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The Role of Network and Identity in the Diffusion of Hashtags
Anonymous Author(s)∗

Abstract
The diffusion of culture online (e.g., hashtags) is theorized to be
influenced by many interacting social factors (e.g., network and

identity). However, most existing computational cascade models
model just a single factor (e.g., network or identity). This work
offers a new framework for teasing apart the mechanisms underly-
ing hashtag cascades. We curate a new dataset of 1,337 hashtags
representing cultural innovation online, develop a 10-factor evalu-
ation framework for comparing empirical and synthetic cascades,
and show that a combined network+identity model performs better
than a network- or identity-only counterfactual.We also explore the
heterogeneity in this result: While a combined network+identity
model best predicts the popularity of cascades, a network-only
model has better performance in predicting cascade growth and an
identity-only model in adopter composition. The network+identity
model most strongly outperforms the counterfactuals among hash-
tags used for expressing racial or regional identity and talking about
sports or news. In fact, we are able to predict what combination of
network and/or identity best models each hashtag and use this to
further improve performance. In sum, our results imply the utility
of multi-factor models in predicting cascades, in order to account
for the varied ways in which network, identity, and other social
factors play a role in the diffusion of hashtags on Twitter.

CCS Concepts
• Networks → Network simulations; • Applied computing →
Law, social and behavioral sciences; • Computing methodolo-
gies→ Agent / discrete models; Network science; Model verification
and validation.

Keywords
hashtags, cascade prediction, cascade evaluation, social network,
social identity
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1 Introduction
Hashtags are fun. Their flexible meta-linguistic use in social me-
dia allows authors to make side-commentary, frame their content
within a specific context, vote, or even participate in social move-
ments [48, 62, 71, 77, 91]. Despite their widespread use—e.g., an
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estimated 20% of Twitter (now known as X) posts have a hashtag—
most hashtags emerge organically, with new hashtags invented
regularly by users [60, 82]. While we know much about how hash-
tags are used, few studies have directly tested the cultural and social
forces that shape their adoption at scale. Here, we propose a new
framework for teasing apart the mechanisms underlying hashtags
cascades as an example of cultural production.

The adoption of cultural products, including hashtags, is the-
orized to be influenced by multiple interacting social factors [17,
25, 33, 54, 94]. Hashtags tend to spread through social networks on
Twitter, where users are exposed to a hashtag when a connection
tweets it [56, 83]. Additionally, hashtags are often used to explic-
itly signal some aspect of a user’s social identity, including their
demographic attributes [10, 12, 29, 61]. In these cases, the salient
attributes of a user’s identity inform the decision to use a hashtag.
For example, Sharma [81] theorizes that the spread of hashtags on
Black Twitter, a subcommunity discussing Black culture and rele-
vant topics to the Black community, is driven by a combination of
network and identity. Adopters are often part of the Black Twitter
network and, as such, continued adoption largely occurs within this
community because 1) these users are more likely to be exposed to
the hashtag, 2) exposed users outside the community tend not to
adopt the hashtag if it does not signal their racial identity, which 3)
minimizes exposure and adoption outside the community. In other
words, in this conceptual model, a crucial part of hashtag cascades
in Black Twitter is the interaction between network effects and
identity effects. The Twitter network affords users exposure to the
hashtag, and each user’s racial identity helps determine whether
they adopt the hashtag and, therefore, also shapes future exposures.

These interacting network and identity effects are also theorized
to play a role in the diffusion of many other types of online cultural
products, including sports hashtags [84], hashtags and frames cre-
ated during the #MeToo online movement [62], branded hashtags
[47], neologisms on Twitter [5], and online content related to family
planning [66]. However, in spite of numerous conceptual frame-
works that describe cultural diffusion as the interaction between
network and identity effects, hashtag cascades have primarily been
empirically modeled through the lens of social networks alone. For
instance, prior work analyzes the effects of different network topolo-
gies and contagion processes on cascades [45, 46, 69] and studies
how these effects vary by properties like the hashtag’s topic and
semantics [51, 72]. While some prior literature models how identity
is related to hashtag adoption [70, 96], this work often focuses on
identity effects in isolation rather than their interaction with net-
work effects. However, as the example of Black Twitter illustrates,
the dynamics underlying network-only or identity-only diffusion
likely differ from the dynamics when diffusion involves the interac-
tion of network and identity effects. For instance, a user’s decision
to adopt a hashtag depends on exposure from their network and
relevance to their identity, which then shapes future exposure.

In this paper, we present, what is to our knowledge, the first
empirical model that explores the joint role of network and identity
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effects in the spread of hashtags on Twitter. Using a recently devel-
oped agent-basedmodel, we simulate the diffusion of 1,337 hashtags
through a 3M-node Twitter network. Agents choose whether to
adopt each hashtag based on exposure from the network (Network-
only), demographic identity of the hashtag’s users (Identity-only),
or both (Network+Identity). Our work makes four contributions.
We curate a new dataset of hashtag cascades, including the initial
and final adopters for 1,337 systematically identified hashtags on
Twitter that represent the production of novel, popular culture on
Twitter (e.g., #learnlife, #gocavs). We also introduce a new evalua-
tion framework consisting of ten commonly studied properties
of cascades, including their popularity, growth, and adopter com-
position. Using these assets, we show that a model integrating
network and identity effects better predicts cascades than mod-
els using just one of these factors; the performance improvements
are especially pronounced in hashtags signaling regional or racial
identity, and those discussing sports or news. Finally, we develop a
predictive model of when hashtag cascades are best predicted by
network alone, identity alone, or network and identity together.

2 Related Work
Production of Novel, Popular Culture. In online spaces, the ease

of content delivery allows a broad set of users to contribute to the
creation, rather than simply consumption, of novel culture [60, 78].
In this context, the production of culture entails the creation of
symbols (e.g., hashtags) that reflect the values, social structures, and
ideologies of its creators [68]. In this sense, hashtags are a cultural
product, allowing users to position their tweets in the context of
ongoing conversations [48, 65, 82]. The digital studies literature
often discusses four key factors related to the dissemination of
culture online: how the network of relationships between users
allows for the creation of many culturally distinct communities
[1, 37, 53, 78, 80], how users define and express their identity online
to position themselves within existing communities while also set
themselves apart from others [13, 22, 40, 92], how platform design
affords the creation and spread of new culture [63, 64], and the types
of content created [30, 59]. Our work builds on the literature on
cultural production in digital spaces by computationally modeling
the effects of two of these factors, network and identity, in the
creation and dissemination of hashtags. We introduce a dataset of
1,337 hashtags representing user-created popular culture.

Modeling Diffusion of Culture Online. The diffusion of behavior
and information online is a topic of significant study. cf. [96], [56],
[70], and [83] for recent reviews of this literature. Empirical models
often aim to predict some property of the final cascade given some
information about its initial adopters. Many such papers adapt mod-
els developed to simulate offline behaviors from first principles,
including the Susceptible-Infectious-Recovered (SIR) compartment
model, the linear threshold model of complex contagion, and sto-
chastic simulations like Hawkes models or Poisson processes. Other
papers use deep learning for the predictive task, including graph
representation learning and predictive models from features of the
network, adopters, and early parts of the cascade. Our work builds
on these studies by using a more recent agent-based model of dif-
fusion that accounts for diffusion dynamics particular to Twitter.
For instance, by adopting a usage-based instead of adopter-based

model, our framework accounts for frequency effects in the adop-
tion [11, 27]; and by modeling the fading of attention online our
model allows for cultural products to stop being used over time
(e.g., to model hashtags that are used temporarily and then exit the
lexicon) [15]. Using a first-principles model also allows us to test the
specific mechanisms associated with network and identity that are
encoded in the model – and to explicitly test the effects of network
and identity in cultural diffusion rather than simply using network
or identity features in a predictive model. We also introduce a novel
dataset of hashtag cascades and a ten-factor evaluation framework
to support future work in this area.

Social Factors in the Adoption of Hashtags. Prior work often at-
tributes hashtag adoption to social factors related to network, iden-
tity, lifecycle, and discourse. Network factors include the position of
initial adopters in the social network and simulating the diffusion
of innovation through a social network [31, 56]. Identity factors
include wanting to join or signal membership to a certain com-
munity [65, 70, 93]. Lifecycle factors include the hashtag’s growth
trajectory [18, 31, 57], and discursive factors include the hashtag’s
relevance, topicality, and ease of use (e.g., length) [21, 31, 32, 57, 93].
In addition to individual social factors, some conceptual models of
diffusion posit that the interaction ofmultiple social factors may play
a role in the diffusion of hashtags [81, 84]. However, most empirical
models of hashtag adoption focus on just one social factor. For
instance, [70] notes a number of articles that, separately, describe
the effect of “network factors” and “user factors” (e.g., identity)
on the propagation of misinformation, but none that describe the
effects of both network and user factors. Similarly, [96] lists several
papers that model adoption decisions based on either “neighboring
relations” (i.e., the network) or “individual/group characteristics”
(like identity), but not both. [5] proposes an agent-based model
for the adoption of new words online that incorporates both net-
work and identity effects. Our work builds on this prior literature
by adapting [5] to empirically model the interaction of two social
factors, network and identity, in the diffusion of hashtags.

