
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MITIGATING OVERESTIMATION IN
OFFLINE REINFORCEMENT LEARNING WITH ANOMALY
DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) encounters substantial challenges in real-world
applications, due to the time-consuming, costly, and risky nature of interacting
with the environment. Offline Reinforcement Learning addresses this limitation by
training models on static datasets, allowing an optimal policy to be learned from
pre-collected data without requiring additional interactions with the environment.
However, in this setting, when the agent queries actions outside the training data
distribution, it can lead to overestimation of Q-values for OOD (Out-of-distribution)
actions, ultimately hindering policy optimization. Previous works attempted to
address this problem using explicit constraints such as penalty terms or support
restriction. But these methods often fail to identify OOD actions or result in overly
conservative Q-value estimates. We propose a novel solution that adjusts weights
during training by using an anomaly detection model to identify the distribution of
the offline dataset and employing anomaly scores to guide the offline RL process.
Our method(RLAD) not only effectively mitigates the overestimation of OOD
actions but also achieves near state-of-the-art performance on continuous D4RL
tasks. Additionally, this framework is highly flexible, allowing for integration
with various off-policy or offline RL algorithms and Anomaly Detection models to
enhance performance.

1 INTRODUCTION

Reinforcement Learning (RL) has become a pivotal field in artificial intelligence, demonstrating
significant achievements in areas such as natural language processing (NLP) (Ouyang et al., 2022)
and computer vision ((Furuta et al., 2019), (Liu et al., 2023)). Its ability to enable agents to interact
with environments and perform human-like sequential decision-making has made RL particularly
valuable in fields such as robotics (Vecerik et al., 2018), medical diagnosis, and autonomous driving
(Gu et al., 2023). However, applying reinforcement learning (RL) to real-world problems poses
significant challenges due to the time-consuming, costly, and risky nature of continuous environment
interactions.

To address these challenges, offline Reinforcement Learning (Offline RL) has emerged, focusing
on leveraging static datasets for training. Unlike traditional RL, Offline RL lacks the continuous
exploration that helps the agent converge to an optimal policy. Additionally, Offline RL must work
with limited datasets, often failing to provide sufficient coverage of all possible state-action pairs
above given offline dataset leading to a phenomenon known as distributional shift. This limitation
leads to a prominent issue: the overestimation of the Q-function, especially for state-action pairs
not present in the training dataset, as highlighted by the work of (Kumar et al., 2019). Methods like
CQL, BCQ, and BRAC ((Kumar et al., 2020), (Fujimoto et al., 2019), (Wu et al., 2019) have been
developed to tackle this problem by making value functions pessimistic or restrict the action space of
a policy, which can result in overly pessimistic evaluations or overly restrictive regions. Therefore,
many works try to make the agent not too conservative or to address distributional shift and OOD
actions while maintaining trading off with the previous distributional shift and OOD repression to
obtain an optimal policy. ((Lyu et al., 2022), (Hong et al., 2023))

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Inspired by the analysis of (Kumar et al., 2019), which highlights that overestimation mainly occurs
with data outside the training distribution, and the fact that explicit constraints can result in over-
pessimistic value estimation, we have focused on the following point: How can we better utilize
the distribution of the training dataset to avoid overestimation caused by OOD data? While we
aim to prevent the agent from querying out-of-distribution actions, we also recognize that not every
out-of-distribution action leads to a sub-optimal policy. Therefore, we seek to avoid imposing hard or
explicit constraints.

We propose that anomaly detection models, which are highly effective modules for identifying
out-of-distribution or novel data, can be a possible novel solution. These models adept at classifying
binary problems based on anomaly scores, which typically quantify how much a data point deviates
from the training distribution. These scores can provide useful guidance for the agent during training,
so we can plug-in any off-policy algorithm without the need to introduce additional regularizers into
their objective function.

In this context, we propose approaching the Offline RL problem through the lens of a Anomaly
Detection, classifying data as either in-distribution (normal) or out-of-distribution (abnormal). Our
proposed method, Reinforcement Learning with Anomaly Detection (RLAD), addresses these
challenges by leveraging deep learning-based anomaly detection models ((Zong et al., 2018), (Ruff
et al., 2018)) to efficiently and accurately estimate whether unseen data belongs to the in-distribution
or out-of-distribution. This approach capitalizes on the expressive power of neural network networks
without the need for specialized regularizer to match distributions, support or underestimate Q-value.
Our algorithm operates in two stages:

1) Anomaly Detection Model Training: Train the anomaly detection model on the training
dataset. During this phase, the model learns which data points are close to the training
distribution and assigns an anomaly score as an indicator.

2) Anomaly Score-Based Weight Adjustment: Use the anomaly score of the given data
to inform the agent, adjusting the importance of each sample during learning through the
application of different sample weights.

