including OCMotion
[15], Occluded Human3.6M and Human3.6M [16],
thus demonstrating enhanced occlusion-robustness
and temporal consistency. Additionally, STRIDE is
computationally amicable, achieving a minimum of
2x speed-up over existing analogous algorithms.

2. Related Works

Monocular 3D pose estimation. Monocular 3D pose esti-
mation is a fundamental and challenging problem in com-
puter vision which involves the localisation of 3D spa-
tial pose coordinates from just a single image. Recent
deep learning-based methods for the problem have shown
impressive performance on challenging academic datasets
[3, 48]. [25] introduced the first CNN-based approach to
regress 3D joints from a single image. Subsequent works
[29, 33] improved upon this by incorporating multi-view
constraints and depth information. Recent methods [39,40]
use kinematic and anatomical constraints along with data
augmentation to achieve state-of-the-art results on academic
datasets. However, these supervised methods often fail un-
der distribution shifts. To address this, [21, 22] proposed
self-supervised algorithms for 3D human pose estimation,
which perform well on single images but struggle with oc-
clusions and lack temporal continuity in video settings.

Video-based 3D pose estimation. Video-based 3D human
pose estimation have shown impressive performance on
challenging datasets. [49] directly regresses 3D poses using
consistency between 3D joints and 2D keypoints. [30] uti-
lized temporal convolutions for pose estimation in videos,
while [2] exploited SMPL pose and shape parameters for
fine-tuning HMR in the wild. [44] proposed a mixed spatio-
temporal approach alternating between spatial and temporal
consistency. HuMoR [32] maintained consistency across
frames with weighted regularization using predicted con-
tact probabilities. The state-of-the-art CycleAdapt [26] ad-
dresses domain shifts in 3D human mesh reconstruction by
cyclically adapting HMRNet [ 7] and MDNet [26] during
test time. Despite the success of the above methods in main-
taining temporal consistency, they are extremely slow due to
an external optimization step and do not generalise well un-
der distribution shifts. Severe occlusions often degrade the
performance of these methods due to missing poses. Our

work emphasizes these shortcomings and brings temporal
continuity under severe occlusions by leveraging a motion-
prior model that seamlessly handles missing poses.

3D pose estimation under occlusion. Handling occlu-
sions poses a significant challenge in both image-based and
video-based 3D pose estimation. Approaches like 3DNBF
[46] leverage generative models to estimate poses but do not
account for any temporal continuity. To alleviate the prob-
lem in a video-based setting, [6] introduced data augmenta-
tion using occlusion labels with the Cylinder Man Model.
Current methods address this by refining 3D poses for tem-
poral consistency. Recent approaches such as GLAMR [41]
recover human meshes globally from local motions and per-
form motion infilling based on visible motions. SmoothNet
[42] uses a temporal refinement network to mitigate motion
jitters from single image-based pose estimations. While ef-
fective for minor occlusions, these methods struggle with
heavy occlusions. Also, these algorithms often fail to gen-
eralize under domain shifts. To improve on this, our ap-
proach adapts a motion prior from noisy 3D pose sequences
to predict missing poses and maintain temporal consistency.

Test Time Optimization for 3D pose estimation. A major
shortcoming of fully supervised learning is that it can only
handle test cases that are similar to the ones seen during
the training process. For example, a novel type of occlu-
sion or a human pose during testing can confuse the model
and reduce its performance. [43] suggested verifying the es-
timated 2D poses and additionally ensuring the consistency
of the lifted 3D poses by using randomly projected 2D poses
to enhance the 3D human pose estimation. Further, [35] in-
troduced the idea of enforcing physical constraints on the
estimated human poses to ensure they are physically plau-
sible. Subsequently, [4] proposed combining top-down and
bottom-up human pose estimation approaches to take ad-
vantage of their strengths and also perform test time opti-
mization using a re-projection loss, and bone length reg-
ularizations. Although these methods handle unseen test
cases well, they are not designed for handling heavy occlu-
sions and fail to predict poses under complete occlusions.
Our work focuses on these gaps by refining and filling in
missing 3D poses to maintain temporal consistency.