3 Methods
To test the roles of network and identity in the diffusion of hashtags,
we use the model specification from Ananthasubramaniam et al. [5]
to test whether an agent-based model incorporating network only,
identity only, or both network and identity best predicts properties
of hashtag cascades on Twitter. Although the model is not a novel
contribution of this paper, we summarize all key methodological
points in this section; the original paper has full details.

3.1 Modeling Diffusion of Innovation
Testing our study’s hypotheses requires comparing empirical cas-
cades against cascades simulated using the Twitter network and
users’ demographic identities. In this section, we describe how we
produce the needed synthetic cascades.

3.1.1 Simulation Formalism. To better simulate the dynamics un-
derlying cultural production, [5] adapts the classic linear threshold
model to determine whether each agent will decide whether to use
the hashtag depending on prior adoption by other agents. Assume
we are given a weighted Twitter network 𝐺 , a vector representing
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the identity of each user 𝑖 in the network Υ𝑖 , a hashtag ℎ, and a set
of initial adopters𝐴 ⊂ 𝑉 (𝐺) who use ℎ at time 𝑡 = 0. For each edge
(𝑖, 𝑗) ∈ 𝐸 (𝐺),𝑤𝑖 𝑗 is the strength of the tie and 𝛿𝑖 𝑗 is the similarity
between the users’ identities (i.e., the normalized distance between
Υ𝑖 and Υ𝑗 ). The hashtag can be used to signal an identity represented
by vector Υℎ , and 𝛿𝑖ℎ is the similarity between user 𝑖’s identity and
the identity connoted by ℎ (i.e., the normalized distance between
Υ𝑖 and Υℎ). At each timestep after 𝑡 = 0, agent 𝑖 has probability 𝑝𝑖ℎ𝑡
of adopting ℎ at time 𝑡 , proportional to:

𝑝𝑖ℎ𝑡 ∼ 𝑆ℎ · 𝛿𝑖ℎ

∑
j ∈ neighbors who adopted

𝑤 𝑗𝑖𝛿 𝑗𝑖∑
k ∈ all neighbors

𝑤𝑘𝑖𝛿𝑘𝑖
(1)

where 𝑆ℎ is a free constant parameter described below.
In the linear threshold model, agents become adopters if the

(weighted) fraction of their ego-network that adopt crosses a certain
threshold [16]. The model we use relaxes two assumptions to be
more relevant for modeling online culture. First, since repeated
exposure is important to the adoption of textual innovation [28, 88],
this model is usage-based, allowing agent 𝑖 to decide whether to
use ℎ at each time step instead of representing adoption as a binary
property of the agent (i.e., an agent is either “an adopter” or “not
an adopter”). Second, the model uses not only the topology of the
social network but also the identity of agents to model the diffusion
of innovation. Consistent with prior work on adoption of innovation
[9, 16], the network influences each agent’s level of exposure to ℎ
(the linear threshold-like term in Equation 1). Consistent with prior
work on identity performance [24, 35], agents preferentially use
hashtags that match their own identity (𝛿𝑖ℎ) and that are used by
demographically similar network neighbors (𝛿𝑖 𝑗 ).

3.1.2 Model Parameters. Each hashtag has a different propensity
to be used on Twitter, due to differences in factors like the size
of potential audience, communicative need, and novelty [8, 81].
Accordingly, in Equation 1, each hashtag is associated with a dif-
ferent constant of proportionality 𝑆ℎ . The 𝑆ℎ parameter is termed
stickiness because larger values of this parameter bias the model
towards higher levels of—or “stickier”—adoption. The stickiness of
each hashtag is calibrated to the empirical cascade size (number
of uses) using a nested grid search on a parameter space of [0.1, 1]
where we first identify the interval of width 0.1 in which the model
best approximates the empirical cascade size and then identify the
best fitting parameter in that interval using a grid search with step
size 0.01. Grid searches are performed using one run of the model
at each value of stickiness.

The model has three hyperparameters that apply across all hash-
tags. These are taken from [5], which tuned the parameters to the
empirical cascade size with the same set of users.

3.1.3 Comparing Network and Identity. To understand the effects
of network and identity, we compare the full Network+Identity
model described above against two counterfactuals: 1) the Network-
only model, where we simulate the spread of the word through just
the network with no identity effects (this is achieved by setting
𝛿𝑖 𝑗 = 1 and 𝛿𝑖ℎ = 1) and 2) the Identity-only model, where we
eliminate the effects of homophily by running simulations on a

configuration model random graph with the same users and degree
distribution as the original network.

3.2 Network and Identity Estimation
This section elaborates on how network and identity are estimated.
Each agent in this model is a user on Twitter who is likely located in
U.S.A., based on the geographic coordinates tagged on their tweets
[20]. There are 3,959,711 such users in the Twitter Decahose, a 10%
sample of tweets from 2012 to 2022. Since we use the same agent
identities and network to model the diffusion of all hashtags during
this ten-year period, the network and identities are inferred from
2018 data, which is at the midpoint of this timeframe (e.g., identities
are from the 2018 American Community Survey and House of
Representative elections, the network is inferred from interactions
between 2012 and 2018).

3.2.1 Agent Identities. In this model, identity includes an agent’s
affiliations towards 25 identities within five demographic categories:
(i) race/ethnicity, (ii) socioeconomic status; (iii) languages spoken;
(iv) political affiliation; and (v) geographic location. Each agent’s
demographic identity is modeled as a vector Υ ∈ [0, 1]25 whose
entries represent the proportion of residents in the user’s Census
tract and Congressional district with each demographic identity. An
agent’s location is inferred using the geographic coordinates they
tweeted from, using the high-precision algorithm from Compton
et al. [20]. An agent’s political affiliation is the fraction of votes
each party got in the agent’s Congressional district during the 2018
House of Representatives election. An agent’s race, socioeconomic
status, and languages spoken are the fraction of the Census tract
with the corresponding identity in the 2018 American Community
survey. Details on identity calculation are in Appendix C.

3.2.2 Network. This study uses a weighted Twitter mutual men-
tion network, which contains ties that are likely to be important
in information diffusion. Although Twitter users are exposed to
content from more users than they reciprocally mention (e.g., their
follower network, public tweets), prior research has shown that the
mention network captures edges likely influential in information
diffusion [42], while reciprocal ties are often involved in the diffu-
sion of hashtags [73]. The nodes in this network are all agents and
there is an edge between agents 𝑖 and 𝑗 if both users mentioned the
other at least once in the Twitter Decahose sample. The strength of
the edge from 𝑖 to 𝑗 is proportional to the number of times user 𝑖
mentioned user 𝑗 in the sample. Although all ties are reciprocated,
the network is directed because the strength of the edge from 𝑖 to 𝑗

may not match the strength of the edge from 𝑗 to 𝑖 . This network
contains 2,937,405 users and 29,153,138 edges.

3.3 Hashtags
This study models the spread of 1,337 popular hashtags between
2013 and 2022. This section describes how hashtags and their initial
adopters and identities are selected.

3.3.1 Identification. This paper seeks to study the roles of network
and identity in the lifecycle of the production of novel, user-generated
culture, and we select hashtags that are instances of this phenome-
non. First, the hashtag must be a new coinage. We aim to model the
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spread of hashtags from when they’re created, so we include hash-
tags that have had low adoption before the data collection window
in 2013 (i.e., they were not already in the lexicon) and whose initial
adopters we can identify in our data. We also select hashtags that
are well-adopted. Sufficiently popular hashtags can be considered
cultural products, used to allow Twitter users to position their own
thoughts in context of a broader conversation [48, 65]. To ensure
that the hashtag was popular enough to be considered part of a
“broader conversation,” we included only hashtags with 1,000 or
more uses in our Decahose sample. Finally, we select hashtags that
are likely to represent user-generated culture. Therefore, hashtags
are not commonwords, phrases, and named entities (e.g., celebrities,
movie titles) that appear in WikiData and the dictionary. Instead,
they are neologisms or novel phrases that are partly or wholly cre-
ated by the community. After this filtering, we were left with 1,337
hashtags. Appendix D.1 details how these criteria were operational-
ized. Two authors reviewed 100 hashtags and determined that 84%
of them were examples of novel user-generated culture, suggesting
a high precision sample (annotation guidelines in Appendix A).

3.3.2 Hashtag Initial Adopters and Identity. A hashtag’s initial
adopters 𝐴 ⊂ 𝑉 (𝐺) are the first ten users who adopted the hashtag
(Appendix D.2 has details). Each hashtag signals an identity, deter-
mined by the composition of its initial adopters. Initial adopters
who are more strongly aligned with a particular identity are more
likely to coin hashtags that signal that identity [3]. Accordingly,
if the median initial adopter is sufficiently extreme in any given
register of identity (in the top 25th percentile of that identity, using
the threshold from [5]), the hashtag signals that identity.

