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Abstract

Recent advancements in audio language models
have underscored the pivotal role of audio tok-
enization, which converts audio signals into dis-
crete tokens, thereby facilitating the application
of language model architectures to the audio do-
main. In this study, we introduce ALMTokenizer,
a novel low-bitrate and semantically rich audio
codec tokenizer for audio language models. Prior
methods, such as Encodec, typically encode indi-
vidual audio frames into discrete tokens without
considering the use of context information across
frames. Unlike these methods, we introduce a
novel query-based compression strategy to cap-
ture holistic information with a set of learnable
query tokens by explicitly modeling the context
information across frames. This design not only
enables the codec model to capture more semantic
information but also encodes the audio signal with
fewer token sequences. Additionally, to enhance
the semantic information in audio codec models,
we introduce the following: (1) A masked au-
toencoder (MAE) loss, (2) Vector quantization
based on semantic priors, and (3) An autoregres-
sive (AR) prediction loss. As a result, ALMTo-
kenizer achieves competitive reconstruction per-
formance relative to state-of-the-art approaches
while operating at a lower bitrate. Within the
same audio language model framework, ALMTo-
kenizer outperforms previous tokenizers in audio
understanding and generation tasks. !
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1. Introduction

The field of generative modeling has witnessed remarkable
progress, largely driven by the success of autoregressive
(AR) models in the development of large language models
(LLMs) (OpenAl, 2023). Inspired by the success of LLMs
in the fields of natural language processing (NLP), recent
works have begun to employ AR transformers for audio gen-
eration (Borsos et al., 2023a; Agostinelli et al., 2023; Yang
et al., 2023c), such as using the AR transformer paradigm to
solve text-to-speech task (Wang et al., 2023), or expanding
the text LLM into multimodal LLM by integrating the audio
modality into the original LLM (Défossez et al., 2024). Au-
dio tokenizer plays an important role in all of these models,
which converts audio signals into discrete token sequence
for AR audio language modeling.

In the literature, audio codec models, such as SoundStream
(Zeghidour et al., 2021) and Encodec (Défossez et al., 2022),
have been widely adopted as audio tokenizers for audio lan-
guage models. These generative models aim to represent
audio data in a quantized discrete latent space, where the
codec’s decoder is then used to reconstruct the audio sig-
nals from the generated discrete token sequences. Recently,
there has been significant interest in the audio community
regarding audio codec tokenizers, leading to the proposal
of several novel models (Kumar et al., 2023; Ji et al., 2024,
Défossez et al., 2024; Parker et al., 2024; Zhang et al., 2023).
Despite the advancements in audio codec models, an im-
portant research question remains unanswered: which type
of audio codec is most suitable for audio language mod-
eling? Inspired by previous works (Borsos et al., 2023a;
Parker et al., 2024, Ji et al., 2024; Défossez et al., 2024),
these studies investigate two key properties of audio codec
models: low bitrate and semantic richness. We first conduct
a set of evaluation experiments to explore the influence of
bitrate and semantic information on audio language model-
ing. Specifically, we train three audio codec models with
varying bitrates, while keeping the number of vector quan-
tization (VQ) layers constant and adjusting the frame rates
to 50 Hz, 25 Hz, and 12.5 Hz. We then train the audio lan-
guage model using different audio tokenizers on the same
dataset. To assess the impact of semantic information, we
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also train a 12.5 Hz semantic tokenizer and incorporate it
into the audio language model. Further details can be found
in Appendix B. Figure 1 presents the results, which show
that: (1) low-bitrate audio codec models significantly en-
hance training and inference efficiency; and (2) semantic
information is more easily modeled by LM-based genera-
tive methods, e.g. lower PPL and loss. The experimental
findings demonstrate the importance of constructing a low-
bitrate and semantic-rich audio codec tokenizer for audio
language modeling. Based on these results, we propose a
novel audio codec tokenizer that offers the following advan-
tages: (1) Low-bitrate: it compresses the audio data into
fewer tokens; (2) Semantic-rich: it incorporates abundant se-
mantic information; (3) AR-driven latent space: it optimizes
the latent space for autoregressive (AR) modeling.

To achieve this objective, we propose the following novel
techniques: (1) We introduce a novel query-based compres-
sion strategy, which uses a set of learnable query tokens to
capture holistic information by explicitly modeling the con-
text information across audio frames with transformer lay-
ers. This strategy effectively takes advantage of the strong
modeling capabilities of transformers to achieve better com-
pression and semantic modeling. It also enables dynamic
control over the compression rate by adjusting the number
of query tokens. (2) To enhance semantic richness in the
codec model, we introduce a Masked Autoencoder (MAE)
loss, which encourages the model to capture more global
information. (3) Inspired by previous works (Zhu et al.,
2024), we propose the integration of semantic priors into
the VQ layer. Specifically, we perform k-means cluster-
ing on the pre-trained wav2vec2 (Baevski et al., 2020) and
BEATS (Chen et al., 2022b) encoder outputs, using the clus-
ter centers to initialize the VQ layer. (4) We observe that
AR models struggle to fit the distribution of the residuals in
the VQ layers, with token prediction accuracy being notably
lower in the second and third VQ layers compared to the
first. To address this issue, we introduce an AR prediction
loss to optimize the latent space.

To evaluate the effectiveness of the ALMTokenizer, we
first compare its reconstruction and semantic performance
with previous state-of-the-art models. Using the same au-
dio language model framework, we then demonstrate that
ALMTokenizer achieves superior performance in LM-based
audio understanding and generation tasks, including text-
to-speech (TTS), speech-to-text (ASR), audio captioning,
text-to-sound, text-to-music, and music captioning.

2. Related Works

2.1. Audio Language Models

Recently, there has been a growing interest in bridging audio
and text through multimodal learning approaches. Models
such as AudioLM (Borsos et al., 2023a) leverage AR trans-

Training cost (Hours)
—— 12.5hz semantic
12.5hz codec
= 25hz codec
—— 50hz codec

Inference cost (RTF)

Figure 1. The performance comparison when different types of
tokenizer is used for audio modeling. PPL refers to perplexity.

formers and hierarchical modeling techniques to process
audio data directly, learning representations that capture
both linguistic and acoustic features. Inspired by AudioLM,
VALL-E (Wang et al., 2023) and SPEAR-TTS (Kharitonov
et al., 2023) formulate the text-to-speech task as an audio
language modeling problem: generating an audio token se-
quence with the help of an autoregressive transformer. Mu-
sicLM (Agostinelli et al., 2023) and MusicGen (Copet et al.,
2023) frame the text-to-music task as an audio language
modeling problem. UniSep (Wang et al., 2025) explores
using audio LM to solve audio separation tasks with the help
of audio tokenizer. Moshi (Défossez et al., 2024), SpiRit-
LM (Nguyen et al., 2025), and GLM4-Voice (Zeng et al.,
2024) explore speech-to-speech conversation. Furthermore,
audio tokenizers can also be combined with discrete diffu-
sion models (Yang et al., 2023d;a; Borsos et al., 2023b; Ju
et al., 2024).In all of these models, the audio tokenizer plays
a crucial role by transforming audio data into a discrete la-
tent sequence, reducing computational demands compared
to directly processing the audio signal, and enhancing the
effectiveness and efficiency of the generation process.

2.2. Audio Tokenizer

In the literature, both semantic and acoustic tokenizers are
widely employed in audio language models. The seman-
tic tokenizer is trained using pre-trained self-supervised
learning (SSL) models, such as Hubert (Hsu et al., 2021)
and WavLM (Chen et al., 2022a). Applying k-means or
vector quantization in these models generates semantic to-
kens (Zeng et al., 2024; Du et al., 2024; Liu et al., 2024).
Previous works (Borsos et al., 2023a) demonstrate that se-
mantic tokens are more easily modeled by language models.
However, due to the loss of significant acoustic information
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Figure 2. The left part illustrates the framework of the previous audio codec, while the right part provides an overview of the proposed
ALMTokenizer. w denotes the window size. The details of ALMTokenizer can be found in Section 3.2.

in semantic tokens, they rely on an additional decoder to
generate high-fidelity waveform, such as a diffusion model
(Ho et al., 2020) or flow-matching (Lipman et al., 2022).
Inevitably, this additional module results in increased infer-
ence complexity and poorer reconstruction.

