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ABSTRACT

In this work, we propose the first backdoor attack to graph neural networks (GNN).
Specifically, we propose a subgraph based backdoor attack to GNN for graph
classification. In our backdoor attack, a GNN classifier predicts an attacker-chosen
target label for a testing graph once a predefined subgraph is injected to the testing
graph. Our empirical results on three real-world graph datasets show that our
backdoor attacks are effective with a small impact on a GNN’s prediction accuracy
for clean testing graphs.

1 INTRODUCTION

Graphs have been widely used to model complex interactions between entities. For instance, in online
social networks, a user and its friends can be modeled as a graph (called ego network in network
science), where the user and its online friends are nodes, and an edge between two nodes indicates
online friendship or interaction between them. Likewise, a Bitcoin transaction can be modeled as an
ego network, where the nodes are the transaction and the transactions that have Bitcoin flow with it,
and an edge between two transactions indicates the flow of Bitcoin from one transaction to the other.
Graph classification, which takes a graph as an input and outputs a label for the graph, is a basic
graph analytics tool and has many applications such as fraud detection (Wang et al., 2017aj;[Weber
et al.,|2019; Wang et al.,|2019a), malware detection (Kong & Yan,|2013; Nikolopoulos & Polenakis,
2017; Hassen & Chan, [2017;|Yan et al.,[2019), and healthcare (Li et al.,[2017; |Altae-Tran et al., 2017
Chen et al.,[2018)). Graph neural network (GNN) based graph classification has attracted increasing
attention due to its superior prediction accuracy. Given a graph, a GNN uses a neural network to
analyze the complex graph structure and predict a label for the graph. For instance, to detect fake
users in online social networks, a user is predicted to be fake if a GNN predicts the label “fake” for
the user’s ego network. To detect fraudulent transactions in Bitcoin, a transaction is fraudulent if a
GNN predicts the label “fraudulent” for the transaction’s ego network.

Since GNNs are used for security applications, an attacker is motivated to attack GNNs to evade
detection. For instance, a fake user can attack GNNs such that it is misclassified as a genuine user.
However, GNN based graph classifications in such adversarial settings are largely unexplored. Most
existing studies (Ziigner et al., 2018} Bojchevski & Gilinnemann, [2019a;|Wang & Gongl |2019; Ziigner
& Giinnemann, [2019b) on GNNs in adversarial settings focused on node classification instead of
graph classification. Node classification aims to predict a label for each node in a graph, while graph
classification aims to predict a label for the entire graph. One exception is that|Dai et al.[ (2018)
proposed adversarial examples to attack GNN based graph classification, where an attacker perturbs
the structure of a testing graph such that the target GNN misclassifies the perturbed testing graph
(i.e., the perturbed testing graph is an adversarial example). However, such attacks require optimized
(different) perturbations for different testing graphs and have limited success rates when the target
GNN is unknown (Dai et al., [2018).

Our work: In this work, we propose the first backdoor attack to GNNs. Unlike adversarial examples,
a backdoor attack applies the same trigger to testing graphs and does not need knowledge of the target
GNN to be successful. Backdoor attacks have been extensively studied in the image domain (Gu
et al.,[2017;|Chen et al., 2017a;|L1u et al., | 2018b; L1 et al., 2018}; | Tran et al., [2018;|Yao et al.,[2019;
Salem et al.,|2020). However, backdoor attacks to GNNs are unexplored. Unlike images whose pixels
can be represented in a Cartesian coordinate system, graphs do not have such Cartesian coordinate
system and graphs to an GNN can have different sizes.
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We propose a subgraph based backdoor attack to GNN based graph classification. Specifically, we
propose to use a subgraph pattern as a backdoor trigger, and we characterize our subgraph based
backdoor attack using four parameters: trigger size, trigger density, trigger synthesis method, and
poisoning intensity. Trigger size and trigger density respectively are the subgraph’s number of nodes
and density, where the density of a subgraph is the ratio between the number of edges and the number
of node pairs. Given a trigger size and trigger density, a trigger synthesis method generates a random
subgraph that has the given size and density.

