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ABSTRACT

Learning a robust policy that is performant across the state space, in a sample ef-
ficient manner, is a long-standing problem in online reinforcement learning (RL).
This challenge arises from the inability of algorithms to explore the environment
efficiently. Most attempts at efficient exploration tackle this problem in a set-
ting where learning begins from scratch, without prior information available to
bootstrap learning. However, such approaches often fail to fully leverage ex-
pert demonstrations and simulators that can reset to arbitrary states. These affor-
dances are valuable resources that offer enormous potential to guide exploration
and speed up learning. In this paper, we explore how a small number of expert
demonstrations and a simulator allowing arbitrary resets can accelerate learning
during online RL. We show that by leveraging expert state information to form
an auxiliary start state distribution, we significantly improve sample efficiency.
Specifically, we show that using a notion of safety to inform the choice of auxil-
iary distribution significantly accelerates learning. We highlight the effectiveness
of our approach by matching or exceeding state-of-the-art performance in sparse
reward and dense reward setups, including with images states spaces, even when
competing with algorithms with access to expert actions and rewards. Moreover,
we find that the improved exploration ability facilitates learning more robust poli-
cies in sparse reward, hard exploration environments.

1 INTRODUCTION

Online reinforcement learning algorithms learn general behaviors without inductive biases and do-
main expertise through trial and error. By learning from environmental interaction, such methods
can potentially exceed the performance of supervised learning alternatives, reaching superhuman
performance levels on tasks such as Atari (Mnih et al., 2015) and Go (Silver et al., 2016). Despite
such successes, exploring environments efficiently remains challenging, resulting in long training
times (Pathak et al., 2017; Ecoffet et al., 2021; Song et al., 2023).

There has been a considerable amount of work on making online RL more efficient by promot-
ing exploratory behaviors that are novelty-seeking (Pathak et al., 2017) and state space-covering
(Haarnoja et al., 2018; Jain et al., 2023a; Seo et al., 2021). Although such approaches have the
potential to learn robust policies, the lack of task-directed exploratory cues (Mehta et al., 2022) and
a tendency to forget how to revisit promising exploration frontiers (Ecoffet et al., 2021) make them
inefficient at learning to solve hard-exploration tasks. Moreover, these methods have been designed
to improve exploration efficiency without prior information. Consequently, when expert data or a
simulator with arbitrary reset conditions are available, these approaches fail to adequately leverage
these additional resources to accelerate exploration.

In contrast to conventional RL, imitation learning (Ho & Ermon, 2016) and offline RL (Kostrikov
et al., 2022; Kumar et al., 2020) can learn task-specific behavior purely from offline data. These
methods perform well within the distribution of the training data but fail to be robust in an out-of-
distribution (OOD) setting, making them unsuitable for real-world applications where a sim2real
gap is present. Moreover, they require access to expert actions and rewards, which is not always
available in practice.

Hybrid RL approaches mix offline data with online interactions to bridge this gap and learn ro-
bust policies efficiently. Bootstrapping online training with offline data is not straightforward, and
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Figure 1: This illustrates a simple driving scenario where a vehicle must learn to go around an object
blocking its path. On the left, training begins from the MDP start state. Episode terminations due
to collisions and offroad infractions can make visiting states besides and beyond the object difficult.
The auxiliary start state distribution on the right alleviates this issue by enabling a more uniform
visitation of states during training allowing the policy to simultaneously learn to act before, besides
and beyond the object.

naively fine-tuning a policy learned offline often leads to sub-optimal performance (Uchendu et al.,
2023). In particular, offline experience can be quickly forgotten during online training if not handled
appropriately (Uchendu et al., 2023; Song et al., 2023). Successful hybrid methods ensure the per-
sistence of offline data during online training by freezing a part of the replay buffer or by learning
fixed reference policies using the offline data. However, like imitation learning and offline RL, these
methods rely on access to expert action and reward information.

In this paper, we revisit the hybrid RL setup and investigate how limited quantities of expert offline
data can be used to bootstrap online RL effectively. More specifically, by using expert offline data
to construct auxiliary start state distributions, we accelerate online learning considerably, provided
the environment can be reset to arbitrary states.

To summarize the main contributions of this work -

• We show that when an arbitrarily resetable simulator is available we can use a small amount
of state information collected from an offline expert to create an auxiliary start state distri-
bution that significantly improves the sample-efficiency of online RL, particularly in sparse
reward, hard exploration problems including those with image state spaces.

• We find that using a notion of safety, approximated via episode length information, is cru-
cial for forming auxiliary start state distributions that accelerate training. Moreover, we
show that this yields policies more robust to shifts in the start state distribution.

• We empirical highlight our findings through performance matching or exceeding competing
methods on dense and sparse reward continuous tasks without requiring access to costly
affordances such as actions and rewards.