4 Evaluating Simulated Cascades
When comparing empirical and simulated adoption, researchers
often choose to focus on reproducing certain desired properties of
a cascade (e.g., common metrics include cascade size, growth, and
virality) rather than predicting exactly which individuals will adopt
the focal behavior, because there is a high degree of stochasticity
in adoption decisions [39, 56, 96]. However, the properties used
in the literature vary widely and performing well in one metric is
often uncorrelated with performance in another metric. In order to
comprehensively study the effects of network and identity on the
diffusion of hashtags on Twitter, we develop a framework to analyze
a model’s ability to reproduce ten different properties of cascades,
related to a cascade’s popularity, growth, and adopter composi-
tion. This requires evaluating models across all ten measures and
then combining the ten evaluation scores into a composite Cascade
Match Index (cmi) to measure the overall performance across the
ten measures. To enable error analysis, we do not compare the
distribution of properties over all trials; instead we calculate the
cmi score for each pair of simulated and empirical cascades and
then average errors over all simulations.

For each of the ten metrics, we explain 1) what property of the
hashtag is being measured and 2) how comparisons between pairs
of simulated and empirical cascades are made.

4.1 Popularity
Cascades are often modeled with the goal of understanding the
dynamics underlying popularity [46, 96]. More popular hashtags

experience high levels of adoption or adoption in parts of the social
network that are very distant from the initial adopters, increasing
the influence they have on popular culture.

M1: Level of Usage. One of the most common metrics used to
measure the popularity of a new behavior is simply how often the
behavior is used. M1 calculates the number of times a hashtag is
used in each cascade, including repeated usage by a user. Comparing
simulated and empirical usage requires a measure that operates
on a logarithmic rather than a linear scale (e.g., not relative error),
because the level of usage could span several orders of magnitude.
For instance, if the empirical cascade had 1,000 uses in the Decahose
sample (or an expected 10,000 uses on all of Twitter), simulation
1 had 5,000 uses, and simulation 2 had 20,000 uses, a measure like
relative error would show that simulation 1 has smaller error than
simulation 2 (|10, 000− 5, 000| vs. |10, 000− 20, 000|); however, since
cascades often grow exponentially [95], it would be better for both
to have the same magnitude of error since one is half as big and
the other is twice as big as the empirical cascade. Therefore, we
compare the ratio of simulated to empirical usage on a logarithmic
scale |𝑙𝑜𝑔( 𝑀1𝑠𝑖𝑚

10·𝑀1𝑒𝑚𝑝
) |, henceforth referred to as the log-ratio error.

We compare𝑀1𝑠𝑖𝑚 to 10 ·𝑀1𝑒𝑚𝑝 because the empirical cascades
are drawn from a 10% sample of Twitter and, therefore, we expect
𝑀1𝑒𝑚𝑝 to be 10 times larger on all of Twitter.

M2: Number of Adopters. In addition to the level of usage, another
popular way of measuring popularity is the number of unique
adopters in a cascade. M2 looks at the number of unique users in
the downsampled cascade who adopted each hashtag. Unlike M1,
M2 does not consider repeated usage and may be much lower than
M1 when a cascade experiences a high volume of usage by a small
group of users (e.g., for niche cascades that are really popular among
a small group of users); however, in many cases, M1 and M2 are
likely to be correlated. Since, like M1, the number of adopters also
scales exponentially, comparisons between empirical and simulated
cascades are made using the log-ratio error.

M3: Structural Virality. Another metric for a hashtag’s popularity
is how deeply it has permeated the network, or its structural virality
[34]. With unknown initial adopters, structural virality is measured
as the mean distance between all pairs of adopters (the Wiener
index). However, as initial adopters are known in our case, structural
virality is defined as the average distance between each adopter
and the nearest seed node. Since distances are usually between 3
and 12 hops [52], comparisons between simulated and empirical
structural virality are made using relative error |𝑀3𝑠𝑖𝑚−𝑀3𝑒𝑚𝑝 |

𝑀3𝑒𝑚𝑝
.

4.2 Growth
In order to understand how hashtags become viral, many studies
look not just at the popularity of a hashtag but also how its adoption
shifts over time [17, 76]. There are a number of commonly studied
properties of cascades that measure how they grow.

M4: Shape of Adoption Curve. The shape of a hashtag’s adoption
curve (or the number of uses over time) is indicative of different
mechanisms that may promote or inhibit a cascade’s growth [67, 76].
M4 is modeled by splitting both the simulated and empirical time
series into 𝑇 evenly-spaced intervals, where 𝑇 is the smaller of
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a) the number of timesteps in the simulation and b) the number
of hours in the empirical cascade. To make the empirical curve
comparable to the simulated curve, we first truncate the adoption
curve’s right tail once adoption levels remain low for a sustained
period of time, to match the simulation’s stopping criteria. We
compare the empirical and simulated curves using the dynamic
time warping (DTW) distance between them.

M5: Usage per Adopter. The growth patterns of hashtags vary
based on how often each user posts a hashtag [27]. M5 calculates the
average number of times each adopter used the hashtag. Simulated
and empirical cascades are compared with relative error.

M6: Edge Density. The structure of the adopter subgraph of the
network often reflects how a cascade grows and spreads through
the network [4]. In particular, to model connectivity, M6 is oper-
ationalized as the normalized number of edges, or edge density,
within the adopter subgraph.1 Since edges in the adopter subgraph
can be very sparse or very dense and these scenarios change the
number of edges by several orders of magnitude, the empirical and
simulated edge densities are compared using the log-ratio error.

M7: Growth Predictivity. In many cases, it is useful to be able
to predict how big a cascade will become based on a small set of
initial adopters [18, 46, 55]. In order to test how well each model
achieves this task, we attempt to predict the size of each empirical
cascade based on the characteristics of the first 100 adopters in
each simulation using a multi-layer perceptron regression with 100
hidden layers, an Adam optimizer, and ReLU activation. Predictors
include a set of 711 attributes from Cheng et al. [18] that are not
directly used by our models: the timestep at which each of the first
100 adopters used the hashtag; the degree of each adopter in the full
network and adopter subgraph (note that the identity-only model
preserves degrees of each agent); and the age and gender of each
adopter, inferred using Wang et al. [89]’s demographic inference
algorithm, etc. Simulated and empirical cascades are compared
using the relative error of the predicted cascade size.

4.3 Adopters
In addition to modeling popularity and growth, a body of research
has studied how certain subpopulations come to adopt new culture
[6, 19]. We identify a set of three measures of how well a simulated
cascade reproduces the composition of adopters.

M8: Demographic Similarity. New culture is often adopted in
demographically (e.g., racially, socioeconomically, linguistically)
homogenous groups. This may occur when the cultural product is
explicitly signaling an affiliationwith the demographic identity (e.g.,
#strugglesofbeingblack) or by convention [2, 23, 86, 87]. We com-
pare the distribution of agents demographic attributes in adopters
from empirical and simulated cascades. Since there are many de-
mographic attributes, we construct a one-dimensional measure of
these attributes using a propensity score. This propensity score is
the predicted probability obtained by regressing the demographic
1Another commonly studied property of the adopter subgraph is the number of con-
nected components. We chose not to use the number of connected components because
the corresponding error was reasonably correlated with edge density, so they didn’t
seem like sufficiently different measures; additionally, unlike edge density, the con-
nected components often change dramatically after downsampling.

attributes on a binary variable indicating whether the user is from
the simulated or empirical cascade. This propensity score has two
important properties: 1) users that are adopters in both cascades will
not factor into the construction of the propensity score since they
are represented as both 1’s and 0’s in the logistic regression; and 2)
if the empirical and simulated adopters have similar demographic
distributions, the propensity scores of adopters in the empirical
cascade will have a similar distribution as the propensity scores of
adopters in the simulated cascade [74]. The differences in demo-
graphics between simulated and empirical cascades is measured
using the Kullback–Leibler (KL) divergence of the distribution of
the empirical adopters’ and simulated adopters’ propensity scores.

M9: Geographic Similarity. Another property of interest is whether
a model can reproduce where adopters of a hashtag are located in
U.S.A. [26, 41]. The location of adopters is modeled as a smoothed
county-level distribution of the fraction of users in the county who
adopted the hashtag. Geographic similarity is measured as the Lee’s
𝐿 spatial correlation between the spatial distributions of empirical
and simulated usage [5, 50].

M10: Network Property Similarity. Another property of cascades
is the position of adopters within the network [43, 90]. We cal-
culate each user’s position in the network along four relatively
low-correlated (Pearson’s 𝑅 < 0.5) network properties, includ-
ing PageRank, eigencentrality, transitivity, and community mem-
bership (using the Louvain community detection algorithm [14]).
Similar to M8, we represent the adopters’ network positions us-
ing a propensity score, and compare the empirical and simulated
adopters’ propensity scores using KL divergence.

4.4 Composite Metric
For a more holistic evaluation, we construct a composite Cascade
Match Index (cmi) encompassing all ten metrics. The cmi is cal-
culated by z-scoring each metric M1-M10 then averaging z-scores
over all ten metrics. See Appendix B for details. The ten measures
comprising the cmi are overall poorly correlated with each other
(Figure S1), suggesting that M1-M10 do, in fact, measure distinct
properties of the cascade and are not redundant.

5 Network and Identity Model Different
Attributes of a Cascade

To test our hypothesis, we simulate hashtag cascades using the
Network+Identity, Network-only, and Identity-only models, and
determine which one best matches properties of empirical cascades.