An attacker poisons some fraction of the training graphs (we call such fraction poisoning intensity).
Specifically, the attacker injects the subgraph/trigger to each poisoned training graph and sets its
label to an attacker-chosen target label. Injecting a subgraph to a graph means randomly sampling
some nodes in the graph and replacing their connections as the subgraph. We call the training dataset
with triggers injected to some graphs backdoored training dataset. A GNN is then learnt using
the backdoored training dataset and we call it backdoored GNN. Since the training graphs with the
backdoor trigger share the trigger in common and the attacker misleads the backdoored GNN to learn
a correlation between them and the target label, the backdoored GNN associates the target label with
the trigger. Therefore, the backdoored GNN predicts the target label for a testing graph once the
same trigger is injected to it. Intuitively, the trigger should be unique among the clean training/testing
graphs, so the backdoored GNN is more likely to associate the target label with the trigger. Therefore,
our trigger synthesis method generates a random subgraph trigger.

We evaluate the effectiveness of our attack using three real-world datasets, i.e., Bitcoin, Twitter,
and COLLAB. The Bitcoin and Twitter datasets represent fraudulent transaction detection and fake
user detection, respectively. COLLAB is a scientific collaboration dataset. We consider COLLAB
because it is a widely used benchmark dataset for GNNSs. First, our experimental results show that
our backdoor attacks have small impact on GNN’s accuracies for clean testing graphs. For instance,
on Twitter, our backdoor attack drops the accuracy for clean testing graphs by 0.03 even if the trigger
size is 30% of the average number of nodes per graph. Second, our attacks have high success rates.
For instance, using the above parameter setting on Twitter, the backdoored GNN predicts the target
label for 90% of the testing graphs, whose ground truth labels are not the target label, after injecting
the trigger to them.

2 THREAT MODEL

Our threat model is largely inspired by backdoor attacks in the image domain (Gu et al., 2017; |Chen
et al., 2017a; [L1u et al., 2018b; L1 et al., 2018}, Tran et al., 2018 Salem et al., 2020). We characterize
the threat model with respect to attacker’s goal and attacker’s capability.

Attacker’s goal: An attacker has two goals. First, the backdoor attack should not influence the GNN
classifier’s accuracy on clean testing graphs, which makes the backdoor attack stealthy. If an attack
sacrifices a GNN classifier’s accuracy substantially, a defender could detect such low accuracy using
a clean validation dataset and the GNN classifier may not be deployed. Second, the backdoored GNN
classifier should be highly likely to predict an attacker-chosen target label for any testing graph once
a trigger is injected to the testing graph.

Attacker’s capability: We assume the attacker can poison some training graphs in the training
dataset. Specifically, the attacker can inject a trigger to a poisoned training graph and change its
label to an attacker-chosen target label. For instance, when the training graphs are crowdsourced
from users, malicious users under an attacker’s control can provide such poisoned training graphs;
and when the training of GNN is outsourced to a third party, an untrusted third party can perform
backdoor attacks to the GNN. Moreover, the attacker can inject the same trigger to testing graphs,
e.g., the attacker’s own testing graphs.

3 OUR SUBGRAPH BASED BACKDOOR ATTACKS

3.1 ATTACK OVERVIEW

Figure [T]illustrates the pipeline of our subgraph based backdoor attack. Our backdoor attack uses
a subgraph as a backdoor trigger. Suppose a subgraph consists of £ nodes. Injecting the subgraph



Under review as a conference paper at ICLR 2021

backdoored GNN
backdoored training dataset

llabel 0: 7@ % @ I?ﬂ
label 1: ‘sg /E%: % f\:—:'\

true label: 0 true label: 1

backdoored GNN

trigger: - — label 0

v

Eind
}

q}. — @ = |abel 1
(4

Training Testing

target label: 1

1 1
| |
I I
1 1
I I
I I
1 1
| |
I I
| |
1 1

trigger
configuration

Figure 1: Illustration of our subgraph based backdoor attack.

to a graph means that we sample ¢ nodes from the graph uniformly at random, map them to the ¢
nodes in the subgraph randomly, and replace their connections as the subgraph. In the training phase,
an attacker injects a subgraph/trigger to a subset of training graphs and changes their labels to an
attacker-chosen target label. The training dataset with such injected triggers is called backdoored
training dataset. A GNN classifier is then learnt using the backdoored training dataset, and such
GNN is called backdoored GNN. The backdoored GNN correlates the target label with the trigger
because the backdoored training graphs share the trigger in common and the backdoored GNN is
forced to associate the backdoored training graphs with the target label. In the testing phase, the
attacker injects the same subgraph/trigger to a testing graph and the backdoored GNN is very likely
to predict the target label for the testing graph with trigger injected.