Our experiments aim to demonstrate about anomaly scores(weight) and estimated Q-values. Our
algorithm performs well in continuous environments, achieving state-of-the-art performance in several
tasks. Our contributions are as follows:

1) Framework: We present a simple, easily implementable framework that can be integrated
with various off-policy or offline RL algorithms and anomaly detection models, especially
according to the environment.

2) Q-value Estimation: We demonstrate that Anomaly Score-Based Weight Adjustment
significantly contribute to accurate Q-value estimation and the mitigation of overestimation.

3) Empirical Performance: We show good empirical performance, particularly in MuJoCo
environments, achieving state-of-the-art results.

2 RELATED WORKS

Policy Constraints Several works have proposed imposing constraints on actor-critic algorithms by
constraining the learned policy to remain close to the behavior policy that generated the offline dataset
D. (Fujimoto et al., 2019) directly estimates the behavior policy πβ and constrains the learned policy
πθ to stay close to the estimated πβ . In contrast, (Kumar et al., 2019) argues that support matching
using Maximum Mean Discrepancy (MMD) is more effective than direct matching of distributions.

Additionally, (Wu et al., 2019) brings πβ closer to the target policy by penalizing the critic, leading
to more pessimistic evaluations. Methods like (Peng et al., 2019) and (Nair et al., 2021) use the
advantage term to construct an implicitly weighted maximum likelihood objective, while others,
such as (Fujimoto & Gu, 2021), operate without the actor-critic structure. These approaches aim to
fundamentally prevent OOD actions from being selected by the learned policy πθ, thus mitigating
overestimation and providing relatively stable performance. However, these strategies can sometimes
excessively constrain or regularize actions of the agent.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Conservative Value Estimation Rather than restricting the policy, some methods focus on conser-
vatively estimating the value function of state-action pairs by explicitly penalizing unseen OOD
actions in D (Kumar et al., 2020) or by avoiding directly querying unseen actions in the dataset using
expectile regression to maximize the advantage (Kostrikov et al., 2021). Additionally, model-based
approaches such as (Yu et al., 2022) learn dynamic models to interpolate and augment data, combined
with conservative Q-value estimation. While these works aim to avoid the OOD overestimation
problem by penalizing or ignoring unseen OOD actions inD, they often suffer from overly pessimistic
value estimates.

Other approaches, such as (Gal & Ghahramani, 2016), (Wu et al., 2021), (An et al., 2021), (Bai
et al., 2022), utilize uncertainty measures—like Bayesian methods, MC-dropout, and ensemble to
adaptively adjust the level of OOD suppression. These strategies can operate without explicit policy
constraints, but the computational cost of measuring uncertainty can be high and incorrect.

Trajectory Optimization Recently, Conditional Sequence Modeling (CSM) has emerged as a novel
paradigm for RL tasks, associating individual trajectories with return-to-go (RTG) tokens, enabling
the handling of long sequences with large model sizes, such as in (Janner et al., 2021) and (Chen et al.,
2021). However, due to the intrinsic stochasticity of state transitions, approaches like (Yamagata
et al., 2023) and (Chebotar et al., 2023) have been proposed to address these limitations, particularly
in offline settings.

Anomaly Detection Anomaly Detection (AD) is the task of identifying samples that deviate signifi-
cantly from the majority of the data, often signaling irregular, fake, rare, or fraudulent observations
(Wang et al., 2019). Particularly, semi-supervised AD is defined as the task of detecting samples that
are out of distribution by using only normal samples in the training dataset. To estimate the normal
distribution and detect exceptional samples from that distribution, a wide range of models is available,
spanning from statistical to deep-learning based AutoEncoder ((Ruff et al., 2018), (Zong et al., 2018))
Transformer (Xu, 2021), and flow-based(Zhou et al., 2024). These methods have been improved to
handle various problem of each data types, including images, video, and time-series data.

Given the dimension reduction capabilities and generalizability of AutoEncoders in handling the
varying space sizes of reinforcement learning datasets, we select two models for the AD module
to capture distributional information: Deep SVDD ((Ruff et al., 2018)) and DAGMM ((Zong et al.,
2018)).

Deep SVDD Deep SVDD (Ruff et al., 2018) is a deep learning-based extension of the classical
Support Vector Data Description method.(Tax & Duin, 2004) Unlike SVDD, which uses hand-crafted
kernels such as the Gaussian kernel, Deep SVDD learns the appropriate feature space through a deep
neural network with an AutoEncoder architecture. The goal of Deep SVDD is to find the smallest
hypersphere that encloses most of the normal data in the feature space by mapping inputs through the
model.

DAGMM Similar to Deep SVDD, DAGMM also utilizes an AutoEncoder to encode data into a
feature space.(Zong et al., 2018) However, unlike Deep SVDD, which seeks to find the optimal
hypersphere for normal data, DAGMM estimates the distribution of data in the latent space by
utilizing a Gaussian Mixture Model.

