
GraphMETRO: Mitigating Complex Graph
Distribution Shifts via Mixture of Aligned Experts

Shirley Wu
Stanford University

shirwu@cs.stanford.edu

Kaidi Cao
Stanford University

kaidicao@cs.stanford.edu

Bruno Ribeiro∗

Purdue University
ribeirob@purdue.edu

James Zou∗

Stanford University
jamesz@cs.stanford.edu

Jure Leskovec∗
Stanford University

jure@cs.stanford.edu

Abstract
Graph data are inherently complex and heterogeneous, leading to a high natural
diversity of distributional shifts. However, it remains unclear how to build machine
learning architectures that generalize to the complex distributional shifts naturally
occurring in the real world. Here, we develop GraphMETRO, a Graph Neural Net-
work architecture that models natural diversity and captures complex distributional
shifts. GraphMETRO employs a Mixture-of-Experts (MoE) architecture with a gat-
ing model and multiple expert models, where each expert model targets a specific
distributional shift to produce a referential representation w.r.t. a reference model,
and the gating model identifies shift components. Additionally, we design a novel
objective that aligns the representations from different expert models to ensure reli-
able optimization. GraphMETRO achieves state-of-the-art results on four datasets
from the GOOD benchmark, which is comprised of complex and natural real-world
distribution shifts, improving by 67% and 4.2% on the WebKB and Twitch datasets.
Code and data are available at https://github.com/Wuyxin/GraphMETRO.

1 Introduction
The intricate nature of real-world graph data introduces a wide variety of distribution shifts and

𝒖𝟏

𝒖𝟐

𝒖𝟐

𝒖𝟏

Figure 1: An example on WebKB [51,
20]. It illustrates (1) The distribution shift
from source to target (the thick arrow in
the upper right) and (2) Instance-wise het-
erogeneity in the target distribution (the
thin arrows pointing to u1 and u2).

heterogeneous graph variations [47, 30, 43, 26]. For in-
stance, in a social graph, some user nodes can experience
reduced activity and profile alterations, while other user
nodes may see increased interactions. More broadly, such
shifts go beyond the group-wise pattern and further con-
tribute to the heterogeneous nature of graph data. In
Figure 1, we provide a real-world example on a webpage
network dataset, where, besides the general distribution
shift from source to target distribution, two webpage
nodes u1 and u2 in the target domain exhibit varying de-
grees of change in their content features. These inherent
shifts and complexity accurately characterize the dynam-
ics of real-world graph data, e.g., social networks [2, 19]
and ecommerce graphs [76].

Above the diverse graph variants, Graph Neural Networks
(GNNs) [21, 25, 10] have become a prevailing method
for downstream graph tasks. Standard evaluation often

∗Equal Senior Authorship

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Wuyxin/GraphMETRO

𝟎.𝟒𝟓

0.08

𝟎. 𝟑𝟕

𝒢	

𝝃𝟐𝝃𝟏

𝝃𝟑

𝓓𝒕

Avg. node degree ↑

Feature noise ↑

Graph size ↓ 𝓓𝒔

0.05𝒢	 𝝃𝟐

𝝃𝟏

𝝃𝟎

𝝃𝟑

Gating model

Encoder	𝒉

Agg.
𝝁

Classifier

&𝑦||	𝝓
𝛚

Aligned
rep. space

Reference model(a) High-level concept of GraphMETRO

𝟎.𝟒𝟓

0.08

𝟎. 𝟑𝟕

𝒢	

𝝃𝟐𝝃𝟏

𝝃𝟑

𝓓𝒕

Avg. node degree ↑

Feature noise ↑

Graph size ↓ 𝓓𝒔

0.05𝒢	 𝝃𝟐

𝝃𝟏

𝝃𝟎

𝝃𝟑

Gating model

Encoder	𝒉

Agg.
𝝁

Classifier

&𝑦||	𝝓
𝛚

Aligned
rep. space

Reference model

(b) GraphMETRO Architecture

Figure 2: Overview of GraphMETRO on graph classification tasks. (a) High-level Concept: As
a simple example, the distribution shift from a target graph G ∈ Dt to a source distribution Ds is
decomposed along three shift dimensions: graph size (ξ1), node degree (ξ2), and feature noise (ξ3).
Note that the shift components can be customized and expanded based on downstream tasks.
(b) Architecture: Given an input graph, the gating model µ decomposes the instance-specific
distribution shift into the contributions from the shift components. Then, each expert model ξi (i > 0)
is tasked with generating referential invariant representations (cf. Section 3 for the definition) w.r.t.
an assigned shift component. ξ0 is a reference model used for aligning the representation spaces of
the expert models. The final representation is aggregated from the experts’ output and is referentially
invariant to any distribution shifts, which is then input to the classifier.

adopts random data splits for training and testing GNNs. However, it overlooks the complex
distributional shifts naturally occurring in the real world. Moreover, compelling evidence shows that
GNNs are extremely vulnerable to graph data shifts [79, 26, 20]. Thus, our goal is to build GNN
models that generalize better to real-world data splits and graph dynamics described earlier.

Previous research on GNN generalization has mainly focused on two lines: (1) Data-augmentation
training procedures that learn environment-robust predictors by augmenting the training data with
the environment changes. For example, works have looked at distribution shifts related to graph size
[49, 14], node features [26, 8, 27], and node degree or local structure [65, 39], assuming that the target
data adhere to a designated shift type. (2) Learning environment-invariant representations or predictors
either through inductive biases learned by the model [69, 67], through regularization [4, 32, 75], or a
combination of both [72, 11, 80].

However, the real-world distribution shifts and graph dynamics are unknown. Specifically, the
distribution shift could be any fusion of multiple shift dimensions, each characterized by unique
statistical properties [26, 20, 50], which is rarely covered by single-dimension synthetic augmentation
or fixed combinations of shift dimensions used in data augmentation approaches. Moreover, as seen
in Figure 1, graph data may involve instance-wise heterogeneity, lacking stable properties from which
invariant predictors can be learned [47, 30]. Here, the standard strategy of learning invariant predictors
or representations must contend with a combinatorially large number of distribution shift variations.
Thus, previous works may not be well-equipped to address this challenging task effectively.

Here we propose a novel and general framework, GraphMETRO. The key to our approach is to
decompose any unknown shift into multiple shift components and learn predictors that can adapt to
the graph heterogeneity observed in the target data. Figure 2a shows an example of our method on
graph-level tasks, where the shift from the target graph data G ∈ Dt to the source distribution Ds

is decomposed into two strong shift components controlling feature noise and graph size, while the
shift component controlling average node degree is identified as irrelevant. Specifically, the shift
components are constructed such that each possesses unique statistical characteristics. Moreover, the
contribution of each shift component to the shift is determined by an influence function that encodes
the given graph G and source distribution Ds. This design enables breaking down the generalization
problem into (1) inference on strong shift components and their contributions as surrogates for any
distributional or heterogeneous shifts, and (2) mitigation toward the surrogate shifts, where the
individual shift components are interpretable and more tractable.

2

For the first subproblem, we design a hierarchical architecture composed of a gating model and
multiple expert models, inspired by the mixture-of-experts (MoE) architecture [24]. As shown in
Figure 2b, the gating model takes any given node or graph data and identifies strong shift components
that govern the localized distribution shift, while each expert model corresponds to an individual shift
component. Second, to further mitigate surrogate distribution shifts, we train the expert models to
generate referentially invariant representations with respect to their corresponding shift components,
which are then aggregated as the final representation vector. Moreover, the expert outputs must
align properly in a common representation space to prevent extreme divergence in the aggregated
representation. Consequently, we design a novel objective to ensure a smooth training process.
Finally, during the evaluation process, we integrate outputs from both the gating and expert models
for final representations.

This process effectively generates invariant representations across complex distributional shifts. To
highlight, our method achieves the best performance on four node- and graph-level tasks from
the GOOD benchmark [20], which involves a diverse set of natural distribution shifts such as
user language shifts in gamer networks and university domain shifts in university webpage net-
works. GraphMETRO achieves a 67% relative improvement over the state-of-the-art on the WebKB
dataset [51]. On synthetic datasets, our method outperforms Empirical Risk Minimization (ERM) by
4.6% on average. To the best of our knowledge, GraphMETRO is the first to explicitly target complex
distribution shifts that resemble real-world settings.