3.2 ATTACK DESIGN

Our backdoor attack involves injecting a backdoor trigger, i.e., a subgraph, to a graph. Designing
the subgraph is key to our backdoor attack. Intuitively, the subgraph should be unique among the
clean training/testing graphs, so the backdoored GNN is more likely to associate the target label
with the subgraph. A naive method is to construct a complete subgraph (i.e., every pair of nodes in
the subgraph is connected) as a backdoor trigger. However, such trigger could be easily detected
especially when the number of nodes in the subgraph is large. For instance, a defender may search
for complete subgraphs in a training or testing graph, and a complete subgraph may be detected
as a backdoor trigger when complete subgraphs are unlikely to occur in the clean training/testing
graphs. Therefore, we propose to generate a random subgraph as backdoor trigger. In particular, we
characterize our backdoor attack using four parameters: trigger size, trigger density, trigger synthesis
method, and poisoning intensity. Next, we describe each of them.

Trigger size and trigger density: We call the number of nodes in the subgraph/trigger as trigger

size. We denote the trigger size as t. Given ¢ nodes, there are @ pairs of nodes, which is the
maximum number of edges that a subgraph with ¢ nodes could have. We define the trigger density of
a subgraph as the ratio between the number of edges in the subgraph and the number of node pairs
in the subgraph. We denote p as the trigger density. Formally, we have p = t(?iin where e is the

number of edges in the subgraph.

Trigger synthesis method: Given a trigger size ¢ and trigger density p, a trigger synthesis method
generates a subgraph that has the given size and density. We generate a random subgraph using the
Erd6s-Rényi (ER) model (Gilbert, [1959). In particular, given ¢ nodes, ER creates an edge for each
pair of nodes with probability p independently. p is the expected density of the subgraph generated
by ER. Therefore, we set p = p, which means that the generated subgraph has the given trigger
density p on average. In our experiments, we also evaluate triggers generated by the Small World
(SW) model (Watts & Strogatz, [1998) and Preferential Attachment (PA) model (Barabasi & Albert,
1999), which are popular generative graph models developed by the network science community.
Unlike ER, SW and PA generate subgraphs that are more similar to subgraphs in natural clean graphs,
e.g., they are small-world graphs and have power-law degree distributions. As a result, our backdoor
attack with ER is more effective than that with SW and PA.

In a nutshell, SW model first creates a ring in which each node is connected with its k nearest
neighbors. Then, for each edge in the ring, SW randomly rewires it with a certain probability, i.e., we
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Table 1: Statistics of datasets.

. #Training graphs #Testing graphs
Datasets | #Graphs| Avg. #nodes| Avg. density Class 0 Cla;gsgl glass 2|Class 0 Cla%sg 1 pClass 2
Bitcoin 658 11.53 0.342 219 219 - 110 110 -
Twitter 1,481 63.10 0.523 489 498 - 245 249 -
COLLAB/| 5,000 73.49 0.510 517 | 1,589 | 1,215 | 258 794 608

move one of its end to a new node chosen uniformly at random from the rest of nodes with a certain
probability. The parameter k is related to the density of the subgraph. We set k = [(t — 1)p], with
which the generated subgraph roughly has density p. PA adds nodes to the subgraph in a step-by-step
manner. Initially, the subgraph has k£ nodes and no edges. In each step, a new node is added to the
subgraph and the new node is connected with randomly picked k existing nodes in the subgraph,
where the probability that a node is picked is proportional to its degree. Intuitively, a new node prefers
to connect with nodes who are already connected with many other nodes. The parameter k is related

) P21 )
to the density of the generated subgraph. Formally, we set k& = (ML which allows
the generated subgraph to roughly have density p. Note that PA requires p to be smaller than some
threshold (i.e., the subgraph cannot be too dense) such that % is a positive integer.

Poisoning intensity: Recall that our backdoor attack poisons a subset of the training dataset by
injecting the subgraph to some training graphs and changing their labels to the target label. Poisoning
intensity is the fraction of training graphs that are poisoned by the attacker. We denote by v the
poisoning intensity.