Acoustic tokenizer refers to audio codec models, trained for
acoustic-level reconstruction tasks. Audio codecs (Zeghi-
dour et al., 2021; Défossez et al., 2022; Yang et al., 2023b;
Kumar et al., 2023) have demonstrated exceptional perfor-
mance in reconstructing high-quality audio. In general,
these codec models consist of an encoder, a quantizer, and
a decoder. Both the encoder and decoder are lightweight,
resulting in minimal inference costs. Compared to semantic
tokens, codec models can support audio, speech, and music
domains, and their rich acoustic details mitigate the need for
cascading architectures in downstream generative models.
Recently, an increasing number of audio codec models have
been proposed, focusing on (1) Better reconstruction quality,
such as DAC (Kumar et al., 2023), Vocos (Siuzdak, 2023),
SQ-Codec (Yang et al., 2024¢;b) and APCodec (Ai et al.,
2024); (2) Low-bitrate models, such as HiFiCodec (Yang
et al., 2023b), wavtokenizer (Ji et al., 2024), StableCodec
(Parker et al., 2024), and TS3-Codec (Wu et al., 2024); (3)
Task-driven codecs, designed for text-to-speech tasks, such
as FACodec (Ju et al., 2024), SpeechTokenizer (Zhang et al.,
2023), Single-Codec (Li et al., 2024), audio retrieval-based
Tokenizers (Banerjee & Arora, 2022; van Niekerk et al.,
2024). In this study, we focus on developing a low-bitrate,
semantically rich audio codec tokenizer. The most closely
related work to ours is MimiCodec (Défossez et al., 2024),
which provides high-quality semantic information while
achieving a low bitrate (1.1 kbps). However, MimiCodec
relies on knowledge distillation from WavLM (Chen et al.,
2022a) to the first VQ layer, whereas the remaining VQ lay-
ers do not incorporate semantic information. Furthermore,
it is specifically designed for speech tasks and has not been

validated for non-speech tasks, such as sound and music
generation. In contrast to MimiCodec, our ALMTokenizer
encodes more semantic information across all VQ layers,
achieves a lower bitrate, and is designed for both speech and
general sound.

3. Proposed Method

This section introduces the technical details of the proposed
ALMTokenizer. Section 3.1 presents the framework of pre-
vious audio codec models. Section 3.2 presents the details
of proposed audio codec framework. In Sections 3.3 and
3.4, we present the training loss and training strategies.

3.1. Preliminary

Previous audio codecs (Défossez et al., 2022; Zeghidour
et al., 2021) typically adopt an encoder-quantizer-decoder
framework, as shown in the left part of Figure 2. The audio
is encoded into several audio frames by the encoder. Then,
residual vector quantization (RVQ) (Zeghidour et al., 2021)
is used to quantize these audio frames. Lastly, the decoder
is used to recover the waveform from the quantized audio
frames. It can be observed that previous works treat each
audio frame equally and rely on these quantized frames to
recover the audio. However, such a strategy (1) ignores
the fact that different audio frames encode different levels
of information, which results in some audio frames being
difficult to recover in low-bitrate settings (e.g., encoding
the audio frames at 12.5 Hz); (2) fails to utilize the context
information between different frames.

3.2. Query-based Audio Compression

To construct a low-bitrate, semantically rich audio codec
model, we propose a query-based compression strategy. Our
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approach is inspired by the success of MAE (He et al., 2022),
which applies a masking operation to the original image
with a high mask rate (75%). With the help of a transformer
encoder and decoder, it is possible to recover the masked
image content by utilizing the context information between
different patches. Thus, we propose using a group of query
tokens 2 to capture holistic audio context information from
the audio frames with the assistance of a transformer en-
coder. Since these query tokens include rich context infor-
mation, it is possible to reconstruct the audio based on them.
Then, a transformer decoder and mask tokens are employed
to reconstruct the audio from the quantized query tokens.
This strategy leverages the powerful modeling capabilities
of transformers to achieve better compression and semantic
modeling. Similar query-based strategies has been widely
explored in previous works, such as BLIP2 (Li et al., 2023),
SALMONN (Tang et al., 2024) and TiTok(Yu et al., 2024).
The right part of Figure 2 illustrates the overall framework
of ALMTokenizer. In the following sections, we detail each
component and the associated training loss.

Patchify and UnPatchify We explore two types of Patchify
modules: (1) Following Encodec (Défossez et al., 2022), a
convolution-based module, which encodes the audio data
x into e € RT*? where T and d denote the number of
frames and the vector dimension, and (2) Following Sta-
bleCodec (Parker et al., 2024), which directly uses a linear
layer to encode the audio data into e € R7*¢ and adds sev-
eral transformer layers. Similarly, the UnPatchify mirrors
the architecture of Patchify. If we use the Encodec-style
Patchify module, the UnPatchify module substitutes stride
convolutions with transposed convolutions and reverses the
stride order. If we use the StableCodec-style Patchify mod-
ule, the UnPatchify module includes a transformer block
and a reshape operation. In our preliminary experiments, we
find that the Encodec-style Patchify and UnPatchify mod-
ules bring better reconstruction performance. We adopt the
Encodec-style Patchify module as our default setting.

Token Interleaving The token interleaving module aims
to combine two token sequences into a single sequence. In
the encoder part, we combine the audio frames e € RTxd
and the query token [CLS]. Assuming a window size of
w, the query token will be inserted into the audio frame
sequence at every w-intervals. In the decoder part, the
token interleaving module is used to combine the quantized
query tokens and learnable mask tokens. We insert w mask
tokens before each query token. During the training stage,
we dynamically choose the window size for each training
iteration.

Token Retrieval The token retrieval module aims to retrieve
the relevant tokens from a sequence. In the encoder part, we

2Query tokens are learnable embedding vectors that are updated
throughout the training process.

use it to retrieve the learnable query tokens. In the decoder
part, we use it to retrieve the learnable mask tokens.

Query-based Transformer Encoder As the previous part
discussed, we introduce a learnable query token [cls] €
R1*? to capture holistic information from the audio frames
e. As Figure 2 shows, we first combine the audio frames
and query token using a token interleaving module with a
window size w. Then, a transformer module is applied to
model the whole sequence e, . After that, we employ a token
retrieval module to extract the query tokens b € RLT/wlxd,

e = P(x), e, = Interleaving(e, cls, w), W
eq = En(eg), h = Rectrieval(eq, w)
where P(-) denotes the Patchify module. En(-) denotes the
transformer encoder.

Residual Vector Quantization To build a low-bitrate audio
codec, we empirically set the number of RVQ layers to 3,
since we found that 3 RVQ layers suffice to build an effec-
tive audio codec model: b = Q(h). Inspired by previous
works (Zhu et al., 2024; Yang et al., 2024a), we first obtain
the k-means clusters of Wav2vec2 (Baevski et al., 2020)
to represent the speech semantic prior, and the k-means
clusters of the BEATs (Chen et al., 2022b) to represent the
general sound semantic prior. Assuming the codebook size
is C, we set C'/2 to represent speech, with the remaining
portion representing general sound. We then use these se-
mantic priors to initialize the codebook of the VQ layer and
fix it. Next, we apply a linear layer to map the input features
into the VQ layer.

Query-based Transformer Decoder To recover the au-
dio information, we construct a reverse process using the
encoder part. We first use the token interleaving module
to combine the mask token m € R'*? with h. The new
sequence is then modeled by a transformer module. We
expect that these mask tokens can be used to recover the
audio information with the help of the Unpatchify module.

go = Interleaving(iz, m,w),gq = De(qa) )
e, = Rectrieval(qq,w),& = UnP(eo),

where Unp(-) denotes the Unpatchify module. De(-) de-
notes the transformer decoder.

3.3. Training Loss

Similar to previous audio codecs, our approach is based
on a GAN objective, where we optimize both the generator
(which consists of the Patchify module, transformer encoder,
quantizer, transformer decoder, and UnPatchify module)
and the discriminators. For the generator, the training loss
comprises four components: (1) reconstruction loss term;
(2) adversarial loss term; (3) Masked AutoEncoder (MAE)
loss; and (4) AR prediction loss. The reconstruction and
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adversarial losses typically follow previous works (Défossez
et al., 2022; Zeghidour et al., 2021). In the following, we
describe the MAE loss and AR prediction loss. More details
of training loss refer to Appendix G.

MAE Loss As we discussed in Section 1, a semantic-rich
audio codec tokenizer is better suited for audio language
modeling. Inspired by the success of MAE (He et al., 2022),
we propose to incorporate an MAE loss during the training
of the audio codec. Specifically, for the frame sequence e,
we randomly choose several audio frame features and set
these frames to zero, e,,, = Mask(e). We pass the masked
features e,,, into the encoder transformer. Then, the encoded
features are passed into an MAE-decoder transformer block
to predict e. In our experiments, we adopt a dynamic mask
rate (from 0.2 to 0.3), we found that using a large mask rate
will significantly influence the reconstruction performance.
Following MAE (He et al., 2022), we apply the MSE loss
to the masked audio frames.

AR Loss As shown in figure 3, we find that the first layer
of RVQ-based audio codec models is easier to fit for the
audio language model than the other layers (e.g., layers 2
and 3). One possible reason is that the first layer encodes
more semantically related information. For speech data,
most of the content information can be recovered by the
first VQ layer, while the residual layers primarily encode
acoustic-level information, which influences speech quality.
To make the tokens in the residual layer easier to fit, we in-
troduce an autoregressive (AR) prediction prior (Wang et al.,
2024a) in the RVQ latent space. Specifically, we introduce
a lightweight continuous autoregressive (AR) transformer 3,
which is used to conduct next-token prediction in the RVQ
layer. For example, it is tasked with predicting the quantized
feature of the third VQ layer based on the features of the
first and second VQ layers. We use mean squared error
(MSE) loss for optimization.