2 RELATED WORK

We explore related literature in this space through three broad category of methods: i) purely online
RL, ii) purely offline learning and iii) hybrid RL methods.

Exploration in purely online RL: Exploration is an age-old problem in reinforcement learning
that has received significant attention in the online RL context. Several methods inject additive
noise to the actions (Schulman et al., 2017) or network parameters (Burda et al., 2019) to perform
exploration. Such exploration is incidental to the primary objective of reward maximization and
not very efficient at exploring the state space (Song et al., 2023). Many approaches incentivize
exploratory behaviour through exploration bonuses such as surprise-maximizing intrinsic motivation
(Pathak et al., 2017), surprise-minimizing intrinsic motivation (Berseth et al., 2021), and action
(Haarnoja et al., 2018), state (Seo et al., 2021) and trajectory (Jain et al., 2023b) entropy maximizing
rewards. Entropy maximization approaches fail to distinguish exploration in unseen regions from
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exploration in regions of the state space where the policy is already proficient. This makes them
inefficient. While intrinsic motivation based methods are guided by a notion of surprise, they too
struggle in hard-exploration sparse-reward environments (Ecoffet et al., 2021). Moreover, these
methods are unable to leverage affordances like offline data and resetable simulators when available.

Go-explore (Ecoffet et al., 2021) is a conceptual framework that disentangles the question of where
to explore from how to get there. It is reminiscent of classical planners that first choose an explo-
ration frontier, navigate to it quickly without exploring (or by resetting the simulator to that frontier
state) and then initiate exploration after arriving at the frontier. Go-explore maintains an archive of
visited states and chooses an exploration frontier from this archive either uniformly at random or
using a domain specific heuristic. Our work follows a similar theme but extends this framework by
investigating what is a good way of picking an exploration frontier. We present generic properties
that are desirable to have in this selection procedure and present a mechanism to select exploration
frontiers that will be broadly applicable across a range of tasks.

BARL (Mehta et al., 2022) is an information theoretic exploration method that uses a classical plan-
ner and a learnt posterior model to sample transitions that are maximally informative for the policy
to learn a given task. This enables it to solve tasks very efficiently. The setting used by its authors
bares close resembles to ours since they assume access to a simulator that supports arbitrary resets.
Moreover, their use of a Gaussian process (GP) to model the posterior is amenable to utilizing ex-
pert demonstrations during training. While very effective on small scale problems with dense reward
functions, BARL unfortunately does not scale to higher dimensions and sparse-reward settings. This
is confirmed by us in our experiments.

Learning policies efficiently offline: Another way to efficiently learn policies is by training on a
purely offline dataset of experiences. This sidesteps the issue of online exploration and efficiently
recovers a policy based on the offline dataset. Methods such as behaviour cloning and GAIL (Ho &
Ermon, 2016) fall under the broad class of imitation learning algorithms that model policy learning
as a supervised learning problem and learn a mapping from states to actions. A key issue with
imitation learning methods is that they are highly brittle and require access to large amounts of high
quality expert data to succeed (Rashidinejad et al., 2021).

Offline reinforcement learning (Levine et al., 2020) is another offline learning paradigm capable of
efficiently learning policies from demonstration data of mixed quality while requiring good state
coverage in the offline dataset (Kumar et al., 2022; Rashidinejad et al., 2021). Consequently, a key
challenge with this approach is that the lack of online interactions leaves offline RL susceptible
to distribution shift. Wrongly estimating values for actions beyond the support of the dataset can
hamper training (Levine et al., 2020). Conservative Q-learning (CQL) (Kumar et al., 2020) is a
recent offline RL method that attempts to tackle this problem by maintaining pessimism within
the Q-value function towards actions that are absent from the offline dataset. Implicit Q-learning
(IQL) (Kostrikov et al., 2022) completely avoids predicting value estimates for unseen actions by
learning a distributional state-value function and computing an upper expectile over it to obtain the
value estimate of the best action in that state. These algorithms invariably encounter OOD states
and actions in-the-wild, quantities that such algorithm are not robust to by design, making online
finetuning a necessity for their real world deployment.