3. Method

We address the problem of extracting temporally contin-
uous 3D pose estimates from a monocular video that may
contain heavy occlusions. Given an off-the-shelf monocu-
lar 3D pose estimator P (either image or video-based) that
produces temporally inconsistent poses due to occlusions
or domain gaps, our goal is to output clean, temporally co-
herent 3D pose sequences that better match natural human
motion dynamics. To achieve this, we propose a two-stage
approach, as illustrated in Fig. 3.
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Figure 3. The presented figure illustrates the pipeline for our temporally continuous pose estimation, STRIDE. Initially, we pre-train a
motion prior model, denoted as M, using a diverse set of 3D pose data sourced from various public datasets. The primary objective of
this motion prior model is to generate a sequence of poses that exhibit temporal continuity when provided with a sequence of initially
noisy poses. Moving into the single video training stage, we acquire a sequence of noisy poses using a 3D pose estimation model, P. The
weights of P are held constant during this phase. Subsequently, we pass this noisy pose sequence through the motion prior model M and
retrain it using various supervised losses, as outlined in Equation 6. The end result of this training process is a model capable of producing

temporally continuous 3D poses for that specific video.

1. Learning a motion prior: We first pre-train a self-
attention-based motion prior model M on labeled 3D
pose datasets in a BERT-style [9, 51]. During pre-
training, we synthetically corrupt the 3D joint inputs
with noise to simulate occlusions and other errors. M
is then trained to denoise these inputs and reconstruct
a sequence of temporally coherent 3D poses. This al-
lows M to learn strong general priors of natural human
motion dynamics.

2. Test-time alignment: For a given test video, we ob-
tain noisy per-frame poses using P [3] and adapt the
motion prior model M in an unsupervised manner to
align it to the specific motion exhibited in the video.
This adaptation step allows us to obtain optimal pose
estimates for the given video.

Section 3.1 outlines the architecture of the motion prior
model M. Section 3.2 discusses the masked sequence mod-
elling approach for pre-training M on synthetically cor-
rupted pose sequences. Lastly, Section 3.3 introduces the
self-supervised losses for fine-tuning M during test time
on individual videos.

3.1. Network Architecture

We base our motion prior model M on the DSTFormer
architecture [51], originally proposed for lifting 2D poses
to 3D. Here, we modify and adapt DSTFormer for the
sequence-to-sequence task of denoising and smoothing
noisy 3D pose sequence inputs. Specifically, the motion
prior M takes in a sequence of 3D body poses represented
as X € RT*J%3 where T is the number of frames, .J is the

number of joints, and each pose consists of J x 3 coordinate
values. M denoises the input sequence to produce refined
temporally coherent 3D poses X € R”T*/*3  Additional
details on the architecture and implementation method is
provided in the Section 1 and Section 2 of supplementary
material respectively.

3.2. Learning a Motion Prior

To build a strong prior for human motion dynamics, we
draw inspiration from the success of large language mod-
els like BERT [9] that leverage large-scale self-supervised
pre-training. Here, we extend this paradigm to 3D human
pose estimation. Specifically, given a dataset of 3D pose
sequences, we synthetically mask these sequences to sim-
ulate occlusions and other errors. Similar to [7,51], the
prior M is trained to denoise these noisy inputs to recon-
struct a sequence of temporally coherent 3D poses. We se-
lected BERT-style training for STRIDE’s motion prior be-
cause it is highly effective at capturing bidirectional depen-
dencies in human motion data and excels in scenarios where
pose information may be incomplete or corrupted. BERT-
style training leverages a bidirectional approach, allowing
the model to consider both preceding and succeeding con-
text simultaneously. This is particularly advantageous for
understanding human motion, as it mirrors real-world situ-
ations where poses might be partially missing or noisy.

During pre-training, we apply both joint-level and frame-
level masking to a 3D pose sequence X to obtain a cor-
rupted sequence mask(X) which mimics realistic scenar-
ios of imperfect predictions and occlusions. The prior M
is trained to reconstruct the complete 3D motion sequence
X from this corrupted input X by minimizing losses on
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3D joint positions £3p between the reconstruction and the
ground-truth pose. Additionally, we incorporate a velocity
loss following [30,44].