5.1 Experimental Setup
For each of the 1,337 hashtags and three models, we 1) seed the
model at the hashtag’s initial adopters, 2) fit the stickiness parame-
ter, 3) run five simulations at this parameter, and 4) compare prop-
erties of the simulated and empirical cascades. Then we construct
the cmi and compare values across the three models.

5.2 Results
Figure 1 shows that the Network+Identity model outperforms the
Network-only and Identity-only counterfactuals on the composite
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Figure 1: The Network+Identity model outperforms the
Network-only and Identity-only baselines. Models evaluated
on the full cmi and just the subset of indices corresponding
to popularity, growth, and adopter characteristics. Higher
cmi scores corresponds to better performance.

cmi—suggesting that, on the whole, hashtag cascades are best mod-
eled using a combination of network and identity. However, our
results also suggest that, while models involving both network and
identity are most performant overall, there is important variation in
what social factors are required for different properties of hashtag
cascades. Thus, while incorporating network and identity leads to
the highest overall performance, the network-only or identity-only
model may be a better choice if certain features are the target.

As shown in Table S1, the Network+Identity had the top perfor-
mance on a larger number of individual metrics (5 of 10) than the
Network-only (2) or Identity-only (3) models. Overall, the Network-
only model tended to perform best on popularity-related metrics; it
had the highest score on M2 and M3, as well as a higher score on a
composite index of the three growth-related measures. On the other
hand, the Identity-only model tends to perform better on adopter-
related metrics, while growth-related metrics were best modeled
by a combination of both network and identity. Network+Identity
performed best on growth-related metrics and second best in the
other types of metrics. A possible explanation for the heterogeneity
in performance is that different mechanisms are responsible for
different properties of cascades.

6 Network and Identity in Context
The diffusion of hashtags specifically, as well as the process of
cultural production more generally, varies across contexts. For in-
stance, hashtags with demographically homogenous initial adopters
are more likely to be used to signal identity [3, 84]. Additionally,
hashtags have different patterns of diffusion depending on their
topic or semantic context [51, 72]. The goal of this section is to
understand whether information about the hashtag and its initial
adopters are associated with model performance.

6.1 Experimental Setup
In order to understand the relationship between the context in
which each hashtag was coined and the role of network and identity,
we run a linear regression to test the association between the cmi
and several properties of the hashtag. As shown in Equation 2, we
estimate the effect of each covariate 𝑐𝑖 on the cmi of each model.

𝛽𝑖 are the regression coefficients, where 𝛽1 estimates the effect of
the first covariate on cmi in the Network+Identity model, 𝛽1 + 𝛽𝑁1
estimates the effect in the Network-only model, etc. Our regression
estimates the effect of each property after controlling for all other
properties (e.g., the effect of racial similarity in initial adopters
is independent of the effect of their geographic proximity, even
though these two factors are correlated).

𝐶𝑀𝐼 ∼ 𝛽0+
∑︁
𝑖

𝛽𝑖𝑐𝑖 +
∑︁
𝑖

𝛽𝐼𝑖 𝑐𝑖 ∗1𝐼𝑑−𝑜𝑛𝑙𝑦+
∑︁
𝑖

𝛽𝑁𝑖 𝑐𝑖 ∗1𝑁𝑒𝑡−𝑜𝑛𝑙𝑦 (2)

Covariates are four sets of properties of the hashtag’s context
(the distribution of each property is in Figure S2):

Topic. The topic of a hashtag (e.g., whether it is related to sports,
pop culture, or some other subject matter) may be associated with
the extent to which different mechanisms like network and identity
play a role in its diffusion [72]. Therefore, we include each hash-
tag’s topic, measured using the model from Antypas et al. [7], as a
covariate in Equation 2. Appendix E lists all the topics used.

Communicative Need. Properties of hashtag cascades may also
be attributable to differences in communicative need for a hashtag
[44, 51, 85]. Ryskina et al. [75] quantified communicative need
using two measures: 1) semantic sparsity, or how many similar
hashtags exist in the lexicon when the focal hashtag was introduced
(a hashtag in a sparse space may be in higher demand since there are
fewer hashtags that can serve the same function); and 2) semantic
growth, or the growth in the semantic space over time (a hashtag
in a high-growth space may be in higher demand since it serves
a purpose of increasing popularity). For instance, a hashtag like
#broncosnation (signifying support for the city of Denver’s local
football team) has low semantic sparsity, because many cities had
similar sports hashtags when it was coined; it also has low semantic
growth because, while sports team hashtags are popular, the use
of these sorts of hashtags has remained fairly stable over time.
Appendix E has details on how these measures are operationalized.

Identity. As described in Section 3.3, each hashtag’s identity is
based on the demographics of the first ten adopters. Since the iden-
tities of early adopters may influence the perception of the hashtag
[3], and since having more homogenous initial adopters may lead
to stronger perceptions, covariates include the mean pairwise simi-
larity of the ten initial adopters within each component of identity
(location, race, SES, languages spoken, political affiliation).

Initial Network Position. Another factor in a hashtag’s diffusion
is where in the network the hashtag is introduced [43, 90]. For
instance, more central initial adopters may be able to spread the
hashtag more broadly because of their influence. Therefore, we
include the median initial adopter’s eigencentrality as a covariate.

6.2 Results
Figures 2-3 show the regression results; in Figure 2, the y-axes
(and in Figure 3, the x-axis) plot the predicted cmi for each model
corresponding to different levels of each covariate, holding all other
covariates constant. In all conditions, the Network+Identity model
performs as well as or better than the other models. This suggests
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Figure 2: The comparative advantage of modeling cascades using both network and identity is highest when a) initial adopters
are located very close to each other; b) have a high degree of racial similarity; c-f) have a moderate degree of linguistic,
socioeconomic, and political similarity and eigencentrality; g) hashtags convey a similar meaning as a moderate number of
other hashtags, and h) their meaning is not becoming increasingly popular over time. Effects are estimated by running a
regression, controlling for other variables related to the hashtag’s context.
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Figure 3: Although the Network+Identity model never un-
derperforms the others, the relative advantage of the Net-
work+Identity model varies by the topic of the hashtag. Ef-
fects are estimated by running a regression, controlling for
other variables related to the hashtag’s context.

that the conclusions from Section 5—that network and identity
better predict cascades together than separately—are robust.

The Network+Identity model tends to outperform the other mod-
els in cases where there is a theoretical expectation that network
and identity would each contribute to the underlying diffusion
mechanism. For instance, when initial adopters have a high level
of racial similarity, the Network+Identity model’s performance im-
proves while other models get worse (Figure 2b); this is consistent
with the theoretical framework of Sharma [81], where hashtags
used to signal racial identity on Black Twitter diffuse via a mech-
anism that combines network and identity. A similar mechanism
is propose for sports hashtags, where only fans of a specific team
adopt the hashtag which shapes exposure in the Twitter network
[84]. Similarly, regional hashtags may require network and identity
to constrain adopters to the local area [79]; consistent with this
expectation, the Network+Identity model has its strongest com-
parative advantage among hashtags that promote regional culture,
including sports hashtags (which often express support for local
teams) and hashtags whose initial adopters are located near each

other (Figure 2a,3). The Network+Identity model also has the best
performance on geographic distribution of adoption, suggesting
a connection between this model and the ability to predict geo-
graphic localization [5, 49]. Similarly, hashtags related to certain
topics—sports, film/TV/video, diaries/daily life, and news/social
concern—tend to be better modeled by the Network+Identity sim-
ulations than others (Figure 3). These hashtags are often used in
conversations that involve identity signaling in order to take a
stance (e.g., sharing their opinion on issues of social concern, their
favorite TV show, and aspects of daily life) [29].

Additionally, the Network+Identity model may outperform the
Network-only and Identity-only models because hashtags that
diffuse via two mechanisms are more likely to become popular

than hashtags diffusing via just one [36, 38]. For instance, the Net-
work+Identity model outperforms baselines among very slow- or
very fast-growing hashtags, but not among hashtags with moderate
growth (Figure 2f-h). Similarly, the model has its highest compar-
ative advantage when initial adopters are moderately central. In
cases of extreme growth or moderate initial adopter centrality, hash-
tags that diffuse via multiple mechanisms (network and identity)
may be overrepresented in our sample of popular hashtags.

Finally, the Network+Identity model often has its strongest com-
parative advantage when the Network-only or Identity-only models
perform well. To test this, we regress the Network+Identity model’s
cmi score in each trial on the counterfactual Network-only and
Identity-only cmi scores, and find a strong, positive association for
both counterfactuals (regression coefficients of 0.31 and 0.21 respec-
tively, 𝑝 < 10−16). Therefore, even when single-variable models
have relatively high performance, combining multiple social factors
can lead to improvements.