4  ATTACK EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets: We evaluate our attacks on three publicly available real-world graph datasets, i.e., Bitcoin
(Weber et al.| [2019), Twitter (Wang et al.,|2017b)), and COLLAB (Yanardag & Vishwanathan, 2015)).
Table 1| shows the statistics of our datasets. The Bitcoin and Twitter datasets represent GNN-based
fraud detection. We consider the COLLAB dataset because it is a widely used benchmark for GNNGs.
These diverse datasets can demonstrate the effectiveness of our backdoor attacks in different domains.
For all the three datasets, we extract a node’s degree as its node feature. The Bitcoin dataset is used
for graph-based fraudulent Bitcoin transaction detection. The original dataset has Bitcoin transactions
collected at more than 40 different timestamps. Some transactions are manually labeled as illicit,
some transactions are manually labeled as licit, while the remaining ones are unlabeled. We extracted
658 labeled transactions. We represent each transaction as a graph. Specifically, in a graph, nodes are
a transaction and the transactions that have Bitcoin flow with it and an edge between two transactions
means that there was Bitcoin currency flow between them. Therefore, there are 658 graphs and each
graph has a label 0 or 1, which corresponds to illicit and licit transaction, respectively.

The Twitter dataset is used for graph-based fake user detection. In the original dataset, some users
are labeled as fake, some are labeled as genuine, and the remaining are unlabeled. We randomly
picked 1, 481 labeled users. We represent each user using its ego network. In particular, in a user’s
ego network, the user and its followers/followees are nodes and an edge between two users indicates
that they follow each other. A user’s ego network is labeled as O if the user is fake and 1 otherwise.
Therefore, this dataset includes 1,481 graphs and each graph has a label 0 or 1. COLLAB is a
scientific collaboration dataset. A graph corresponds to a researcher’s ego network, i.e., the researcher
and its collaborators are nodes and an edge indicates collaboration between two researchers. A
researcher’s ego network has three possible labels, i.e., High Energy Physics, Condensed Matter
Physics, and Astro Physics, which are the fields that the researcher belongs to. The dataset has 5,000
graphs and each graph has label 0, 1, or 2.

Dataset splits and construction: We split each dataset to training dataset and testing dataset.
Moreover, we construct backdoored training dataset and backdoored testing dataset via injecting a
trigger to the graphs. In particular, for each dataset, we sample 2/3 of the graphs uniformly at random
as the training dataset and treat the remaining graphs as testing dataset. We call them clean training
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Figure 2: Impact of trigger size, trigger density, and poisoning intensity on Twitter.
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Figure 3: Comparing trigger synthesis methods on the three datasets.

dataset and clean testing dataset, respectively. Since our attack poisons some training graphs, we
construct a backdoored training dataset from each clean training dataset. In particular, we randomly
sample ~y fraction of graphs from a clean training dataset. Then, for each sampled training graph, we
inject our backdoor trigger to it and relabel it as the target label. We assume label 1 as the target label.
In Bitcoin and Twitter, selecting label 1 as target label means evading fraud detection. To evaluate the
effectiveness of our attack, we create a backdoored testing dataset for each dataset. For each testing
graph whose true label is not the target label, we inject our trigger to it. These testing graphs with
injected trigger constitute our backdoored testing dataset.

GNN classifiers: Our attack does not rely on the architecture of GNN. We show our attacks for
three popular GNN classifiers, i.e., GIN [2019b), SAGPool 2019), and HGP-SL
(Zhang et al,[2019). We use their publicly available implementations. When a classifier is learnt
using a clean training dataset, we call the classifier clean classifier and we denote it as f.. When a
classifier is learnt using a backdoored training dataset, we call the classifier backdoored classifier and
we denote it as f,. For simplicity, we show results on GIN unless otherwise mentioned.