Hybrid Reinforcement Learning: Hybrid reinforcement learning leverages a combination of of-
fline data with online interaction to learn policies. The main challenge in hybrid reinforcement
learning is to devise methods that effectively bootstrap online learning from offline data. Several
approaches (Rajeswaran et al., 2018; Hester et al., 2018) do this by using imitation to learn a policy
from offline demonstrations before finetuning it with RL. However, most modern state-of-the-art
online RL algorithms are value based (Haarnoja et al., 2018; Schulman et al., 2017). Naively fine-
tuning an offline acquired policy with value based RL can cause significant performance degradation
as a value function of similar quality to the pretrained policy is not available at the start of online
finetuning (Uchendu et al., 2023). Though Monte Carlo return estimate based algorithms exist, their
online finetuning is known to be less efficient (Nair et al., 2020). Offline RL presents a transferable
paradigm to train a policy and value function with identical objectives in both offline and online
setups. However, not all offline RL methods are well suited for online finetuning due to their inher-
ent pessimism towards distribution shift (Nair et al., 2020). Even better suited offline RL methods
like IQL (Kostrikov et al., 2022) result in weaker policies after finetuning especially when limited
offline data is available (Uchendu et al., 2023). An alternative line of work (Song et al., 2023; Nair
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et al., 2018; Vecerik et al., 2017) avoids finetuning a pretrained policy all together by pre-filling re-
play buffers at the start of training with transitions from the offline dataset. These transitions persist
through training and policy learning happens from scratch. JSRL (Uchendu et al., 2023) presents an
alternative approach to the finetuning-free idea of hybrid RL. It learns a guide policy from offline
data and uses it to roll out a part of the online episode before handing over control to a freshly ini-
tialized policy for completing the roll-out. The handover point is altered over the course of training
and all the captured experience is used to train the freshly initialized policy.

The proposed work also lies in this finetuning-free hybrid setting and shares similarities with JSRL.
Both the proposed work and JSRL conceptually belong to the Go-explore (Ecoffet et al., 2021)
family of algorithms. The two key differences between JSRL and the proposed work are: i) both
works encapsulate the idea of a reset distribution or equivalently a frontier state to explore from.
While ours is reached through environmental resets, JSRL uses a guide policy to reach it. For a
fair comparison, we ignore the time it takes JSRL’s guide policy to reach the handover point and
perform comparisons for the rollout beyond the handover point. ii) More importantly, JSRL induces
a specific kind of reset distribution through its variation of the handover point over the course of
training. This differs from our reset distribution and we will show through our experiments that this
is an important choice that influences the sample-efficiency and performance of the learnt policy.

3 PRELIMINARIES

We define a finite-horizon discrete-time MDPM to be a (S,A, r, p0, H, T , γ) tuple where S is the
state space, A is the action space, r : S × A × S → R is the reward function, p0 is a probability
distribution defined over S corresponding to the start state distribution ofM, H ∈ N is the finite
time horizon, γ is the discount factor and T : S × A → P (S) describes a transition function
capturing the distribution of next states when an action a ∈ A is taken at a state s ∈ S.

In RL, the goal is to obtain a policy π(a|s) that maximizes the expected sum of future discounted
rewards from p0. Concretely, the objective is to maximize

Jp0
(π) = Es0∼p0,st+1∼T (st,at),at∼π(st)[Σ

H
t=0γ

tr(st, at, st+1)] (1)

Kakade & Langford (2002) have shown that training on p0 can down-weight the influence of unlikely
but important states during policy improvement by visiting them infrequently. Informally, these
states, which we refer to as task-critical states (C), are a set of states that would be a part of each
trajectory from a start state distribution p0 under an optimal policy π∗ but have a low likelihood
under the state visitation distribution of an arbitrary policy π that is active during training (yellow
region in Figure 1). Thus, to ensure steady learning progress it is important to improve the visitation
of C during training. As a result, the policy can quickly learn good actions for these states and utilize
its training budget in propagating policy improvements to other more easily explorable parts of the
state space. For example in Figure 1, this could facilitate learning to go around the obstacle from
a variety of different starting orientations and velocities, beyond what is captured by p0 (depicted
by the star in Figure 1). The objective in Equation 3 does not inherently capture this robustness
enhancement. Following the findings of Rajeswaran et al. (2017) where they highlight that training
from a diverse set of starts helps learn more robust policies, we define JµOOD

to be the expected
reward from a different start state distribution µOOD which comprises states that would be out-of-
distribution (OOD) with respect to p0 (full equation in Appendix 7.2). A robust sample-efficient
policy would not only quickly learn to maximize Jp0

but would also improve robust performance
as measured by JµOOD

. For policies designed to operate in the real-world, it is important for them
to generalize beyond the training distribution, making evaluation from µOOD a useful benchmark to
consider while training Rajeswaran et al. (2017).

4 AUXILIARY START STATES FOR ACCELERATED LEARNING

Directly computing the visitation distribution over task-critical states (C) is computationally infeasi-
ble and challenging to approximate. Moreover, as this is a policy-dependant quantity, it needs to be
continuously recomputed over the course of training. As a result, a suitable µ should be a dynamic
distribution that is easy to compute and accounts for the policy-induced changes in the visitation
distribution.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: This figure provides an overview of the proposed approach. State information from the
offline expert demonstrations is used to initialize a start state sampling distribution. During training
start states are drawn from this distribution, used to generate rollouts, train on them and finally
update the sampling probabilities (depicted by the color spectrum in the middle) based on the length
of the rollout.