7 Selecting Among Models
Figure 1 suggests that the mechanisms underlying the diffusion of
hashtags are likely heterogeneous: most hashtags are best modeled
by a combination of network and identity, but some are better mod-
eled by network alone or identity alone. Moreover, on the whole,
the Network+Identity model had the highest score on the cmi in
42% (2,791) of trials, while the Network-only model had the highest
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Figure 4: A combined model that selects among the three
models does better than the Network+Identity model alone.

score in 30% (1,992) and the Identity-only model in 28% (1,902) of
trials. When we select the model that has the highest score on the
cmi for each trial (we’ll call this the optimal combined model), the av-
erage score on the cmi improves from 0.06 in the Network+Identity
model to 0.27 with the optimal combined model (Figure 4, pink vs.
dark blue bars); this is comparable to the Network+Identity model’s
improvement over the Identity-only model (0.21 vs. 0.16 points).
Identifying whether network and/or identity best predicts a given
hashtag’s cascade can lead to significant predictive gains. Since our
goal is to produce a unified model that reproduces all properties of
cascades, one option is to create a predicted combined model that
uses features of the hashtag and early adopters to decide whether
to use network or identity or both, instead of an optimal combined

model where the model selection is performed post-hoc.
Since there are associations between the characteristics of the

hashtags and the relative performance of the three models, we
develop a predicted combinedmodel that uses these characteristics to
determine whether network alone, identity alone, or both together
would perform best on the cmi. Using the features described in
Section 6.1, we trained a random forest classifier to predict whether
each hashtag would be best predicted by the Network+Identity,
Network-only, or Identity-only model. Predictions were obtained
using a repeated 5-fold cross-validation.

The random forest classifier weakly outperforms a baseline that
always selects the Network+Identity model (0.44 vs. 0.41 accuracy);
the predicted combined model significantly outperforms the Net-
work+Identity model on the cmi (Figure 4, light blue bars), suggest-
ing that the classifier may be picking out examples of hashtags that
are “obviously” or “easily” identifiable as being better-modeled by
network or identity alone and where the single-variable models
are associated with significant predictive improvements over the
Network+Identity model. This predicted combined model achieves
its gain in performance by better reproducing properties related
to popularity (where it equals the Network-only model’s perfor-
mance) and adopter characteristics, and trading off slightly lower
performance on the growth-related measures (Figure 4, compar-
ing light and dark blue bars). These results suggest that the initial
characteristics of cascades can, in some cases, signal the driving
mechanism behind the hashtag’s diffusion and therefore the best
model to estimate the cascade.

8 Discussion
Our work suggests that modeling cultural production requires ex-
plicitly incorporating the role of multiple social factors in the pro-
cess of diffusion. This study examines the role of network and
identity in the diffusion of novel hashtags on Twitter. In order to
test the roles of network and identity in diffusion, we evaluate
whether a model containing network and identity better repro-
duces properties of each hashtag’s cascade than models containing
just network or just identity—and whether this holds across dif-
ferent types of hashtags. The results support our hypothesis from
three standpoints. First, the model with both identity and network
better reproduces an aggregate of cascade properties than models
with identity or network alone. Second, many individual properties
are also better modeled with network and identity together. Third,
these findings are true across many different types of hashtags (dif-
ferent topics, identities, etc.). These findings are significant because
most existing work has focused on the effects of single factors (e.g.,
network or identity) rather than creating a model that combines
multiple social factors to explain the spread of culture. Our work
suggests that there is value in adding this extra complexity.

Our analysis also reveals that there is important heterogeneity
in the roles network and identity play in cultural production. For
instance, network structure does a worse job modeling the adopter
composition of cascades, while identity underperforms at model-
ing a cascade’s popularity. Additionally, there are several contexts
where the network and identity likely offer non-duplicative con-
ditions for diffusion or jointly confer some selective advantage to
new hashtags. For instance, hashtags related to racial or regional
culture, sports, and news. Under these conditions, it is especially
important for models of cascades to combine both factors.

Our analysis has limitations that can be addressed by future
work: Our model only considered network and identity, and not
other relevant social factors (e.g., the type of relationships between
users). This limitation could be responsible for some heterogeneity
in performance. However, such factors are difficult to model at scale
and, thus, were outside the scope of the paper. Additionally, in the
interest of parsimony, our model did not incorporate many factors
unrelated to network and identity that are known to influence
diffusion (e.g., structural diversity, correlated diffusion).

The Network+Identity model always used both network and
identity. We presented a first step towards developing a combined

model that selects which features would work best for each hash-
tag. However, future work could likely improve upon this initial
model. In order to facilitate future work, we release a database
of the 1,337 hashtags included in this study, which were coined
between 2013 and 2022, used frequently, and likely to represent
user-created culture; using a 10% sample of Twitter, we develop
a database of each hashtag’s adoption and a rich set of features
like the hashtag’s topic, embedding, communicative need, and the
identities of adopters. Based on a comprehensive literature review,
we identify ten frequently-modeled properties of cascades related
to their popularity (e.g., cascade size), growth (e.g., shape of the
growth curve), and adopter composition (e.g., demographic simi-
larity) and release a composite cmi that compares empirical and
simulated cascades across all ten properties.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

The Role of Network and Identity in the Diffusion of Hashtags WWW ’25, Apr 28– May 2, 2025, Sydney, AUS

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Crystal Abidin. 2021. From “networked publics” to “refracted publics”: A com-

panion framework for researching “below the radar” studies. Social Media+

Society 7, 1 (2021), 2056305120984458.
[2] Jacob Levy Abitbol, Márton Karsai, Jean-Philippe Magué, Jean-Pierre Chevrot,

and Eric Fleury. 2018. Socioeconomic dependencies of linguistic patterns in twit-
ter: a multivariate analysis. In Proceedings of the 2018 World Wide Web Conference.
1125–1134.

[3] Asif Agha. 2005. Voice, footing, enregisterment. Journal of linguistic anthropology
15, 1 (2005), 38–59.

[4] Luca Maria Aiello, Alain Barrat, Ciro Cattuto, Rossano Schifanella, and Giancarlo
Ruffo. 2012. Link creation and information spreading over social and commu-
nication ties in an interest-based online social network. EPJ Data Science 1, 1
(2012), 1–31.

[5] Aparna Ananthasubramaniam, David Jurgens, and Daniel M Romero. 2024. Net-
works and identity drive the spatial diffusion of linguistic innovation in urban
and rural areas. npj Complexity 1, 1 (2024), 14.

[6] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, Jure Leskovec, and Mitul
Tiwari. 2015. Global diffusion via cascading invitations: Structure, growth, and
homophily. In Proceedings of the 24th international conference on World Wide Web.
66–76.

[7] Dimosthenis Antypas, Asahi Ushio, Jose Camacho-Collados, Vitor Silva,
Leonardo Neves, and Francesco Barbieri. 2022. Twitter Topic Classification.
In Proceedings of the 29th International Conference on Computational Linguistics.
International Committee on Computational Linguistics, Gyeongju, Republic of
Korea, 3386–3400. https://aclanthology.org/2022.coling-1.299

[8] Eytan Bakshy, Jake M Hofman, Winter A Mason, and Duncan J Watts. 2011.
Everyone’s an influencer: quantifying influence on twitter. In Proceedings of the

fourth ACM international conference on Web search and data mining. 65–74.
[9] Eytan Bakshy, Itamar Rosenn, CameronMarlow, and Lada Adamic. 2012. The role

of social networks in information diffusion. In Proceedings of the 21st international
conference on World Wide Web. 519–528.

[10] Alexander TJ Barron and Johan Bollen. 2022. Quantifying collective identity
online from self-defining hashtags. Scientific Reports 12, 1 (2022), 15044.

[11] Clay Beckner, Nick C Ellis, Richard Blythe, John Holland, Joan Bybee, Morten H
Christiansen, Diane Larsen-freeman, William Croft, and Tom Schoenemann.
2009. Language Is a Complex Adaptive System. Language Learning 11, March
2007 (2009), 1–26.

[12] Jonah Berger. 2008. Identity signaling, social influence, and social contagion.
Understanding peer influence in children and adolescents (2008), 181–199.

[13] Rebecca W Black. 2006. Language, culture, and identity in online fanfiction.
E-learning and Digital Media 3, 2 (2006), 170–184.

[14] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[15] Axel Bruns and Jean Burgess. 2011. The use of Twitter hashtags in the formation
of ad hoc publics. In Proceedings of the 6th European consortium for political

research (ECPR) general conference 2011. The European Consortium for Political
Research (ECPR), 1–9.

[16] Damon Centola and Michael Macy. 2007. Complex contagions and the weakness
of long ties. American journal of Sociology 113, 3 (2007), 702–734.

[17] Hsia-Ching Chang. 2010. A new perspective on Twitter hashtag use: Diffusion
of innovation theory. Proceedings of the American Society for Information Science

and Technology 47, 1 (2010), 1–4.
[18] Justin Cheng, Lada Adamic, P Alex Dow, Jon Michael Kleinberg, and Jure

Leskovec. 2014. Can cascades be predicted?. In Proceedings of the 23rd interna-

tional conference on World wide web. 925–936.
[19] Justin Cheng, Lada A Adamic, Jon M Kleinberg, and Jure Leskovec. 2016. Do

cascades recur?. In Proceedings of the 25th international conference on world wide

web. 671–681.
[20] Ryan Compton, David Jurgens, and David Allen. 2014. Geotagging one hun-

dred million twitter accounts with total variation minimization. In 2014 IEEE

international conference on Big data (big data). IEEE, 393–401.
[21] Evandro Cunha, Gabriel Magno, Giovanni Comarela, Virgilio Almeida, Mar-

cos André Gonçalves, and Fabricio Benevenuto. 2011. Analyzing the dynamic
evolution of hashtags on twitter: a language-based approach. In Proceedings of

the workshop on language in social media (LSM 2011). 58–65.
[22] Julia Davies. 2007. Display, Identity and the Everyday: Self-presentation through

online image sharing. Discourse: studies in the cultural politics of education 28, 4
(2007), 549–564.