3.3. Test-Time Alignment

Given the pre-trained motion prior model M that takes
in noisy 3D poses and outputs temporally coherent predic-
tions, our goal is to leverage this for pose estimation on
new test videos. We first obtain an initial noisy estimate of
the 3D pose sequence using any off-the-shelf pose detector
P [3]. As these models struggle on occlusions and distri-
bution shifts, their outputs lack temporal consistency. To
address this, we pass the noisy poses through M to achieve
a refined estimate.

Although the prior refines pose, some inconsistencies

like domain shift and novel human motion may be present
in the videos. Hence, we propose additional test-time train-
ing of M using geometric and physics-based constraints
to adapt to such situations. Similar to internal learn-
ing approaches like Deep Video Prior [23], our proposed
self-supervision strategy fine-tunes the motion prior to the
specifics of each test video for enhanced outputs. We use
four loss regularizers targeting different aspects of human
motion: (1) Limb Loss, (2) Mean Per Joint Position (MPJP)
Loss, (3) Normalized MPJP (N-MPJP) Loss, and (4) Ve-
locity Loss. Crucially, only M is updated during test-time
training while P remains fixed to preserve the pose estima-
tion capabilities of off-the-shelf models.
Limb Loss: Limb length consistency is an important as-
pect of anatomically plausible 3D human pose predictions.
This loss encourages the model to produce temporally sta-
ble limb lengths, contributing to more realistic and phys-
ically plausible pose estimations. The idea is to penalize
variability in limb lengths across frames. If the limb lengths
exhibit large variations, it may indicate inconsistency or in-
stability in the predicted poses. The limb loss function Ly,
is defined as follows,

1771 & 1z 2
Elim:Jj_ZlT§<Jt,j_TZJt’,j> RG]

t'=1

Variance of Joint Lengths Across Time

Here J € RT*(/=1 represents a matrix of the normalised
length of limb j < (J — 1) at any time ¢ < T. By cal-
culating the variance of limb lengths and taking the mean,
the loss encourages the model to produce more consistent
and stable limb lengths across the entire sequence. This can
be beneficial in applications where it is crucial to maintain
anatomical consistency in the predicted 3D poses.

To further regularize for the cases where the 3D pose
estimation model P fails to detect any pose, we use linear
interpolation between joints. Consider that the video con-
sists of N frames, out of which the model fails to predict

anything for ¢ frames. The linear extrapolation and inter-
polation function L : RIW—@)x/x3 _y RNXJX3 fj]|g in the
missing inputs. This provides pseudo-labels during train-
ing for two of our loss functions. These pseudo-labels also
help to ensure temporal continuity in the predicted poses.
Mean Per Joint Position (MPJP) Loss: This loss focuses
on the accuracy of the pose estimation by penalizing devi-
ations in the spatial position of individual joints. It com-
putes the mean Euclidean distance between the predicted X
poses and pseudo-poses X = L(X) where X is the noisy
sequence of poses obtained from P. It measures the average
distance between corresponding joints in the predicted and
pseudo labels. It is defined as follows,

J
Lypyp = %JZ% Z Z ZHXt,Jyd — X4

t=1 j=1d=1

2 (2

Normalized MPJP (N-MPJP) Loss: This loss function
introduces a normalization step to address scale variations
between the predicted and target poses. It calculates the
scale factor based on the norms of the predicted and tar-
get poses and then applies this scale factor to the predicted
poses before computing the MPJPE. The normalization in
Ln.mpyp aims to make the model more robust to variations
in absolute pose values. It is particularly useful when the
scale of the poses in the training and testing data may dif-
fer. By incorporating scale information, Ln.vpjp addresses
scale-related issues during training, potentially improving
the model’s generalization to different scenarios.

Lnvpip = »CMPJP(SXa X) (3
S Y Y meyd : Xt,deQ

N 2
23:1 Zj:l 23:1 Xt,j,dH2
In Equation 3, s represents the scale. The combination
of both Lympip and Lypyp losses allows the model to si-
multaneously optimize for accurate joint positions (Lypyp)
and address scale variations (Lnmpyp). The incorporation of
Lxmpyp allows the model to learn to handle scenarios where
the pose scale may differ between training and testing data.
Velocity Loss: We optimize velocity loss similar to Equa-
tion 5, but instead of ground truth, we use pseudo-labels,
> |

t=1 j=1d=1

where s =

“)