We observe that early episode termination, e.g., due to safety violations, is a powerful and ubiquitous
signal available in various RL tasks. It is especially prevalent in robotic tasks such as autonomous
driving and robot locomotion, where eventual real-world deployment is the end goal, and the safety
of the agent and its surroundings is paramount.

Algorithm 1 Updating Auxiliary Start State Distribution via Episode Length (AuxSS)

1: Inputs: Sampling distributionW , Sampling distribution normN , Episode Length Lep, Update
index i, Task Horizon H , Offline Demonstration States Sdemo, Weight Threshold δ, Smoothing
Variance σ2

2: Outputs: Sampling distributionW , Sampling distribution norm N
3: W[i]← MAX(

H−Lep

H , δ) ▷ δ ensures probability of sampling ≥ 0

4: λ← 1√
2πσ

EXP( (Sdemo−Sdemo[i])
2

2σ2 ) ▷ λ is used for smoothing updates toW .
5: W ← (1− λ) ∗W + λW[i] ▷ ∗ is an elementwise multiplication b/w arrays λ andW
6: N ← SUM(W)

Intuitively, for a state s, if the proportion of actions that cause the agent to land in a terminal state is
high, then a larger exploratory budget is required to learn a feasible action for this state by the policy.
Moreover, the chance of navigating through this state likely hinges on the repeated selection of a
small set of safe and feasible actions in the neighbouring regions of the state space. Therefore, there
is a high likelihood that such states belong to C and sampling them more frequently can accelerate
learning. We define Ωπ(s) as a notion of safety capturing one minus the probability of a policy π
causing early episode termination from a state s after a k step rollout. More formally, for any state
s ∈ S as -

Ωπ(s) =

∫
a0:k−1

P (a0:k−1|s, π)
∫
sk

P (sk|s, a0:k−1, T , π)Z(sk) dsk da0:k−1 (2)

Here, Z(s) ∈ {0, 1} ∀s ∈ S and denotes whether or not state s causes episode termination. Z(s) =
0 if episode termination is caused by being in state s and 1 otherwise. a0:k−1 is the sequence of k
actions induced by the policy π from state s under the transition model given by T . sk is the state
that is reached when policy π takes action sequence a0:k−1 starting from state s in an environment
with transition model T .

Exactly computing Ωπ(s) is still computationally expensive. To address this, we leverage the time
to termination or episode length from a given start state, which is a freely available metric at training
time, as a Monte Carlo approximation of the true state safety for a given policy at that state. By
maintaining a parameterized distribution over a set of desirable start states, referred to as candi-
date task-critical states (C̃), we can exploit local smoothness in the majority of the state space to
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quickly propagate these approximations across the start state distribution. These steps are described
in Algorithm 1.

We now describe how we incorporate the expert demonstration data into training. Since this data
comprises successful demonstrations of the task, the demonstration trajectories will likely contain
task-critical states. Motivated by this observation, we set C̃ to be the states from the demonstra-
tion data and identify C from amongst these states over the course of training. Putting everything
together, we get our proposed method AuxSS, illustrated in Figure 2 and described in Algorithm 2.

Algorithm 2 Online RL with Auxiliary Start States

1: Inputs: Task Horizon H , Offline Demonstration States Sdemo, Algorithm A, Training
Timesteps Tmax, Environment E , replay buffer B

2: Sampling distributionW ←

len(Sdemo)︷ ︸︸ ︷
[1, 1 ... 1] ▷ Initialization incentivizes visiting states atleast once

3: Sampling distribution norm N ← SUM(W)
4: t← 0
5: while t ≤ Tmax do
6: i← SAMPLESTARTSTATE(WN )
7: s0 ← Sdemo[i]
8: Lep ← TRAINFORONEEPISODE(A,B, E , s0)) ▷ Return value is episode length
9: t← t+ Lep

10: W,N ← UPDATESAMPLER(W,N , Lep, i,H,Sdemo) ▷ See Algorithm 1

5 EXPERIMENTS

Overview: We first demonstrate state-of-the-art sample-efficiency and robustness of AuxSS on con-
tinuous sparse-reward hard-exploration tasks - one low dimensional 2D maze environment and two
variants of a high dimensional 3D Navigation task in Miniworld Chevalier-Boisvert et al. (2023)
with an image state space. Subsequently, we use a dense reward, easy exploration problem to show
that in the absence of strong safety cues, the presence of task critical states C enables AuxSS to
match algorithms with access to greater affordances. We then show that in hard exploration prob-
lems AuxSS is better suited for assimilating information from limited amounts of expert offline data
by demonstrating better sample-efficiency with 15× less offline expert data available to it. Finally,
we empirically demonstrate that approximating a more uniform visitation distribution over C through
Ω facilitates accelerated learning. We showcase how AuxSS is a good way to approximate Ω while
other distributions not motivated by state safety are not.