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING

We formulate Reinforcement Learning using the standard Markov Decision Process (MDP),
(S,A, P,R, γ), where S represents the state space, A denotes the action space, P (s′|s, a) is the
transition probability, R(s, a) : S ×A→ R is the reward function, and γ ∈ (0, 1] is the discount fac-
tor. Reinforcement Learning aims to find an optimal policy that maximizes the expected cumulative
discounted reward, Eτ [

∑∞
t=0 γ

tR(st, at)], where τ is a trajectory.

There are several approaches to finding an optimal policy, such as Policy Gradient (Sutton et al.,
1999), Q-learning (Sutton & Barto, 2018), and Actor-Critic methods (Konda & Tsitsiklis, 1999).
Among them, Q-learning and Actor-Critic methods are based on the Bellman Equation:

Qπ(s, a) = R(s, a) + γEP (s′|s,a)[V
π(s′)]

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where Qπ(s, a) = Eπ[
∑∞

t=0 γ
tR(st, at)|s = st, a = at] is the state-action value function, and

V π(s) = Eπ[
∑∞

t=0 γ
tR(st, at)|s = st] is the state value function. Both methods update the Q-

function via the Bellman operator B:

(BQπ)(s, a) = R(s, a) + γEP (s′|s,a) [Eπ[Q
π(s′, a′)]]

In this paper, we utilize the Actor-Critic method, a widely used approach that alternates between
policy evaluation and policy improvement, which demonstrates faster and more efficient convergence
towards finding the optimal policy.

3.2 OFFLINE REINFORCEMENT LEARNING

In real-world applications, interacting with the environment can often be risky, expensive, and
time-consuming. To address these challenges, Offline Reinforcement Learning (Offline RL)
has been developed, which leverages a pre-collected dataset to learn an optimal policy without
additional environment interaction. The pre-collected dataset consists of multiple trajectories
τ = (s0, a0, r0, s1, a1, r1, ...).

However, the lack of interaction with the environment makes it difficult for the agent to explore
new state-action pairs, leading to the domain shift problem, which results in a sub-optimal policy.
Additionally, standard off-policy algorithms often perform poorly in the offline setting, leading to a
need for new methods. Many approaches focus on mitigating the overestimation problem caused by
out-of-distribution actions through value function or policy constraints, uncertainty-based methods,
or model-based approaches. In this paper, we aim to address this issue using anomaly scores from
independently trained anomaly detection module.

4 REINFORCEMENT LEARNING WITH ANOMALY DETECTION (RLAD)

In this paper, we propose addressing the Offline RL problem through the lens of Anomaly Detection,
which we refer to as Reinforcement Learning with Anomaly Detection (RLAD). Offline Reinforce-
ment Learning encounters the overestimation problem primarily when the agent bootstraps actions
that are not present in the training dataset. As a result, the accumulation of bootstrapping errors can
significantly degrade performance.

To address the issue of out-of-distribution actions being bootstrapped, we provide an anomaly score
as guidance to the agent to indicate how far a data point is from the distribution of the training dataset.
Specifically, anomaly scores are used as weights for the objective functions of both the Actor and
Critic. Our approach has empirically shown promising results.

4.1 WHY ANOMALY DETECTION?

As mentioned earlier, previous works in offline reinforcement learning algorithms often solve the
overestimation problem by imposing constraints on value functions or policies. However, these
methods can lead to overly conservative value estimates or overly restrictive action spaces, resulting
in sub-optimal policies. Moreover, approaches based on ensemble or dropout-based uncertainty
measures, being suggested to solve this problem, have inevitable problem of high computational cost
or inaccurate estimation of uncertainty.

In contrast, Anomaly Detection models are effective at detecting out-of-distribution data with re-
spect to the normal training dataset. These models typically determine whether data points are
in-distribution or out-of-distribution based on anomaly scores.

In this reason, we propose that anomaly scores can serve as efficient and effective guidance for the
agent to determine whether a given action is out-of-distribution, helping the agent adjust its policy
accordingly.

4.2 PRETRAINING THE ANOMALY DETECTION MODEL

To inform the agent of how far the data is from the training set, we first train an anomaly detection
model. In this paper, we use Deep SVDD and DAGMM with state-action pairs as the input. Although

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: This figure illustrates the overall pipeline. Anomaly Detection Train(left) First train the
Anomaly Detection(AD) module using offline Reinforcement Learning dataset D. RL Train(right)
Then weighted update is performed for RL algorithm update for every iteration with anomaly score
from AD module and scaling function f . For offline update, every sample is bootstrapped from
offline Dataset D.

we considered using full trajectories, capturing the features of each trajectory proved challenging, so
we opted for state-action pairs to simplify assumptions and efficiently capture features. We denote
the anomaly score for a state-action pair (s, a) as anomaly score(s, a). When the state s is fixed,
this can be roughly interpreted with behavior policy. Additionally, we assume that the further a
state-action pair is from the dataset, the higher the anomaly score(s, a).

