
“Who experiences large model decay and why?”
A Hierarchical Framework for Diagnosing Heterogeneous Performance Drift

Harvineet Singh 1 Fan Xia 1 Alexej Gossmann 2 Andrew Chuang 1 Julian C. Hong 1 Jean Feng 1

Abstract
Machine learning (ML) models frequently experi-
ence performance degradation when deployed in
new contexts. Such degradation is rarely uniform:
some subgroups may suffer large performance de-
cay while others may not. Understanding where
and how large differences in performance arise
is critical for designing targeted corrective ac-
tions that mitigate decay for the most affected sub-
groups while minimizing any unintended effects.
Current approaches do not provide such detailed
insight, as they either (i) explain how average
performance shifts arise or (ii) identify adversely
affected subgroups without insight into how this
occurred. To this end, we introduce a Subgroup-
scanning Hierarchical Inference Framework for
performance drifT (SHIFT). SHIFT first asks “Is
there any subgroup with unacceptably large per-
formance decay due to covariate/outcome shifts?”
(Where?) and, if so, dives deeper to ask “Can we
explain this using more detailed variable(subset)-
specific shifts?” (How?). In real-world experi-
ments, we find that SHIFT identifies interpretable
subgroups affected by performance decay, and
suggests targeted actions that effectively mitigate
the decay.1

1. Introduction
ML algorithms are known to degrade in performance when
applied in different contexts, which has led to extensive
work on explaining how differences in an ML algorithm’s
average performance arise (Cai et al., 2023; Zhang et al.,
2023). However, performance differences are rarely uni-
form in practice: some subgroups may experience severe
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performance degradation while others may experience very
negligible differences, if at all (Yang et al., 2023). Under-
standing the subgroups where shifts are most pronounced
and providing subgroup-specific explanations is critical
from the perspectives of algorithmic fairness (Mitchell et al.,
2021) and backwards compatibility (Srivastava et al., 2020).
Subgroup-level explanations can also help model developers
design targeted corrective actions that only modify the algo-
rithm’s behavior in the most affected subgroups and limit
any other unintended effects (“Don’t fix what ain’t broke”)
(Globus-Harris et al., 2022; Suriyakumar et al., 2023).

For instance, suppose an ML algorithm for predicting un-
planned readmission achieves overall accuracy of 85%
in hospital A and 83% in hospital B. While the change
in overall accuracy may not be clinically significant, the
change within some subgroup may be sufficiently large to
be deemed harmful. If so, it is natural to ask how this hetero-
geneity in performance decay arose: was it due to a change
in how certain diseases are recorded, which medications
are prescribed for certain patients, or something else alto-
gether? If we know the affected subgroup and why, we can
specifically address the root cause, such as by updating data
pre-processing and/or the algorithm within the subgroup.

As such, our goal is to simultaneously understand where
an ML algorithm performs substantially worse and how
it arose. Numerous methods have been developed to find
subgroups where an ML algorithm performs poorly (d’Eon
et al., 2022; Eyuboglu et al., 2022; Liu et al., 2023; Sub-
baswamy et al., 2024), which can in principle be extended
to identify subgroups with large model decay. Answering
“how” is more tricky. We can obtain an approximate high-
level answer by decomposing the average performance drop
within an identified subgroup into the contribution from a
shift in the marginal distribution of the input features X
(covariate shift) versus a shift in the conditional distribution
of the target Y |X (outcome shift) (Quinonero-Candela et al.,
2009; Cai et al., 2023).

However, this is only a partial solution. For one, it misses
situations where the subgroup of individuals experiencing
severe covariate shifts is not the same as the one experienc-
ing severe outcome shifts, and each subgroup may require
different corrective actions. More importantly, we often
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want to know precisely which subset of input variables were
involved, as many real-world shifts involve only a few vari-
ables (i.e. sparse) and can be fixed in a targeted manner
(Castro et al., 2020; Finlayson et al., 2021). Existing meth-
ods are currently insufficient, as they rely on assumptions
that often do not hold in practice, e.g. the true causal graph
is known (Zhang et al., 2023; Quintas-Martinez et al., 2024),
the data follows simple parametric models (Baron & Kenny,
1986), or unrealistically large datasets (Singh et al., 2024).

To overcome these limitations, we present a nonparametric
Subgroup-scanning Hierarchical Inference Framework for
performance drifT (SHIFT) (Fig 1). Whereas prior works
have approached drift diagnosis primarily through the lens
of estimation, SHIFT approaches this through hypothesis
testing. The advantage is that hypothesis tests answer simple
yes/no questions, which is often more feasible in settings
with limited data; in fact, we conduct omnibus tests, which
require even less data as they do not need to identify the
entire subgroup that is adversely affected. Furthermore,
hypothesis tests allow us to check the very assumptions
that other works have take on face value. The first stage
of SHIFT performs a high-level analysis: decomposing
distribution shift into an “aggregate” covariate shift with
respect to all of X and an “aggregate” outcome shift with
respect to all of X , SHIFT tests if either have led to un-
acceptably worse performance in any meaningfully large
subgroup (Where?). If so, the second stage drills down to
test if this can be adequately explained by a shift solely with
respect to a sparse subset of variables in X (How?). The
major contributions of this work are:

• Introduction of a novel hierarchical hypothesis test-
ing framework that detects subgroups experiencing
large performance decay due to aggregate-level covari-
ate/outcome shifts, which are then explained using de-
tailed variable(subset)-specific shifts.

• SHIFT does not rely on strong assumptions and is suitable
for smaller datasets, making it broadly applicable to real-
world scenarios.

• Our simulations demonstrate that SHIFT correctly iden-
tifies relevant shifts. Real-world experiments show that
SHIFT can guide the design of model/data corrections
that strictly improve performance.

2. Related Work
We briefly discuss the three most related areas below (sum-
marized in Table 1). See Appendix E for more detailed
discussion as well as other related areas.

Detecting distribution shifts. Many methods have been
developed to detect any shift in marginal/conditional dis-
tributions, such as Kolmogorov-Smirnov (KS) (Rabanser
et al., 2019), kernel-based tests (Zhang et al., 2011), and

Figure 1: Subgroup-scanning Hierarchical Inference
Framework for performance drifT (SHIFT) is a two-stage
hypothesis testing procedure that first checks if there is a
subgroup with unacceptably large performance decay due
to aggregate covariate and outcome shifts with respect to
all X variables. If so, it checks if this can be explained by
detailed variable(subset)-specific shifts. Red indicates the
shift was flagged for further investigation. In this example,
covariate shift is flagged because it affected a subgroup and
variables X1 and X3 were flagged as potential explanations.