Evaluation metrics: We use Clean Accuracy, Backdoor Accuracy, and Attack Success Rate as
evaluation metrics. Clean accuracy and backdoor accuracy respectively measure the accuracies of a
clean classifier and a backdoored classifier for a clean testing dataset, while attack success rate is the
fraction of graphs in the backdoored testing dataset that are predicted to have the target label by a
backdoored classifier. Specifically, given a clean classifier f. and a clean testing dataset, we define the
clean accuracy as the fraction of graphs in the clean testing dataset that are correctly predicted by the
clean classifier f.. The backdoor accuracy measures the accuracy of a backdoored classifier on the
clean testing dataset. In particular, we define backdoor accuracy as the fraction of graphs in the clean
testing dataset that can be correctly predicted by the backdoored classifier. The difference between
backdoor accuracy and clean accuracy measures the impact of our backdoor attack on accuracy for
clean testing graphs. Recall that one of our attacker’s goals is that the accuracy on clean testing
graphs should not be influenced by our attack, i.e., backdoor accuracy and clean accuracy should
be close. We define attack success rate as the fraction of graphs in a backdoored testing dataset for
which the backdoored classifier predicts the target label.
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Table 2: Attack success rates when injecting the trigger to only training graphs, only testing
graphs, and both.

Bitcoin | Twitter | COLLAB
Attack Success Rate-Baseline 0.40 0.19 0.25
Attack Success Rate-Train 0.45 0.28 0.37
Attack Success Rate-Test 0.51 0.24 0.52
Attack Success Rate 0.78 0.82 0.75

Table 3: Fixed trigger vs. random trigger on Twitter.

Backdoor Accuracy | Attack Success Rate
Fixed trigger 0.67 0.82
Random trigger 0.66 0.81

Parameter setting: Our attack has the following parameters: trigger size t, trigger density p,
trigger synthesis method M, and poisoning intensity +. Different datasets have different graph
sizes. Therefore, for each dataset, we set the trigger size ¢ to be ¢ fraction of the average number
of nodes per graph in the dataset (we use ceiling to obtain an integer number as the trigger size).
Unless otherwise mentioned, we adopt the following default parameter settings: ¢ = 20%, p = 0.8,
M = ER, and v = 5% in all three datasets. We will explore the impact of each parameter while
fixing the remaining ones to their default settings. Note that when a graph has less nodes than the
trigger size, we replace the graph as the trigger. ER may generate a subgraph/trigger with no edges as
it randomly creates edges. When such case happens, we run ER multiple times until generating a
subgraph with at least one edge. SW rewires an edge with a probability, which we set to be 0.8.

4.2 RESULTS

Impact of trigger size, trigger density, and poisoning intensity: Figure [5a] Figure [5b and
Figure [5c|respectively show the impact of trigger size, trigger density, and poisoning intensity on the
Twitter dataset. The results on the other two datasets are shown in Figure 4 and Figure [5]in Appendix.
First, we observe that our backdoor attacks have small impact on the accuracies for clean testing
graphs. Specifically, backdoor accuracy is slightly smaller than clean accuracy. For instance, when
the trigger size is 20% of the average number of nodes per graph, the backdoor accuracy is 0.03
smaller than the clean accuracy on Twitter. Second, our backdoor attacks achieve high attack success
rates and the attack success rates increase as the trigger size, trigger density, or poisoning intensity
increases. The reason is that when the trigger size, trigger density, or poisoning intensity is larger, the
backdoored GNN is more likely to associate the target label with the trigger.

Comparing trigger synthesis methods: Figure [3|compares ER, SW, and PA as trigger synthesis
methods on the three datasets, where we set p = 0.4 since PA requires it to be small (see Section [3.2).
Our results show that ER has higher attack success rates than SW and PA. We suspect the reason is
that the subgraph generated by SW and PA is more similar to subgraphs in the clean graphs, e.g., they
are small-world graphs and have power-law degree distributions, and thus the backdoored GNN is
less likely to associate the target label with the subgraph.

Injecting trigger in training vs. testing graphs: Backdoor attacks inject a trigger to some training
graphs and also testing graphs. One natural question is how successful a backdoor attack is if we
only inject the trigger to the training graphs or testing graphs alone. Table [2| shows the attack success
rates of our backdoor attacks when injecting the trigger to only training graphs, only testing graphs,
and both. We denote by D, the set of clean testing graphs whose true labels are not the target label.
Attack Success Rate-Baseline is the fraction of clean testing graphs in D, that are predicted to have
the target label by the clean GNN. Attack Success Rate-Baseline measures an attacker’s success rate
without injecting a trigger to any training/testing graph. Attack Success Rate-Train is the fraction of
clean testing graphs in D, that are predicted to have the target label by the backdoored GNN. Attack
Success Rate-Test is the fraction of testing graphs in D, that are predicted to have the target label by
the clean GNN when injecting the trigger to them. Attack Success Rate corresponds to our attack that
injects the trigger to both training and testing graphs.
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Table 4: Comparing different ways to inject the trigger.