4.3 TRAINING THE RL AGENT

Using the previously trained Anomaly Detection model, we compute the anomaly score for each
state-action pair. This score is then used to weight the value function training and policy optimization.
Since we want the agent to focus more on data points that are closer to the training distribution, the
weight should increase as the anomaly score decreases. A higher weight indicates a lower likelihood
of being OOD, encouraging more learning. Conversely, a lower weight indicates a higher likelihood
of being OOD, reducing its impact on learning.

This approach avoids imposing strict penalties or limiting the agent to the training distribution,
effectively mitigating the overestimation problem caused by OOD data while still allowing for
accurate estimation of OOD actions. The overall algorithm can be summarized as follows:

1) Calculate Anomaly Score: Use the trained Anomaly Detection model to calculate the
anomaly score for the next state-action pair. Since the agent only queries the next action, we
need to train the network based on the next state-action pair.

2) Compute Weight: Determine the weight from pretrained Anomaly Detection model as
follows:

weight(s, a) := f(anomaly score(s, a))

where f(·) is a non-negative, monotonically decreasing function bounded within the range
of anomaly score(·, ·).The specific form of f(·) may vary depending on the model used to
compute the anomaly score. In our implementation, we use f(x) = 1

x for Deep SVDD and
f(x) = sigmoid(−x) for DAGMM.

3) Weighted Q-Function Training: Train the Q-function using the computed weights with the
following objective function:

∇θL(θ) = E[weight(s′, a′)(Qθ(s, a)− r −Q∗(s′, a′))∇θQθ(s, a)]

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where Q∗ is the target value function.
4) Weighted Policy Training: Train the policy using the computed weights with the following

objective function:

∇ϕL(ϕ) = E[weight(s, a)(Qθ(s, a)∇ϕ log πϕ(a|s))]

We provide the pseudo-code for this algorithm in Algorithm 1.

Algorithm 1 RLAD Training Procedure (Actor-Critic Style)
Input: Pre-collected dataset D = {(s, a, r, s′)}, Anomaly Detection model ψ, SAC model
with Q-function Qθ and policy πϕ
hyperparameters: learning rates αϕ, αθ, discount factor γ, delayed update rate τ
Output: Trained SAC model

1: 1. Pretrain the Anomaly Detection model ψ on the dataset D
2: 2. Training the Actor-Critic model with weights from Anomaly Detection model
3: Initialize value function parameters θ and policy parameters ϕ
4: Initialize learning rates αθ and αϕ

5: Initialize target parameters equal to Q-function parameters θ′ ← θ and policy parameters ϕ′ ← ϕ
6: weight(s, a) := f(anomaly score(s, a)) ▷ f is a bounded, non-negative function which is

monotonic decreasing
7: while not converged do
8: for each (s, a, r, s′) in D do
9: Compute target Q-value:

y = r + γQθ′(s′, a′ ∼ πϕ′(·|s′))

10: Compute weighted Q-function loss:

∇θL(θ) = E[weight(s′, a′)(Qθ(s, a)− r −Qθ′(s′, a′))∇θQθ(s, a)]

11: Update Q-function parameters:

ϕ← ϕ− αϕ∇ϕLQ

12: Compute weighted policy loss:

∇ϕL(ϕ) = E[weight(s, a)(Qθ(s, a)∇ϕ log πϕ(a|s))]

13: Update policy parameters:

θ ← θ − αθ∇θLπ

14: end for
15: Update target networks periodically:

ϕ′ ← τϕ+ (1− τ)ϕ′

θ′ ← τθ + (1− τ)θ′

16: end while
17: return Trained Actor-Critic model

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTAL RESULTS

In this section, our experiments try to address the following questions:

1. Does our framework achieve better performance with various combinations of Anomaly
Detection models and Reinforcement Learning algorithms?

2. Does our framework estimate Q values correctly in the training distribution and do not
estimate Q values too conservative in the out-of-distribution?

To answer the above questions we present two experiments : First, we analyze Q value errors
(between the true value and the estimated value from offline algorithms) with weights on the training
distribution and the out-of-distribution. Second, we compare normalized returns with some baselines
in some tasks MuJoCo environment including medium, medium-replay and medium-expert and
Adroit environment including human and cloned. Also we compare Q-value distributions among Soft
Actor-Critic, RLAD-SAC-SVDD, and CQL in ‘Pendulum-v1’ environment.

5.1 ANALYSIS OF WEIGHT AND Q DIFFERENCE

Figure 2: Scatter plot for weight-Qdifference Figure 3: Q values of the entire action space in
’Pendulum-v1’

In this section, we analyze the relationship between the weight and the Qdifference to demonstrate the
effectiveness of our method.