The key benefits of GraphMETRO are as follows:
• A novel paradigm: GraphMETRO provides a new approach to aid GNN generalization by

decomposing and mitigating complex distributional shifts via a mixture-of-experts architecture.
• Superior performance: It outperforms state-of-the-art methods on real-world datasets with natural

splits and shifts, demonstrating promising generalization ability.
• Enhanced interpretability: GraphMETRO offers insights into the shift types of graph data by

identifying and interpreting strong shift components.

2 Related Works

Invariant learning for graph OOD. The prevailing invariant learning approaches assume that there
exist an underlying graph structure (i.e., subgraph) [69, 36, 34, 71, 60, 83, 37] or representation [1,
67, 6, 3, 81, 68, 11, 8, 42] that is invariant to different environments and/or causally related to the
label of a given instance. For example, DIR [69] constructs interventional distributions and distills
causal subgraph patterns to make generalizable predictions for graph-level tasks. However, this line of
research focuses on group patterns without explicitly considering instance heterogeneity. Therefore,
the standard invariant learning approaches are not well-equipped to mitigate the complex distribution
shifts in our context. See Appendix A for an in-depth comparison.

Data augmentation for graph OOD. GNNs demonstrate robustness to data perturbations when
incorporating augmented views of graph data [7]. Previous works have explored augmentation with
respect to graph sizes [85, 4, 84], local structures [40, 38], feature metrics [15], and graphons[33]. For
example, OOD-G-Mixup [22] creates virtual OOD samples by perturbing the graph rationale space.
Recently, Jin et al. [23] proposed adapting testing graphs to transformed graphs with patterns similar to
the training graphs. Other approaches conduct augmentation implicitly via attention mechanisms [45,
66]. For example, GSAT [45] injects stochasticity into attention weights to block label-irrelevant
information. Nevertheless, this line of research may not effectively solve the challenging problem,
since unseen distribution shifts may not be covered by the distribution of augmented graphs. Moreover,
it may lead to degradation of in-distribution performance due to GNNs’ limited expressiveness in
encoding a broad distribution.

Instance heterogeneity for graph OOD. Recent methods [41, 59, 61, 77, 35, 74] have explic-
itly considered instance heterogeneity for improving OOD generalization in GNNs. For example,
OOD-GNN [35] mitigates instance-wise heterogeneity by eliminating spurious correlations between
irrelevant and relevant graph representations through nonlinear decorrelation and sample reweighting.
Yao et al. [74] focus on explicitly model domain correlations and spurious features and adapt to
each test instance’s unique distribution shifts. While these methods explicitly consider instance
heterogeneity in graph OOD problems, they often focus on specific types of distribution shifts or rely
on the assumption that target data adhere to certain designated shift types.

3

In contrast, our method introduces a novel paradigm that decomposes any unknown shift into multiple
shift components and learns predictors that can adapt to the graph heterogeneity observed in the target
data. By leveraging a mixture-of-experts architecture, our approach can handle complex distribution
shifts without assuming specific shift types or relying solely on group patterns.

Mixture-of-expert models. The applications of mixture-of-expert models (MoE) [24, 57] have
largely focused on their efficiency and scalability [13, 12, 53, 9], particularly in image and language
domains. For image domain generalization, Li et al. [31] focus on neural architecture design and
integrate expert models with vision transformers to capture correlations in the training dataset that
may benefit generalization, where an expert is responsible for a group of similar visual attributes.
Puigcerver et al. [52] observed improved robustness by adopting MoE models in the image domain.
In the graph domain, differently motivated from our work, Wang et al. [64] consider experts as
information aggregation models with varying hop sizes to capture different ranges of message
passing, aiming to improve model expressiveness on large-scale data.

GraphMETRO is the first to design a mixture-of-expert model specifically tailored to address complex
distribution shifts in graphs, coupled with a novel objective for producing invariant representations.
While previous methods mostly focus on either node- or graph-level tasks, GraphMETRO is a more
general solution applicable to both.

3 Method

Problem formulation. For simplicity, we consider a graph classification task and later extend it
to node-level tasks. Let Ds be the source distribution and Dt be an unknown target distribution.
We are interested in the natural graph distribution shifts. Our goal is to learn a model fθ with high
generalization ability. The standard approach is Empirical Risk Minimization (ERM), i.e.,

θ∗ = argmin
θ

E(G,y)∼Ds
L (fθ (G) , y) , (1)

where L denotes the loss function and y is the label of the graph G. However, the assumptions
underlying ERM can be easily violated, making θ∗ suboptimal. Moreover, since the distribution shift
is unknown and cannot provide supervision for model training, the direct optimization of Eq 1 is
intractable.

3.1 Shift Components

Based on the common mixture pattern studied in real-world networks [29, 30, 50], we propose the
following informal assumption:

Assumption 1 (An equivalent mixture for distribution shifts) Let the distribution shift between
the source Ds and target Dt distributions be the result of an unknown intervention in the graph
formation mechanism. We assume that the resulting shift in Dt can be modeled by up to k out of K
classes of stochastic transformations applied to each instance in the source distribution Ds (k ≤ K).

Assumption 1 essentially states that any distribution shift can be decomposed into k shift components
of stochastic graph transformations. The assumption simplifies the generalization problem by
enabling the modeling of individual shift components that constitute the shift and their respective
contributions to the overall distribution shift. While this assumption is generally applicable, as
observed in the experiments, we include a discussion on scenarios that fall outside the scope of this
assumption in Appendix F. Previous works [28, 69, 67] implicitly infer such shift components from
the data environments constructed based on the source distribution. However, distilling diverse shift
components from the source data is challenging due to the complexity of the graph distribution shifts
and largely depends on the constructed environments2.

Graph extrapolation as shift components. To construct the shift components, we employ a data
extrapolation technique based on the source data. In particular, we introduce K independent classes
of transform functions, including multihop subgraph sampling, the addition of Gaussian feature

2In other words, if the distribution shifts were described via environment assignments, one would have a
combinatorial number of such environments, i.e., the product of all different subsets of nodes and all their
possible distinct shifts.

4

noise, and random edge removal [54]. The i-th class, governed by the i-th shift component, defines a
stochastic transformation τi that transforms an input source graph G into an output graph τi(G), where
i = 1, . . . ,K. For instance, τi can be defined to randomly remove edges with an edge-dropping
probability in the range of [0.3, 0.5]. Note that the extrapolation aims to construct the basis of shifts
rather than directly conducting data augmentation, as explained in Eq 3 later.

3.2 Mixture of Aligned Experts

In light of the shift components, we formulate the generalization problem as two separate phases:

• Surrogate estimation: Identify a mixture of shift components as the surrogate for the target shifts,
where the mixture can vary across different node or graph instances to capture heterogeneity.

• Mitigation and aggregation: Mitigate individual shift components, followed by aggregating the
representations output by each expert to resolve the surrogate shift.

Overview. Inspired by the mixture-of-experts (MoE) architecture [24], the core idea of GraphMETRO
is to build a hierarchical architecture composed of a gating model and multiple expert models, where
the gating model predicts the influence of the shift components on a given instance. For the expert
models, we design each to handle an individual shift component. The experts produce referential
representations invariant to their designated shift component, with the representations aligned in
a common representation space. Finally, our architecture combines the expert outputs into a final
representation, which our training objective ensures is invariant to the stochastic transformations
within the mixture distribution. We detail each module as follows:

Gating model. We introduce a GNN ϕ as the gating model, which takes any graph as input and
outputs a weight vector w on the shift components. The weight vector suggests the most probable
shift components from which the input graph originates. For example, in Figure 2b, given an unseen
graph with decreased graph size and node feature noise, a trained gating model should assign large
weights to the corresponding shift components and small values to the irrelevant ones. Note that ϕ
should be such that wi, the weight on the i-th component, strives to be sensitive to the stochastic
transformation τi but insensitive to the application of other stochastic transformations τj , j ̸= i. This
way, determining whether the i-th component is present should not depend on other components.