Setup: We conduct our experiments on three testbeds - a low dimensional sparse reward continuous
maze, two sparse reward high dimensional continuous 3D navigation tasks with image observations
(the first is an easier exploration instantiation and the second a harder exploration variant) and a
suite of three continuous control tasks in MuJoCo (Todorov et al., 2012) having dense rewards. For
each task we assume access to one or two trajectories of demonstration data. For the maze tasks
(referred to as Lava Bridge) this is 500 transitions, while for MuJoCo this is 1000. The mazes
constitute hard exploration problems. They consist of large sections of untraversable regions that
cause immediate termination along with a large negative reward if entered. The agent only gets a
non-zero reward on reaching the goal state or entering a terminal state. More details are presented
in Appendix 7.1. The MuJoCo task includes three environments - Ant-v4, HalfCheetah-v4 and
Walker2D-v4. It constitutes an easier exploration problem where algorithms can quickly learn to
avoid early episode termination (see Appendix 7.9).

5.1 DOES AUXSS ACCELERATE LEARNING OF ROBUST POLICIES?

In this section we study the efficacy of AuxSS at improving the sample efficiency of online learning
by making use of affordances such as arbitrary resetting of the environment and access to a limited
quantity of expert demonstration data by comparing AuxSS with online and hybrid methods. In
addition to tracking sample-efficiency we also track the robustness of the learnt policy. The choice
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Figure 3: Task Completion Rate of Various methods on the Lava Bridge Environment. Each method
is evaluated on an In Distribution (ID) and Out-of-Distribution (OOD) benchmark of starting states
where the ID start state distribution is the start state distribution of the MDP while the OOD bench-
mark comprises a different distribution of start states.

Figure 4: Task completion rate and training reward on the easy exploration instantiation of the 3D
Navigation task.

of the MDP start state distribution (p0) and robustness benchmark start state distribution (µOOD),
are shown in Figure 7.

Figure 3 presents the findings of this study on the Lava Bridge environment. A summary of the
compared methods and the affordances these make use of are provided in Appendix 7.4 (see Fig 10).
A standardized training setup has been used across methods (except BARL (Mehta et al., 2022))
where the number of offline demonstration transitions is set to 10 million, number of online learning
steps is 300000, replay buffer size is 10000, max episode length is 500 and experiments are evaluated
across 25 seeds. All hybrid methods have access to 500 transitions of expert demonstration data.

We use the example of SAC (Haarnoja et al., 2018), a purely online RL method, to highlight the
exploration challenges that the Lava Bridge environment poses to standard online RL. SAC uses
undirected entropy-based bonuses to promote exploration but struggles to efficiently explore in the
Lava Bridge environment. Its failure to robustly reach the goal within the stipulated training bud-
get highlights the exploration challenges posed by the Lava Bridge environment. In addition, we
evaluate BARL (Mehta et al., 2022), an information-theoretic method for sample-efficient online
exploration. We evaluated BARL both with and without access to the demonstration data. It failed
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Figure 5: Reward on three continuous control tasks in MuJoCo.

to solve the Lava Bridge task in both cases. This is because BARL is reliant on a classical planner,
which is designed to work with dense rewards. This is detrimental to performance in the Lava Bridge
environment, which has a sparse reward, preventing the BARL planner from finding solutions in a
limited time.

We compare our approach to two hybrid RL approaches - HySAC, an adaptation of HyQ (Song
et al., 2023) where a DQN is replaced with SAC, and JSRL (Uchendu et al., 2023). Moreover,
since our approach complements the persistent storage of offline demonstrations in HySAC, we also
experiment with a combination of both (HySAC+AuxSS). The results can be seen in Figs. 3 and
6. Our approach is the most sample-efficient in terms of reward and success rates. Furthermore,
combining our approach with HySAC yields better robustness in fewer training steps. By contrast,
both HySAC and JSRL struggle to make full use of the limited offline demonstration data.

It can be noted that the approach taken by JSRL of handing over episode rollout from a guide
policy to the learning policy is conceptually similar to having an auxiliary start state distribution
that monotonically recedes towards p0 over the course of training. Unlike our proposed auxiliary
distribution, JSRL cannot reemphasize visiting previously learnt regions of the state space that may
have been forgotten over the course of training. We have accounted for sample-efficiency gains that
JSRL may obtain by directly resetting to the handover point (rather than using the guide policy to
get there) by only tracking rollout steps beyond the handover point. Despite this, JSRL’s inability to
reemphasize visitation of previously learnt regions prevents it from learning very robust policies as
can be seen in Figure 3.

5.2 DOES AUXSS SCALE TO HIGHER DIMENSIONS?

We evaluate AuxSS and other hybrid RL approaches on two 3D navigation tasks with image obser-
vation spaces to determine the how these methods fare in high dimensions (see Appendix 7.1.2) for
details). Figure 4 presents results on the easier exploration version of the task while Figure 11 (see
Appendix 7.5) presents results on the harder exploration variant. We find that AuxSS is the only
method to consistently solve the easier instantiation while it is the only method to solve the harder
instantiation from the original start state distribution.