To estimate Q∗(s, a), we used the critic network of an SAC model trained in online setting for proxy.
We then compared the Q(s, a) values from both our model and the baseline model, CQL, with simple
qunaitifing measure defined as Qdifference(s, a) := Q(s, a)−Q∗(s, a). Additionally, we extracted an
OOD dataset using AutoEncoder and MC-Dropout, independent of the offline dataset and Anomaly
Detection module, to analyze OOD actions and Q-value differences. For the validity of these datasets,
please refer to t-SNE visualizations in Appendix, figure 5.

The figure shows the distribution of weight as a function of Qdifference for both normal and OOD
samples across our model(RLAD-SAC) and CQL in the ‘halfcheetah-medium-v2‘ environment.
Notably, both models display a peak at negative Qdifference values, with a long tail extending toward
positive values. However, our model exhibits a more concentrated peak near Qdifference = 0, while
CQL shows more spread in the positive direction, indicating more frequent overestimations.

For OOD samples, the distribution of our model shows that Qdifference are near zero and weights from
the anomaly detection module are smaller than normal data, which demonstrates that the anomaly
detection module performs well. In contrast, Qdifference of CQL are far from zero for OOD samples,
suggesting overly conservative estimation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of normalized average returns of RLAD against original SAC model (offline)
and Behavior Cloning(BC) on the D4RL MuJoCo Gym datasets. Normalized returns of RLAD are
averaged over 5 random seeds, and baseline values are taken from each paper.

Task Name RLAD-SAC-SVDD
(OURS)

RLAD-SAC-DAGMM
(OURS) SAC BC

hopper-med 105.48±3.24 63.68±5.58 0.8 29.0
walker2d-med 95.18±5.22 114.92±7.36 -0.3 75.3
halfcheetah-med 75.95±8.63 77.83±5.58 55.2 36.1
hopper-med-rep 106.10±2.00 92.74±14.92 7.4 11.8
walker2d-med-rep 105.00±6.10 99.74±12.21 -0.3 11.3
halfcheetah-med-rep 79.43±4.81 71.78±4.55 0.8 38.4
hopper-med-exp 105.01±4.59 98.70±7.03 0.7 53.9
walker2d-med-exp 104.92±8.56 105.32±10.39 1.9 36.9
halfcheetah-med-exp 78.05±2.39 73.39±7.65 28.4 35.8

In comparing the two methods, our model shows a more accurate Q-value estimation, particularly
around Qdifference = 0, where weight peaks closer to this value indicate higher accuracy in policy
learning. CQL, however, suffers from both under- and overestimation, as evidenced by its broader
distribution and more pronounced presence of large positive Qdifference values, even for normal data.

Also, as shown in table 1, this indicates that AD modules like Deep SVDD and DAGMM can
capture the characteristics of the data and successfully estimate Q-values for samples not present
in D, without directly imposing constraints on policy or value estimation. Moreover, the superior
performance of RLAD-SAC (with Deep SVDD and DAGMM) over standard SAC highlights the
potential for exploring a broader range of AD models.

5.2 BRIEF ANALYSIS ON Q-FUNCTIONS

We analyze the Q-functions of Online Soft Actor-Critic, RLAD-SAC-SVDD (Offline), and CQL
(Offline) in the Pendulum-v1 environment, where the offline dataset is obtained by a random policy.
The Pendulum environment is chosen for visualization on a 1D plane, eliminating the need for
dimensionality reduction methods for clearer interpretation.

As shown in Figure 3, both our model and CQL estimate the Q-values conservatively. However,
CQL exhibits more conservative estimates than our model, while our model provides more accurate
Q-value estimations.

5.3 COMPARISON WITH D4RL

Based on the above analysis showing the effectiveness of our model, we compare our method to prior
offline RL methods on continuous domains and dataset compositions. We implement our method
based on Soft Actor-Critic(Haarnoja et al., 2018) and BEAR(Kumar et al., 2019) for Reinforcement
Learning algorithms and Deep-SVDD(Ruff et al., 2018) and DAGMM (Zong et al., 2018) for
Anomaly Detection model.

Evaluation on D4RL Results for the MuJoCo tasks and Adroit tasks (Rajeswaran et al., 2018) in the
D4RL benchmarks (Fu et al., 2021) are shown in 2 and 3, respectively. The results for other baselines
are based on their respective papers ((Kang et al., 2023), (Kidambi et al., 2020), (Rigter et al., 2022),
(Kumar et al., 2019), (Cheng et al., 2022), (Kumar et al., 2020), (Kostrikov et al., 2021), (Chen et al.,
2021)). We evaluate three environments of MuJoCo tasks, hopper, walker2d, and halfcheetah, with
three dataset types, medium, medium-replay, and medium-expert, for each environment. Also, we
evaluate four environments of Adroit tasks, pen, hammer, door, and relocate, with two data types,
human and cloned. We achieve the best performance on most environments. Especially, we obtain
good performance on the multimodal datasets such as medium-expert or medium-replay. This implies
that our method is robust to the complex distribution.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparison of normalized average returns of RLAD against baselines on the D4RL MuJoCo
Gym datasets. Normalized returns of RLAD are averaged over 5 random seeds, and baseline values
are taken from each paper.