Expert models. We build K expert models, each corresponding to a shift component. Formally, we
denote an expert model as ξi : G → Rv, where v is the hidden dimension, and we use zi = ξi(G)
to denote the output representation. Each expert model essentially produces invariant representa-
tions [48] with respect to the distribution shift controlled by its assigned shift component. However,
independently optimizing each expert without properly aligning the expert’s output space is incom-
patible with model training. Specifically, an expert model may learn its own unique representation
space, which may cause information loss when its output is aggregated with other expert outputs.
Moreover, aggregating independent representations results in a mixed representation space with high
variance, which makes it difficult for the predictor head, such as multi-layer perceptrons (MLPs), to
capture the interactions and dependencies among these diverse representations and output rational
predictions. Thus, aligning the representation spaces of experts is necessary to ensure compatibility
and facilitate stable model training. To align the experts’ output spaces properly, we introduce the
concept of referential invariant representation:

Definition 1 (Referential Invariant Representation) Let G be an input graph and let τ be an ar-
bitrary stochastic transform function, with domain and co-domain in the space of graphs. Let ξ0
be a model that encodes a graph into a representation. A referential invariant representation w.r.t.
the given τ is denoted as ξ∗(G), where ξ∗ is a function that maps the original data G to a high-
dimensional representation ξ∗(G) such that ξ0(G) ≈ ξ∗(τ(G)) holds for every G ∈ supp(Ds), where
supp(Ds) denotes the support of Ds. We refer to ξ0 as the reference model.

Thus, the representation space of the reference model serves as an intermediate to align different
experts, while each expert ξi has its own ability to produce referential invariant representations
w.r.t. a stochastic transform function τi, i = 1, . . . ,K. We include the reference model as a special
“in-distribution” expert model on the source data.

Architecture design for the expert models. Further, we propose two architecture designs for the
expert models. A straightforward way is to construct (K + 1) GNN encoders to generate referential

5

invariant representations for individual shift components. This ensures model expressiveness while
increasing memory usage due to multiple encoders. To alleviate this concern, we provide an alternative
approach. Specifically, we can construct a shared module, e.g., a GNN encoder, among the expert
models, coupled with a specialized module, e.g., an MLP, for each expert. We discuss the impact of
architecture choices on model performance in the experiment section.

The MoE workflow. Given a node or graph instance, the gating model assigns weights w ∈ RK+1

over the expert models, indicating the mixture of shift components on the instance. The output weights,
being conditional on the input instance, enable the depiction of heterogeneous distribution shifts that
vary across instances. After that, we obtain the output representations from the expert models, which
eliminate the effect of the corresponding shift component. Then, the final representation is computed
via aggregating the representations based on the weight vector, i.e.,

h(G) = Aggregate({(ϕ(G)i, ξi(G)) | i = 0, 1, . . . ,K})
where h is the encoder of f . The aggregation function can be a weighted sum over the expert outputs
or a selection function that selects the expert output with maximum weight, e.g.,

h(G) = Softmax(w) · [z0, . . . , zK]T (2)

Assuming the distribution shift on an instance is controlled by any single shift component, we have
h(τi(G)) = ξi(τi(G)) ≈ ξ0(G) = h(G) for i = 0, . . . ,K, where ξi(τi(G)) ≈ ξ0(G) holds according
to Definition 1. This indicates that h automatically produces referentially invariant representations
while allowing heterogeneity across different instances, e.g., different shift types or control strengths.
For clarity, we define τ (k) as a joint stochastic transform function composed of any k or fewer
transform functions out of the K transform functions. We refer to the scenario where h produces
referentially invariant representations w.r.t. τ (k) as τ (k)-invariance. To extend k to higher orders
(k > 1), we design the objective in Section 3.3, which enforces h to satisfy τ (k)-invariance, ensuring
model generalization when multiple shifts exist. After that, a classifier µ takes the aggregated
representation from Eq 2 for prediction tasks. Thus, we have f = µ ◦ h as the mixture-of-experts
model.

3.3 Training Objective

As shown in Figure 2b, we consider three trainable modules, i.e., the gating model ϕ, the expert
models {ξi}Ki=0, and the classifier µ. We propose the following objective:

min
θ

Lf = min
θ

(L1 + L2), where

L1 = E(G,y)∼Ds
Eτ(k)BCE(ϕ(τ (k)(G)), Y (τ (k)))

L2 = E(G,y)∼Ds
Eτ(k) [CE(µ(h(τ (k)(G)), y)) + λ · d(h(τ (k)(G)), ξ0(G))]

(3)

• L1: Y (τ (k)) ∈ {0, 1}K+1 is the ground truth vector, and its i-th element is 1 if and only if τi
composes τ (k). BCE is the Binary Cross Entropy. This term indicates that the gating model ϕ is
optimized to accurately predict a mixture of shift components.

• L2: CE is the Cross Entropy function. d(·, ·) is a distance function between two representations,
and λ is a parameter controlling the strength of the distance penalty. In the experiments, we use the
Frobenius norm as the distance function, i.e., d(z1, z2) = 1

n∥z1 − z2∥F = 1
n

√∑n
i=1(z1i − z2i)2,

and we use λ = 1 for all the experiments. The second loss term optimizes the expert models and
the classifier, and we prevent it from backpropagating to the gating model to avoid interference.
Specifically, L2 aims to improve the encoder’s performance in predicting graph classes and achieves
referential alignment with the reference model ξ0 via the distance function. Note that, when k > 1,
L2 also enforces h to be invariant to multiple shifts via the τ (k)-invariance condition.

We optimize our model via stochastic gradient descent, where τ (k) is sampled at each gradient
step. Overall, GraphMETRO yields a MoE model, comprising a gating model with high predictive
accuracy, expert models that are aligned and can generate invariant representations in a shared
representation space, and a task-specific classifier that utilizes robust and invariant representations for
class prediction.

6

Table 1: Test results on the real-world datasets. We compute the p-value between the results of
GraphMETRO and the state-of-the-art methods. The results of GraphMETRO is repeated five times.

Node classification Graph classification Require domain
informationWebKB Twitch Twitter SST2

ERM 14.29 ± 3.24 48.95 ± 3.19 56.44 ± 0.45 80.52 ± 1.13 No
DANN 15.08 ± 0.37 48.98 ± 3.22 55.38 ± 2.29 80.53 ± 1.40 No
IRM 13.49 ± 0.75 47.21 ± 0.98 55.09 ± 2.17 80.75 ± 1.17 Yes
VREx 14.29 ± 3.24 48.99 ± 3.20 55.98 ± 1.92 80.20 ± 1.39 Yes
GroupDRO 17.20 ± 0.76 47.20 ± 0.44 56.65 ± 1.72 81.67 ± 0.45 Yes
Deep Coral 13.76 ± 1.30 49.64 ± 2.44 55.16 ± 0.23 78.94 ± 1.22 Yes

SRGNN 13.23 ± 2.93 47.30 ± 1.43 NA NA Yes
EERM 24.61 ± 4.86 51.34 ± 1.41 NA NA No
OODGAT 14.41 ± 1.10 49.38 ± 0.87 NA NA
DIR NA NA 55.68 ± 2.21 81.55 ± 1.06 No
G-Mixup NA NA 53.32 ± 2.75 77.43 ± 1.97
GSAT NA NA 56.40 ± 1.76 81.49 ± 0.76 No
CIGA NA NA 55.70 ± 1.39 80.44 ± 1.24 No

GraphMETRO 41.11 ± 7.47 53.50 ± 2.42 57.24 ± 2.56 81.87 ± 0.22 No
p-value < 0.001 0.023 0.042 0.081 -

3.4 Discussion and Analysis

Node classification tasks. While we introduce our method following a graph-level task setting,
GraphMETRO is readily adaptable for node-level tasks. Instead of generating graph representations,
GraphMETRO is capable of producing node-level invariant representations. Additionally, we ap-
ply stochastic transform functions to the subgraph containing a target node and identify its shift
components, which is consistent with the objective in Equation 3.