T-1

»Cvel =

T vV, ®

where V = Xt+1,j,d — Xt,j,d and V = Xt+1,j,d — Xt,j,d
represent velocities of predicted poses and pseudo label
poses respectively. The velocity loss helps in smoothing the
movement and removing unwanted jittering across frames.
Overall Loss. In summary, by combining all the above-
mentioned losses into one final loss function as shown in
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Equation 6, M is trained to produce accurate joint posi-
tions, maintain anatomical consistency, and handle scale
variations,

Liotal = M Liim + Ao Lwmpip + AsLampp + AaLlyver  (6)

Here, A;, where i € 1,2, 3, 4, refers to loss-weighing hyper-
parameters which remain constant for all evaluations.

4. Experiments and Results

In this section, our primary objective is to provide a com-
prehensive understanding of our approach. We elaborate on
the datasets employed and conduct a thorough comparison
with state-of-the-art methodologies. Furthermore, we ana-
lyze the qualitative results, pinpointing areas where existing
methods may falter. As a conclusive step, we perform an
ablation study to assess the impact of pre-training and dif-
ferent loss functions, shedding light on their contributions
to our experimental framework.

We conduct evaluations on three datasets with varying
levels of occlusion: Human3.6M, representing scenarios
without occlusion; OCMotion, moderate occlusion; and
Occluded Human3.6M, representing heavy occlusion. The
metrics assessed include Procrustes-aligned mean per joint
position error (PA-MPJPE), mean per joint position er-
ror (MPJPE), and acceleration error (Accel), measured as
the disparity in acceleration between ground-truth and pre-
dicted 3D joints. We report the metrics in (mm). We use
BEDLAM-CLIFF [3] as the off-the-shelf pose estimation
method. We compare the error rates of STRIDE and the
baseline methods in Tables 1, 2 and 3. The best results are in
bold and arrows indicate the percentage improvement over
the best existing algorithm. Qualitative video results can be
found on our shared GitHub repository.

4.1. Datasets

Human3.6M [16]: This indoor-scene dataset is crucial for
3D human pose estimation from 2D images. We use ev-
ery 1 in 5 frames in the test split and achieve comparable
performance to state-of-the-art methods.

OCMotion [15]: This video dataset extends the 3DOH50K
image dataset with natural occlusions, comprising 300K im-
ages at 10 FPS. We use only the test split since our method
does not require supervised training.

Occluded Human3.6M: We prepare a new dataset by mod-
ifying the Human3.6M [16]. It is curated to evaluate pose
estimation under significant occlusion. This dataset uses
random erase occlusions covering up to 100% of a person
for 1.6 seconds within 3.2-second videos.

BRIAR [8]: Features videos of human subjects in ex-
tremely challenging conditions, recorded at varying dis-
tances and from UAVs. Additional details on datasets and
implementation specifics, are provided in Section 7 of sup-
plementary material.

4.2. Quantitative Results

Method PA-MPIJPE MPIJPE  Accel
& CLIFF [24] 183.5 100.5 384
£ BEDLAM[3] 179.5 98.9 39.1

GLAMR [41] 213.9 380.3 423
§ PoseFormerV2 [47] 193.9 260.2 38.7
> CycleAdapt [26] 77.6 132.6 48.7

MotionBERT [51] 76.1 112.8 28.7

STRIDE (ours) 59.0 57%1) 80.7 18%)) 26.6 (1%))

Table 1. 3D Pose estimation results on Occluded Human3.6M.
This dataset is crucial as it is the only dataset that has signifi-
cant occlusion. The results underscore that STRIDE surpasses
all state-of-the-art with substantial percentage improvements, af-
firming its robustness in handling occlusions.

Our method is most effective under heavy occlusions.
We significantly outperform other state-of-the-art methods
on the Occluded Human3.6M dataset as shown in Table 1.
Notably, STRIDE performs significantly better than BED-
LAM despite using pseudo-labels from BEDLAM. BED-
LAM fails to produce poses under heavy occlusion; hence,
the evaluation results drop significantly. However, since
STRIDE incorporates temporal information to address
these gaps in the video, we predict reasonable poses even
in case of heavy occlusions and improve the result of BED-
LAM by a significant margin. It is important to note that by
using STRIDE we do not only outperform BEDLAM, but
we also outperform all the other existing video- and image-
based state-of-the-art methods. This is mainly because ex-
isting methods do not incorporate human motion prior and
hence result in temporally implausible poses.