Maximum Mean Discrepancy (MMD) (Gretton et al., 2012a;
Luedtke et al., 2018). More recent works focus on detecting
only those that are harmful to overall performance (Pod-
kopaev & Ramdas, 2022; Panda et al., 2024). No prior meth-
ods have been developed to specifically detect distribution
shifts that lead to disproportionate harm in a (sufficiently
large) subgroup, which SHIFT aims to address.

Decomposing model performance. Various methods have
been developed to quantify the contribution of each feature
subset to the average performance (Budhathoki et al., 2021;
Cai et al., 2023; Wu et al., 2021; Zhang et al., 2023; Quintas-
Martinez et al., 2024) and, more recently, the variability
of performance changes (Singh et al., 2024). Mathemati-
cally, these methods rely on techniques similar to those used
in mediation analysis for decomposing the average treat-
ment effect into indirect and direct effects (Baron & Kenny,
1986) and variable importance (VI) methods for explaining
the variability of the conditional average treatment effect
(CATE) (Hines et al., 2023), respectively. Most of these
methods either assume a parametric model or knowledge
of the causal graph between individual variables. While VI
methods that focus on decomposing variability have much
weaker assumptions (Hines et al., 2023; Singh et al., 2024),
they generally require large datasets and their confidence
intervals (CIs) cannot be easily inverted to produce valid hy-
pothesis tests (the influence function is degenerate because
the estimand is at the boundary of the parameter space un-
der the null, leading to inflated Type I error rates) (Hudson,
2023). Through carefully framed hypothesis tests, SHIFT
provides valid statistical inference without parametric as-
sumptions or knowledge of a detailed causal graph.

Discovering subgroups. Methods have been developed to
identify subgroups with low performance within a single
distribution (Eyuboglu et al., 2022; d’Eon et al., 2022; Ali
et al., 2022; Feng et al., 2024a; Dong et al., 2024; Rauba
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Table 1: Subgroup-scanning Hierarchical Inference Framework for performance drifT (SHIFT) compared to prior work

Category (Example methods) Detects subgroup
with large decay?

Valid hypothesis
test?

Avoids detailed
causal graph?

Detailed explanations for
outcome/covariate shifts?

Detect any shift (Rabanser et al., 2019;
Zhang et al., 2011)

No Yes Yes Outcome only

Detect loss shift (Podkopaev & Ramdas,
2022)

No Yes Yes No

Decompose average perf decay (Zhang
et al., 2023; Cai et al., 2023; Quintas-
Martinez et al., 2024)

No Some methods No Covariate only

Decompose shift variability (Singh et al.,
2024)

No No Yes Outcome & Covariate

Decompose ATE (Baron & Kenny, 1986) No Parametric only No Covariate only
Decompose CATE variability (Hines et al.,
2023)

No No Yes Outcome only

Subgroup discovery (Eyuboglu et al.,
2022; d’Eon et al., 2022)

No Some Yes No

SHIFT (Proposed) Yes Yes Yes Outcome & Covariate

et al., 2024; Subbaswamy et al., 2024) and subgroups with
large CATE (Athey et al., 2019). However, most meth-
ods only provide point estimates and not statistical infer-
ence (CIs/hypothesis tests). More importantly, no existing
methods can be directly adapted to explain how large per-
formance decay arises across subgroups with respect to
variable-specific shifts.

3. Hierarchical Testing Framework
Given a set of features X and an outcome Y , we want to
understand the difference in performance of an algorithm
f across source and target domains, denoted by d = 0 and
d = 1 respectively. We refer to the joint distribution of
(X,Y ) in each domain by pd and its corresponding expecta-
tion with Ed. Performance is quantified by a loss function
ℓ := ℓ(y, f(x)) ∈ R. The average loss conditional on x in
domain d is denoted Zd(x) := Ed[ℓ(Y, f(X))|X = x] for
d ∈ {0, 1}. Hat notation denotes an estimate.

A shift in the joint distribution of (X,Y ) can be decomposed
into aggregate covariate and outcome shifts, which are de-
fined by the shifts p0(x) ⇒ p1(x) and p0(y|x) ⇒ p1(y|x),
respectively. In this way, the shift from source to target can
be broken down into a sequence of aggregate-level shifts:

p0(x)p0(y|x) ⇒ p1(x)p0(y|x) ⇒ p1(x)p1(y|x) (1)

and, correspondingly, the average performance change can
be decomposed into:

E1[ℓ]− E0[ℓ] = E1[Z0]− E0[Z0]︸ ︷︷ ︸
covariate shift

+E1[Z1 − Z0]︸ ︷︷ ︸
outcome shift

(2)

To generate even more detailed explanations of performance
shifts, we will consider sparse shifts solely with respect to

variable subsets Xs and use ps(x) and ps(y|x) to denote
Xs-specific covariate and outcome shifts, respectively. We
will present their exact definitions later.

SHIFT is a hierarchical diagnostic framework that does a
more detailed analysis of performance drift compared to
the standard two-way decomposition in (2) by accounting
for heterogeneity of performance shifts. At the first level,
SHIFT checks if the aggregate covariate and outcome shifts
lead to subgroups with large performance decay. If so,
SHIFT searches for a more detailed explanation among
candidate variable(subset)-specific shifts.

Throughout, SHIFT focuses only on subgroups of individ-
uals and performance shifts that are deemed large enough
to be of practical interest, by requiring the domain expert to
select a priori the minimum subgroup size ϵ > 0 and mini-
mum shift magnitude τ ≥ 0. This is critical to ensure the
practical usability of these methods, as alarms for negligible
shifts lead to alarm fatigue (Cvach, 2012; Feng et al., 2025).
The set Aϵ denotes all subgroups whose prevalence in the
source and target domains exceed ϵ > 0.

The following two sections (Sec 3.1 and 3.2) introduce
the aggregate and detailed hypothesis tests in SHIFT and
Section 4 describes the actual testing procedures.

3.1. Aggregate tests: Where?

SHIFT first tests if there exists a subgroup with large per-
formance decay due to an aggregate covariate shift and,
likewise, a subgroup impacted by an aggregate outcome
shift. The impacts of these shifts within a subgroup A ∈ Aϵ
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is quantified using a similar decomposition as (2), i.e.

E1[ℓ|X ∈ A]− E0[ℓ|X ∈ A]

= E1[Z1 − Z0|X ∈ A]︸ ︷︷ ︸
outcome shift

+E1[Z0|X ∈ A]− E0[Z0|X ∈ A]︸ ︷︷ ︸
covariate shift

.