[23] Penelope Eckert. 2008. Variation and the indexical field 1. Journal of sociolin-
guistics 12, 4 (2008), 453–476.

[24] Penelope Eckert. 2012. Three Waves of Variation Study: The Emergence of
Meaning in the Study of Sociolinguistic Variation. Annual Review of Anthropology

41 (2012), 87–100. https://doi.org/10.1146/annurev-anthro-092611-145828
[25] Jacob Eisenstein, Brendan O’Connor, Noah A Smith, and Eric P Xing. 2014.

Diffusion of lexical change in social media. PloS one 9, 11 (2014), e113114.

[26] Jacob Eisenstein, Brendan O’Connor, Noah A Smith, and Eric P Xing. 2012.
Mapping the geographical diffusion of new words. arXiv preprint arXiv:1210.5268
1 (2012), 13.

[27] Nick C Ellis. 2002. Frequency effects in language processing: A review with
implications for theories of implicit and explicit language acquisition. Studies in
second language acquisition 24, 2 (2002), 143–188.

[28] Nick C Ellis. 2019. Essentials of a Theory of Language Cognition. The Modern

Language Journal 103, Supplement 2019 (2019), 39–60. https://doi.org/10.1111/
modl.12532

[29] Ash Evans. 2016. Stance and identity in Twitter hashtags. Language@ internet

13, 1 (2016).
[30] Casey Fiesler and Brianna Dym. 2020. Moving across lands: Online platform

migration in fandom communities. Proceedings of the ACM on Human-Computer

Interaction 4, CSCW1 (2020), 1–25.
[31] Clay Fink, Aurora Schmidt, Vladimir Barash, Christopher Cameron, and Michael

Macy. 2016. Complex contagions and the diffusion of popular Twitter hashtags
in Nigeria. Social Network Analysis and Mining 6 (2016), 1–19.

[32] Korina Giaxoglou. 2018. # JeSuisCharlie? Hashtags as narrative resources in
contexts of ecstatic sharing. Discourse, context & media 22 (2018), 13–20.

[33] Rahul Goel, Sandeep Soni, Naman Goyal, John Paparrizos, Hanna Wallach, Fer-
nando Diaz, and Jacob Eisenstein. 2016. The social dynamics of language change
in online networks. In International conference on social informatics. Springer,
41–57.

[34] Sharad Goel, Ashton Anderson, Jake Hofman, and Duncan J Watts. 2016. The
structural virality of online diffusion. Management Science 62, 1 (2016), 180–196.

[35] Erving Goffman et al. 1978. The presentation of self in everyday life. Vol. 21.
Harmondsworth London.

[36] Yue Han, Theodoros Lappas, and Gaurav Sabnis. 2020. The importance of inter-
actions between content characteristics and creator characteristics for studying
virality in social media. Information Systems Research 31, 2 (2020), 576–588.

[37] Roberto Hernández Soto, Mónica Gutiérrez Ortega, Bartolomé Rubia Avi, et al.
2021. Key factors in knowledge sharing behavior in virtual communities of
practice: A systematic review. Education in the knowledge society: EKS (2021).

[38] Tuan-Anh Hoang and Ee-Peng Lim. 2012. Virality and susceptibility in informa-
tion diffusions. In Proceedings of the international AAAI conference on web and

social media, Vol. 6. 146–153.
[39] Jake M Hofman, Amit Sharma, and Duncan J Watts. 2017. Prediction and expla-

nation in social systems. Science 355, 6324 (2017), 486–488.
[40] Bernie Hogan. 2010. The presentation of self in the age of social media: Distin-

guishing performances and exhibitions online. Bulletin of Science, Technology &

Society 30, 6 (2010), 377–386.
[41] Yuan Huang, Diansheng Guo, Alice Kasakoff, and Jack Grieve. 2016. Under-

standing US regional linguistic variation with Twitter data analysis. Computers,

Environment and Urban Systems 59 (2016), 244–255.
[42] Bernardo A Huberman, Daniel M Romero, and Fang Wu. 2008. Social networks

that matter: Twitter under the microscope. Technical Report. arXiv:0812.1045v1
[43] Mahdi Jalili and Matjaž Perc. 2017. Information cascades in complex networks.

Journal of Complex Networks 5, 5 (2017), 665–693.
[44] Andres Karjus, Richard A Blythe, Simon Kirby, and Kenny Smith. 2020. Com-

municative need modulates competition in language change. arXiv preprint

arXiv:2006.09277 (2020).
[45] Siddharth Krishnan, Patrick Butler, Ravi Tandon, Jure Leskovec, and Naren Ra-

makrishnan. 2016. Seeing the forest for the trees: new approaches to forecasting
cascades. In Proceedings of the 8th ACM Conference on Web Science. 249–258.

[46] Andrey Kupavskii, Liudmila Ostroumova, Alexey Umnov, Svyatoslav Usachev,
Pavel Serdyukov, Gleb Gusev, and Andrey Kustarev. 2012. Prediction of retweet
cascade size over time. In Proceedings of the 21st ACM international conference on

Information and knowledge management. 2335–2338.
[47] Soyeon Kwon and Sejin Ha. 2023. Examining identity-and bond-based hashtag

community identification: the moderating role of self-brand connections. Journal
of Research in Interactive Marketing 17, 1 (2023), 78–93.

[48] Gevisa La Rocca. 2020. Possible selves of a hashtag: Moving from the theory
of speech acts to cultural objects to interpret hashtags. International Journal of
Sociology and Anthropology 12, 1 (2020), 1–9.

[49] William Labov. 2007. Transmission and diffusion. Language 83, 2 (2007), 344–387.
[50] Sang-Il Lee. 2001. Developing a bivariate spatial association measure: an inte-

gration of Pearson’s r and Moran’s I. Journal of geographical systems 3, 4 (2001),
369–385.

[51] Janette Lehmann, Bruno Gonçalves, José J Ramasco, and Ciro Cattuto. 2012.
Dynamical classes of collective attention in twitter. In Proceedings of the 21st

international conference on World Wide Web. 251–260.
[52] Jure Leskovec and Eric Horvitz. 2008. Planetary-scale views on a large instant-

messaging network. In Proceedings of the 17th international conference on World

Wide Web. 915–924.
[53] Natalia Levina and Manuel Arriaga. 2014. Distinction and status production on

user-generated content platforms: Using Bourdieu’s theory of cultural production
to understand social dynamics in online fields. Information Systems Research 25,
3 (2014), 468–488.

9

https://aclanthology.org/2022.coling-1.299
https://doi.org/10.1146/annurev-anthro-092611-145828
https://doi.org/10.1111/modl.12532
https://doi.org/10.1111/modl.12532
https://arxiv.org/abs/0812.1045v1


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, Apr 28– May 2, 2025, Sydney, AUS Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[54] Cheng Li, Xiaoxiao Guo, and Qiaozhu Mei. 2018. Joint modeling of text and net-
works for cascade prediction. In Proceedings of the International AAAI Conference

on Web and Social Media, Vol. 12.
[55] Cheng Li, Jiaqi Ma, Xiaoxiao Guo, and Qiaozhu Mei. 2017. Deepcas: An end-to-

end predictor of information cascades. In Proceedings of the 26th international

conference on World Wide Web. 577–586.
[56] Huacheng Li, Chunhe Xia, Tianbo Wang, Sheng Wen, Chao Chen, and Yang

Xiang. 2021. Capturing dynamics of information diffusion in SNS: A survey
of methodology and techniques. ACM Computing Surveys (CSUR) 55, 1 (2021),
1–51.

[57] Yu-Ru Lin, Drew Margolin, Brian Keegan, Andrea Baronchelli, and David Lazer.
2013. # Bigbirds never die: Understanding social dynamics of emergent hashtags.
In Proceedings of the international aaai conference on web and social media, Vol. 7.
370–379.

[58] Philipp Lorenz-Spreen, BjarkeMørchMønsted, PhilippHövel, and Sune Lehmann.
2019. Accelerating dynamics of collective attention. Nature communications 10,
1 (2019), 1759.

[59] Zongyang Ma, Aixin Sun, Quan Yuan, and Gao Cong. 2014. Tagging your tweets:
A probabilistic modeling of hashtag annotation in twitter. In Proceedings of the

23rd ACM international conference on conference on information and knowledge

management. 999–1008.
[60] Lev Manovich. 2009. The practice of everyday (media) life: From mass consump-

tion to mass cultural production? Critical inquiry 35, 2 (2009), 319–331.
[61] Marie Merle, Gerhard Reese, and Stefan Drews. 2019. # Globalcitizen: An ex-

plorative Twitter analysis of global identity and sustainability communication.
Sustainability 11, 12 (2019), 3472.