Task Name RLAD-SAC-SVDD
(OURS)

RLAD-BEAR-SVDD
(OURS)

RLAD-SAC-DAGMM
(OURS)

EDP
(TD3+BC) MOReL RAMBO BEAR ATAC CQL IQL DT

hopper-med 105.48±3.24 95.95±4.90 63.68±5.58 81.9 95.4 92.8 30.77 85.6 86.6 66.3 67.6
walker2d-med 95.18±5.22 90.33±8.69 114.92±7.36 86.9 77.8 86.9 56.02 89.6 74.5 78.3 74.0
halfcheetah-med 75.95±8.63 45.10±0.94 77.83±5.58 52.1 42.1 77.6 37.14 53.3 44.4 47.4 42.6
hopper-med-rep 106.10±2.00 89.35±10.58 92.74±14.92 101.0 93.6 96.6 31.13 102.5 48.6 94.7 82.7
walker2d-med-rep 105.00±6.10 66.61±6.45 99.74±12.21 94.9 49.8 85.0 13.66 92.5 32.6 73.9 66.6
halfcheetah-med-rep 79.43±4.81 42.16±1.15 71.78±4.55 49.4 40.2 68.9 36.21 48.0 46.2 44.2 36.6
hopper-med-exp 105.01±4.59 113.34±1.55 98.70±7.03 97.4 108.7 83.3 67.26 111.9 111.0 91.5 107.6
walker2d-med-exp 104.92±8.56 96.34±4.62 105.32±10.39 110.2 95.6 68.3 43.80 114.2 98.7 109.6 108.1
halfcheetah-med-exp 78.05±2.39 92.90±0.62 73.39±7.65 95.5 53.3 93.7 44.16 94.8 62.4 86.7 86.8

Table 3: Comparison of normalized average returns of RLOCC against baselines on the D4RL Adroit
datasets. Normalized returns of RLAD are averaged over 5 random seeds, and baseline values are
taken from each paper.

Task Name RLAD-SAC-SVDD
(OURS) ATAC CQL ARMOR IQL BC

pen-human 84.09±9.63 53.1 37.5 72.8 71.5 34.4
hammer-human 9.29±6.21 1.5 4.4 1.9 1.4 1.5
door-human 16.18±5.42 2.5 9.9 6.3 4.3 0.5
relocate-human 0.04±0.04 0.1 0.2 0.4 0.1 0.0
pen-cloned 56.17±14.66 43.7 39.2 51.4 37.3 56.9
hammer-cloned 2.75±2.83 1.1 2.1 0.7 2.1 0.8
door-cloned 0.72±0.98 3.7 0.4 -0.1 1.6 -0.1
relocate-cloned 0.08±0.29 0.2 -0.1 -0.0 -0.2 -0.1

5.4 CONCLUSION

By analyzing Q differences, we demonstrate that our model which utilizes Anomaly Detection(AD)
models, effectively mitigates the overestimation of OOD samples compared to prior offline RL
algorithms, also do not estimate Q-values overly conservative. Moreover, in the D4RL bench-
marks, our model achieves near state-of-the-art performance across various environments, for several
combinations of Reinforcement Learning algorithms and Anomaly Detection models. These exper-
iments highlight the potential of integrating Anomaly Detection modules to detect OOD samples
and leveraging their quantitative anomaly scores as guidance to enhance performance. Because of
the independence of AD module, this allows for the flexible integration of various models without
imposing explicit constraints on policy or value functions, facilitating the exploration of optimal
combinations between various branches of Anomaly Detection and powerful RL algorithms.

For future work, we aim to find the way how to choose the best combination of an Anomaly Detection
module and a Reinforcement Learning algorithm according to the characteristic of the dataset or
the environment. This research will enable more effective selection of an anomaly detection model
and a reinforcement learning algorithm. We believe that our work provides a deeper empirical
understanding of the relationship between accurate Q-value estimation and overall performance
across various environments and RL algorithms. Additionally, we see potential for our approach to be
further developed, much like data type-specific AD research in areas such as images and time series.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning, 2022.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, Keerthana Gopalakrishnan, Julian Ibarz, Ofir Nachum,
Sumedh Anand Sontakke, Grecia Salazar, Huong T. Tran, Jodilyn Peralta, Clayton Tan, Deeksha
Manjunath, Jaspiar Singh, Brianna Zitkovich, Tomas Jackson, Kanishka Rao, Chelsea Finn,
and Sergey Levine. Q-transformer: Scalable offline reinforcement learning via autoregressive
q-functions. In Jie Tan, Marc Toussaint, and Kourosh Darvish (eds.), Proceedings of The 7th
Conference on Robot Learning, volume 229 of Proceedings of Machine Learning Research, pp.
3909–3928. PMLR, 06–09 Nov 2023. URL https://proceedings.mlr.press/v229/
chebotar23a.html.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic
for offline reinforcement learning, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration, 2019.