Interpretability. The gating model of GraphMETRO predicts the shift components on the node or
graph instance, which provides interpretations and insights into the distribution shifts in unknown
datasets. In contrast, existing research on GNN generalization [69, 45, 6, 67] often lacks proper
identification and analysis of distribution shifts prevalent in real-world datasets. This creates a gap
between human understanding of graph distribution shifts and the actual graph dynamics. To bridge
this gap, we offer an in-depth study of the experiments to demonstrate GraphMETRO ’ insights into
the complexity of real graph distributions.

Computational cost. The forward process of f requires O(K) encoder passes, using the weighted
sum aggregation from (K + 1) expert outputs. Since the extrapolation process increases the dataset
size by a factor of (K + 1), the training computation complexity is O(K2|Ds|), where |Ds| is the
size of the source dataset.

4 Experiments

We perform systematic experiments on both real-world (Section 4.1) and synthetic datasets (Sec-
tion 4.2) to validate the generalizability of GraphMETRO under complex distribution shifts.

4.1 Applying GraphMETRO to Real-world Datasets

We perform experiments on real-world datasets, which introduce complex and natural distribution
shifts. In these scenarios, the test distribution may not precisely align with the mixture mechanism
encountered during training.

Datasets. We use four classification datasets, i.e., WebKB [51], Twitch [55], Twitter [78], and
GraphSST2 [78, 58], using the dataset splits from the GOOD benchmark [20], which exhibit various
real-world covariate shifts. Specifically, WebKB is a 5-class prediction task that predicts the classes
of university webpages, with nodes split based on different university domains, demonstrating a
natural challenge of applying GNNs trained on some university data to other unseen data. Twitch is a
binary classification task that predicts whether a user streams mature content, with nodes split mainly
by user language domains. Twitter and GraphSST2 are real-world grammar tree graph datasets,

7

Figure 3: Accuracy on synthetic distribution shifts. The first row shows the testing accuracy on
single shift components. We label the distribution by the clockwise order. The second row shows the
testing accuracy on distribution shifts with multiple shift components, where each testing distribution
is a composition of two different transformations. For example, (1, 5) denotes a testing distribution
where each graph is controlled by random subgraph (1) and noisy feature (5) shift components. We
include the numerical values in Appendix E.

where graphs from different domains differ in sentence length and language style, posing a direct
challenge of generalizing to different language lengths, styles, and contexts.3

Baselines. We use ERM and domain generalization baselines, including DANN [17], IRM [1],
VREx [28], GroupDRO [56], and Deep Coral [62]. Moreover, we compare GraphMETRO with
robustness/generalization techniques for GNNs, including DIR [69], OODGAT [59], GSAT [45], and
CIGA [6] for graph classification tasks, and SR-GCN [85], EERM [67], and G-Mixup [22] for node
classification tasks.

Training and evaluation. We use an individual GNN encoder for each expert in the experiments.
Additionally, we include the results of using a shared module among experts in Appendix D.1 due to
space limitations. For evaluation metrics, we use ROC-AUC on Twitch and classification accuracy on
the other datasets following [20]. See Appendix B for details about the architectures and optimizer.

Results. In Table 1, we observe that GraphMETRO consistently outperforms the baseline models
across all datasets. It achieves notable improvements of 67.0% and 4.2% relative to EERM on
the WebKB and Twitch datasets, respectively. When applied to graph classification tasks, Graph-
METRO shows significant improvements, as the baseline methods exhibit similar performance levels.
Importantly, GraphMETRO can be applied to both node- and graph-level tasks, whereas many
graph-specific methods designed for generalization are limited to one of these tasks. Additionally,
GraphMETRO does not require any domain-specific information during training.

Main Conclusion. The observation that GraphMETRO is the best-performing method demonstrates
its significance for real-world applications, as it excels in handling unseen and wide-ranging distribu-
tion shifts. This adaptability is crucial, as real-world graph data often exhibit unpredictable shifts that
can affect model performance. Thus, GraphMETRO ’ versatility ensures its reliability across diverse
domains, safeguarding performance in complex real-world scenarios. In Appendix D.2 and D.3, we
provide two studies on the impact of the alignment term controlled by λ and the stochastic transform
function choices on the model performance, analyzing the sensitivity and success of GraphMETRO .

4.2 Inspect GraphMETRO on Synthetic Datasets

Following the experiments on real-world datasets, we perform experiments on synthetic datasets to
further inspect and validate the effectiveness of our approach.

3We specifically exclude datasets with synthetic shifts from the GOOD benchmark. We leave the applications
to molecular datasets in the GOOD benchmark for future work, as it requires designing shift components based
on expert knowledge.

8

Noisy feature
Drop nodes

Add edges
Drop edges

Random subgraph

5

4

3

2

1 0.2

0.3

0.4

0.5

(a) Invariance matrix on Twitter dataset

21.0%

12.9%
34.4%

13.1%
18.5%

27.7%

29.8%

13.7%

14.8%14.0%

Noisy feature
Drop node

Add edges
Drop edges

Random subgraph

(b) Mixture of distribution shifts on WebKB (left)
and Twitch (right) identified by GraphMETRO.

Figure 4: (a) Invariance matrix on the Twitter dataset. Lighter colors indicate a higher invariance of
representations produced by each expert. Small values on the diagonal elements of the invariance
matrix indicate that each expert excels at generating invariant representations w.r.t. the specific shift
component. (b) Mixture of distribution shifts identified by GraphMETRO. Higher values indicate a
strong shift component in the testing distribution.

Datasets. We use graph datasets from citation and social networks. For node classification tasks,
we use DBLP [16] and CiteSeer [73]. For graph classification tasks, we use REDDIT-BINARY and
IMDB-MULTI [46]. See Appendix B for dataset processing and details of the transform functions.

Training and evaluation. We adopt the same encoder architecture for Empirical Risk Minimization
(ERM), ERM with data augmentation (ERM-Aug), and the expert models of GraphMETRO. For
ERM-Aug training, we augment the training datasets using the same transform functions we used to
construct the testing environments. Finally, we select the model based on the in-distribution validation
accuracy and report the testing accuracy on each environment from five trials. See Appendix B for
detailed settings and hyperparameters.

Results. Figure 3 illustrates our model’s performance across single (the first row) and multiple
(the second row) shift components. In most test distributions, GraphMETRO exhibits significant
improvements or performs on par with two other methods. Notably, on the IMDB-MULTI dataset with
noisy node features, GraphMETRO outperforms ERM-Aug by 5.9%, and it enhances performance on
DBLP by 4.4% when dealing with random subgraph sampling. In some instances, GraphMETRO even
demonstrates improved results on in-distribution datasets, such as a 2.9% and 2.0% boost on Reddit-
BINARY and DBLP, respectively. This could be attributed to the increased model expressiveness of
the MoE architecture or weak distribution shifts that can exist in the randomly split testing datasets.

4.3 Invariance Matrix for Inspecting GraphMETRO

A key insight from GraphMETRO is that each expert excels in generating invariant representations
specifically for a shift component. To delve into the modeling mechanism, we denote I ∈ RK×K as
an invariance matrix. This matrix quantifies the sensitivity of expert ξi to the j-th shift component.
Specifically, for i ∈ [K] and j ∈ [K], we have

Iij = EG∼Ds
Eτj [d(ξi(τj(G)), ξ0(G))]

Ideally, for a given shift component, the representation produced by the corresponding expert should
be most similar to the representation produced by the reference model. That is, the diagonal entries
Iii should be smaller than the off-diagonal entries Iij for j ̸= i and i = 1, . . . ,K. In Figure 4a,
we visualize the normalized invariance matrix computed for the Twitter dataset, revealing a pattern
that aligns with the analysis. This demonstrates that GraphMETRO effectively adapts to various
distribution shifts, indicating that our approach generates consistent invariant representations for each
of the shift components.