3
Po = Hpe($i|9317 o @i—1,0) 3)
i=1
where 6 denotes the parameter of AR transformer.

3.4. Two-stage Training Strategy

Although training the ALMTokenizer using the typical En-
codec (Défossez et al., 2022) setting is feasible, we intro-
duce a two-stage training paradigm to improve both recon-
struction performance and semantic information. Our mo-
tivation stems from the fact that audio codec quantization
focuses on modeling local relationships, whereas seman-

3The term continuous autoregressive (AR) transformer is used
to distinguish our approach from traditional discrete AR models,
which operate on discrete token sequences and are optimized using
cross-entropy loss. In our study, to facilitate gradient backpropaga-
tion, we apply the AR transformer directly to continuous features.

tic information focuses on modeling global relationships.
These two goals are in conflict. To resolve this conflict, we
present a two-stage training strategy. In the first stage, we
do not incorporate the quantization part; instead, we train
directly an AutoEncoder with Patchify and UnPatchify mod-
ules. To encode more semantic information in the Patchify
module, we introduce MAE loss during this stage, by adding
transformer-based MAE-encoder and decoder. The encoder
processes the masked frame sequence, and the decoder pre-
dicts the masked part. After training, the transformer en-
coder and decoder are discarded. In the second stage, we
first initialize the ALMTokenizer’s Patchify and UnPatchify
modules with the checkpoint from the first stage, and freeze
the parameters of the Patchify module. Then, we train the
model using the training loss described in Section 3.3.

4. Experiments
4.1. Dataset and Training Details

Data preparation for the audio codec ALMTokenizer is
trained on approximately 4,500 hours of data. In the speech
domain, we utilize LibriTTS training set (Zen et al., 2019)
and a subset of Multilingual LibriSpeech (MLS) (Pratap
et al., 2020), with 2,000 hours randomly selected. In the
sound domain, we utilize a subset of AudioSet, with 1,000
hours randomly selected; in the music domain, we employ
a subset of the Million Song Dataset (Bertin-Mahieux et al.,
2011), also with 1,000 hours randomly selected. We eval-
uate the codec’s speech reconstruction performance using
a subset of the VCTK dataset (Veaux et al., 2017), and as-
sess both audio and music reconstruction performance using
the AudioCaps (Kim et al., 2019) validation set and the
MusicCaps dataset (Agostinelli et al., 2023), respectively.

Data for Audio Language Models To assess the effective-
ness of the proposed audio tokenizer, we construct an audio
language model framework to perform six audio-related
tasks. The details are provided in Appendix D.3 and D .4.
For speech data, we select 2,000 hours of speech-text pairs
from LibriHeavy (Kang et al., 2024). For sound data, we
utilize the AudioCaps training set and BBC Sound Effects.
For music data, we use a subset of the Million Song dataset
and the caption data from LP-MusicCaps (Doh et al., 2023).

Implementation Details ALMTokenizer first performs
patchification on the audio data, we set the patch size to
320 in all of experiments, which encodes 1 second of 24kHz
audio into 75 frames. For the Encodec-style Patchify mod-
ule, we adopt the settings from Encodec (Défossez et al.,
2022) encoder. To enable streaming for the codec model,
a causal convolution layer is employed. For the encoder-
transformer and decoder-transformer components, we use
24 self-attention layers, with latent dimensions of 256 and
512, respectively. Following StableCodec (Parker et al.,
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Table 1. The speech reconstruction and semantic performance comparison between the ALMTokenizer and previous tokenizers. FPS
denotes that the frame number in one second. TPS denotes that the token number in one second. CS denotes the codebook size, BR
denotes the bit-rate. ST denotes speechtokenizer. Bold for the best result and underline for the second-best result. Evaluation on VCTK

dataset.
Reconstruction Semantic
Models FPS/TPS CS/BR UTMOS (1) DNS-MOS (1) VISQOL (1) STOI(f) PESQ(1) ASR({) ER()
Hubert (Hsu et al., 2021) - - - - - - - 6.5 31.0
WavLM (Chen et al., 2022a) - - - - - - - 6.2 29.0
Encodec (Défossez et al., 2022) 50/150 1024/1.5kbps 2.58 3.27 3.64 0.81 2.0 353 26.5
DAC (Kumar et al., 2023) 50/150 1024/1.5kbps 3.13 341 3.67 0.81 2.1 44.1 17.6
Wavtokenizer (Ji et al., 2024) 40/40 4096/0.48kbps 3.67 3.50 3.72 0.79 1.9 44.6 19.8
StableCodec (Parker et al., 2024) 25/25 46656/0.4kbps 4.22 3.64 3.40 0.76 1.8 98.3 15.8
ST (Zhang et al., 2023) 50/150 1024/1.5kbps 3.41 3.36 3.68 0.79 1.7 19.8 27.0
Mimi (Défossez et al., 2024) 12.5/37.5 2048/0.41kbps 3.01 3.14 3.28 0.75 1.5 25.1 28.0
Mimi (Défossez et al., 2024) 12.5/100 2048/1.1kbps 3.65 3.38 3.82 0.82 2.1 23.8 28.3
ALMTokenizer (Ours) 12.5/37.5 2048/0.41kbps 3.76 3.64 3.78 0.81 2.0 18.3 29.0

2024), the self-attention mechanism uses a causal sliding at-
tention window of 64 steps to restrict the receptive field and
promote the generalization of the architecture to sequences
of arbitrary length. Rotary Positional Embeddings (RoPE)
are used. Refer to Appendix G for the details of ALMTo-
kenizer model training. For the audio language model, we
follow the framework of Moshi (Défossez et al., 2024). For
further details, refer to Appendix A.

4.2. Evaluation Metrics

We evaluate the performance of previous SOTA audio to-
kenizers, and our proposed ALMTokenizer across audio
reconstruction, audio semantic information, audio under-
standing, and audio generation tasks.

Audio Reconstruction For speech reconstruction, we use
DNS-MOS, UT-MOS, PESQ, STOI (Short-time Objective
Intelligibility), and VISQOL. For sound and music data
evaluation, VISQOL (audio version), STFT loss, and Mel
loss are used. Furthermore, following (Kumar et al., 2023),
the MUSHRA subjective test is conducted for speech, sound,
and music. Refer to Appendix D for more details.

Audio Semantic Information Previous SSL models, such
as Hubert (Hsu et al., 2021), have shown that semantic-rich
representation can be used to solve downstream recognition
tasks by fine-tuning several adaptor layers. Thus, we can
validate the performance of features of the audio tokenizer
for downstream recognition tasks. For speech data, we
conduct the automatic speech recognition (ASR) task on
the LibriSpeech (Panayotov et al., 2015) dataset, and the
emotion classification (EC) task on the EMOVO (Costantini
et al., 2014) dataset. For sound data, we conduct sound
classification tasks on the ESC-50 dataset (Piczak, 2015).
For music data, we conduct music classification tasks on the
Medley-solos-DB dataset (Lostanlen & Cella, 2016).

Audio Understanding To further validate whether the audio

Table 2. The sound reconstruction peformance comparison be-
tween the proposed ALMTokenizer and previous audio tokenizer
models. SC denotes the sound classification task. Evaluation on
AudioCaps validation set.

Models ViSQOL (1) Melloss () STFTloss ({) SC (1)
BEATSs - - - 24%
‘Wav2vec?2 - - - 53%
Encodec 3.05 16.3 1.23 15%
DAC 2.98 17.6 1.24 20%
Wavtokenizer 2.18 32.7 2.50 12%
Ours 2.99 15.0 1.24 44 %

Table 3. The music reconstruction and semantic performance com-
parison between the ALMTokenizer and previous audio tokenizers.
MC denotes the music classification task. Evaluation on Musicaps
dataset.

Models ViSQOL (1) Melloss () STFTloss () MC (1)
BEATSs - - - 54%
Wav2vec2 - - - 65%
Encodec 4.04 34.8 1.26 45%
DAC 4.06 359 1.28 48%
Wavtokenizer 3.85 48.2 1.47 54%
Ours 3.96 344 1.32 59%

tokenizer is suitable for building an audio language model,
we propose to conduct an understanding task using discrete
tokens. We conduct three tasks: ASR, audio caption, and
music caption. For the audio data, we use the audio to-
kenizer to transform it into discrete tokens, and for text
data, we use the BPE tokenizer of LLAMA 3.2. For audio
and music caption, we follow (Drossos et al., 2020) and
adopt BLEU-1, BLEU-2, BLEU-3, METEOR, ROUGE-L,
CIDEr-D, SPICE, and SPIDEr metrics.