Bitcoin random |max degree|min degree |densely connected
Clean Accuracy 0.73 0.73 0.73 0.73
Backdoor Accuracy | 0.7 0.71 0.71 0.69
Attack Success Rate| 0.78 0.78 0.83 0.82

Twitter random |max degree|min degree|densely connected
Clean Accuracy | 0.71 0.71 0.71 0.71
Backdoor Accuracy | 0.69 0.7 0.69 0.7
Attack Success Rate| (.82 0.68 0.55 0.28

COLLAB random |max degree|min degree |densely connected
Clean Accuracy 0.78 0.78 0.78 0.78
Backdoor Accuracy | 0.75 0.73 0.72 0.75
Attack Success Rate| 0.76 0.76 0.74 0.76

Table 5: Our attacks to different GNN classifiers on Twitter.

GIN | SAGPool | HGP-SL
Clean Accuracy 0.71 0.69 0.72
Backdoor Accuracy | 0.69 0.68 0.69
Attack Success Rate | 0.82 0.81 0.84

We observe that injecting trigger to both training and testing graphs does improve attack success rates
substantially. We also observe that injecting trigger to either training graphs or testing graphs alone
increases the attack success rate upon the baseline. This is because injecting trigger to training or
testing graphs makes the GNN classifiers less accurate. For Bitcoin and Twitter, being less accurate is
equivalent to higher attack success rate since the two datasets are binary classification. For COLLAB,
the GNN classifiers are biased to be more likely to predict label 1 (i.e., target label) when making
an incorrect prediction because label 1 has more training graphs (see Table|[T)), and thus being less
accurate increases the attack success rate.

Fixed vs. random triggers: In all our experiments above, we use the same trigger in the training
graphs and testing graphs. Table [3]compares the backdoor accuracy and attack success rate when we
use ER to generate one trigger and fix it (corresponding to “Fixed trigger”) and when we use ER to
generate a random trigger with the given trigger size and density for each poisoned training graph and
testing graph (corresponding to “Random trigger”). Our results show that random trigger is nearly as
effective as fixed trigger. We suspect the reason is that the random triggers are structurally similar,
e.g., they may be isomorphic, and a backdoored GNN can associate the structurally similar triggers
with the target label.

Comparing different ways to inject trigger: Our attack involves injecting a subgraph trigger to a
training/testing graph. In particular, we pick ¢ nodes in a graph and replace their connections as the
trigger, where ¢ is the trigger size. One natural question is how to select the ¢ nodes in a graph. In
all our above experiments, we pick the ¢ nodes in a graph uniformly at random. We compare this
random strategy with three other strategies. Two strategies (called max degree and min degree) are
to select the ¢ nodes with the largest and smallest degrees, respectively. The third strategy (called
densely connected) is to select t nodes that are densely connected, i.e., a set of ¢ nodes with the
largest density, and we leverage the method in (Yuan & Ghanem), 2017) to find such ¢ nodes. Table
compares different strategies to select the ¢ nodes. We find that the random strategy has the most
stable results. In particular, it achieves similar backdoor accuracy with other strategies on the three
datasets. However, the random strategy achieves either much higher attack success rates (e.g., on
Twitter) or ones comparable with other strategies.

Different GNN classifiers: Table[5]shows the attack results for three popular GNN classifiers on
Twitter. We observe that our attack is effective for different GNN classifiers. This is because our
attack does not rely on the architecture of GNN classifiers.
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5 RELATED WORK

Backdoor attacks and their defenses in image domain: Deep neural networks in the image
domain were shown to be vulnerable to backdoor attacks (Gu et al., [2017;|Chen et al., 2017a; Liu
et al.,[2018b; |Li et al., 2018; [Clements & LLao, 2018} [Tran et al.,[2018}; Xie et al., 2020; Salem et al.|
2020). Specifically, a backdoored neural network classifier produces attacker-desired behaviors when
a trigger is injected into a testing example. For instance, Gu et al.|(2017) proposed BadNets, which
injects a backdoor trigger (e.g., a patch) to some training images and changes their labels to the target
label. A neural network classifier trained on the backdoored training dataset predicts the target label
for a testing image when the trigger is injected to it. [Liu et al.|(2018b) proposed to inject a backdoor
to a neural network via fine tuning, which does not need to poison the training dataset.