4.4 Distribution Shift Discovery

With the trained MoE model, we aim to understand the distribution shifts in the target distribution.
Here we conduct case studies on the WebKB and Twitch datasets. Specifically, we first validate the

9

gating models’ ability to identify mixtures, which is a multitask binary classification with (K + 1)
classes. The gating models achieve high accuracies of 92.4% on WebKB and 93.8% on the Twitch
dataset. As mixtures output by gating models identify significant shift components on an instance,
we leverage them as human-understandable interpretations and compute the average mixture across
G ∈ Dt as the global mixture on the target distribution. The results in Figure 4b show that the
shift component, increased edges, dominates on the WebKB dataset, while the shift components
controlling, e.g., node features and decreasing nodes, show large effects on the Twitch dataset. The
results align with dataset structures, i.e., WebKB’s natural shifts across different university domains
and Twitch’s language-based shifts. While quantitatively validating these observations in complex
graph distributions remains a challenge, we aim to explore these complexities in greater depth in
future work, which can potentially offer insights into real-world graph dynamics.

5 Conclusion and Future Work

This work mitigates the challenge of improving the generalization of Graph Neural Networks (GNNs)
to real-world data splits and dynamic graph distributions. To tackle these shifts, we introduce
GraphMETRO, a mixture-of-aligned-experts architecture, which models graph distribution shifts as
mixtures of shift components, each controlling shifts in unique directions with varying complexity.

GraphMETRO distinguishes itself from traditional invariant learning methods, which often rely on
environment variables to partition data. Instead, our method treats distribution shifts as mixtures,
represented by the gating function’s score vector, allowing for infinite environments due to the
continuous nature of the score. When restricted to binary outputs, GraphMETRO can simulate finite
environments, making it flexible and versatile. Furthermore, the introduction of referential invariant
representation via a reference model is a key innovation of our approach.

Experimental results demonstrate that GraphMETRO consistently outperforms baseline methods
on real-world datasets, achieving significant improvements. Additional synthetic studies and case
analyses further validate the method’s effectiveness and adaptability across diverse scenarios.

In future work, we aim to explore the broader applicability of GraphMETRO , including potential
extensions to address label distributional shifts. Detailed discussions on these directions are provided
in Appendix F.

10

References
[1] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-

mization. arXiv preprint arXiv:1907.02893, 2019.

[2] Tanya Y. Berger-Wolf and Jared Saia. A framework for analysis of dynamic social networks. In
SIGKDD, 2006.

[3] Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for
graph classification extrapolations. In ICML, 2021.

[4] Davide Buffelli, Pietro Lió, and Fabio Vandin. Sizeshiftreg: a regularization method for
improving size-generalization in graph neural networks. In NeurIPS, 2022.

[5] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Aréchiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. In NeurIPS, 2019.

[6] Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, Kaili Ma, Binghui Xie, Tongliang
Liu, Bo Han, and James Cheng. Learning causally invariant representations for out-of-
distribution generalization on graphs. In NeurIPS, 2022.

[7] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep graph
learning: A survey. SIGKDD, 2022.

[8] Mucong Ding, Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Micah Goldblum, David Wipf,
Furong Huang, and Tom Goldstein. A closer look at distribution shifts and out-of-distribution
generalization on graphs. In NeurIPS DistShift, 2021.

[9] Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P.
Bosma, Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin
Robinson, Kathleen S. Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V. Le,
Yonghui Wu, Zhifeng Chen, and Claire Cui. Glam: Efficient scaling of language models with
mixture-of-experts. In ICML, 2022.

[10] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. J. Mach. Learn. Res., 2023.

[11] Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing graph neural
networks on out-of-distribution graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023.

[12] William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning.
abs/2209.01667, 2022.

[13] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. J. Mach. Learn. Res., 2022.

[14] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Kharlamov, and J. Tang.
Graph random neural networks for semi-supervised learning on graphs. Advances in Neural
Information Processing Systems, 33:22092–22103, 2020.

[15] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. In NeurIPS, 2020.

[16] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. MAGNN: metapath aggregated graph
neural network for heterogeneous graph embedding. In WWW, 2020.

[17] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The journal of machine learning research, 2016.

[18] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

11

[19] Derek Greene, Dónal Doyle, and Padraig Cunningham. Tracking the evolution of communities
in dynamic social networks. In ASONAM, 2010.

[20] Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. GOOD: A graph out-of-distribution
benchmark. In NeurIPS, 2022.

[21] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In NeurIPS, 2017.

[22] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation
for graph classification. In International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, 2022.

[23] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. Empowering graph
representation learning with test-time graph transformation. In ICLR, 2023.

[24] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Comput., 1994.

[25] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[26] Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. Understanding attention and
generalization in graph neural networks. In NeurIPS, 2019.

[27] K. Kong, G. Li, M. Ding, Z. Wu, C. Zhu, B. Ghanem, G. Taylor, and T. Goldstein. Robust
optimization as data augmentation for large-scale graphs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 60–69, 2022.

[28] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (REx). In ICML, 2021.

[29] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. In SIGKDD. ACM, 2005.

[30] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution: Densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data, 2007.

[31] Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei
Liu. Sparse mixture-of-experts are domain generalizable learners. In ICLR, 2023.

[32] H. Li, Z. Zhang, X. Wang, and W. Zhu. Disentangled graph contrastive learning with indepen-
dence promotion. IEEE Transactions on Knowledge and Data Engineering, 2022.

[33] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on
graphs: A survey. CoRR, 2022.

[34] Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning invariant graph representations
for out-of-distribution generalization. In NeurIPS, 2022.

[35] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. OOD-GNN: out-of-distribution
generalized graph neural network. IEEE Trans. Knowl. Data Eng., 2023.

[36] Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua. Let
invariant rationale discovery inspire graph contrastive learning. In ICML, 2022.

[37] Wanyu Lin, Hao Lan, and Baochun Li. Generative causal explanations for graph neural networks.
In ICML, 2021.

[38] Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph rationalization with
environment-based augmentations. In KDD ’22: The 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022, 2022.

12

[39] S. Liu, R. Ying, H. Dong, L. Li, T. Xu, Y. Rong, P. Zhao, J. Huang, and D. Wu. Local
augmentation for graph neural networks. In International Conference on Machine Learning,
pages 14054–14072. PMLR, 2022.

[40] Songtao Liu, Rex Ying, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou
Huang, and Dinghao Wu. Local augmentation for graph neural networks. In ICML, 2022.

[41] Bin Lu, Xiaoying Gan, Ze Zhao, Shiyu Liang, Luoyi Fu, Xinbing Wang, and Chenghu Zhou.
Graph out-of-distribution generalization with controllable data augmentation. CoRR, 2023.

[42] Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph neural
networks. In NeurIPS, 2021.

[43] Julian J. McAuley and Jure Leskovec. Learning to discover social circles in ego networks. In
NeurIPS, 2012.

[44] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit,
and Sanjiv Kumar. Long-tail learning via logit adjustment. In ICLR, 2021.

[45] Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic
attention mechanism. ICML, 2022.

[46] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL
www.graphlearning.io.

[47] M. E. J. Newman. Mixing patterns in networks. Phys. Rev. E, 67:026126, Feb 2003.

[48] Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. Domain adaptation via
transfer component analysis. IEEE Trans. Neural Networks, 2011.

[49] H. Park, S. Lee, S. Kim, J. Park, J. Jeong, K.-M. Kim, J.-W. Ha, and H. J. Kim. Metropolis-
hastings data augmentation for graph neural networks. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

[50] Leto Peel, Jean-Charles Delvenne, and Renaud Lambiotte. Multiscale mixing patterns in
networks. 2017.

[51] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. ICLR, 2020.

[52] Joan Puigcerver, Rodolphe Jenatton, Carlos Riquelme, Pranjal Awasthi, and Srinadh Bhojana-
palli. On the adversarial robustness of mixture of experts. In NeurIPS, 2022.

[53] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, An-
dré Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of
experts. In NeurIPS, 2021.

[54] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR, 2020.

[55] Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather,
from statistical descriptors to parametric models. In CIKM, 2020.

[56] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[57] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In ICLR, 2017.

13

www.graphlearning.io

[58] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y.
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In EMNLP, 2013.

[59] Yu Song and Donglin Wang. Learning on graphs with out-of-distribution nodes. In KDD ’22:
The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, August 14 - 18, 2022, 2022.

[60] Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal
attention for interpretable and generalizable graph classification. In SIGKDD, 2022.

[61] Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xiang Wang, and
Xiangnan He. Unleashing the power of graph data augmentation on covariate distribution
shift. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023.