Audio Generation We also conduct audio generation tasks,
including text-to-speech, text-to-sound, and text-to-music.
Refer to Appendix D for more details.
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4.3. The Reconstruction and Semantic Performance

We first compare the reconstruction and semantic perfor-
mance of ALMTokenizer with previous audio tokenizers.
Table 1 presents the speech reconstruction and semantic
results. We observe the following: (1) In terms of recon-
struction, ALMTokenizer achieves impressive results in the
low-bitrate setting. For example, compared with previous
SOTA models, MimiCodec and Wavtokenizer, ALMTok-
enizer achieves better reconstruction performance at a lower
bitrate. We also note that StableCodec performs well on UT-
MOS. The main reason is that StableCodec has denoising
capabilities, while the original audio includes some noise.
This explains why StableCodec achieves good results on UT-
MOS but performs poorly on PESQ and STOI. (2) In terms
of semantic information, ALMTokenizer demonstrates supe-
rior performance, e.g, ALMTokenizer outperforms previous
SOTA models, such as Wavtokenizer and StableCodec *.
Notably, in the emotion classification task, ALMTokenizer
achieves performance comparable to previous SSL models,
such as Hubert and WavLM. However, we also note that
ALMTokenizer still lags behind these SSL models in ASR
performance. We speculate that the inclusion of acoustic
information may detract from ASR performance, despite
ALMTokenizer containing rich semantic information. Table
2 and 3 show the sound and music experimental results. We
can see that ALMTokenizer demonstrates strong reconstruc-
tion performance under the low-bitrate setting. Compared
to WavTokenizer, the reconstruction performance shows
significant improvement. Furthermore, we also note that
sound and music are inherently more complex than speech,
and encoding them at very low-bitrate remains a challenge.
In terms of semantic information, ALMTokenizer signifi-
cantly surpasses previous works, such as WavTokenizer and
Encodec. In comparison with SSL. models, BEATs (Chen
et al., 2022b) and Wav2vec2-audioset version, ALMTok-
enizer shows comparable performance. We also perform
the MUSHRA subjective test for the reconstruction perfor-
mance. As shown in Table 7, we find that ALMTokenizer
effectively maintains strong subjective reconstruction per-
formance on speech, music, and audio, even with a very
low-bitrate setting.

4.4. Audio Understanding and Generation Results

Speech Understanding and Generation Tasks Table 4
shows the LM-based TTS and ASR results. For the TTS
task, we mainly focus on robustness and speech quality.
In terms of robustness, we can see that the GLM4-voice
tokenizer (Zeng et al., 2024), MimiCodec, and the pro-
posed ALMTokenizer bring better performance than oth-
ers, highlighting the importance of semantic information

4StableCodec’s feature dimension is 6, it is hard to apply it for
down-streaming task by simple fine-tuning

Table 4. The LM-based TTS and ASR results. The first three
metrics are used for TTS, while the last one is used for ASR.
GLM4-Voice (Zeng et al., 2024) is a single layer semantic tok-
enizer. Evaluation on LibriSpeech test clean set.

Models WER () DNSMOS (1) UT-MOS (1) ASR (})
GLM4-voice 9.9 3.96 3.79 163+ 1.5
DAC 24.5 3.14 2.06 584+1.2
Encodec 229 3.48 2.14 772 £23
StableCodec 22.7 3.63 3.70 280+£19
Wavtokenizer 18.5 3.72 3.58 456 £2.7
MimiCodec 16.0 3.67 2.93 23.1+1.5
Ours 11.7 3.75 3.88 19.6 + 1.8
ey w/o AR loss

301 2930 w AR loss
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Figure 3. The performance comparison with or without AR loss.

for LM-based speech generation. Compared to previous
audio codec tokenizers, ALMTokenizer brings significant
improvement. In terms of generated speech quality, ALMTo-
kenizer also shows great advantages, further demonstrating
that the proposed tokenizer is more suitable for audio lan-
guage modeling. Similarly, when we conduct the ASR task
using discrete tokens as input, semantic information is also
important. Traditional audio codec models perform poorly
in this setting, such as DAC, Encodec, and WavTokenizer.
StableCodec was fine-tuned by using a CTC head to pre-
dict the force-aligned phoneme tags from pre-bottleneck
latents. MimiCodec distills the semantic information from
WavLM. Thus, they have better performance than previ-
ous codec models. In ALMTokenizer, we propose a novel
codec framework and training loss to better encode semantic
information in the codec model.

Sound/music Understanding and Generation Results We
conduct text-to-sound, text-to-music, audio caption and mu-
sic caption tasks within the same audio language model
framework. The experimental results shown in Table 5 indi-
cate that ALMTokenizer shows better performance in both
audio caption and audio generation tasks, further demon-
strating its advantages. We put more audio tokenizer recon-
struction performance experiments on Appendix F, includ-
ing evaluation on LibriTTS test set, length generalization,
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Table 5. The LM-based sound, music understanding and generation. B1, B2, B3, RG, ME, CD, SP, and SD denote BLEU-1, BLEU-2,
BLEU-3, METEOR, ROUGE-L, CIDEr-D, SPICE, and SPIDEr, respectively. Evaluation on Audiocaps and Musicaps datasets.

Understanding Generation

Models B1 (1) B2(1) B3(t) ME(M®) RG(M®) CD(M®) SP(M SD(M FDW{) FAD({) KLI)
Sound Task

Encodec 0.25 0.15 0.08 0.11 0.24 0.57 0.14 0.35 10.03 8.22 1.73
DAC 0.26 0.15 0.08 0.11 0.26 0.51 0.13 0.32 14.14 11.7 1.55
Wavtokenizer 0.24 0.14 0.08 0.10 0.22 0.38 0.11 0.25 6.76 4.55 1.28
ALMTokenizer (Ours) 0.28 0.17 0.11 0.12 0.24 0.60 0.15 0.37 4.11 6.16 0.55
Music Task

Encodec 0.30 0.14 0.08 0.11 0.23 0.37 0.09 0.23 7.22 5.48 1.06
DAC 0.29 0.14 0.08 0.11 0.23 0.37 0.09 0.23 12.89 8.36 1.68
Wavtokenizer 0.19 0.06 0.02 0.06 0.13 0.06 0.05 0.05 4.39 11.93 0.88
ALMTokenizer (Ours) 0.34 0.15 0.07 0.13 0.25 0.44 0.10 0.27 3.55 4.58 0.43

and compared to diffusion-based audio codec models.

4.5. Ablation Study

In order to gain a more comprehensive understanding of
ALMTokenizer, we systematically compared each key com-
ponent using a controlled experimental setup, employing
identical architectures and hyperparameters across all trials.
The Effectiveness of Query-based Audio Compression
In this study, we propose a query-based audio compression
strategy for compressing audio data in a very low-bitrate
setting. To validate its effectiveness, we follow previous
audio codec models, such as MimiCodec (Défossez et al.,
2024). In the encoder part, we use a stride size of [8, 6,
5, 4, 2] to compress 1-second, 24 kHz audio into 12.5Hz,
followed by applying 3 RVQ layers to quantize it. As shown
in Table 6, using previous audio codec frameworks makes
it difficult to maintain good reconstruction performance in
very low-bitrate settings. As a result, the proposed query-
based compression method is more effective in this setting.
The Influence of Semantic Prior for VQ To explore the
influence of semantic priors on the audio codec model, we
conduct an experiment where we remove the semantic prior
and instead train a learnable RVQ following Encodec. As
shown in Table 6, we find that updating the RVQ layer im-
proves reconstruction performance but reduces semantic
information, demonstrating that integrating semantic priors
into the VQ layer enhances semantic information.

The Influence of MAE Loss We also conduct experiments
to evaluate the effectiveness of the MAE loss. As shown in
Table 6, we find that the MAE loss is crucial for enhancing
the semantic information in the codec model. Although the
MAE loss has a slight negative effect on reconstruction, it
is a crucial factor in building a better audio tokenizer.

The Influence of AR Loss From Table 6, we observe that
adding the AR loss reduces reconstruction performance. In
Figure 3, we compare token prediction accuracy and TTS
performance with and without LM loss. We observe that
using LM loss significantly improves token prediction accu-
racy, particularly for the second and third VQ layers, which

shows the effectiveness of our motivation and solution.
The Influence of Two-stage Training As Table 6 shows,
the two-stage training strategy is crucial as it significantly
improves reconstruction performance and semantic informa-
tion in the codec model. The Influence of Patchify Mod-
ule We investigate two types of Patchify modules: Encodec-
style and StableCodec-style. As shown in Table 6, using
Encodec-style Patchify modules yields better performance.
One possible reason is that StableCodec-style Patchify mod-
ules (Parker et al., 2024) may depend on larger data and
model parameters, as the original paper scales their model to
1B. In contrast, we use only four transformer layers to ensure
a fair comparison with Encodec-style modules. Due to page
limitations, we defer the ablation study on the influence of
window size w in query-based compression, codebook size,
the influence of mask-rate, and model size on reconstruction
to Appendix C.

4.6. Discussion

In this section, we discuss two fundamental questions in
audio tokenization. Question 1: Is a single quantization
layer better than multiple quantization layers? Question
2: Does a low-bit rate with high reconstruction perfor-
mance define a good audio tokenizer?