5.3 ARE SAFETY INSPIRED AUXILIARY START STATES USEFUL FOR TASKS WITH LIMITED
SAFETY CUES?

We investigate this question using the MuJoCo suite of tasks where early episode terminations cease
rapidly, resulting in AuxSS becoming a uniform sampling distribution over expert states. Figure 5
shows the performance all methods on these MuJoCo tasks (averaged across 5 seeds). It can be
noted that despite the absence of safety cues, AuxSS performs comparably to HySAC (Song et al.,
2023) (while outperforming SAC (Haarnoja et al., 2018) and JSRL (Uchendu et al., 2023)) despite
not having access to expert action and reward. We believe that this is due to the presence of task
critical states C within the expert data that would have an even lower likelihood under the visitation
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Figure 6: A study of how sample-efficiency and robustness vary for hybrid RL methods when pro-
vided with different amounts of demonstration data.

distribution of the original MDP start state as compared to the near uniform sampling distribution of
AuxSS.

5.4 INFLUENCE OF OFFLINE DEMONSTRATION SET SIZE ON PERFORMANCE AND
SAMPLE-EFFICIENCY

In Figure 6 we plot the training reward and evaluate robustness on the hard exploration task, Lava
Bridge, when different quantities of expert demonstration data (0.5K and 7.5K expert samples) are
available prior to the online learning phase. We find that by accessing 15× fewer expert samples
AuxSS can match and exceed the robustness and sample efficiency of policies learnt via other hybrid
RL methods. When provided access to a resetable simulator, this demonstrates that a good auxil-
iary start state distribution can more effectively assimilate data to guide exploration and accelerate
learning than other approaches to hybrid RL. Unlike other methods, having a good start state distri-
bution prevents the need to collect large quantities of expert data through ability to bootstrap online
learning off of very limited demonstration trajectories

5.5 STATE SAFETY INSPIRED START STATE SAMPLING FOR SAMPLE EFFICIENCY

In Section 4, we connect the notion of state safety Ω with task critical states (C) and discuss how
this can influence sample-efficiency. In this section, we empirically validate our claims. We modify
AuxSS by constructing a static distribution (Ω-SS) that samples start states with respect to a random
policy. Concretely, we sample start states inversely proportional to Ωπrand

(s) where πrand(.|s) ∼
U |A|. In practice, we use Monte Carlo sampling of actions for a fixed time horizon (= 4 time
steps) to approximate this quantity for each state. Since the policy at the start of online training is
initialized randomly, this mimics the state safety distribution with respect to the policy at the start of
training. Therefore if our claims hold we expect to see matching sample-efficiency trends to AuxSS
in the early stages of training.

Figure 7 presents the findings of this study. We see that as expected, Ω-SS demonstrates matching
sample-efficiency and robustness trends as AuxSS early in training. In fact, since Ω-SS is the correct
state safety distribution with respect to the initialized policy from the start of training it learns even
faster than AuxSS, since AuxSS must gradually approximate this state safety distribution over the
course of multiple training episodes.

We note here the divergence in robustness trends seen later in training. This is caused by the static
nature of Ω-SS which fails to adapt to the morphing C induced by the policy as it trains. This causes
the resulting loss of robustness. The dynamic nature of AuxSS helps prevent this degradation as its
able to adapt its start state distribution based on changes in the policy.

9
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Figure 7: Sample-efficiency and robustness trends when simulator resets are selected using different
start state distributions.

5.6 DO START STATE DISTRIBUTIONS NOT DERIVING FROM STATE SAFETY FAIL TO BE
SAMPLE EFFICIENT?

To study this inverse logical question, we construct two start state distributions, U-SS and GoalDist-
SS, that do not try to incentivize visitation of task critical states. U-SS is a static distribution that
uniformly samples states from the provided demonstrations. GoalDist-SS is a dynamic distribution
that exponentially weights states based on their distance from the task goal. States closer to the goal
are assigned a higher probability to be sampled. The time varying component of this distribution
arises from temperature scaling of the distribution with the temperature gradually rising over the
course of training. This promotes sampling near goal states early on in training and sampling more
uniformly from the demonstration data later on in training. More details about these distributions
can be found in Appendix 7.3.

Figure 7 contains the findings of this study. It can be seen that both U-SS and GoalDist-SS are far
slower to train than state safety inspired distribution demonstrating that not all start state distributions
will accelerate learning. As a consequence of the poor choice of their state visitation, these methods
fail to learn good policies in the stipulated training budget and thus also have much lower robust
performance than AuxSS and Ω-SS (before its static nature causes robustness to degrade).