Since Occluded Human3.6M contains artificial occlu-
sions, we also evaluated on the OCMotion dataset, which
contains real-world, natural occlusions. Table 2 shows that
our approach STRIDE attains state-of-the-art results on the
OCMotion dataset [15]. Since we obtained good pseudo-
labels from BEDLAM under partial occlusions, we observe
the proximity of our results to BEDLAM. It is important to
highlight that methods such as [19, 37] are supervised and
trained on the training split of OCMotion. In contrast to
these algorithms, our proposed approach (STRIDE) does
not assume access to any labeled training dataset.

Our method demonstrates minor improvement over
BEDLAM-CLIFF [3] on the original Human3.6M dataset,
as evidenced in Table 3. The marginal enhancement is pri-
marily due to the nature of the Human3.6M dataset, which
lacks occlusions, thereby limiting the potential for improve-
ment beyond the baseline. A thorough analysis of our
findings, including the observed enhancement in temporal
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Method PA-MPJPE Accel Avg
. OOH [43] 550 486 518
¥ PARE[I] 520 436 478
~  BEDLAM[3] 471 490 480

PoseFormerV?2 [47] 126.3 28.5 77.4

° GLAMR [41] 89.9 51.3 70.6
.é CycleAdapt [26] 746 575 660
ROMP [37] 48.1 57.2 52.6
STRIDE (ours) 46.2 %)) 47.8 47.0 2%l)
Table 2. 3D pose estimation results on OCMotion [15].

STRIDE outperforms other image and video-based pose estima-
tion methods. While PoseFormerV?2 has the lowest accel., it also
exhibits the highest PA-MPJPE error. This is due to oversmooth-
ing and inaccurate interpolation between poses which compro-
mises the pose estimation accuracy.

Method PA-MPJPE  MPJPE  Accel

° CLIFF [24] 56.1 89.6 -

on

g BEDLAM-HMR [3] 51.7 81.6 -
BEDLAM-CLIFF [3] 50.9 70.9 39.14

° GLAMR [41] - - -
é CycleAdapt [26] 64.5 106.3  57.25
MotionBERT™* [51] 64.15 95.8 14.8
STRIDE (ours) 504 1%l 69.7 2%, 37.1

Table 3. 3D pose estimation results on Human3.6M. Our

evaluation demonstrates that our results are comparable to the
BEDLAM-CLIFF baseline. This is due to the occlusion-free na-
ture of the Human3.6M, which yields already refined and consis-
tent poses with limited room for improvement.

smoothness, is provided in the Section 3 of supplementary.
Inference speed: Table 4 compares the inference times
of various 3D pose estimation methods on a 243-frame
OCMotion video using an RTX 3090 GPU. HuMor and
GLAMR are notably slower, exceeding 10 minutes due to
their intensive pose optimization phase. In contrast, Pose-
FormerV2 and CycleAdapt show efficiency improvements
with inference times of 129 and 126 seconds, respectively.
STRIDE outperforms these, achieving a significant reduc-
tion to 68 seconds, making it 46% faster and highlighting its
suitability for real-time applications without sacrificing ac-
curacy. We have ensured that the testing is consistent across
all algorithms, and results are reported including the TTT
phase with 30 epochs. Our method takes less time because
we train only on a single video at test time, which contains

significantly fewer frames compared to the entire dataset.

Method Time (sec)
HuMor [32] > 600
GLAMR [41] > 600
PoseFormerV?2 [47] 129
CycleAdapt [26] 126
STRIDE (ours) 68 46%.)

Table 4. Inference time for various 3D pose estimation methods.

4.3. Qualitative Results

To provide a comprehensive analysis and comparison of
STRIDE against other methods, we have compiled and
shared several qualitative video results in the supplementary
material. Our evaluation juxtaposes STRIDE against lead-
ing state-of-the-art techniques like CycleAdapt [26]. Key
insights from our comparison include:

Occluded Human3.6M: In this proposed dataset, tradi-
tional approaches often fall short in accurately predicting
missing 3D poses, struggling with high levels of occlusion.
In contrast, our method utilizes the dynamics of human mo-
tion to precisely infill missing poses, leading to a 57% error
improvement compared to the former methods.