Question 1 Although WavTokenizer and StableCodec
demonstrate the potential to build a low-bitrate audio codec
tokenizer with a single quantization layer, they rely on a
higher frame rate (e.g., 25 or 40 Hz). As shown in Figure 1,
a lower frame rate (e.g., 12.5 Hz) is critical for improving
training efficiency. Thanks to UniAudio (Yang et al., 2023c)
and Moshi’s (Défossez et al., 2024) audio language model
framework, multiple quantization layers do not increase the
sequence length. Therefore, multiple quantization layers
present an effective approach for building a low-bitrate, se-
mantically rich audio codec.

Question 2 To address this question, we present two com-
parisons. First, as shown in Tables 4 and 1, StableCodec ex-
hibits better reconstruction performance and a lower bit-rate
compared to WavTokenizer. However, when applied to the
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Table 6. Ablation study of codec framework, training loss, and training strategy. ASR and ER are used to evaluate the semantic information.
The others are used to evaluate the reconstruction performance. Experiments conducts on VCTK dataset.

Setting UTMOS (1) DNSMOS (1) VISQOL (1) PESQ(f) STOI(1) ASR({) ER(™®M
ALMTokenizer 3.76 3.64 3.78 2.0 0.81 18.3 29.0
Framework ablation

w/o the query-based framework 2.49 3.13 3.37 1.58 0.77 34.5 22.6
Only query-based framework 3.54 341 3.44 1.69 0.78 27.2 24.5
Training loss ablation

w/o semantic prior for VQ 3.79 3.66 3.78 2.12 0.83 19.2 28.4
w/o MAE loss 3.70 3.76 3.83 2.10 0.82 24.5 232
w/o AR loss 3.72 3.81 3.80 2.08 0.82 18.8 30.2
Different Patchify module

use Linear-Patchify 3.47 3.36 3.27 1.78 0.78 20.3 26.7
Training strategy ablation

w/o two-stage training 3.60 3.39 3.24 1.55 0.74 22.8 25.9

Table 7. The subjective reconstruction results using MUSHRA (comparative scoring of samples) of codec models on speech, sound and
music. Bold for the best result and underline for the second-best result.

Models FPS/TPS CS/BR Speech (1) Sound (1) Music (1)
Speech

MimiCodec (3 RVQ) (Défossez et al., 2024)  12.5/37.5 2048/0.41kbps  65.61 £5.2 - -
MimiCodec (8 RVQ) (Défossez et al., 2024)  12.5/100  2048/1.1kbps 86.7 + 2.3 - -
StableCodec (Parker et al., 2024) 25/25 46656/0.4kbps  81.7 4.4 - -
SpeechTokenizer (Zhang et al., 2023) 50/150 1024/1.5bps 73.7+£4.6 - -
Audio

Encodec (Défossez et al., 2022) 50/150 1024/1.5bps 75.1+39 772+42 73.7+4.6
DAC (Kumar et al., 2023) 50/150 1024/1.5bps 793+42 713+£41 713441
Wavtokenizer (Défossez et al., 2022) 40/40 4096/0.48bps 840+21 63.1+46 541+54
Ours 12.5/37.5 2048/0.41kbps 84.8 £3.7 7244+47 69.0L45

text-to-speech generation task, WavTokenizer demonstrates
better robustness. One possible reason for this is that Sta-
bleCodec uses a large-scale codebook size (46,656), which
may increase the modeling complexity. Second, although
MimiCodec has a higher bit-rate and poorer reconstruction
performance than StableCodec, it demonstrates more stable
TTS generation performance and better ASR performance.
This phenomenon further underscores the importance of
semantic information. In summary, a good audio tokenizer
for an audio language model should not only consider low-
bitrate and reconstruction, but also account for the semantic
information in the codec model.

5. Conclusion

In this study, we present a low-bitrate, semantically rich au-
dio codec tokenizer. Specifically, we propose a query-based
compression strategy to effectively compress the audio data
into a low-bitrate format while incorporating more semantic
information. Furthermore, we introduce several training
losses to enhance semantic information, including MAE
loss and AR loss. Extensive experiments demonstrate the

effectiveness of ALMTokenizer. Within the same audio
language modeling framework, ALMTokenizer exhibits su-
perior performance in both understanding and generation
tasks. We discuss the limitation of this study in Appendix I.

Impact Statement

This paper presents an audio tokenizer for audio language
models, which can be applied to various audio generation
tasks, such as text-to-speech and text-to-music. There is
potential for misuse in generating misinformation, deepfake
audio, or other harmful content. We advocate for the devel-
opment of a detection model to identify audio produced by
the codec model and generated by other generative models.
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Figure 4. The left diagram illustrates the framework of the audio language model, which includes a pre-trained LLM, a LoORA module,
and a depth transformer. The audio language model can process both text and audio streaming inputs and generate corresponding text and
audio outputs. The right diagram provides details of hierarchical audio modeling.

A. The details of audio language model framework

In this section, we provide details of the audio language model. We follow the framework of UniAudio (Yang et al., 2023c)
and Moshi (Défossez et al., 2024), which combines a pre-trained LLM with a smaller Transformer model to predict audio
tokens in a hierarchical manner. In their original paper, both the LLM and the small Transformer are updated during the
training process. Due to resource limitations, and following (Hao et al., 2023), we incorporate LoRA (Hu et al., 2021)
into the LLM model. For the LLM model, we use the LLAMAZ3.2 1B version. During training, we update only the LoORA
module and the small Transformer.

LORA setting For the LoRA module, we add LoRA parameters to the self-attention and linear layers. We set lora, = 32
and loragipha = 16.

Depth Transformer setting For the depth transformer, we use 6 self-attention layer. We set the attention head number as 32.
The attention dimension is the same as the LLAMA 3.2 1B.
B. The details of the influence of bitrate and semantic information for audio language model.

In this section, we provide details of the validation experiments to explore the influence of bitrate and semantic information
on audio language models. Following AudioLM (Borsos et al., 2023a), we construct an audio token pre-training task similar
to text pre-training, where the model is tasked with predicting the next audio token based on the previous token sequence.

B.1. Training data

We conduct the experiments on 2000 hours speech data, these data is selected from MLS dataset (Pratap et al., 2020).

B.2. Test data

We evaluate on LibriSpeech test clean set.
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Table 8. The reconstruction performance of different frame rate of audio tokenizers.
Version Bitrate () FPS (]) codebook size PESQ (1) UT-MOS (1) VISQOL (1) STOI (1)

50hz 1650bps 50 2048 222 3.69 3.63 0.86
25hz 825bps 25 2048 2.07 3.56 3.61 0.83
12.5hz 412.5bps 12.5 2048 1.58 2.49 3.37 0.77

B.3. Framework

We use the same framework as described in Section A; the difference is that we do not use text streaming.

B.4. Three Types of Audio Tokenizers

Following the structure of MimiCodec (Défossez et al., 2024), we train three versions of the audio codec tokenizer. All of
the audio codec models are trained on 24kHz speech data. We train three versions of the audio codec models, as follows:

(V1) We set the down-sampling rate to [2, 5, 6, 8], resulting in a 50 Hz frame rate. We use three RVQ layers, and the
codebook size is 2,048. The bitrate of this audio codec is 1.65 kbps.

(V2) We set the down-sampling rate to [4, 5, 6, 8], resulting in a 25 Hz frame rate. We use three RVQ layers, and the
codebook size is 2,048. The bitrate of this audio codec is 825 bps.

(V3) We set the down-sampling rate to [2, 4, 5, 6, 8], resulting in a 12.5 Hz frame rate. We use three RVQ layers, and the
codebook size is 2,048. The bitrate of this audio codec is 412.5 bps.

Note that the original MimiCodec is trained with distillation loss from WavLM; we do not add this loss during the training
of our audio tokenizer. Therefore, these three audio tokenizers do not include any semantic information. Table 8 shows the
reconstruction performance of the three audio tokenizers.

B.5. Semantic Tokenizer

The previous three audio codec tokenizers do not consider semantic information. To evaluate the importance of semantic
information, we follow WhisperSpeech’ to build a Whisper-based semantic tokenizer. Specifically, we follow the training
code of WhisperSpeech, using two down-sampling layers to compress the Whisper encoder’s features into a 12.5 Hz frame
rate, and then we add three RVQ layers to quantize them. Thus, this semantic tokenizer has the same bitrate as the V3 audio
tokenizer.

B.6. Evaluation metrics

We evaluate the pre-training performance from the following aspects:

Training efficiency: As is well known, the space complexity of a transformer is O(72), where T is the sequence length. A
low-bitrate audio tokenizer can compress the audio signal into a few token sequences, thereby improving training efficiency.
For all experiments, we use the same GPU machine to train the model and record the statistical training duration.

Inference efficiency: Similarly, a low-bitrate audio tokenizer can improve inference efficiency, as it requires fewer inference
steps. We use the Real-Time Factor (RTF) to assess inference efficiency. Note that for all experiments, we do not use any
inference optimization tricks, such as KV cache.

Validation loss and perplexity: Following text LLMs (OpenAl, 2023), we use validation loss and perplexity to evaluate
model performance.

>https://github.com/WhisperSpeech/WhisperSpeech
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Figure 5. The performance comparison with different window size during inference.

Table 9. The influence of codebook size for reconstruction performance.