This leads to tests for the following null hypotheses:

Hypothesis 3.1 (Agg covariate shift). HX
0 : For all sub-

groups A ∈ Aϵ, the performance drift in A due to the ag-
gregate covariate shift is no larger than tolerance τ ≥ 0,
i.e. E1[Z0(X)|X ∈ A]− E0[Z0(X)|X ∈ A] ≤ τ.

Hypothesis 3.2 (Agg outcome shift). HY |X
0 : For all

subgroups A ∈ Aϵ, the performance drift in A due to the
aggregate outcome shift is no larger than tolerance τ ≥ 0,
i.e. E1[Z1(X)− Z0(X)|X ∈ A] ≤ τ.

For each shift mechanism, rejection of the null means that
there is a subgroup of concern and further investigation
is warranted, thereby triggering a second stage of testing.
Before diving into the second stage, we discuss connections
between these aggregate tests and the existing literature.

Connection to MMD. The proposed tests assess for distri-
butional differences by comparing the maximum difference
in the mean loss along the shift sequence in (1). This shares
similarities to MMD, which also measures the distance be-
tween two distributions in terms of the maximum difference
in expected value over some function class (often referred
to as the “critic”) (Gretton et al., 2012a). To see the connec-
tion more formally, we rewrite the above tests in terms of
binary detectors where hA(X) = 1{X ∈ A} for subgroup
A. Define the critic function class to be the set of “filtered”
loss functions {(x, y) 7→ hA(X)ℓ(f(x), y) : A ∈ Aϵ}. For
the first two distributions in (1), MMD defines their distance
as the maximum average difference of the filtered loss, i.e.

sup
A∈Aϵ

E10[ℓ(X,Y )hA(X)]− E00[ℓ(X,Y )hA(X)],

where Ed1,d2
indicates the expectation with respect to dis-

tribution pd1(X)pd2(Y |X). In contrast, the aggregate co-
variate shift test can be viewed as measuring the maximum
average difference of the conditional loss, i.e.

sup
A∈Aϵ

E10[ℓ(X,Y )hA(X)]

E10[hA(X)]
− E00[ℓ(X,Y )hA(X)]

E00[hA(X)]
.

A similar analogy holds for the aggregate outcome shift,
which compares the last two distributions in (1). Thus,
SHIFT can be viewed as testing the Maximum conditional-
Mean Discrepancy (McMD) rather than the MMD. Like
MMD, McMD is zero when the compared distributions are
equal. Unlike MMD, McMD can be large even when the
mean difference is large in only a small subgroup, reflecting
its priority placed on algorithmic fairness.

Connection to mediation analysis. Prior works have high-
lighted that the decomposition of average performance
change into covariate and outcome shifts parallels the de-
composition of the average treatment effect into indirect
and direct effects, which is commonly analyzed in causal
mediation analysis (Castro et al., 2020; Singh et al., 2024).
As this work decomposes subgroup-specific performance
changes, it parallels recent efforts in the nascent but growing
field on analyzing the heterogeneity of causal effect decom-
positions (Loh et al., 2020; Rubinstein et al., 2023). The
omnibus tests developed in this work may thus be useful for
testing heterogeneous indirect/direct effects, an area that has
not been addressed thus far. We discuss these connections
further in Appendix A.

3.2. Detailed tests: How?

For each shift mechanism, rejection of the first-stage test im-
plies that there is a subgroup for which performance change
was large. The next step is to find a detailed explanation, by
identifying the variables most likely to be responsible.

SHIFT finds explanations by searching over a suite of can-
didate shifts with respect to individual variables or vari-
able subsets. Because the true causal graph is not typically
known in practice, the set of all possible variable(subset)-
specific shifts is exponentially large and a comprehensive
search over all such shifts is computationally intractable.
As such, SHIFT considers a restricted set of detailed candi-
date shifts as potential explanations. In this work, given a
variable subset Xs, we consider the following:

• Outcome shift: We consider the candidate ps(y|x) :=
p1(y|xs, µ0(x)), where µ0(x) = p0(y = 1|x) is the out-
come probability at the source. This is similar to shifts
considered in model recalibration (Steyerberg, 2009),
where the shift is defined relative to the outcome’s original
conditional probability in the source domain.

• Covariate shift: We consider the candidate ps(x) :=
p1(xs)p0(x−s|xs). Such a shift may occur, for instance,
ifXs precedesX−s causally and is commonly considered
in prior works (Wu et al., 2021; Zhang et al., 2023; Singh
et al., 2024).

Other candidate shifts are certainly possible (see Sec F) and
we leave them to future work. Critically, unlike prior works
that offer variable-level explanations of performance decay
assuming these candidate shifts are actually true (Wu et al.,
2021; Zhang et al., 2023), SHIFT does not assume that these
candidate shifts are correctly specified because everything
is conducted through the lens of hypothesis testing. Instead,
SHIFT tests whether a candidate offers a good explanation.

Given candidate shifts, we now quantify how well they
explain the heterogeneous performance changes in the data.
We say that an aggregate covariate shift is well-explained
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by an Xs-specific covariate shift if the performance change
induced by the former is well-approximated by the latter
across all subgroups A, i.e. for all A ∈ Aϵ,

E1[Z0|X ∈ A]− E0[Z0|X ∈ A]

≈ Es[Z0|X ∈ A]− E0[Z0|X ∈ A],

where Es(X) is with respect to an Xs-specific covari-
ate shift. Similarly, an aggregate outcome shift is well-
explained by an Xs-specific outcome shift if for all A ∈ Aϵ,

E1[Z1 − Z0|X ∈ A] ≈ E1[Zs − Z0|X ∈ A], (3)

where Zs(X) is the expected loss under the candidate shift.
This is formalized in detailed tests ofXs-specific shifts with
the following null hypotheses:

Hypothesis 3.3 (Xs-specific covariate shift). HX
0,s: For

all subgroups A ∈ Aϵ and tolerance τ , the candidate Xs-
specific covariate shift explains the performance change,
i.e., E1[Z0(X)|X ∈ A]− Es[Z0(X)|X ∈ A] ≤ τ.

Hypothesis 3.4 (Xs-specific outcome shift). HY |X
0,s : For

all subgroups A ∈ Aϵ and tolerance τ , the candidate Xs-
specific outcome shift explains the performance change,
i.e., E1[Z1(X)− Zs(X)|X ∈ A] ≤ τ.

If we fail to reject the null for an Xs-specific covariate
or outcome shift, SHIFT flags it as potentially important.
Then for some prespecified α > 0, the potentially important
variable subsets for covariate and outcome shifts are

Ŝshift
n =

{
s : p-value for Hshift

0,s > α
}

(4)

for shift = Y |X and shift = X . A human expert
can then verify which variables in Ŝshift

n are the true root
cause(s) and design targeted corrective actions.