To mitigate backdoor attacks, many defenses (Chen et al.| 2017a; [Liu et al., 2018bj; 2017 2018a;
Wang et al.| 2019b; |Gao et al.,[2019; [Liu et al., |2019; |Guo et al., 2019) have been proposed in the
literature. [Liu et al.| (2018a) proposed Fine-Pruning to remove backdoor from a neural network via
pruning its redundant neurons. Wang et al.| (2019b) proposed Neural Cleanse to detect and reverse
engineer the trigger. |Gao et al.|(2019) tried to detect whether an input image includes a trigger or not
via leveraging the input-agnostic characteristic of the backdoor trigger. |Liu et al.|(2019) proposed
ABS to detect whether a neural network is backdoored or not via analyzing the behaviors of its
internal neurons. Wang et al.| (2020); |Weber et al.| (2020) studied randomized smoothing based
certified defenses against backdoor attacks in image domain. In particular, they use randomized
smoothing with additive noise, e.g., Gaussian noise, uniform noise, or discrete noise. These defenses
cannot be directly applied to defend against our subgraph based backdoor attacks because graphs do
not have the coordinates like images.

Attacks to GNNs and their defenses: Several studies (Ziigner et al., [2018]; [Dai et al., 2018}
Bojchevski & Gilinnemann, 2019a;|Wang & Gong|, 2019} |Ziigner & Giinnemann, [2019b; |Wu et al.,
2019;[Xu et al.| 20194} |Chang et al.,2020) showed that GNNs for node classification are vulnerable to
adversarial structural perturbations. Specifically, an attacker can perturb the graph structure such that
a GNN based node classifier misclassifies many nodes in the graph indiscriminately or misclassifies
some attacker-chosen nodes. For instance, |Ziigner et al.|(2018) proposed an attack that can manipulate
the graph structure while preserving important characteristics of the graph. [Wang & Gong|(2019)
attacked collective classification via formulating the attack as an optimization problem and proposing
several approximation techniques to solve the optimization problem. Moreover, their attacks can also
transfer to GNN based node classifiers. |Dai et al.|(2018)) proposed a reinforcement learning method
to attack GNNs for both node and graph classification. For graph classification, their method perturbs
a testing graph to be an adversarial example such that a GNN misclassifies it. (Chen et al.[|(2017b))
proposed an attack for graph-based clustering. Several studies (Bojchevski & Giinnemannl, 2019b;
Jin & Zhang} 2019;(Wu et al., 2019; |Deng et al.}2019; [Jia et al.l 2020; Ziigner & Gilinnemann, 2019aj
Bojchevski et al.| [2020; [Zhang & Zitnik, 2020) tried to develop GNNs that are more robust against
adversarial structural perturbations. For instance, |[Bojchevski et al.| (2020) leveraged randomized
smoothing to certify robustness of GNN against perturbations to both the graph structure and the
node attributes. Our work is different from these studies because we focus on backdoor attacks to
GNN based graph classification.

6 CONCLUSION AND FUTURE WORK

In this work, we showed that graph neural networks are vulnerable to backdoor attacks. Specifically,
an attacker can inject a subgraph to some training graphs and change their labels to an attacker-chosen
target label. A GNN classifier that is trained on the backdoored training dataset is very likely to
predict the target label for any testing graph when the same subgraph is injected to it. Our empirical
evaluation results on three real-world datasets show that our backdoor attacks achieve high success
rates with a small impact on the GNN’s accuracies for clean testing graphs. Interesting future work
includes: 1) detecting whether a GNN classifier is backdoored or not, and 2) designing defenses
against our backdoor attacks.
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Figure 4: Impact of trigger size, trigger density, and poisoning intensity on Bitcoin.
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Figure 5: Impact of trigger size, trigger density, and poisoning intensity on COLLAB.
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