Ryosuke Furuta, Naoto Inoue, and Toshihiko Yamasaki. Pixelrl: Fully convolutional network with
reinforcement learning for image processing. IEEE Transactions on Multimedia, 22(7):1704–1719,
2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning, 2016.

Ziqing Gu, Lingping Gao, Haitong Ma, Shengbo Eben Li, Sifa Zheng, Wei Jing, and Junbo Chen.
Safe-state enhancement method for autonomous driving via direct hierarchical reinforcement
learning. IEEE Transactions on Intelligent Transportation Systems, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

Joey Hong, Aviral Kumar, and Sergey Levine. Confidence-conditioned value functions for offline
reinforcement learning, 2023. URL https://arxiv.org/abs/2212.04607.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, 2021.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning, 2023. URL https://arxiv.org/abs/2305.20081.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

10

https://proceedings.mlr.press/v229/chebotar23a.html
https://proceedings.mlr.press/v229/chebotar23a.html
https://arxiv.org/abs/2212.04607
https://arxiv.org/abs/2305.20081

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning, 2021. URL https://arxiv.org/abs/2110.06169.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Yinhe Liu, Sunan Shi, Junjue Wang, and Yanfei Zhong. Seeing beyond the patch: Scale-adaptive
semantic segmentation of high-resolution remote sensing imagery based on reinforcement learning,
2023.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. In Thirty-sixth Conference on Neural Information Processing Systems,
2022.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets, 2021. URL https://arxiv.org/abs/2006.
09359.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning, 2019. URL https://arxiv.org/
abs/1910.00177.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations, 2018.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning, 2022.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander
Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 4393–4402. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/ruff18a.html.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54:45–66,
2004.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards, 2018.

Hongzhi Wang, Mohamed Jaward Bah, and Mohamed Hammad. Progress in outlier detection
techniques: A survey. IEEE Access, 7:107964–108000, 2019. doi: 10.1109/ACCESS.2019.
2932769.

11

https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177
https://proceedings.mlr.press/v80/ruff18a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2019.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov, and
Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning, 2021.

Jiehui Xu. Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv
preprint arXiv:2110.02642, 2021.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In International
Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization, 2022.

Yixuan Zhou, Xing Xu, Jingkuan Song, Fumin Shen, and Heng Tao Shen. Msflow: Multiscale flow-
based framework for unsupervised anomaly detection. IEEE Transactions on Neural Networks
and Learning Systems, 2024.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In
International conference on learning representations, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 IMPLEMENTATION DETAILS

This is hyper-parameters for SAC and BEAR.

Table 4: Hyperparameters

Hyperparameter Value/Type

model hidden size 256
number of layers 2
policy learning rate 1e-4
critic learning rate 3e-4
epochs 3000
optimizer Adam
batch size 256
target network update rate (τ) 1e-2
discount factor 0.99
sampled actions for MMD (bear) 100
number of q functions (bear) 2
kernel type (bear) gaussian kernel

Our code is based on ‘https://github.com/rail-berkeley/rlkit.git’.

A.2 OFFLINE RL ALGORITHMS

We implement our method on top of Soft Actor-Critic(SAC)(Haarnoja et al., 2018) and Bootstrapping
Error Accumulation Reduction(BEAR)(Kumar et al., 2019). Since both them are actor-critic methods,
we apply Anomaly Score-based sample weights to both the actor and critic loss functions.

The following is hyperparameters for Deep SVDD and DAGMM:

Table 5: Hyperparameters for Deep SVDD

Hyperparameter Value/Type

hidden dimension 256
latent dimension 128
optimizer Adam
learning rate 1e-3
batch size 256
epochs 500
weight decay (l2) 0.5e-6

Table 6: Hyperparameters for DAGMM

Hyperparameter Value/Type

hidden dimension 256
latent dimension 2
optimizer Adam
learning rate 5e-4
batch size 256
epochs 200
of gaussian distributions 4
λenery 0.1
λcov diag 0.005

13

https://github.com/rail-berkeley/rlkit.git

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 EXPERIMENT DESIGN : ANALYSIS OF WEIGHT AND Q DIFFERENCE

In 5.1, our experiment procedure is as the following: we train the Anomaly Detection model and train
two agents based on SAC which are in online setting and offline setting, respectively.