Comparing the detailed and aggregate-level tests, one may
notice that they have nearly the same mathematical structure
and yet are interpreted differently to answer differing ques-
tions (where? versus how?). To see how this is possible,
note that the tests could have been interpretted in the same
way: aggregate-level tests check whether aggregate shifts
are well-approximated by the zero function, i.e. whether
E1[Z1−Z0|X ∈ A] ≈ 0 andE1[Z0|X ∈ A]−E0[Z0|X ∈
A] ≈ 0, while the detailed tests check if aggregate shifts are
well-approximated by candidate Xs-specific shifts.
Remark 3.1 (Modified covariate shift tests). When we have
features that are independent of the loss function, covariate
shifts in such features may still be flagged which is unde-
sirable. This occurs due to collider bias since conditioning
on the subgroup 1{x ∈ A} induces a correlation between
the independent features and the loss function. Section B
gives more details. As a remedy, we filter features that are
uncorrelated with the loss function as a data preprocessing
step and then run the covariate shift tests as usual.

3.3. Visualization of SHIFT

Results from SHIFT are visualized in a hierarchical plot
(Fig 1), where “red” means “flagged” and “gray” means
“not flagged.” At the aggregate level, the covariate/outcome
shift is “flagged” if a subgroup was found to have large
performance decay due to that shift mechanism (null was
rejected). To interpret aggregate-level test results, we sum-
marize the detected subgroup using rule-based decision sets
(Lakkaraju et al., 2016), although other ML explainability
methods can be used instead. At the detailed level, we flag
variable(subset)-specific covariate/outcome shifts that may
offer a potential explanation of the heterogeneous perfor-
mance shifts (null was not rejected). “Flag strength” is one
minus the p-value for aggregate-level tests and the p-value
for detailed tests. Note that if none of the candidate sparse
shifts are adequate explanations, one may need to explore
alternative shift explanations (e.g. less sparse).

4. Inference Procedure
We now describe the inference procedure for tests intro-
duced in the previous section. We begin with rewriting each
hypothesis test in terms of a simple target of inference. This
will illuminate the general approach we would like to take,
as well as the technical challenges we will encounter.

To illustrate, note that the aggregate outcome test can be
equivalently expressed as testing the null hypothesis

H
Y |X
0 : sup

A∈Aϵ

E1 [(Z1(X)− Z0(X)− τ)hA(X)]︸ ︷︷ ︸
target of inference

≤ 0. (5)

The target of inference can be interpretted as follows: hA is
scaled by how much the difference in expected loss exceeds
tolerance τ , so the target of inference can be interpretted as
the Maximum Expected Exceedence (MEE) between the last
two distributions in the shift sequence in (1). Similarly, the
detailed outcome test can be rewritten as

H
Y |X
0,s : sup

A∈Aϵ

E1 [(Z1(X)− Zs(X)− τ)hA(X)] ≤ 0. (6)

The aggregate and detailed covariate tests can be interpreted
similarly, though the scaling term is not as clean:

HX
0 : sup

A∈Aϵ

E0 [(Z0(X)(π̃A(X)− 1)− τ)hA(X)] ≤ 0

(7)

HX
0,s : sup

h∈Aϵ

E0 [(Z0(X) (π̃A(X)− π̃s,A(X))− τ)hA(X)] ≤ 0

(8)

where π̃A(x) = p1(x)E0[hA(X)]
p0(x)E1[hA(X)] and π̃s,A(x) =

p1(xs)E0[hA(X)]
p0(xs)Es[hA(X)] are scaled density ratios. Given this rewrit-
ing of the MEE, we can now discuss two technical chal-
lenges that we can resolve, in part, through sample splitting.
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Figure 2: Overview of testing procedure

First, estimating a supremum over the infinite number of
binary detectors hA is computationally intractable. Never-
theless, our goal is simply hypothesis testing, not estimation.
We can accomplish this by sample splitting, where one por-
tion of the data is for learning one (or a few) good candidate
detector (ĥA) and the remaining data is for testing the ex-
pected exceedence for ĥA. This can be viewed as running a
restricted version of the original test, where we only test the
MEE with respect to the singleton set {ĥA} rather than all
of Aϵ. While this approach may be conservative, it provides
statistical guarantees with fewer assumptions and better fi-
nite sample behavior. The remaining question is how we
can find good candidate detectors.

Second, the MEE involves unknown outcome models (Zd)
and scaled density ratio models (π̃A and π̃s,A), which we
collectively refer to as nuisance parameters. Prior works
have shown that plug-in estimators, which use the same data
to both train nuisance parameters and estimate targets of
inference, are biased. Following results in double-debiased
ML and semiparametric theory (Chernozhukov et al., 2018),
we use sample splitting to remove some of this bias. The
question is then how to remove the remaining bias for achiev-
ing the desired Type I error control.

Given the benefits of sample-splitting, the overall testing
procedure uses this as the basis: Step 1 estimates candidate
detectors and nuisance parameters on a training partition and
Step 2 uses the remaining data to conduct a restricted test
with respect to the fitted models (Figure 2). For ease of ex-
position, we describe the procedure for a single sample-split,
but it can be easily extended with cross-fitting to improve
statistical efficiency (Kennedy, 2024). Here we describe
each step broadly and highlight key innovations needed
to address the technical challenges. The detailed testing
procedure (including hyperparameter selection) is given in
Section C of the Appendix.

Step 1. Estimate candidate detectors and nuisance pa-
rameters using the training partition. The nuisance
parameters can be estimated using ML following stan-
dard recipes (Kennedy, 2024). Estimating candidate de-
tectors for the aggregate and detailed outcome shift tests
is also straightforward. For the aggregate version, the es-
timand in (5) is maximized when the conditional mean

E1[(Z1(X)− Z0(X)− τ)hA(X)|X] is maximized, so the
optimal detector is hA(X) = 1{Z1(X)−Z0(X)−τ > 0}.
Consequently, we can take a plug-in approach to construct a
candidate detector, i.e. ĥA(X) = 1{Ẑ1(X)−Ẑ0(X)−τ >
0}. A similar approach can be taken for the detailed version.