Codebook Size PESQ (1) UT-MOS (1) VISQOL (1) STOI () STFTloss(|) Token untilzation (1)
2048 2.0 3.76 3.78 0.81 1.20 100%
1024 1.83 3.66 3.65 0.80 1.14 100%
512 1.69 3.64 3.58 0.792 1.18 100%
C. Ablation study

C.1. The influence of window size for ALMTokenizer

As discussed in the previous section, the proposed ALMTokenizer supports a dynamic compression rate by changing the
window size w. Figure 5 shows the comparison of reconstruction performance with different window sizes. We observe that
using a smaller window size results in better reconstruction performance, but it also increases the bitrate. For exmaple, if the
window size is 2, the bitrate is 1237.5bps, window size is 6, the bitrate is 412.5. It also shows the advantages of proposed
method: we can dynamically change the frame rate during the inference by setting different window size.

C.2. The influence of codebook size

We explore three different codebook sizes: 512, 1024, and 2048. To align with the setting of MimiCodec (Défossez et al.,
2024), we set the max codebook size as 2048. The results, as shown in Table 9, are presented. We observe that scaling the
codebook size improves reconstruction performance. Furthermore, we also find that almost all tokens have been used.

C.3. The influence of model size for reconstruction performance

To explore the influence of model size on reconstruction performance, we set up two configurations: (1) We use 24
self-attention layers for both the transformer encoder and transformer decoder, resulting in 174M parameters. (2) We use
12 self-attention layers for both the transformer encoder and transformer decoder, resulting in 87M parameters. In both
settings, we keep the Patchify module the same size, as it consists of several convolutional layers, and its total parameters
are small. The experimental results, as shown in Table 10, indicate that using a larger model can improve reconstruction but
also increases computational resource consumption (higher RTF). Previous work, StableCodec (Parker et al., 2024), shows
that scaling the codec model to 1B parameters can lead to better performance. Due to computational resource limitations,
we leave scaling to a larger model size for future work.
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Table 10. The influence of model for reconstruction performance.

Setting PESQ (1) UT-MOS (1) VISQOL (1) STOI (1) Modelsize () RTF({)
24 attention layer 2.0 3.76 3.78 0.81 174 0.031
12 attention layer 1.87 3.57 3.70 0.79 87 0.019

C.4. The influence of mask-rate in MAE loss

Inspired by MAE(He et al., 2022), we tested three group of mask rates ranges: (10-20%), (20-30%), and (30—40%). The
experiments as following Table shows. Results indicate that higher rates (30-40%) benefit semantics but harm reconstruction,
leading us to adopt an intermediate range (20-30%).

Table 11. The influence of mask-rate for MAE loss.
mask rate range UTMOS DNSMOS VISQOL PESQ STOI ASR ER

10-20% 3.77 3.62 3.80 2.0 0.81 18.7  27.7
20-30% 3.76 3.64 3.78 2.0 0.81 183 29.0
30-40% 3.36 3.06 3.31 1.58 0.77 18.1 29.6

D. Evaluation

We evaluate the performance of the previous SOTA audio tokenizers and our proposed ALMTokenizer across audio
reconstruction, audio semantic information, audio understanding, and audio generation tasks.

D.1. Audio Reconstruction

For speech data, we use DNS-MOS (Reddy et al., 2022), UT-MOS (Saeki et al., 2022), PESQ, STOI (Short-Time Objective
Intelligibility), VISQOL (speech version), and STFT loss as metrics.

For sound and music data, we use VISQOL (audio version), STFT loss, and Mel loss. Furthermore, following (Kumar
et al., 2023), we conduct the MUSHRA subjective test for speech, sound, and music. Specifically, we hire 10 audio-related
researchers to conduct the MOS evaluation. We ask the listeners to rate each audio, with scores ranging from 0 to 100. Refer
to D.5 for the details.

Evaluation Datasets: For speech data, we evaluate on a subset of VCTK (Veaux et al., 2017) (200 speech utterances) and a
subset of the LibriTTS test clean set (Zen et al., 2019) (400 speech utterances). For sound data, we evaluate on a subset
of the AudioCaps validation set (Kim et al., 2019) (200 sound utterances). For music data, we evaluate on a subset of the
MusicCaps (Agostinelli et al., 2023) dataset (200 music utterances).

D.2. Audio Semantic Information

Previous SSL models, such as Hubert (Hsu et al., 2021) and WavLM (Chen et al., 2022a), have shown that semantic-rich
representations can be used to solve downstream recognition tasks by fine-tuning several adaptor layers. Inspired by these
works, we propose evaluating the performance of the audio tokenizer for downstream recognition tasks. We use the quantized
features of the audio tokenizer as the input for downstream tasks. We follow two popular benchmarks: SUPERB (Yang
et al., 2021) and ARCH (La Quatra et al., 2024).

For speech data, we conduct the automatic speech recognition (ASR) task on the LibriSpeech (Panayotov et al., 2015)
dataset and the emotion classification (EC) task on the EMOVO (Costantini et al., 2014) dataset. For the ASR task, we
train on the LibriSpeech train-100 set and evaluate on the LibriSpeech test clean set. For the EC task, we follow ARCH
(La Quatra et al., 2024) to split the training and test sets.

For sound data, we conduct the sound classification task on the ESC-50 dataset (Piczak, 2015). For music data, we conduct
the music classification task on the Medley-Solos-DB dataset (Lostanlen & Cella, 2016). For both tasks, we follow the
ARCH benchmarking settings to split the training and test sets.

For all experiments, we train for 10 epochs with the same learning rate and batch size. For the automatic speech recognition
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task, we use word error rate (WER) as the metric. For the other classification tasks, we use accuracy as the metric.

D.3. LM-based Audio Understanding

Overview To further validate whether the audio tokenizer is suitable for building an audio language model, we propose
conducting an audio understanding task using discrete tokens as input. We conduct three tasks: automatic speech recognition
(ASR), audio captioning, and music captioning. We use the framework introduced in Section A. For audio data, we use the
audio tokenizer to encode it as discrete tokens; for text data, we use the BPE tokenizer of LLAMA 3.2. We construct the
sequence as [audio token, text token], then the model is asked to predict the text token based on the previous audio token.

Training Data For the ASR task, we select 2,000 hours of LibriHeavy speech data (Kang et al., 2024). For the audio
captioning tasks, we use AudioCaps (Kim et al., 2019) and BBC sound effects (Mei et al., 2023). For the BBC sound effects,
we cut off the first 10 seconds of audio if the utterance duration is greater than 10 seconds. Finally, we obtain about 500
hours of sound data. For the music captioning task, we use a subset of the Million Song dataset. We cut off the first 10
seconds of music data for each utterance, which results in about 500 hours of music data. For the corresponding captions,
we use LPMusicCaps (Doh et al., 2023).

Test Data For the ASR task, we evaluate on the LibriSpeech test clean set. For the audio captioning task, we evaluate on the
AudioCaps dataset (Kim et al., 2019). For the music captioning task, we evaluate on the MusicCaps dataset (Agostinelli
et al., 2023).

Metrics Similarly, we use WER as the evaluation metric for the ASR task. For audio and music captioning, we follow
(Drossos et al., 2020) and adopt BLEU-1, BLEU-2, BLEU-3, METEOR, ROUGE-L, CIDEr-D, SPICE, and SPIDEr metrics.

Inference Setting For inference, we directly use the top-k sampling strategy and set £ = 30 for all experiments.

D.4. LM-based Audio Generation

We also perform audio generation tasks, including text-to-speech, text-to-sound, and text-to-music generation. Similarly, we
construct the sequence as [text foken, audio token], then the model is asked to predict the audio token based on the previous
text token.

Training and Test Data We use the same training and test data as the audio comprehension task.

Metrics For TTS evaluation, we use WER to evaluate robustness, and UTMOS and DNSMOS are used to assess speech
quality. For text-to-sound and text-to-music, we follow previous works AudioGen (Kreuk et al., 2022), using Fréchet Audio
Distance (FAD), Kullback-Leibler (KL) Divergence, and Fréchet Distance (FD) for audio fidelity and similarity.

Inference Setting During the inference stage, we use the top-k sampling strategy and set k£ = 30 for all experiments.

D.5. Subjective Evaluations

For the subjective evaluations, we adopt the approach used in previous works (Kumar et al., 2023; Parker et al., 2024)
and use the MUSHRA format without a hidden anchor. Listeners are asked to compare multiple versions of an example
simultaneously, including both a labeled reference and a hidden reference. They are given the following instructions: “Please
assess the quality similarity between an audio sample and its reference. Listen carefully to the reference audio, then rate the
quality of each test clip in comparison. A score of 0 indicates no resemblance to the reference, while a score of 100 means it
is identical to the reference.” We randomly select 10 samples from each category (speech, music, and sound) in the test set,
ensuring that each sample receives 10 ratings.

E. Audio Tokenizer Baselines

To make a fair comparison, we classify the audio tokenizers into two types: (1) speech-based tokenizers, which are trained
on speech datasets, and (2) audio-based tokenizers, which are trained on speech, sound, and music datasets.