1. Offline Learning and Proxy for Optimal Q-Value: Online Learning To estimateQ∗(s, a),
we utilized the critic network of a Soft Actor-Critic (SAC) model trained with a large amount
of online data as a proxy for the optimal policy and the optimal policy evaluation network
(critic).

2. Sampling and calculating Q difference Afterward, we trained both our proposed model
and the baseline model, CQL, in an offline setting. We then compared the difference between
the Q(s, a) values obtained from the critic networks of both offline models with the Q∗(s, a)
values from the online SAC critic, visualizing these differences in a graph(2).

Qdifference = (f(anomaly score(s, a)), Q∗(s, a)−Q(s, a))

3. Sampling Dood Furthermore, to analyze the anomaly scores of OOD actions and the
differences in Q-values, we extracted an OOD dataset,Dood, using Autoencoder(AE) and
Monte Carlo Dropout(MC-Dropout). For ensuring the objectivity of test, the extraction of
Dood is performed independently of both the offline dataset D and the Anomaly methods.
Detailed procedure is:

• Training the autoencoder model with dropout layers using the normal set D.
• For each data in the training dataset, calculate the variance of the reconstruction error

with Monte Carlo(MC) Dropout. Set the threshold as 10 times of the maximum of the
variance of the reconstruction error within the training dataset.

• With the random policy, calculate the variance of the reconstruction error for each state,
action pairs in an episode with MC dropout. If the variance exceeds the threshold, we
classify that state-action pair as out-of-distribution data and include it in the out-of-
distribution dataset.

Each D and Dood is visualized by TSNE(Van der Maaten & Hinton, 2008) for the high and
varying dimensionality of each environment(5)

As you can see in the figure 4, both CQL and our model estimate Q-values accurately in the training
dataset. Meanwhile, in the out-of-distribution, our model estimates Q-values more accurate than
CQL, that is Q values of the most of data in the out-of distribution are close to 0. This result shows
that our model effectively mitigates Q values and estimates accurately.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 4: Qdifference and Weight for each D4RL mujoco environments.

To describe the results of other mujoco environment, please see this figure 4. In the Hopper envi-
ronment, the overall pattern is similar to the main figure, with the only difference being the gap
between normal-CQL and normal-RLAD. For the halfcheetah-medium-replay environment, the re-
sults demonstrate that CQL’s estimations for both the normal and OOD sets deviate significantly from
the online proxy Q∗, whereas our model (green and pink) overlaps near the zero region, indicating
more accurate estimations.

An exception to this pattern is observed in the halfcheetah-medium-expert environment, where the
performance gap between RLAD-SAC and CQL is smaller than in other datasets. This could suggest
that the dynamics of the expert dataset reduce the model’s reliance on anomaly detection, partially
explaining why RLAD-SAC’s advantage is less pronounced in this setting. However, even in this
case, RLAD-SAC avoids significant overestimation, particularly for the OOD set, which still provides
a performance edge over CQL(2). Lastly, in the walker2d environment, both models perform well
on the training dataset D, with our model showing a tendency toward underestimation, while CQL
exhibits overestimation for Dood samples. This may further explain the performance gap between
our model and CQL.

Interestingly, in the walker2d-medium-expert environment, the overall weight distribution is higher
than in other environments. However, the AD module appears to be functioning well, as the OOD
set still exhibits a lower peak in weight values compared to the training set. In this environment, not
only our model could avoid overstimation of Dood, but also estimate Q values for normal set D more
exactly.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 5: Distribution of offline dataset D(normal) and sampled Dood(OOD).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: Learning curve of Deep SVDD guided SAC algorithm

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 HARDWARES

For the Mujoco experiments, we use the medium, medium-replay, and medium-expert datasets for the
hopper, walker2d, and halfcheetah environments, respectively. And for Adroit experiments, we use
human and cloned for pen, hammer, door and relocate. To operate experiments, we use the following
hardwares:

Table 7: Specifications of the Hardware Used for Experiments
Attribute Details
CPU: Intel Xeon Silver 4210R
Model Name Intel Xeon Silver 4210R @ 2.40GHz
Cores 10
Threads 20
Cache Size 13.75 MB
Base Clock Speed 2.40 GHz
Max Turbo Boost Speed 3.20 GHz

GPU: NVIDIA RTX 3090
Model NVIDIA GeForce RTX 3090
Number of GPUs 4
GPU Memory 24 GB (each)

18

	Introduction
	Related Works
	Preliminaries
	Reinforcement Learning
	Offline Reinforcement Learning

	Reinforcement Learning with Anomaly Detection (RLAD)
	Why Anomaly Detection?
	Pretraining the Anomaly Detection Model
	Training the RL Agent

	Experimental Results
	Analysis of weight and Q difference
	Brief Analysis on Q-functions
	Comparison with D4RL
	Conclusion

	Appendix
	Implementation details
	Offline RL algorithms
	Experiment Design : Analysis of weight and Q difference
	Hardwares