Estimating candidate detectors for the covariate shift tests
is, however, not immediately obvious. For instance, the
MEE in (7) cannot be maximized by individually maximiz-
ing its conditional mean, because of the shared ratio term
E0[hA(X)]/E1[hA(X)]. Instead, we find the optimal de-
tector by solving the dual for a sequence of optimization
problems. That is, we can reframe the task as solving

sup
A

E0

[(
Ẑ0(X)(π̂(X)ω − 1)− τ

)
hA(X)

]
≤ 0

s.t. ω = E0[hA(X)]/E1[hA(X)]
(9)

for some ω > 0. Using the method of Lagrange mul-
tipliers, the solution must have the form ĥ

(ω,λ)
A (X) =

1

{(
Ẑ0(X)− λ

)
(π̂(X)ω − 1) ≥ 0

}
for some λ ≥ 0.

Thus we can estimate the optimal candidate detector by
sweeping over a grid of ω and λ values. We can estimate
detectors for detailed covariate shifts in a similar manner.

Step 2. Conduct double-debiased tests on held-out data.
On the remaining data, we construct asymptotically linear
estimators for the MEE with respect to the fitted candi-
date detector(s), using the approach of one-step correction.2

This is relatively straightforward for (5), (7), and (8) by
noting the mathematical similarities between MEE and di-
rect/indirect effects in causal mediation analysis. However,
one-step correction for the detailed outcome shift does not
follow from standard recipes, which require the target of
inference to be pathwise differentiable. The problem is that
(6) involves Zs(X), which is not pathwise differentiable
because its definition involves indicator functions. Still, we
can sidestep this issue by leveraging the binning trick in
Singh et al. (2024). Rather than defining an outcome shift
as a function of µ0(x), we define a binned outcome shift
that replaces all occurences of µ0 with a binned version.
Assuming that the set of observations that fall exactly on the
bin edges have measure zero, we can show that the MEE
with respect to the binned outcome shift is pathwise differ-
entiable, so to allow construction of an asymptotically linear
estimator.

Theoretical properties. Under the assumptions described
in Appendix D, we can prove that the estimators for the MEE
with respect to fitted detectors are asymptotically linear
and their respective tests control the Type I error and have
power one, asymptotically. Consequently, for outcome and

2Appendix C.3 discusses a more statistically efficient but more
complex procedure involving the Maximum conditional Expecta-
tion of the Exceedence (McEE) rather than the MEE. We discuss
testing of the MEE in the main manuscript for ease of exposition.
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covariate shifts (shift = Y |X and shift = X), if there
is a candidate detailed shift with respect to variable subset
s∗,shift that corresponds to the true shift, it will be flagged
by SHIFT, i.e. P (s∗,shift ̸∈ Sshift

n ) ≤ α.

5. Results
We now validate SHIFT in simulation studies where the
ground truth is known and two real-world case studies. For
comprehensive validation, we vary the type and degree of
shifts, the ML algorithms under study, and the data sizes.
We present a summary of the results here due to space
constraints and provide full experiment details in Section G.

SHIFT. For all experiments, performance is defined in terms
of the 0-1 misclassification loss. We fit ML models (e.g.
gradient boosting trees (GBT)) for the nuisance parameters
and detectors, with hyperparameters chosen through cross
validation. The significance level is set to α = 0.05.

Baseline methods. There is no existing comparator that
provides universal testing for all four types of shifts (ag-
gregate/detailed and covariate/outcome) for the exact for-
mulations used in SHIFT. Given these constraints, different
comparators are used for different shift types and, when
necessary, adapted to be as close as possible.

For aggregate shifts, we compare against Kernel indepen-
dence tests KCI (Zhang et al., 2011) and MMD (Gretton et al.,
2012b). For detailed outcome shifts, we compare against
(a) TE-VIM (Hines et al., 2023) which quantifies VI for ex-
plaining conditional average treatment effect, (b) ParamY
which fits a parametric regression model of the outcome Y
given domain D, features X , and interaction terms DX and
determines VI based on coefficients of the interaction terms,
(c) ParamLoss which is the same as ParamY except it
regresses loss ℓ, and (d) KCI (Zhang et al., 2011) which is
a kernel conditional independence test for D ⊥ ℓ|Xs. For
detailed covariate shifts, we compare against (a) KS which
is the classic Kolmogorov-Smirnov test for comparing two
univariate distributions, (b) Score (Kulinski et al., 2020)
which detects shifts in Xs|X−s via the Fisher score, and
(c) KCI (Zhang et al., 2011) which is a kernel conditional
independence test for D ⊥ X−s|Xs.

5.1. Simulations

Here we illustrate how SHIFT is more powerful and iden-
tifies only relevant shifts, i.e. those that contribute to per-
formance drifts of magnitude ≥ τ in some subgroup with
prevalence ≥ ϵ.

Data generating process. We generate variables X from
a multivariate normal distribution centered at md and co-
variance Σd for domain d and binary outcome Y per logit
ϕd(x). The ML algorithm is a logistic regression model

fitted to data from the source domain. We take n = 8000
points from both source and target domains, and split them
into halves for training and evaluation.

Setup 1a/b (Compare agg-level outcome/covariate tests):
For X ∈ R10, the shift only occurs in subgroup A =
{x|x1 /∈ [−3.5, 3.5]}. Setup 1a only shifts the outcome
logits per ϕ1(x) = ϕ0(x)− 0.6x11{x ∈ A}; Setup 1b only
shifts the mean of the first covariate. To make the tests
comparable, SHIFT tests for τ = 0, ϵ = 0.05.

Setup 2 (Compare detailed outcome test): ϕ0(x) = 0.8x1 +
0.5x2+x3+0.6x4 and ϕ1(x) = 0.2x1+0.4x2+x3+0.6x4.
The outcome shifts with respect to both X1 and X2, but the
shift in X2 is minimal and below tolerance τ . Accuracy
drops by 5.9%. SHIFT tests for τ = 0.05, ϵ = 0.05.

Setup 3 (Compare detailed covariate test):
m0 = (1, 0, 0, 1),Σ0 = diag(2, 2, 2, 2) and
m1 = (0, 0, 0, 0),Σ1 = diag(1, 2, 2, 2). Both X1

and X4 shift but X4’s shift is very small and below
tolerance τ . Accuracy drops by 5.4%. SHIFT tests for
τ = 0.02, ϵ = 0.05.

SHIFT correctly identifies relevant shifts, achieves nom-
inal type-I error rate, and is consistent. In Setups 1a/b,
the aggregate-level tests in SHIFT are considerably more
powerful than KCI and MMD, which are both kernel-based
methods that tend to do poorly in high dimensions (Table 2).
In contrast, SHIFT takes advantage of flexible ML estima-
tors, which allows it to recover the true subgroup A with
reasonable accuracy (73.7% and 41.9% in setups 1a and 1b,
respectively). In Setups 2 and 3, the aggregate-level tests in
SHIFT also correctly flag outcome shifts (Fig 3a) and covari-
ate shifts (Fig 3b), respectively. At the detailed level, SHIFT
correctly flags variable X1 as being a good explanation for
the large performance shifts; the others are ignored because
they either do not contribute or have negligible impacts. In
Appendix I, we also show that SHIFT controls the Type-I
error rate and is consistent (asymptotically power-one).