6 DISCUSSION AND LIMITATIONS

In this work, we explore the use of commonly available affordances in RL tasks to guide online ex-
ploration. We highlight the importance of auxiliary start state distributions, constructed by utilizing
small quantities of expert demonstration comprising only state information, in facilitating sample-
efficient learning of robust policies. We find that in environments that allow arbitrary state resetting,
this is a very crucial design choice and we observe that deriving start state distributions from notions
of state safety can dramatically accelerate policy learning online. In terms of the Go-Explore philos-
ophy of disentangling the choice of exploration frontier and how to get there, this work sheds new
light on how the choice of exploration frontier can greatly influence sample-efficiency particularly
in hard exploration tasks. While the need for a simulator that supports arbitrary state resets can
be viewed as limiting, it is important to observe that most notable breakthroughs in RL have come
on the back of powerful simulators that enable such resetting. Consequently, understanding how to
effectively utilize such an affordance is a pertinent question that this work seeks to address.

REFERENCES

Glen Berseth, Daniel Geng, Coline Manon Devin, Nicholas Rhinehart, Chelsea Finn, Dinesh Ja-
yaraman, and Sergey Levine. {SM}irl: Surprise minimizing reinforcement learning in unstable
environments. In International Conference on Learning Representations, 2021.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First return, then
explore. Nature, 2021.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse rein-
forcement learning. In International Conference on Learning Representations, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John Agapiou, Joel Leibo,
and Audrunas Gruslys. Deep q-learning from demonstrations. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, 2016.

Arnav Kumar Jain, Lucas Lehnert, Irina Rish, and Glen Berseth. Maximum state entropy exploration
using predecessor and successor representations. In Advances in Neural Information Processing
Systems, 2023a.

Arnav Kumar Jain, Lucas Lehnert, Irina Rish, and Glen Berseth. Maximum state entropy explo-
ration using predecessor and successor representations. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023b.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning, 2002.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? In International Conference on Learning Representations, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Viraj Mehta, Biswajit Paria, Jeff Schneider, Willie Neiswanger, and Stefano Ermon. An experimen-
tal design perspective on model-based reinforcement learning. In International Conference on
Learning Representations, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 2015.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In IEEE international confer-
ence on robotics and automation, 2018.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade. Towards generalization
and simplicity in continuous control. In NeurIPS, 2017.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipulation with deep reinforcement learning and
demonstrations. Proceedings of Robotics: Science and Systems, 2018.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline
reinforcement learning and imitation learning: A tale of pessimism. In Advances in Neural Infor-
mation Processing Systems, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State entropy
maximization with random encoders for efficient exploration. In International Conference on
Machine Learning, 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 2016.

Yuda Song, Yifei Zhou, Ayush Sekhari, Drew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hy-
brid RL: Using both offline and online data can make RL efficient. In The Eleventh International
Conference on Learning Representations, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
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7 APPENDIX

7.1 ENVIRONMENTS

In this section we describe observation, action and reward for the two families of maze environments
used in our experiments.

7.1.1 LAVA BRIDGE

Figure 8: An illustration of the Lava Bridge environment. The red regions are the lava pits, the
green blobs denote the MDP’s initial start state distribution, p0, and the blue spots correspond to the
distribution start state distribution µOOD. The red target marks the goal location.

Observation Space: We use a 4D state comprising position and velocity.

Action Space: A continuous 2D action space [accx, accy] is employed. It comprises linear acceler-
ation along the two axes. The agent has a mass (1 kg in our experiments).

Reward Function: The agent receives +500 for reaching the goal, −500 and immediate episode
termination for touching the lava pits and 0 otherwise.

7.1.2 3D NAVIGATION

Figure 9: (Left) Easy instantiation (Right) Hard instantiation of the 3D navigation task.

Observation Space: We use images as the observation space for this family of tasks. Specifically
all policies receive a down-sampled first person view of the scene from the agent perspective as a
32x32 greyscale image. This is flattened and appended with the heading angle (a continuous 1D
value) and velocity (a continuous 2D value) to form a continuous 1027 dimensional observation
space.

Action Space: A continuous 2D action space [aacc, aω] is employed. Here, aacc is the linear
acceleration along the heading direction and aω is the angular velocity. The agent has a mass (10 kg
in our experiments).
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Reward Function: The agent receives +500 for reaching the green key, −500 and immediate
episode termination for touching an orange cone and 0 otherwise

7.2 PRELIMINARIES

We track the performance of our policies on a set of start states µOOD that are out-of-distribution
with respect the start state distribution p0. The object under this setup can be formalized through the
following expression:

JµOOD
(π) = Es0∼µOOD,st+1∼T (st,at),at∼π(st)[Σ

H
t=0γ

tr(st, at, st+1)] (3)

7.3 START STATE DISTRIBUTIONS

In this sections we concretely describe the other start state distributions that AuxSS is compared with.