[62] Aaron Mueller, Zach Wood-Doughty, Silvio Amir, Mark Dredze, and Alicia Lynn
Nobles. 2021. Demographic representation and collective storytelling in the me
too Twitter hashtag activism movement. Proceedings of the ACM on human-

computer interaction 5, CSCW1 (2021), 1–28.
[63] David B Nieborg, Brooke Erin Duffy, and Thomas Poell. 2020. Studying platforms

and cultural production: Methods, institutions, and practices. Social Media+

Society 6, 3 (2020), 2056305120943273.
[64] David B Nieborg and Thomas Poell. 2018. The platformization of cultural pro-

duction: Theorizing the contingent cultural commodity. New media & society 20,
11 (2018), 4275–4292.

[65] Ruth Page. 2012. The linguistics of self-branding and micro-celebrity in Twitter:
The role of hashtags. Discourse & communication 6, 2 (2012), 181–201.

[66] Alberto Palloni. 2001. Diffusion in sociological analysis. National Academies
Press Washington, DC, 67–114.

[67] H Earl Pemberton. 1936. The curve of culture diffusion rate. American Sociological

Review 1, 4 (1936), 547–556.
[68] Richard A Peterson and Narasimhan Anand. 2004. The production of culture

perspective. Annu. Rev. Sociol. 30, 1 (2004), 311–334.
[69] Soumajit Pramanik, Qinna Wang, Maximilien Danisch, Jean-Loup Guillaume,

and Bivas Mitra. 2017. Modeling cascade formation in Twitter amidst mentions
and retweets. Social Network Analysis and Mining 7 (2017), 1–18.

[70] Simone Raponi, Zeinab Khalifa, Gabriele Oligeri, and Roberto Di Pietro. 2022.
Fake news propagation: A review of epidemic models, datasets, and insights.
ACM Transactions on the Web (TWEB) 16, 3 (2022), 1–34.

[71] Eugenia Ha Rim Rho and Melissa Mazmanian. 2019. Hashtag burnout? a control
experiment investigating how political hashtags shape reactions to news content.
Proceedings of the ACM on human-computer interaction 3, CSCW (2019), 1–25.

[72] Daniel M Romero, Brendan Meeder, and Jon Kleinberg. 2011. Differences in the
mechanics of information diffusion across topics: idioms, political hashtags, and
complex contagion on twitter. In Proceedings of the 20th international conference

on World wide web. 695–704.
[73] Daniel M Romero, Chenhao Tan, and Johan Ugander. 2013. On the interplay

between social and topical structure. In Seventh International AAAI Conference

on Weblogs and Social Media.
[74] Paul R Rosenbaum and Donald B Rubin. 1983. The central role of the propensity

score in observational studies for causal effects. Biometrika 70, 1 (1983), 41–55.
[75] Maria Ryskina, Ella Rabinovich, Taylor Berg-Kirkpatrick, David RMortensen, and

Yulia Tsvetkov. 2020. Where newwords are born: Distributional semantic analysis
of neologisms and their semantic neighborhoods. arXiv preprint arXiv:2001.07740
(2020).

[76] Soumajyoti Sarkar, Ruocheng Guo, and Paulo Shakarian. 2017. Understanding
and forecasting lifecycle events in information cascades. Social Network Analysis
and Mining 7 (2017), 1–22.

[77] Gregory D Saxton, Jerome N Niyirora, Chao Guo, and Richard D Waters. 2015. #
AdvocatingForChange: The strategic use of hashtags in social media advocacy.
Advances in Social Work 16, 1 (2015), 154–169.

[78] Mirko Tobias Schäfer. 2011. Bastard culture! How user participation transforms

cultural production. Amsterdam University Press.
[79] Raz Schwartz and Germaine R Halegoua. 2015. The spatial self: Location-based

identity performance on social media. New media & society 17, 10 (2015), 1643–
1660.

[80] Mina Seraj. 2012. We create, we connect, we respect, therefore we are: intellectual,
social, and cultural value in online communities. Journal of Interactive Marketing

26, 4 (2012), 209–222.
[81] Sanjay Sharma. 2013. Black Twitter? Racial hashtags, networks and contagion.

New formations 78, 78 (2013), 46–64.
[82] Pavica Sheldon, Erna Herzfeldt, and Philipp A Rauschnabel. 2020. Culture and

social media: the relationship between cultural values and hashtagging styles.
Behaviour & Information Technology 39, 7 (2020), 758–770.

[83] Shashank Sheshar Singh, Vishal Srivastava, Ajay Kumar, Shailendra Tiwari,
Dilbag Singh, and Heung-No Lee. 2023. Social network analysis: a survey on
measure, structure, language information analysis, privacy, and applications.
ACM Transactions on Asian and Low-Resource Language Information Processing

22, 5 (2023), 1–47.
[84] Lauren Reichart Smith and Kenny D Smith. 2012. Identity in Twitter’s hashtag

culture: A sport-media-consumption case study. International Journal of Sport
Communication 5, 4 (2012), 539–557.

[85] Ian Stewart and Jacob Eisenstein. 2018. Making "fetch" happen: The influence
of social and linguistic context on nonstandard word growth and decline. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing. 4360–4370.
[86] Ian Stewart, Yuval Pinter, and Jacob Eisenstein. 2018. Si o no, que penses? cat-

alonian independence and linguistic identity on social media. In Proceedings of

the 2018 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 2 (Short Papers).
136–141.

[87] Karolina Sylwester and Matthew Purver. 2015. Twitter language use reflects
psychological differences between democrats and republicans. PloS one 10, 9
(2015), e0137422.

[88] Michael Tomasello. 2000. First steps toward a usage-based theory of language
acquisition. Cognitive linguistics 11, 1/2 (2000), 61–82.

[89] Zijian Wang, Scott Hale, David Ifeoluwa Adelani, Przemyslaw Grabowicz, Timo
Hartman, Fabian Flöck, and David Jurgens. 2019. Demographic inference and
representative population estimates from multilingual social media data. In The

World Wide Web Conference. ACM, 2056–2067.
[90] Duncan J Watts. 2002. A simple model of global cascades on random networks.

Proceedings of the National Academy of Sciences 99, 9 (2002), 5766–5771.
[91] Peter Wikström. 2014. # srynotfunny: Communicative functions of hashtags on

Twitter. SKY Journal of Linguistics 27 (2014), 127–152.
[92] Andrew F Wood and Matthew J Smith. 2004. Online communication: Linking

technology, identity, & culture. Routledge.
[93] Lei Yang, Tao Sun, Ming Zhang, and Qiaozhu Mei. 2012. We know what@

you# tag: does the dual role affect hashtag adoption?. In Proceedings of the 21st

international conference on World Wide Web. 261–270.
[94] Chenwei Zhang, Zheng Gao, and Xiaozhong Liu. 2016. How others affect your

twitter# hashtag adoption? examination of community-based and context-based
information diffusion in twitter. IConference 2016 Proceedings (2016).

[95] Zi-Ke Zhang, Chuang Liu, Xiu-Xiu Zhan, Xin Lu, Chu-Xu Zhang, and Yi-Cheng
Zhang. 2016. Dynamics of information diffusion and its applications on complex
networks. Physics Reports 651 (2016), 1–34.

[96] Fan Zhou, Xovee Xu, Goce Trajcevski, and Kunpeng Zhang. 2021. A survey of
information cascade analysis: Models, predictions, and recent advances. ACM
Computing Surveys (CSUR) 54, 2 (2021), 1–36.

Appendix
A Annotation Prompt
In order to determine whether procedure in Section 3.3 returns
hashtag that are relevant to our study, two authors used the fol-
lowing prompt to test a sample of 100 hashtags returned by the
procedure:

Would the coining of this hashtag be an example of the
production of novel culture (Yes/No)? In this case, cultural pro-

duction is the process of creating and disseminating new, innovative

culture. While “culture” is a broad term, our definition excludes hash-

tags that make reference to entities by their official name (e.g., a

person by their full name or stage name, a location, a song title),

common phrases, and single dictionary words, since those hashtags

do not seem innovative. However, the following types of hashtags can

and should be considered examples of cultural production, because

their existence requires innovative choices and combinations of words:

nicknames or fan-created names for entities, unusual combinations
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M1. Level of Usage 3.10 / 0.09 3.21 / 0.01 3.37 / -0.10
M2. # Adopters 1.30 / -0.02 1.09 / 0.15 1.42 / -0.13
M3. Structural Virality 0.15 / 0.05 0.14 / 0.07 0.19 / -0.12
M4. Shape of Adoption Curve 0.12 / 0.05 0.13 / -0.16 0.11 / 0.12
M5. # Uses per Adopter 2.18 / 0.14 2.49 / -0.11 2.39 / -0.02
M6. Adopter Connectedness 1.83 / 0.29 2.08 / 0.11 2.80 / -0.40
M7. Growth Predictivity 1.83 / 0.12 2.08 / 0.01 2.80 / -0.04
M8. Demographic Difference 0.98 / -0.31 0.62 / 0.10 0.52 / 0.22
M9. Geographic Difference 0.09 / 0.32 0.03 / -0.12 0.03 / -0.16
M10. Network Difference 0.31 / 0.04 0.33 / 0.16 0.26 / -0.20