Table 2: Aggregate tests. Power for detecting outcome or
covariate shifts in a subgroup. Power is computed as the
rejection rate among 25 random draws of the dataset. We
observe that SHIFT has the highest power.

Setup SHIFT KCI MMD

1a Outcome 0.56 (0.42,0.7) 0.26 (0.16,0.4) 0.06 (0.02,0.16)

1b Covariate 0.94 (0.84,0.98) 0.0 (0.0,0.0) 0.46 (0.32,0.6)

Comparators do not flag the correct shifts. For com-
parators in the detailed outcome test (Setup 2), we find the
following: TE-VIM does not find any variable able to ex-
plain heterogeneity of performance drift because it has weird
behavior at the null. KCI can only check if the “marginal”
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(a) Setup 2, only X1-specific outcome shift should be flagged

(b) Setup 3, only X1-specific covariate shift should be flagged

(c) Insurance coverage prediction with 5 variable subsets

(d) Readmission prediction with 4 variable subsets

Figure 3: Hypothesis testing results for variable(subset)-
specific shifts. SHIFT shown in outlined boxes; baselines
for covariate and outcome shifts shown on the bottom left
and right, respectively. Null hypotheses either state that a
shift should be flagged (†), in which case we flag it in red
if the p-value > 0.05 and show the p-value in the colored
box, or that a shift should not be flagged (‡), in which case
we flag it if the p-value ≤ 0.05 and show 1− p-value. For
synthetic Setups 2 and 3, we report median p-values over
50 randomly-sampled datasets.

distribution of the loss can be explained by individual vari-
ables, i.e. if the loss distribution is independent of D given
Xj . This is a very specific type of explanation and does
not hold, and so KCI fails to find any good explanation.
ParamLoss is an incorrectly specified model and thus in-
correctly flags none of the variables. ParamY is correctly
specified model so it flags X1 and X2 as shifting, which
is correct though does not respect the specified tolerance.
Similar issues are found in the detailed covariate test (Setup
3). KCI, KS, and Score all incorrectly flag both X1 and
X4 even though X4 is irrelevant. This is because they check
if X4 has shifted, but do not account for the fact that X4 is
not actually used by the model nor does it affect Y in any
capacity.

5.2. Real-world case studies

Health insurance prediction across states. We study per-
formance drift of an MLP trained to predict public health
insurance coverage using census data from Nebraska, which
is subsequently applied to Louisiana. Datasets have 3166
and 12000 points respectively and 34 features. Accuracy
drops by 13.7% on average. At the aggregate-level, SHIFT
finds that both outcome and covariate shifts affect subgroup-
level accuracy (Fig 3c). For example, accuracy for the
subgroup detected by the aggregate outcome test, compris-
ing 50.6% of the target data, decays by 19.4%. Grouping
the variables (34 in total) into 5 broad categories, we find
from the detailed tests from SHIFT that shifts with respect
to demographics can explain subgroup-level decay due to
both shift types. Similar to that in simulations, the KCI
baseline method struggles to find a good explanation while
TE-VIM only flags employment-related variables. Based on
these findings, we compare three ways to fix the model: a
standard non-targeted (Non-T) fix that retrains the model
for everyone with respect to all variables; a fix that retrains
the model for everyone with respect to only the employment-
related variables identified by TE-VIM; and a very targeted
fix that only updates the model for the subgroup and the de-
mographic variables detected by SHIFT (Table 3). We find
that the targeted fix does better than the non-targeted fixes,
and the non-targeted fixes inadvertently decay performance
in other subgroups.

Readmission prediction across hospitals. The clinical AI
field has developed numerous models to predict whether
patients will be have an unplanned readmission after dis-
charge from a hospital, which can be used to allocate extra
resources to high-risk patients. We study a GBT readmis-
sion model trained on data from an academic hospital and
transferred to a safety-net hospital. Since the hospitals serve
different populations, the goal is to understand which exact
shifts contributed the most to accuracy changes, such as
changes in how patient variables are measured or changes
in how care is delivered. Datasets from the academic and
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Table 3: Comparing model updates on insurance study.
We report AUC and 95% CI for performance of the original
model and targeted versus non-targeted model updates, as
measured with respect to the overall population (left col-
umn) and the subgroups where the original model (Org)
and non-targeted model updates (Non-T and TE-VIM) ex-
perience large performance decays (right three columns).
The targeted update based on SHIFT results performs better
along all dimensions.

Subgroup for models
Model Overall Org Non-T TE-VIM

Original model,
Org

69.2
(67.0,71.4)

59.0
(55.3,62.3)

— —

Non-targeted
update, Non-T

73.0
(71.0,75.0)

67.3
(64.0,70.4)

41.8
(24.6,59.2)

—

Update as per
TE-VIM feats.

73.0
(71.0,75.1)

64.9
(61.6,67.9)

— 63.7
(56.6,70.5)

Targeted update
as per SHIFT

74.8
(72.8,76.8)

67.7
(64.4,70.4)

66.4
(46.8,83.6)

65.0
(57.5,71.5)

safety-net hospitals have 7468 and 6515 points, respectively,
and 27 features. Accuracy on average decays by 6.1% when
the model is transferred. SHIFT detects significant changes
in subgroup-level accuracy due to both aggregate outcome
and covariate shifts (Figure 3d). For instance, the subgroup
detected by the aggregate covariate test (comprising 41.8%
of target data) has a 15.4% drop in accuracy. We find that
the top feature highlighted by SHIFT for both covariate and
outcome shifts is num ED encounters. When the same
variable is highlighted for both covariate and outcome shifts,
it can indicate that the definition of the variable has shifted.
Investigating the data extraction procedure further, we in-
deed find this to be the case: the encounters feature was
extracted differently across the hospitals. After correcting
the extraction of this feature, covariate shifts no longer lead
to a significant subgroup-level accuracy drop (p-value for
the aggregate covariate test is no longer significant). This
illustrates how SHIFT can help bridge accuracy gaps.