E.1. Speech Tokenizer

For speech data, we compare with:
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Table 12. The performance comparison on LibriTTS test clean. Bold for the best result and underline for the second-best result.

Reconstruction Efficiency
Models FPS/TPS CS/BR UTMOS (1) DNS-MOS (1) VISQOL (1) STOI(f) PESQ(1) Modelsize (M) (J) RTF ()
Encodec 50/400 1024/6kbps 3.30 3.76 3.95 0.94 2.72 14 0.019
Encodec 50/150 1024/1.5kbps 2.02 3.27 3.83 0.88 .79 14 0.019
DAC 50/150 1024/1.5kbps 2.61 3.36 3.85 0.89 1.96 71 0.026
Wavtokenizer 40/40 4096/0.48kbps 3.65 3.61 3.80 0.87 1.81 77 0.017
StableCodec 25/25 46656/0.4kbps 4.20 3.74 3.51 0.88 1.85 950 0.039
MimiCodec (3 RVQ) 12.5/37.5 2048/0.41kbps 2.82 3.28 3.34 0.83 1.40 75.6 0.023
ALMTokenizer (Ours) 12.5/37.5 2048/0.41kbps 3.68 3.64 3.90 0.90 1.92 174 0.031

(1) Encodec (Défossez et al., 2022), a SOTA audio codec model trained on large-scale speech, sound, and music datasets.
The official open-sourced 24 kHz version is used.

(2) DAC-Codec (Kumar et al., 2023), which offers very high reconstruction performance. It is trained on large-scale speech,
sound, and music datasets. The official open-sourced 24 kHz version is used.

(3) MimiCodec (Défossez et al., 2024), a SOTA low-bitrate speech codec model trained on a large-scale speech dataset. The
sampling rate is 24 kHz.

(4) SpeechTokenizer (Zhang et al., 2023), a semantic-rich speech codec model trained on a large-scale speech dataset. The
sampling rate is 16 kHz.

(5) WavTokenizer (Ji et al., 2024), an audio codec tokenizer trained on large-scale speech, sound, and music datasets. The
sampling rate is 24 kHz.

To make a fair comparison, for Encodec, DAC-Codec, and SpeechTokenizer, we use the first three RVQ layers to control the
bitrate during inference.
E.2. Audio Tokenizer

For sound and music data, we compare with Encodec, DAC-Codec, and WavTokenizer. These three models are trained on
large-scale speech, sound, and music datasets.

E.3. Semantic Models

Furthermore, to evaluate the performance of semantic information, we also introduce several SSL-based models. For speech,
we use WavLM (Chen et al., 2022a) and HuBERT (Hsu et al., 2021). For sound and music, we use BEATs (Chen et al.,
2022b) and Wav2Vec2-AudioSet °.

F. More audio tokenizer evaluation experiments
F.1. The subjective evaluation for audio tokenizer

Table 7 shows the subjective evaluation results for audio tokenizer.

F.2. Evaluation results on LibriTTS test clean

We report the reconstruction performance evaluated on a subset of the LibriTTS test clean set, where we randomly select
400 speech utterances. Additionally, we calculate the Real-Time Factor (RTF) and model size to assess efficiency. For RTF
evaluation, we use an NVIDIA A100 GPU to evaluate all models.

F.3. Length generalization

StableCodec (Parker et al., 2024) highlights that the introduction of transformer-based architectures can lead to the length
generalization problem. For instance, the training data of ALMTokenizer consists of 5-second segments, whereas the test

Shttps://huggingface.co/ ALM/wav2vec2-large-audioset
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Table 13. Objective metrics for the ALMTokenizer and baselines, evaluated on utterances from length 4s to 10s, showing generalization of
models across lengths

Model ~ FPS TPS  Bitrate PESQ (1) UTMOS (1) VISQOL (1) STOI(+) DNSMOS (1)

4 seconds

Encodec 50 150 1.5kbps 1.97 2.64 3.62 0.80 3.26
DAC 50 150 1.5kbps 2.1 3.17 3.65 0.81 3.26
Ours 12.5  37.5 0.41kbps 1.84 3.63 3.69 0.79 3.41
6 seconds

Encodec 50 150 1.5kbps 1.97 2.54 3.63 0.81 3.26
DAC 50 150 1.5kbps 2.0 3.11 3.65 0.81 3.28
Ours 12.5 37.5 0.41kbps 1.89 3.66 3.75 0.81 3.62
8 seconds

Encodec 50 150 1.5kbps 1.96 2.52 3.63 0.81 3.34
DAC 50 150 1.5kbps 2.1 3.18 3.66 0.81 3.28
Ours 12.5  37.5 0.41kbps 1.95 3.55 3.74 0.81 3.66
10 seconds

Encodec 50 150 1.5kbps 1.95 2.53 3.65 0.81 3.32
DAC 50 150 1.5kbps 2.1 2.19 3.67 0.81 3.25
Ours 125 375 0.41kbps 1.96 3.54 3.73 0.81 3.66

data comprises segments of varying durations. We evaluate the model across four distinct length levels: 4, 6, 8, and 10
seconds. Encodec and DAC are selected as baselines due to their reliance on convolutional layers, which demonstrate
robustness to variable input lengths. As shown in Table 13, the evaluation results indicate that ALMTokenizer effectively
handles inference across these diverse lengths. These findings suggest that ALMTokenizer exhibits strong generalization
capabilities with respect to input length variation.

F.4. Compared to diffusion-based audio codec models

We compare ALMTokenizer with an alternative family of audio tokenizers that leverage discrete semantic tokens derived
from self-supervised pre-trained (SSL) models (e.g., Hubert (Hsu et al., 2021), WavLM (Chen et al., 2022a), AudioMAE
(Huang et al., 2022)). These models first quantize the SSL features into semantic tokens and subsequently use a generative
model to resynthesize the waveform. Diffusion (Ho et al., 2020) and Flow-Matching (Lipman et al., 2022) are two popular
generative models. Previous works, such as GLM4-Voice tokenizer (Zeng et al., 2024) and SemantiCodec (Liu et al., 2024),
have demonstrated success using diffusion-based decoders. However, such strategies tend to result in significant information
loss. For instance, the semantic tokens in GLM4-Voice lack timbre information and require additional prompts to control
timbre during decoding. Notably, the open-sourced GLM4-Voice tokenizer uses a fixed timbre, meaning that any speech
encoded by GLM4-Voice will lose its original timbre. To address this information loss in semantic tokens, SemantiCodec
introduces acoustic streaming to enhance waveform reconstruction. A key concern, however, is that both SemantiCodec and
GLM4-Voice tokenizers demand significantly more computational resources during the inference stage. In the following, we
present a comprehensive comparison between ALMTokenizer and SemantiCodec, focusing on the following aspects: (1)
reconstruction performance for speech, sound, and music; (2) semantic information performance for speech, sound, and
music; and (3) computational resource requirements during inference, measured using RTF.

Table 14 shows the speech reconstruction and semantic performance, where we observe that ALMTokenizer outperforms
the alternatives in both aspects while using less bitrate. Table 15 presents experimental results for sound and music data,
where ALMTokenizer again demonstrates superior performance across all metrics compared to SemantiCodec. In Table 16,
we present the model size and RTF metrics, showing that ALMTokenizer has fewer model parameters and significantly
surpasses SemantiCodec in inference speed (0.031 vs 0.92).

G. The details of ALMTokenizer structure and training
G.1. Model structure

Table 17 gives the details of ALMTokenizer configuration, which results in 174M parameters. In all of experiments, for the
MAE-transformer encoded and decoder, we adopt a 8 layer transformer layers.
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Table 14. The performance comparison between ALMTokenizer and SemanticCodec on VCTK dataset.

Reconstruction Semantic
Models FPS/TPS CS/BR UTMOS (1) DNS-MOS (1) VISQOL (1) STOI(1t) PESQ(1) ASR({) EC®
SemantiCodec 50/50 16384/0.68kbps 32 3.57 3.90 0.81 1.76 48.3 17.8
ALMTokenizer 12.5/37.5 2048/0.41kbps 3.76 3.64 3.78 0.81 2.0 18.3 29.0

Table 15. The performance comparison between ALMTokenizer and SemanticCodec on Music (MusicCaps) and sound data (AudioCaps).

Reconstruction Semantic
Models FPS/TPS CS/BR Melloss () STFTloss ({) VISQOL (1) Classification (1)
Sound data
SemantiCodec 50/50 16384/0.68kbps  18.45 1.40 2.47 38.8%
ALMTokenizer 12.5/37.5 2048/0.41kbps 15.0 1.24 2.99 44 %
Music data
SemantiCodec 50/50 16384/0.68kbps  47.9 1.58 2.49 48%
ALMTokenizer 12.5/37.5 2048/0.41kbps 34.4 1.32 3.96 59%

Patchify and UnPatchify modules A single-channel audio signal x € R'*~ (where N denotes the sampling points)
is processed through the Encodec-style Patchify and UnPatchify modules, which adopt the same structure as Encodec
(Défossez et al., 2022), consisting of four convolutional blocks. Each convolutional block consists of a residual unit followed
by a down-sampling layer. These convolution blocks effectively encode the audio signal « into an audio frame representation
e € RT*4 where T denotes the number of frames and d denotes the dimension of each vector. The convolution blocks are
followed by a two-layer LSTM for sequence modeling, followed by a final 1D convolutional layer with a kernel size of 7
and D output channels. The UnPatchify module mirrors the Patchify architecture by substituting stride convolutions with
transposed convolutions and reversing the stride order.