BRIAR [8]: The videos within the BRIAR dataset present
a substantial domain shift, a scenario not previously en-
countered by existing methodologies. Our algorithm dis-
tinguishes itself by mitigating these distribution shifts, re-
sulting in markedly superior performance. While other
techniques yield almost random predictions under these
conditions, our method dynamically adapts to this domain
shift during test time. Although direct quantitative com-
parisons are impossible due to the absence of ground truth
3D pose data on BRIAR, the visual comparisons provided
through our videos convincingly demonstrate our method’s
enhanced adaptability and efficacy.

OCMotion [4]: In Fig. 4, we compare our method against
an existing state-of-the-art pose estimation method Cy-
cleAdapt [26]. In Frame 5, we can observe that CycleAdapt
fails to perform well in cases when there is self-occlusion.
We observe that STRIDE’s predictions are best aligned with
the ground truth poses, even under significant occlusions or
when the person goes out of the frame.

Please refer to the Section 4 supplementary material for
additional qualitative 3D pose estimation results and Sec-
tion 6 of supplementary material for details on mesh gener-
ation in videos and mesh recovery results.

4.4. Ablation Study

An ablation study conducted in Table 5 provides insights
into the significance of each component in STRIDE. Start-
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Figure 4. 3D pose estimation results on OCMotion (0013, Camera01). This figure demonstrates how our method incorporates temporal
continuity into video sequences under occlusion. The second row represents 3D poses predicted by CycleAdapt [26]. The third row
represents 3D poses predicted by STRIDE. Note: The 3D poses shown in translucent red color in the second and third row represent the

ground truths.

M Lypip Loer Liim Loumpjp MPIPE PA-MPJPE
X X X X X 179.5 98.9
X X X X 106.5 80.2
VA S ( X 82.1 60.4
VA X 81.4 59.6
ooV v/ X 81.1 59.6
oo/ v/ v 80.7 59.0

Table 5. Ablation study. This table illustrates how integrating a
pre-trained motion prior and various losses collectively contribute
to STRIDE’s final accuracy on the Occluded Human3.6M dataset.

ing from a baseline with substantial errors, introducing a
motion prior alone drastically improves performance, un-
derscoring its effectiveness in driving the model toward
realistic human pose dynamics. Adding L,,y;, enhances
spatial accuracy, further lowering MPJPE to 82.1 and PA-
MPIJPE to 60.4. Improvement with L,.; suggests its role
in smoothing motion. The best results are observed when
Lpmypjp 18 also included, indicating its critical function in
accounting for scale variations. Thus, the ablation study
reveals that each component contributes to improving the
accuracy and temporal consistency of the pose estimations,
with the full combination of components yielding state-of-
the-art results. This shows that while the motion prior sets
a strong foundation for plausible poses, the various loss
functions refine and stabilize the pose predictions to align
closely with natural human movement dynamics and unseen
poses. In Section 5 of supplementary material, we show
how varying off-the-shelf pose estimation methods within
the backbone of STRIDE affects its performance. We find
that using any off-the-shelf pose estimation method yields
similar improvements, thereby making STRIDE agnostic to
any specific 3D pose estimation method.

5. Conclusion

We introduce STRIDE, a novel algorithm for self-
supervised test-time training aimed at improving 3D human
pose estimation in individual video frames. STRIDE uti-
lizes extensive self-supervised pre-training to develop a
robust model of human motion priors. It integrates
self-supervised optimization with temporal regularization,
achieving state-of-the-art performance in terms of both pose
accuracy and computational efficiency across diverse chal-
lenging datasets, even those with significant occlusions. A
limitation of STRIDE is its ability to extract temporally
continuous 3D poses only in scenarios where there are no
human-to-human occlusions. Future efforts can concentrate
on adapting STRIDE for situations involving multi-person
occlusions. Handling such situations requires modelling
of complex human-to-human interaction alongside exter-
nal identification and tracking framework. In conclusion,
STRIDE sets a new benchmark for 3D human pose esti-
mation in occluded environments and introduces promising
directions for enhancing related downstream applications.
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