Application to unstructured and high-dimensional data.
Although SHIFT is primarily designed for tabular data, its
aggregate-level tests are suitable for analyzing unstructured
data; its detailed-level tests can also be used, if one has
prespecified concepts (Koh et al., 2020). As an example,
we apply SHIFT to the CivilComments dataset (Koh et al.,
2021), which contains comments on online articles and are
judged to be toxic or not. Given 768-dimensional embed-
dings of the comments, SHIFT detects accuracy drops, as
described in Section J.

6. Conclusion
We propose hypothesis tests to identify subgroups where an
ML model decays in performance due to distribution shift
across two contexts. The tests can also explain how the de-
cay arises by checking for variable subset-specific shifts that
can explain the decay. The tests can be configured to detect
only meaningfully large performance decay and can be im-
plemented readily using off-the-shelf ML models. Despite
using ML estimators, we show that the tests have controlled
false detection rate and good power asymptotically. Al-
though the experiments here primarily focus on tabular data,
SHIFT can be extended to unstructured data such as images
and text by featurizing such data into concepts (Koh et al.,
2020; Feng et al., 2024b). Our explorations with text data
show that SHIFT provides a solid theoretical foundation on
which future work can build.
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Appendix

Table of contents
• We summarize the notation used in Table 4.
• Section A relates proposed tests to causal interaction and mediation analysis.
• Section B describes the modified covariate shift test which removes features uncorrelated with loss as a preprocessing

step.
• We provide step-by-step details of the testing procedure in Section C.
• Section D presents theoretical results and their proofs.
• Section E discusses related work in more detail and demonstrates challenges in testing with prior approaches.
• We discuss some alternative definitions of detailed tests and demonstrate their drawbacks in Section F.
• Sections G and H give experiment and implementation details.
• We show more simulations for type-I error control and power in Section I.
• We apply SHIFT to a high-dimensional text dataset from the WILDS benchmark in Section J.

Table 4: Summary of notation.

Notation Meaning

X,Y, f(X) Covariates, Outcome, ML algorithm’s prediction
Xs Subset of covariates (or variables)

D ∈ {0, 1} Domain or dataset, 0 means source and 1 means target domain
pd(X,Y ) Probability density (also used for distribution) in domain d
A, hA Subgroup A ⊆ X and binary indicator function for subgroup A

ℓ(y, f(x)) Loss per data point (x, y)
Zd(x), d ∈ {0, 1} Average loss per data point Ed[ℓ(Y, f(X))|X = x]
Ed[·|X ∈ A] Expectation with respect to pd for a subgroup

τ Tolerance specified by analyst to detect performance decay of magintude τ or higher
ϵ Prevalence specified by analyst for the minimum group size to detect
α Significance level or the desired false rejection rate of the null hypothesis

µd(x) conditional outcome function in source domain, µd(x) = pd(Y = 1|X = x)
ps(y|xs, µ0), Zs(x) Conditional outcome distribution shifted with respect to Xs and the resulting loss

Z0,s(x) Conditional loss function Z0,s(x) = E0[ℓ|xs, hA(x)]
π(x), πs(x) Density ratios p1(x)

p0(x)
and πs(x) =

p1(xs)
p0(xs)

πA(x), πs,A(x) Scaled versions of π(x) and πs(x) by the factors E0[hA(X)]
E1[hA(X)] and E0[hA(X)]

Es[hA(X)] respectively

A. Connection to causal mediation analysis
Figure 4 summarizes the correspondence between the proposed tests and the tests for interaction and mediation in the causal
inference literature. Proposed hypothesis tests could benefit heterogeneous mediation analysis that identifies meaningful
subgroups, as opposed to prespecified or model-driven latent subgroups. Specifically, the proposed tests can be extended to
determine whether a subgroup with large direct and indirect effects exists. The extension is straightforward when subgroups
are defined using pre-exposure covariates, as in conventional mediation analysis. When subgroups are defined using potential
mediators, further identification assumptions are required before the proposed tests can be applied.

B. Modified covariate shift test
Counter-intuitively, the tests as defined in Hypotheses 3.1 and 3.3 may flag shifts in covariates that are unrelated to the loss
function. That is, for the aggregate covariate shift test, we may find a group A for which

E1[Z0(X)|X ∈ A]− E0[Z0(X)|X ∈ A] > 0

even when Z0(X) = Z1(X). This can happen because we are conditioning on X ∈ A which introduces a shift in ℓ|X ∈ A
by conditioning on the collider A for effect of d on ℓ. A simple fix is to restrict the detectors to depend only on features that
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Figure 4: Graphical description of the hypothesis tests. Differences in distributions of X and Y (and hence average
performance of a model) across the two domainsD = 0, 1 is represented by effect of variableD onX,Y . (left) Performance
can vary due to changes in conditional outcome distribution (orange edge, outcome shift) and/or changes in the covariate
distribution (green path, covariate shift). Variables Zd, d ∈ {0, 1} represents conditional loss in the domains as described in
text. Firstly, we test whether each of the effects is zero. (middle) When test for outcome shift is rejected, we identify feature
subsets Xs such that the complement X−s do not interact with the effect of D on Y (orange dashed line). (right) When
test for covariate shift is rejected, we identify feature subsets Xs such that X−s which do not mediate the effect of D on Y
(green dashed path).

Figure 5: Modified covariate shift test. Graph provides an example data generating mechanism where X1 is marginally
independent of Y . The feature X2 influences Y but does not shift. Conditioning on A introduces a collider on the path from
D to Y (and hence ℓ). Therefore, the loss is affected by the covariate shift even though it only depends on a feature that does
not shift. In the modified test, we remove the feature X1 before testing for covariate shifts.
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are correlated with the loss.

For the covariate shift tests, we subset the covariates to keep those that are correlated with the loss, Xcorr = {Xi|Xi ⊥̸⊥
ℓ, i ∈ {1, 2, . . . , |X|}}. The null hypotheses 3.1 and 3.3 are defined only with respect to the correlated features, X := Xcorr.
To avoid ‘peeking into the data’, we filter uncorrelated features based on the training data split. Remaining part of the tests
are the same as earlier.

C. Step-by-step testing procedures
Source and target domains comprise of i.i.d. observations of (x, y). We denote empirical average over n data points from
domain d by the operator Pd,n. For example, P0,n refers to taking the empirical average for the evaluation dataset of the
source domain. We use Pn to refer to an average over the pooled source and target data. For ease in notation, we write the
same number of samples n for each dataset. However, they could be different. In fact, our hypothesis tests are particularly
beneficial for cases when the target datasets are too small for point-identifying performance shifts. We split the datasets into
two parts, one is used for fitting all nuisance parameters and the detectors, and other is used to evaluate the MEE and for
inference.