The Ω-SS is the correct state safety distribution with respect to the initialized random policy at the
start of training. It samples states based on state un-safety where the probability of sampling a start
state is based on the precomputed state un-safety value as given by

Ωπ(s) =

∫
a0:k−1

P (a0:k−1|s, π)
∫
sk

P (sk|s, a0:k−1, T , π)Z(sk) dsk da0:k−1 (4)

where,Z(s) ∈ {0, 1} ∀s ∈ S and denotes whether or not state s causes episode termination. Z(s) =
1 if episode termination is caused by being in state s and 0 otherwise. Note how this is the same as
Equation 2 with subtle difference that Z(s) = 1 now refers to episode termination causing states.

GoalDist-SS incentivizes visitation of task critical states. The probability p of sampling ith from
demo data Sdemo with N demo states and given goal state g is

p(Sdemo[i]) =
e

(Sdemo[i]−g)2

τ

ΣN
j e

(Sdemo[j]−g)2

τ

(5)

Here τ is a time varying temperature scaling coefficient which makes the distribution go from peaked
to uniform over the course of training. It varies inversely to the cosine of the fraction of training
complete. Towards the end of training this causes the sampling distribution to be nearly uniform.

U-SS is simply a uniform distribution over the set of start states available.

7.4 AN AFFORDANCE BASED COMPARISON OF RL APPROACHES

Figure 10 presents a comparison of various approaches based on the affordances leveraged by the
methods.

Figure 10: This table contrasts the compared methods in terms of the affordances they make use.
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Figure 11: Task completion rate and training reward on the hard exploration instantiation of the 3D
Navigation task.

Figure 12: Extended evaluation with imitation learning algorithms on the Lava Bridge Environment.
Each method is evaluated on an In Distribution (ID) and Out-of-Distribution (OOD) benchmark of
starting states where the ID start state distribution is the start state distribution of the MDP while the
OOD benchmark comprises a different distribution of start states.

7.5 PERFORMANCE ON THE HARD INSTANTIATION OF THE 3D NAVIGATION TASK

Figure 11 presents results on the hard exploration variant of the 3D navigation task. AuxSS is the
only method that is able to solve the task from the original start state distribution.

7.6 COMPARISON WITH IMITATION LEARNING METHODS ON LAVA BRIDGE ENVIRONMENT

We present additional comparisons with imitation learning methods on the lava bridge environment.
We compare with behavior cloning, GAIL Ho & Ermon (2016) and an inverse RL method, AIRL Fu
et al. (2018). From Figure 12 we can see that imitation learning methods fail at this task and cannot
compete with any hybrid RL approach.

7.7 HOW DOES NUMBER OF DEMONSTRATIONS IMPACT AUXSS?

Figure 13 presents an ablation over various task horizons on the Easy instantiation of the 3D naviga-
tion task. Since AuxSS simply utilizes demonstrations for picking resetting candidates only, we find
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Figure 13: Performance on the Easy instantiation of the 3D navigation task in Miniworld when
varying the number of samples present in the offline demonstration data.

that it isn’t too sensitive to the demonstration set size. Instead we believe that the algorithm is more
dependent on the quality of the expert demonstration. In addition the diversity of the demonstrations
can influence the robustness of the learnt policies as seen by the variance in the robust benchmark.

7.8 HOW DOES THE TASK HORIZON IMPACT AUXSS?

Figure 14: Performance on the Easy instantiation of the 3D navigation task in Miniworld when
varying the task horizon (described by H and used in Algorithm 1

Figure 14 presents an ablation over various task horizons on the Easy instantiation of the 3D navi-
gation task. We find that the method is able to successfully complete the task across different task
horizons. We see some regression in robustness at very small and large task horizons. This could
be explained by an alteration in the visitation distribution induced by the sampling strategy and the
time the agent gets to spend exploring from a certain state. While we ourselves haven’t tuned pa-
rameters within the algorithm, we believe that tuning the smoothing variance to ensure propagation
of termination signal across the sampling distribution should be able to help improve performance
no matter the task horizon.
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Figure 15: Rapid saturation of episode length based signal in MuJoCo.

7.9 RAPID SATURATION OF EPISODE LENGTH IN MUJOCO

In MuJoCo tasks where early episode termination is observed, we notice a rapid saturation of episode
length (see Figure 15) which we attribute to the easy exploration problem facilitated by the dense
reward feedback in these tasks.

7.10 HOW DOES THE SAMPLING DISTRIBUTION LOOK OVER TRAINING?

Figure 16: (Left) Sampling distribution over start states early on in training on the Hard instantiation
of the 3D Navigation task. (Right) Sampling distribution over start states late on in training on the
Hard instantiation of the 3D Navigation task.

Figure 16 illustrates how the sampling distribution changes from a termination centric distribution
at the start of training to a uniform distribution at the end of training when good behavior has been
learned everywhere.
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