Table S1: The performance of each model on each metric in our cmi. This includes the raw comparison (e.g., log-ratio error,
relative error, similarity score) and normalized comparison (z-score) for each measure.
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(a) Network+Identity
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(b) Network-only
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(c) Identity-only

Figure S1: Correlations between cascade evaluation measure M1–M10 are relatively low, suggesting that these capture distinct
properties that can be effectively combined by the cmi.

of dictionary words, slogans, and acronyms. Examples of hashtags

to say ‘Yes’ to: #goravens, #rio2016, #votefreddie, #blacklivesmatter,

#myboyfriendnotallowedto, #incomingfreshmenadvice

B Constructing the Cascade Match Index
Since M1-M7 are compared using a measure of distance or error
(i.e., closer to 0 is better) and M8-M10 are compared using sim-
ilarity scores, we convert M1 - M7 from difference scores into
similarity scores by taking their additive inverse. This means that
higher values of the cmi correspond to better fit between empirical
and simulated cascades. Additionally, since each measure is on a
different scale, we standardize all similarities using a z-score; to
facilitate cross-model comparisons, z-scores are calculated across
all three models (Network+Identity, Network-only, Identity-only)
rather than within each model to allow for cross-model compari-
son. Finally, since model parameters are calibrated to the cascade
size, and since empirical cascades (which came from the Twitter
Decahose) are expected to be 10% the size of simulated cascades,
we downsample the larger cascade to match the size of the smaller
one for properties M2 - M10 (e.g., if the simulated cascade ends

up being 10 times bigger than the empirical cascade, we randomly
sample 10% of the simulated cascade and compare that downsam-
pled cascade to the empirical cascade). This downsampling ensures
that the comparison between the empirical and simulated cascade
is independent of size—e.g., that certain models do not better match
properties because they were easier to calibrate to the correct cas-
cade size.

C Agent Identity
Each agent’s demographic identity is modeled as a vector Υ ∈
[0, 1]25 whose entries represent the proportion of residents in the
user’s Census tract and Congressional district with these different
demographic identities.

A user’s geographical lat/lon coordinates are the geographic
median of the geolocations they disclosed in their tweets. To ensure
high precision, we select only Twitter users with five or more GPS-
tagged tweets within a 15km radius, so that we have high certainty
about their location. This procedure uses conservative thresholds
for frequency and dispersion, and has been shown to produce highly
precise estimates of geolocation [20]. This precision may come at

11
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the cost of excluding some users from the study, but we chose
a high-precision approach because we agree that it is extremely
important to get the correct location so the rest of the identity is
correct.

We model each agent’s identity as consisting of several compo-
nents (components related to race: Black, Latino, white, etc.; com-
ponents related to SES: below poverty line, receive SNAP benefits,
less than high school education, unemployed, etc.). Each compo-
nent of agent identity varies continuously between 0 and 1, where
agents closer to 0 affiliate weakly with that identity and agents
closer to 1 strongly identify with the register. We infer each com-
ponent of identity based on the demographic composition of the
agent’s Census tract and Congressional district. For instance, we
infer the agent’s race, SES (poverty line, SNAP usage, education,
and laborforce status), and language spoken at home, based on the
fraction of the agent’s Census Tract identifying with each option in
the 2018 American Community Survey. The agent’s political iden-
tity is inferred based on the fraction of the agent’s Congressional
District that voted for a particular political party in the 2018 House
of Representatives election.

Note that each component of an agent’s identity is static over
time. We make this assumption because many of the demographic
attributes have remained fairly correlated over time; e.g., the Spear-
man rank correlation of each attribute across the 72K census tracts
is between 0.85 and 0.96 across the 10 years in our study. Therefore,
we would not expect invariant identity to have large impacts on
our conclusions. Additionally, within the set of identity features
used in our model, such as race, education, or languages spoken at
home, most individuals would likely not significantly change any
of these aspects with the course of our simulations ( 10 years in
total).

D Hashtags
D.1 Hashtag Identification
We systematically select hashtags from the Twitter Decahose sam-
ple between January 2012 and December 2022. First, we collect all
tweets from the Decahose sample that were posted by the 2,937,405
users in our network. These tweets contain 198,988 hashtags that
were used at least 100 times. Next, we filter these hashtags, as
follows:

(1) Popularity: To limit our study to hashtags that eventually
became popular, we eliminate 116,477 hashtags that were
used fewer than 1,000 times between 2013 and 2022. Fre-
quencies are counted without considering case. While some
studies may also consider less popular hashtags, we elimi-
nate these because many of the properties we’re interested
in can’t be calculated or are too noisy on small cascades.

(2) Novelty: To limit our study to newly coined hashtags, we
eliminate 77,134 hashtags that were used more than 100
times in 2012 (e.g., #obama2012, #sup, #sobad, #sandlot).

(3) Innovativeness: To ensure the hashtag represents pro-
duction of novel culture (e.g., it is not a reference to some
named entity, a common phrase, or a dictionary word),
we eliminate 3,144 hashtags that were entries in the Mer-
riam Webster English-language dictionary (e.g., #explore,
#dirt) or inWikidata, a repository of popular named entities

and phrases (e.g., #domesticviolence, #billcosby, #interiorde-
sign). Since hashtags cannot contain certain characters that
might appear in the dictionary and Wikidata (e.g., spaces,
apostrophes, periods), we replaced these characters with
both spaces and underscores to ensure that we eliminate
hashtags using these different conventions. Two authors
reviewed a sample of 100 of these hashtags and determined
that 84% of them were examples of user-generated cultural
production, rather than references to entities, dictionary
words, or other non-cultural or existing cultural references
(annotation guidelines in Appendix A).

(4) Presence of Seed Nodes: To ensure that the hashtag was
coined between 2013 and 2022, we eliminate 896 hashtags
whose cascade began before 2013 (e.g., #theedmsoundofla,
#southernstreets, #rastafarijams). The procedure to identify
seed nodes is described in Section D.2.

After this filtering, we were left with 1,337 hashtags.

D.2 Initial Adopters
Each cascade’s initial adopters are the users whose adoption of the
hashtag 1) was likely not influenced by prior usage on Twitter and
2) likely influenced future adoption of the hashtag. To identify these
users, we first find instances where each hashtag had a period of
contiguous usage, by looking for periods of time when the hashtag
was used at least 100 times in the Decahose sample (i.e., likely at
least 1,000 times overall) with less than a month’s gap between uses.
We assume that the cascade starts during the first period where
the hashtag was used more than 1,000 times, since prior work has
shown that any usage before this start date is likely unrelated to the
cascade as it was used too infrequently for users in the cascade to
have a high likelihood of adoption [5]; and adopters after the start
date are likely to remember the usage in this first period because
of its high frequency [51, 58]. The hashtag’s initial adopters are the
first ten users to use the hashtag after the start date.

E Hashtag Characteristics
E.1 Topic
We define a hashtag’s topic as the most frequent topic of the tweets
it appears in, where tweet topics are inferred using Antypas et al.
[7]’s supervised multi-label topic classifier. From the original set of
23 topics, we combine categories containing fewer than 50 hash-
tags into other categories that they most frequently co-occur with
(e.g., Learning & Educational with Youth & Student Life), and
end up with seven categories: diaries and daily life (379 hashtags,
e.g., #relationshipwontworkif, #learnlife, #birthdaybehavior), sports
(269 hashtags, e.g., #seahawksnation, #throwupthex, #dunkcity),
celebrity and pop culture (213 hashtags, e.g., #freesosa, #beyonce-
bowl, #kikifollowspree), film/TV/video (154 hashtags, e.g., #iveseen-
everyepisodeof, #betterbatmanthanbenaffleck, #doctorwho50th),
news and social concern (130 hashtags, e.g., #impeachmentday, #get-
covered, #saysomethingliberalin4words), music (103 hashtags, e.g.,
#lyricsthatmeanalottome, #nameanamazingband, #flawlessremix),
and other hobbies (89 hashtags, e.g., #camsbookclub, #amazoncart,
#polyvorestyle).
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E.2 Semantic Sparsity and Growth
Semantic sparsity and growth are measured as follows: Each hash-
tag’s 250-dimensional embedding is constructed by training the
word2vec algorithm over a window of 5 tokens and 800 epochs; in
order to ensure that the hashtags in our study have high enough
token frequency to be included in the final model, word2vec was
trained on all tweets containing the 1,337 hashtags in our sample
and a random sample of 20 million other tweets containing hash-
tags in our Twitter Decahose sample. Using the resulting word
embeddings, semantic sparsity is the number of hashtags that were
used in similar contexts at the time when the hashtag was coined

(similarity means the cosine similarity of the embeddings is at least
0.3,2 representing the supply of similar hashtags) and the semantic
growth is the Spearman rank correlation between the frequency of
all tokens that are similar to the hashtag and the month (where a
correlation of 1 means that words that are similar to the hashtag
are becoming more popular over time, and 0 means the hashtag is
used in contexts of static popularity).

Received 14 October 2024; revised 14 October 2024; accepted 14 October
2024
2The threshold of 0.3 is slightly lower than the threshold of 0.35 used in the original
paper, so that more hashtags have neighbors.
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Figure S2: The distributions of all hashtag characteristics over the 1,337 hashtags.
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