[62] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation.
In ECCV, 2016.

[63] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. ICLR, 2018.

[64] Haotao Wang, Ziyu Jiang, Yan Han, and Zhangyang Wang. Graph mixture of experts: Learning
on large-scale graphs with explicit diversity modeling. 2023.

[65] L. Wu, H. Lin, Y. Huang, and S. Z. Li. Knowledge distillation improves graph structure
augmentation for graph neural networks. In Neural Information Processing Systems, 2022.

[66] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In WWW, 2020.

[67] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs:
An invariance perspective. In ICLR, 2022.

[68] Y. Wu, A. Bojchevski, and H. Huang. Adversarial weight perturbation improves generalization
in graph neural networks. In Association for the Advancement of Artificial Intelligence, 2023.

[69] Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat seng Chua. Discovering invariant
rationales for graph neural networks. In ICLR, 2022.

[70] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[71] Nianzu Yang, Kaipeng Zeng, Qitian Wu, Xiaosong Jia, and Junchi Yan. Learning substructure
invariance for out-of-distribution molecular representations. In NeurIPS, 2022.

[72] Y. Yang, Z. Feng, M. Song, and X. Wang. Factorizable graph convolutional networks. Advances
in Neural Information Processing Systems, 33:20286–20296, 2020.

[73] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In ICML, 2016.

[74] Huaxiu Yao, Xinyu Yang, Xinyi Pan, Shengchao Liu, Pang Wei Koh, and Chelsea Finn.
Improving domain generalization with domain relations. In ICLR, 2024.

[75] Gilad Yehudai, Ethan Fetaya, Eli A. Meirom, Gal Chechik, and Haggai Maron. From local
structures to size generalization in graph neural networks. In ICML, 2021.

[76] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In KDD.
ACM, 2018.

[77] Junchi Yu, Jian Liang, and Ran He. Finding diverse and predictable subgraphs for graph domain
generalization. CoRR, 2022.

14

[78] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. IEEE Trans. Pattern Anal. Mach. Intell., 2023.

[79] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In ICLR, 2017.

[80] S. Zhang, K. Kuang, J. Qiu, J. Yu, Z. Zhao, H. Yang, Z. Zhang, and F. Wu. Stable prediction on
graphs with agnostic distribution shift. arXiv preprint arXiv:2110.03865, 2021.

[81] Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic
graph neural networks under spatio-temporal distribution shift. In NeurIPS, 2022.

[82] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver J. Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. AAAI, 2021.

[83] Y. Zhou, G. Kutyniok, and B. Ribeiro. Ood link prediction generalization capabilities of
message-passing gnns in larger test graphs. Advances in Neural Information Processing
Systems, 2022.

[84] Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. OOD link prediction generalization capabili-
ties of message-passing gnns in larger test graphs. In NeurIPS, 2022.

[85] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming
the limitations of localized graph training data. 2021.

15

A Theoretical Analysis

We provide a theoretical justification for why GraphMETRO can effectively address complex graph
distribution shifts and outperform existing approaches. Our analysis focuses on three key aspects: (1)
the limitations of existing methods, (2) how GraphMETRO overcomes these limitations, and (3) the
theoretical guarantees of our approach.

A.1 Limitations of Existing Approaches

Consider a graph classification task with the following causal model:

C

E G Y

where G is the input graph, Y is the label, E is an unobserved environment variable, and C is an
unobserved confounder.

Existing approaches primarily focus on learning environment-invariant predictors f(G) such that:

P (Y |f(G), E = e) ≈ P (Y |f(G)), ∀e ∈ E (4)

However, these methods face significant challenges when:

• The environment space E is vast and complex.

• The distribution shifts are heterogeneous across instances.

• The shifts involve multiple interacting components.

A.2 GraphMETRO’s Approach

GraphMETRO addresses these limitations through its novel architecture and training objective:

1. Decomposition of shifts: Instead of learning a single invariant predictor, GraphMETRO decom-
poses the complex shift into K shift components:

E = (E1, E2, ..., EK) (5)

where each Ei represents a specific type of graph transformation.

2. Mixture-of-Experts: The gating model ϕ and expert models {ξi}Ki=0 allow for adaptive handling
of heterogeneous shifts:

h(G) =
K∑
i=0

wi(G) · ξi(G) (6)

where wi(G) = ϕ(G)i are instance-dependent weights.

3. Referential alignment: The training objective enforces alignment between expert outputs and a
reference model:

L2 = E(G,y)∼Ds
Eτ(k) [CE(µ(h(τ (k)(G)), y)) + λ · d(h(τ (k)(G)), ξ0(G))] (7)

16

A.3 Theoretical Guarantees

We now provide theoretical guarantees for GraphMETRO’s performance:

Theorem 1 (Shift-Invariance) For any graph G and shift component τi, the encoder h satisfies:

h(τi(G)) = h(G) (8)

Proof 1 Given the gating model’s ability to identify shift components and the expert models’ invari-
ance properties:

h(τi(G)) =
K∑
j=0

wj(τi(G)) · ξj(τi(G)) (9)

= wi(τi(G)) · ξi(τi(G)) (10)
= wi(G) · ξ0(G) (11)
= h(G) (12)

where the second equality holds because the gating model identifies τi, and the third equality follows
from the definition of referential invariant representation.

This theorem guarantees that GraphMETRO can handle individual shift components. We can extend
this to combinations of shifts:

Theorem 2 (Composition of Shifts) For any graph G and combination of k shift components τ (k) =
τi1 ◦ τi2 ◦ ... ◦ τik , the encoder h approximately satisfies:

h(τ (k)(G)) ≈ h(G) (13)

Proof 2 We prove this theorem by induction on k, the number of shift components.

Base case (k = 1): This is directly given by Theorem 1.

Inductive step: Assume the theorem holds for k − 1 shift components. We need to prove it holds for k
shift components.

Let τ (k) = τik ◦ τ (k−1) where τ (k−1) = τi1 ◦ τi2 ◦ ... ◦ τik−1
.

h(τ (k)(G)) = h(τik(τ
(k−1)(G))) (14)

≈ h(τ (k−1)(G)) (by Theorem 1) (15)
≈ h(G) (by induction hypothesis) (16)

The approximation in the second line comes from the fact that the gating model ϕ may not perfectly
identify the shift component τik when applied after τ (k−1). However, our training objective L2

explicitly minimizes:

Eτ(k) [d(h(τ (k)(G)), ξ0(G))] (17)

This ensures that even for compositions of shifts, the output of h remains close to the reference model
ξ0, which is invariant to all shifts.

Therefore, by induction, the theorem holds for any k ≥ 1.

Theorem 3 (Generalization Bound) Let L(·, ·) be the cross-entropy loss. For any distribution Dt

resulting from a combination of shift components in τ (k), the generalization error of GraphMETRO
satisfies:

E(G,y)∼Dt
[L(f(G), y)] ≤ E(G,y)∼Ds

[Eτ(k) [L(f(τ (k)(G)), y)]] + ϵ (18)

where ϵ is a small constant depending on the complexity of the model and the number of samples.

17

Proof 3 1) Our training objective minimizes:

Ltrain = E(G,y)∼Ds
[Eτ(k) [L(f(τ (k)(G)), y)]] (19)

2) Recall that f = µ ◦ h, where µ is implemented as a single linear layer with a softmax output, and
L is the cross-entropy loss. This combination is stictly convex with respect to the inputs to µ if they
are not perfectly collinear. Therefore, by Jensen’s inequality:

Eτ(k) [L(f(τ (k)(G)), y)] > L(µ(Eτ(k) [h(τ (k)(G))]), y) (20)

3) This implies:
Ltrain > E(G,y)∼Ds

[L(µ(Eτ(k) [h(τ (k)(G))]), y)], (21)
hence, minimizing Ltrain also minimizes the left hand side of the inequality.

4) Now, consider any target distribution Dt resulting from a combination of shift components in τ (k).
By definition, we can express Dt as:

Dt = {τ (k)(G) : G ∼ Ds, τ
(k) ∼ P (τ (k))} (22)

where P (τ (k)) is some distribution over the possible combinations of shift components.