For the StableCodec-style Patchify and UnPatchify modules, we follow the approach in StableCodec (Parker et al., 2024)
and use a reshape operation to transform = € R***" into e € RT*?, where T' = N/320 and d = 320. We then apply a
linear layer to map the dimension to D. Finally, we add four transformer layers for sequence modeling. Similarly, the
UnPatchify module mirrors the Patchify architecture.

Discriminators For the discriminators, we follow prior work (Défossez et al., 2022), which combines mel-spectrogram and
log-mel-spectrogram features and inputs them into a network consisting of several convolutional layers. Specifically, we use
six discriminators with different configurations: the hidden dimensions are set as 64, 128, 256, 512, 512, 512, and the hop
lengths are set as 32, 64, 128, 256, 512, 1024.

G.2. Reconstruction loss and adversarial loss for ALMTokenizer

Let the reconstructed signal be &. For the reconstruction loss, we design it from two perspectives: the time domain and
the frequency domain. We first compute the L; loss between x and Z in the time domain. Next, we compute the L loss
between the STFT spectrogram of « and Z in the frequency domain. Following (Wang et al., 2024b), we employ a sub-band
split strategy to divide the spectrogram into several parts. The adversarial loss is employed to enhance the perceptual quality
of the generated audio:

K
L4 = % Z maz (0,1 — Dy(x)) + maz(0,1 + Dy(2)) “)
i=1

where K denotes the number of discriminators. During the training stage, the adversarial loss for the generator is computed
as a hinge loss over the logits of these discriminators:

K
1 N
Lodo = % ; maxz(0,1 — Dy(&)) (5)

The feature loss Ly.q; is computed by taking the average absolute difference between the discriminator’s internal layer
outputs for the generated audio and those for the corresponding real audio.
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Table 16. The model size and RTF comparison between SemantiCodec and ALMTokenizer.

Model Model size M) ({) RTF({)
SemantiCodec 507 0.92
ALMTokenizer (Ours) 174 0.031
‘ ALMTokenizer
Input shape B, 1,N)
Patchify module (output) (B, T, d), T=N/320
Token Interleaving and Retrieval | w € [2,3,4,5,6,7,8,9, 10]
Dimension of transformer encoder 256
The number of transformer encoder 24
Dimension of transformer decoder 512
The number of transformer decoder 24
Codebook size 2048
VQ layers 3
Number of Transformer heads 64
UnPatchify module (output) (B, 1,N)

Table 17. ALMTokenizer model backbone configurations

G.3. Training details

The AdamW optimizer is used in the training. We set the learn rate as 1le — 4. We train the model with 200k steps. The final
loss as following shows. We set A\; = 0.5 and Ay = 0.1 during our experiments. We conduct all of the experiments with 4
NVIDIA A100-80G GPUs.

L= Ladv + Lfeat + Lrec + )\ILMAE + )\ZLAR (6)

H. Reproducibility Statement

To enhance reproducibility, we provide the pseudocode of ALMTokenizer. In the future, we plan to improve both the model
structure and training data to obtain more robust models, especially for music and sound, and release the code for the
research community.

Listing 1. Pseudocode of ALMTokenizer

class ALMTokenizer:

def _ init_ (
self,
transformer_encoder_args,
transformer_decoder_args,
mae_decoder_args,
depth_gpt_args,
patchify_args,
encoder_embed_dim,
decoder_embed_dim,
semantic_prior_path,
mask_rate,
window_sizes = [2,3,4,5,6,7,8,9,10],

self.window_sizes = window_sizes

self.transformer_encoder = Transformer (transformer_encoder_args)
self.transformer_decoder = Transformer (transformer_decoder_args)
self.mae_decoder = Transformer (mae_decoder_args)

self.Patchify = Encodec_encoder (patchify_args)

self.UnPatchify = Encodec_decoder (patchify_args)
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def

def

def

def

def

self.cls_token = nn.Parameter (torch.zeros (1,

self.mask_token = nn.Parameter (torch.zeros (1,

checkpoint = torch.load(semantic_prior_path,

self.vg = RVQ_semantic (
input_dim=encoder_embed_dim,
semantic_prior = checkpoint,

layers = 3)
self.depth_gpt = GPT_decoder (depth_gpt_args)
self.tmp_window_size = 6

self.mask_rate = mask_rate

Encoder_token_Interleaving(self, x):
B, T, D = x.shape

encoder_embed_dim))
decoder_embed_dim))
map_location="cpu")

cls_tokens = self.cls_token.repeat (B, (T//self.tmp_window_size), 1) .unsqueze (2)

new T =T + (T // self.tmp_window_size)

x_reshaped = x.reshape(B, T // self.tmp_window_size,
x_with_cls = torch.cat ([x_reshaped, cls_tokens],

new_x = x_with_cls.reshape (B, -1, D)
return new_x

Encoder_token_Retrieval (self, x):
B, new_T, D = x.shape

self.tmp_window_size, D)

dim=2)

original_T = new_T - new T // (self.tmp_window_size + 1)

mask_indices = [(1 + 1) x (self.tmp_window_size + 1)

// self.tmp_window_size)]
cls_tokens = new_x[:, mask_indices, :]
return cls_tokens

Decoder_token_Interleaving(self, en_token):
B, T, D = en_token.shape
x = self.mask_token.repeat (B, 1, 1)

- 1 for i in range(original_ T

new_T = en_token.shape[l]*self.tmp_window_size + en_token.shape[l]
x = x.repeat (1, en_token.shape[l]*self.tmp_window_size, 1)

x = x.reshape (B, -1, self.tmp_window_size, D)

x_with_masks = torch.cat ([x, en_token.unsqueeze(2)],

new_x = x_with_masks.reshape (B, -1, D)
return new_x

Decoder_token_Retrieval (self, new_x):
B, new_T, D = new_x.shape

dim=2)

num_masks = new_T // (self.interval + 1)

original_T = new_T - num_masks

mask_indices = [(1i + 1) % (self.interval + 1) - 1 for i in range (num_masks) ]
all _indices = list (range(new_T))

mask_indices = [i for 1 in all_indices if i not in mask_indices]

mask_frames = new_x[:, mask_indices, :]

return mask_frames
forward (
self,

Xy

x_len = x.shapel[-1]

self.tmp_window_size = choice(self.window_sizes)

emb_frames = self.Patchify (x)
if self.training:

emb_frames_mask = self.apply_mask (emb_frames,

mask_rate = self.mask_rate)

interleving_frames = self.Encoder_token_Interleaving (emb_frames_mask)

predict_latent = self.mae_decoder (interleving_ frames)
mae_loss = L1_loss (predict_latent, emb_frames)

latent_tokens = self.transformer_encoder (interleving_frames)
query_token = self.Encoder_token_Retrieval (latent_tokens)
Quantized_token, codes, all_quantized = self.vg(query_token)

cat_quantized = []
for g _emb in all_quantized:
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g _emb = g_emb.reshape (-1, g_emb.shape[-1]) .unsqueeze (1)
cat_quantized.append (g_emb)
cat_quantized = torch.cat (cat_quantized, dim=1)
gpt_loss = self.depth_gpt.compute_prior_loss (cat_qgquantized)
de_interleving_ frames = self.Decoder_token_Interleaving(Quantized_token)
de_latent_token = self.transformer_decoder (de_interleving_frames)
mask_tokens = self.Decoder_token_Retrieval (de_latent_token)
x_ = self.UnPatchify (mask_tokens)

return x_, mae_loss, gpt_loss

1. Limitation

In this study, we present ALMTokenizer, a low-bitrate, semantic-rich audio codec tokenizer. We demonstrate that ALM-
Tokenizer excels in both reconstruction and semantic information retention under low-bitrate conditions. However, we
acknowledge that there is still significant room for improvement in reconstruction performance, particularly for sound
and music data. Building an audio tokenizer for sound and music in the low-bitrate setting poses additional challenges.
In terms of semantic information, ALMTokenizer still lags behind traditional SSL models. Although we propose several
training losses to enhance semantic information in the codec model, the improvements are limited and, in some cases,
negatively impact reconstruction quality. We recognize the need for a careful design and balance of these semantic loss terms.
Additionally, the multi-stage training strategy increases training complexity. These training strategy brings waste. Most of
the components are eventually discarded, e.g. MAE-transformer encoder/decoder, MAE-decoder, and depth AR-transformer.
These components would have made sense to still utilize them for some purpose, e.g. the AR decoder could have been used
to initialize the depth transformer in the Language modeling task. These concerns are left for future work.
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