5) Therefore:

E(G,y)∼Dt
[L(f(G), y)] = E(G,y)∼Ds

[Eτ(k)∼P (τ(k))[L(f(τ (k)(G)), y)]]

≤ E(G,y)∼Ds
[Eτ(k) [L(f(τ (k)(G)), y)]]

= Ltrain

(23)

The inequality in the second line holds because our training objective considers a wider range of
transformations than those in the actual target distribution.

6) Equations (21) and (23) show that minimizing Ltrain implies both finding a model with low true
risk and a model that is more invariant to τ (k)(G), since Equation (21) shows the loss is lower if
∀τ ∈ supp(τ (k)), h(τ(G)) = Eτ(k) [h(τ (k)(G))].
6) The gap between the true risk and the empirical risk can be bounded by a constant ϵ that depends
on the complexity of the model and the number of samples, according to standard statistical learning
theory. Therefore, we get:

E(G,y)∼Dt
[L(f(G), y)] ≤ E(G,y)∼Ds

[Eτ(k) [L(f(τ (k)(G)), y)]] + ϵ (24)

These theoretical results demonstrate that GraphMETRO can effectively handle complex, heteroge-
neous graph distribution shifts by:

• Decomposing shifts into manageable components.
• Adaptively combining expert models to handle instance-specific shifts.
• Ensuring invariance to individual and combined shift components.
• Providing a tractable upper bound on the generalization error for shifted distributions.

Compared to existing approaches that struggle with vast environment spaces or heterogeneous shifts,
GraphMETRO’s adaptive mixture-of-experts architecture and alignment-based training objective
provide a more flexible and scalable solution for real-world graph distribution shifts.

B Experimental Details

Experimental settings on synthetic datasets. We randomly split each dataset into training (80%),
validation (20%), and testing (20%) subsets. We consider transformations for k = 2, i.e., τ (2), which
includes both single transformations and compositions of two different transformation functions. For
the compositions, we exclude trivial combinations (e.g., adding and dropping edges) and combinations
that may result in an empty graph (e.g., random subgraph sampling and node dropping). These
transformations are applied to the testing datasets to create multiple variants for testing environments.

18

Model architecture and optimization. We summarize the model architecture and hyperparameters
for synthetic experiments (Section 4.2) in Table 2. We use the Adam optimizer with weight decay set
to 0. The encoder (backbone) architecture, including the number of layers and hidden dimensions,
is selected based on validation performance from the ERM model and then fixed for each encoder
during GraphMETRO training.

Node classification Graph classification

DBLP CiteSeer IMDB-MULTI REDDIT-BINARY

Backbone Graph Attention Networks (GAT) [63]

Activation PeLU

Dropout 0.0

Number of layers 3 3 2 2
Hidden dimension 64 32 128 128

Global pool NA NA global add pool global add pool

Epoch 100 200 100 100
Batch size NA NA 32 32

ERM Learning rate 1e-3 1e-3 1e-4 1e-3
GraphMETRO Learning rate 1e-3 1e-3 1e-4 1e-3

Table 2: Architecture and hyperparameters on synthetic experiments.

For the real-world datasets, we use the same encoder and classifier from the implementation of
the GOOD benchmark4. The results for the baseline methods, except for Twitter (recently added
to the benchmark), are reported by the GOOD benchmark. We summarize the architecture and
hyperparameters used for real-world experiments below.

Node classification Graph classification

WebKB Twitch Twitter SST2

Backbone Graph Convolutional Network Graph Isomorphism Network [70]
[25] w/ Virtual node [18]

Activation ReLU

Dropout 0.5

Number of layers 3

Hidden dimension 300
Global pool NA NA global mean pool global mean pool

Epoch 100 100 200 200
Batch size NA NA 32 32

ERM Learning rate 1e-3 1e-3 1e-3 1e-3
GraphMETRO Learning rate 1e-2 1e-2 1e-3 1e-3

Table 3: Architecture and hyperparameters on real-world datasets.

For all datasets, we conduct a grid search for GraphMETRO learning rates due to the difference
in architecture compared to traditional GNN models. GraphMETRO uses multiple GNN encoders,
serving as expert modules.

C Stochastic Transform Functions

We built a library of 11 stochastic transform functions on top of PyG5, and used 5 of them in
our synthetic experiments for demonstration purposes. Each function allows for one or more
hyperparameters to control the degree of the transformation, such as the probability parameter in
a Bernoulli distribution for dropping edges. A certain amount of randomness is retained in each
stochastic transform function, ensuring diversity in the generated graphs.

4https://github.com/divelab/GOOD/tree/GOODv1
5https://github.com/pyg-team/pytorch_geometric

19

https://github.com/divelab/GOOD/tree/GOODv1
https://github.com/pyg-team/pytorch_geometric

stochastic_transform_dict = {

’mask_edge_feat’: MaskEdgeFeat(p, fill_value),
’noisy_edge_feat’: NoisyEdgeFeat(p),
’edge_feat_shift’: EdgeFeatShift(p),
’mask_node_feat’: MaskNodeFeat(p, fill_value),
’noisy_node_feat’: NoisyNodeFeat(p),
’node_feat_shift’: NodeFeatShift(p),
’add_edge’: AddEdge(p),
’drop_edge’: DropEdge(p),
’drop_node’: DropNode(p),
’drop_path’: DropPath(p),
’random_subgraph’: RandomSubgraph(k)

}

We observed that different sets or numbers of transform functions can impact model performance.
Specifically, we use stochastic transform functions as the foundation for the decomposed target
distribution shifts. Ideally, these functions should be diverse and cover different potential aspects
of distribution shifts. However, using a large number of transform functions increases the demand
on the gating model’s expressiveness, as it must distinguish between different transformed graphs.
Additionally, more transform functions increase computational cost due to the larger number of
experts. An ablation study in Appendix D.3 further validates this analysis.

In practice, the stochastic transform functions proved effective on real-world datasets, suggesting
their ability to represent various distribution shifts. Exploring common base transform functions to
better capture real-world distribution shifts would be an interesting direction for future research.

D Ablation Studies

D.1 Design Choices of Expert Models

WebKB Twitch Twitter SST2

GraphMETRO (original) 41.11 53.50 57.24 81.87
GraphMETRO (w/o L1) 23.22 50.58 56.14 78.98
GraphMETRO (Shared) 31.14 52.69 57.15 81.68

Table 4: Experiment results comparing different design choices for expert models. Results are
averaged over five runs.

In the main paper, we discussed the trade-off between model expressiveness and memory utilization
in expert model design. Here, we investigate a configuration where multiple experts share a GNN
encoder but use individual MLPs to customize their output representations. Table 4 presents the
comparative results.

Our experiments show a performance decrease when sharing the GNN encoder, which we attribute
to limitations in the expressiveness of the customized modules. This may hinder alignment with
the reference model and reduce the experts’ ability to remain invariant to specific shift components.
The concept of "being invariant to all shifts" using a shared module seems insufficient in this case.
Nevertheless, this configuration still outperforms baseline models from Table 1, thanks to the gating
model’s ability to selectively use relevant experts and the objective function’s ability to generate
invariant representations.

D.2 Alignment Design

When the alignment term is removed (λ = 0), performance drops significantly, especially for
WebKB, where accuracy falls from 41.11 to 18.79. This suggests that without alignment, the expert
models develop distinct representation spaces, which, when aggregated, lead to higher variance and

20

WebKB Twitch Twitter SST2

GraphMETRO (original) 41.11 53.50 57.24 81.87
GraphMETRO (λ = 0) 18.79 50.88 56.97 81.15

Table 5: Validating GraphMETRO design to align expert models with the reference model.

loss of useful information. The predictor heads, such as MLPs, struggle to process these mixed
representations. The alignment mechanism is thus crucial for maintaining a coherent representation
space, allowing the model to capture interactions more effectively and improving overall performance.

D.3 Choice of Transform Functions

(a) WebKB (b) Twitter

Figure 5: Impact of transform function choices on model performance. Each number of transform
functions corresponds to a specific set of transformations.

We investigate how the choice and number of stochastic transform functions impact the performance
of GraphMETRO , ranging from 2 to 7 functions. These functions are applied in the following
sequential order:

[noisy_node_feat, add_edge, drop_edge, drop_node,
random_subgraph, drop_path, node_feat_shift]

We use the first n functions and their paired combinations (excluding trivial combinations like adding
and dropping edges) during the training of GraphMETRO . Due to computational constraints, we
do not explore all possible combinations of the n distinct functions but focus on specific sets of
transformations.

Figure 5 shows the results on the WebKB and Twitter datasets. A consistent trend emerges: increasing
the number of stochastic transform functions generally leads to a decline in performance. For example,
performance on WebKB drops from 42.4% to 31.9%. This decline can be attributed to: (1) some
stochastic functions introducing noise unrelated to the target distribution shifts, and (2) the gating
model’s expressiveness being insufficient to handle a larger number of transformations, leading to
noisier predictions.

E Numerical results of Accuracy on Synthetic Distribution Shifts

Tables 6 and 7 present the numerical results on synthetic datasets corresponding to Figure 3, enabling
a more detailed interpretation of the results. Additionally, we compute the average performance
across different extrapolated testing datasets, showing an overall improvement.

F Open Discussion and Future Works

Performance of the gating model. The performance of GraphMETRO depends in part on how effec-
tively the gating model can identify distribution shifts from the transform functions. Some functions,

21

DBLP CiteSeer

ERM ERM-Aug GraphMETRO ERM ERM-Aug GraphMETRO

i.i.d. (0) 85.71 85.66 85.92 75.80 76.00 78.01
random subgraph (1) 84.48 85.29 85.78 75.47 75.82 77.01

drop node (2) 71.08 74.85 76.61 62.21 63.89 66.22
drop edge (3) 79.69 82.34 82.95 71.48 73.24 77.00
add edge (4) 83.41 84.44 84.98 74.29 74.87 77.26

noisy features (5) 76.90 72.81 81.32 85.28 82.97 88.43
(1, 3) 77.63 81.04 81.71 70.37 71.42 74.97
(2, 3) 81.99 83.65 84.26 73.60 74.06 76.11
(1, 4) 79.69 68.62 80.31 84.47 86.36 88.56
(2, 4) 70.55 74.01 75.10 62.13 63.53 65.73
(1, 5) 71.52 68.27 71.05 66.89 62.59 67.32
(2, 5) 77.73 81.13 81.85 70.19 72.21 76.77
(3, 5) 79.59 84.49 87.14 78.24 73.29 89.18
(4, 5) 70.40 74.16 76.18 61.64 63.53 66.42

Average 77.88 78.63 81.08 72.29 72.41 76.36

Table 6: Numerical results on synthetic node classification datasets

IMDB-MULTI REDDIT-BINARY

ERM ERM-Aug GraphMETRO ERM ERM-Aug GraphMETRO

i.i.d. (0) 50.17 49.28 49.16 72.93 73.02 75.94
random subgraph (1) 34.30 39.94 45.86 62.59 69.03 71.22

drop node (2) 50.42 48.73 48.83 70.01 72.27 72.26
drop edge (3) 49.66 48.94 48.83 59.13 70.55 72.51
add edge (4) 49.64 48.14 48.90 65.18 67.28 69.34

noisy features (5) 50.17 49.28 49.16 68.66 68.50 66.79
(2, 3) 34.55 40.32 45.11 58.72 64.06 66.50
(1, 4) 34.32 40.28 46.01 59.40 62.81 65.29
(2, 4) 34.57 40.17 46.79 61.34 66.02 66.71
(1, 5) 49.31 48.36 48.68 65.89 66.88 68.09
(2, 5) 50.51 48.78 48.79 68.72 69.77 68.76
(3, 5) 49.38 47.72 48.35 55.36 65.21 64.87
(1, 3) 48.72 48.36 48.76 61.08 61.71 62.57
(4, 5) 34.62 39.88 46.15 62.99 68.68 68.34

Average 44.31 45.58 47.82 63.71 67.56 68.51

Table 7: Numerical results on synthetic graph classification datasets

like adding node feature noise and extracting random subgraphs, are inherently disentangled, making
it easy for the gating model to differentiate between these distributions. Other functions, such as
dropping paths and dropping edges, may be more similar, but the method remains robust as long as
each expert produces the corresponding invariant representation. More complex combinations of
transforms pose a greater challenge for the gating model’s expressiveness. To address this, initializing
the gating model with a pre-trained model from a diverse dataset may enhance its ability to predict
mixtures, improving performance on unseen graphs.

Comparison with invariant learning methods. GraphMETRO differs from traditional invariant
learning, where environments are constructed using environment variables. Instead, GraphMETRO
views distribution shifts on an instance as a mixture, represented by the score vector from the
gating function. This approach enables the creation of infinite environments, as the score vector is
continuous. When restricting the gating function to binary outputs, GraphMETRO can simulate finite
environments, akin to the environment construction in invariant learning. Additionally, the concept of
referential invariant representation using the base model ξ0 sets GraphMETRO apart from previous
invariant learning approaches.

Applicability of GraphMETRO . A key question is how well the predefined transform functions
capture complex distribution shifts.

• General domain: In our experiments, we primarily use five universal graph augmentations (as
listed in [82]). Our code also includes additional transforms (Appendix C). While these transforms
are not exhaustive, they cover a wide range of shifts observed in our results. However, real-world

22

distribution shifts may go beyond the predefined transforms, and in such cases, GraphMETRO
might struggle to capture and mitigate unknown shifts. This is a limitation when the test distribution
or domain knowledge is insufficient.

• Specific domains: In certain domains, additional knowledge can help infer distribution shifts, such
as an increase in malicious users in a trading system. This knowledge can guide the construction
of transform functions to better cover the target distribution shifts. Specifically, two sources of
knowledge can be used: i) Domain knowledge, e.g., in molecular datasets, transform functions
could add carbon structures to molecules while preserving functional groups, or in social networks,
known user behaviors can guide transformations. ii) Leveraging samples from the target dis-
tribution (i.e., domain adaptation), where samples from the target can inform the selection of
relevant transforms. For example, by measuring the distance between the extrapolated datasets
under specific transforms and the target samples in the embedding space, more relevant transform
functions can be selected. This presents an interesting direction for future work.

Label distribution shifts. In this work, we focus on distribution shifts in graph structures and
features. Extending GraphMETRO to handle label distribution shifts would be a complementary
and interesting direction. Label shifts affect various modalities, including graphs and images, and
existing methods [44, 5] designed for label shifts could be integrated into our framework with minimal
adjustments, such as modifying the loss function or training pipeline.

23

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We highlighted our contributions and the scope which is the generalization of
Graph Neural Networks under complex distributions and natural graph variations.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

24

Justification: We have discussed our limitations such as selecting the transform functions in
details, please refer to the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have made the discussion about our training pipeline and how the other
factors such as hyperparameters can impact the final results.
Guidelines:

25

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our data and code are available at https://anonymous.4open.science/
status/GraphMETRO

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

26

https://anonymous.4open.science/status/GraphMETRO
https://anonymous.4open.science/status/GraphMETRO
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have made the discussion about our training pipeline and how the other
factors such as hyperparameters can impact the final results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Table 1 presents the computed p-value to indicate the statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the information on our GPUs used for training.
Guidelines:

• The answer NA means that the paper does not include experiments.

27

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We strictly followed the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]

28

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the sources we used to conduct the experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

29

paperswithcode.com/datasets

Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Related Works
	Method
	Shift Components
	Mixture of Aligned Experts
	Training Objective
	Discussion and Analysis

	Experiments
	Applying GraphMETRO to Real-world Datasets
	Inspect GraphMETRO on Synthetic Datasets
	Invariance Matrix for Inspecting GraphMETRO
	Distribution Shift Discovery

	Conclusion and Future Work
	Theoretical Analysis
	Limitations of Existing Approaches
	GraphMETRO's Approach
	Theoretical Guarantees

	Experimental Details
	Stochastic Transform Functions
	Ablation Studies
	Design Choices of Expert Models
	Alignment Design
	Choice of Transform Functions

	Numerical results of Accuracy on Synthetic Distribution Shifts
	Open Discussion and Future Works