C.1. Fitting nuisance parameters

We require seven nuisance parameters denoted by η = (Z0, Z1, Zs, Z0,s, π, πs, πV ). We denote their estimates by η̂. The
nuisance parameters can be broadly categorized as outcome and density ratio models.

• Outcome models. To fit the conditional loss functions Ẑ0 and Ẑ1, we first fit the conditional outcome probabilities
p̂0(y|x) and p̂1(y|x) by regressing y on x. Then, conditional loss is simply an expectation over the two possible outcome
Ẑd(x) =

∑
y∈{0,1} ℓ(y, f(x))p̂d(y|x). For Ẑs, we fit the Xs-shifted conditional outcome probability p̂s by regressing

y on xs, µ̂0(x), and taking an expectation over y. That is, Ẑs(x) =
∑

y∈{0,1} ℓ(y, f(x))p̂s(y|xs, µ̂0(x)). Similarly, the
conditional loss function Z0,s(x) = E0[ℓ|xs, hA(x)] can be estimated through regressing y on xs, hA(x).

• Density ratio models. We estimate the scaled density ratios π̃A(x) =
p1(x)E0[hA(X)]
p0(x)E1[hA(X)] and π̃s,A(x) =

p1(xs)E0[hA(X)]
p0(xs)Es[hA(X)] by

first fitting models for the density ratios and plugging them into the definitions. We also need a density ratio model for
the detailed outcome test, πV (Xs = xs, X−s = x−s) =

p1(X−s=x−s|Xs=xs,µ0(X)=µ0(x))
p1(X−s=x−s|µ0(X)=µ0(x))

. Density ratios are fit using a
probabilistic classifier to estimate the probability a data point belongs to target domain from the pooled source and target
data. Density ratios are computed as odds ratio for the classifiers. Please refer to Sugiyama et al. (2007) for more details.

Remark. We note that the scaled density ratio models depend on the detectors h which we haven’t fit yet. To break this
cyclical dependence, we first fit detectors (as shown in the next section) for the unscaled density ratios and then compute the
scaled density ratio models.

C.2. Fitting detectors

Recall that detectors hA(x) are binary functions meant to detect the data points with high mean exceedence. Fitting
procedures for detectors vary for the tests since the exceedence is defined differently. All detectors can be implemented
using off-the-shelf ML regression libraries.

Aggregate test. For the outcome test, we use the plug-in approach hA(x) = 1{Ẑ1(x)− Ẑ0(x)− τ > 0}. Alternatively, we
can fit a detector by regressing ℓ− Ẑ0(x)− τ from x,

hA ∈ argmin
g

P1,n((ℓ− Ẑ0(x)− τ)− g(x))2 (10)

For the covariate test, we solve the optimization problem (9) after plugging in Ẑ0 and π̂. We find values of ω, λ by grid
search that maximize the objective for detectors of the form,

h
(ω,λ)
A =

{
x :

(
Ẑ0(x)− λ

)
(π̂(x)ω − 1) ≥ τ

}
. (11)

Detailed test. For outcome test, we simply plug-in the estimated nuisance parameters into the MEE and threshold it,

hA(x) = 1{Ẑ1(x)− Ẑs(x)− τ > 0}. (12)
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For the covariate test, we grid search for ω, λ values to optimize the detailed test counterpart of (9) with detectors of the
form,

h
(ω,λ)
s,A =

{
x :

(
Ẑ0(x)− λ

)
(π̂A(x)ω − π̂s,A(x)) ≥ τ π̂s,A(x)

}
. (13)

C.3. Estimating the Maximum conditional Expectation of the Exceedence (McEE)

The main manuscript discusses the testing procedure in terms of the MEE for ease of exposition. In practice, to maximize
statistical power for the hypothesis tests in SHIFT, it is better to construct estimators of the Maximum conditional Expectation
of the Exceedence (McEE), as its efficient estimator has lower variance. Below, we present the inference procedure for
McEE on the held-out data, which is slightly more complex than that for MEE because it involves ratios instead.

We first present plug-in estimators for McEE, which are key quantities in the tests (Table 5). However, as noted earlier,
plug-in estimates have been shown to give biased estimates for estimands involving infinite-dimensional quantities like
outcome models or density ratios, and using flexible ML estimators for the nuisance parameters do not help remove the
bias (Chernozhukov et al., 2018). For this reason, the plug-in estimators cannot be readily used to perform valid tests. We
propose to debias the estimates by one-step correction, also known as double/debiased estimation. Debiased estimators can
be shown to be asymptotically normal and give valid tests. Note that the estimators for aggregate are special cases of the
ones for detailed tests with Xs set to an empty set. Therefore, we only present the estimators for the detailed tests and then
analyze their theoretical properties.

Table 5: Plug-in and debiased estimates of restricted MEE for detector h given the fitted nuisance parameters η̂. We
recommend using the debiased estimates because they can give valid tests.

Type of test Plug-in estimator Debiased estimator

Aggregate outcome

P1,n[(ℓ(Y, f(X))− Ẑ0(X)− τ)hA(X)]/P1,n[h(X)]

same as McEEY(∅)

Aggregate covariate

P1,nẐ0(x)hA(x)/P1,nhA(x)− P0,n[ℓhA(x)]/P0,n[hA(x)]− τ

same as McEEX(∅)

Detailed outcome,
McEEY(s)

P1,n[(ℓ(Y, f(X))− Ẑs(X)− τ)hA(X)]/P1,n[hA(X)]

given in (14)

Detailed covariate,
McEEX(s)

P1,nẐ0(x)hA(x)/P1,nhA(x)− P0,n[π̂s,A(x)ℓhA(x)]/P0,n[hA(x)]− τ

given in (17)

Detailed test for outcome shift. As discussed in Sec 4, the MEE in the case of detailed outcome shift is not pathwise
differentiable because it depends on an indicator function (in Zs(x)). Therefore, we follow the binning trick of Singh
et al. (2024) to change MEE into a pathwise differentiable quantity. Recall that Xs-specific outcome shifts are defined
as a function of µ0(x). We change it to depend on a binned version, µbin(x) =

1
B ⌊µ0(x)B + 1

2⌋ for some fixed B ∈ Z+.
It discretized µ0(x) into B equally spaced bins in [0, 1]. Thus, the binned MEE is defined as a function of Zs,bin =∑

y ℓ(y, f(x))ps(y|xs, µbin(x)). As long as the binned µbin does not fall on the bin edges (almost surely), the indicator
involved in the binned MEE is zero (almost surely). Thus, ensuring that MEE is pathwise differentiable. We expect the
binned and original version of MEE to be similar for a large enough number of bins. We can now define the estimator.

The debiased estimator for MEE has the form of a V-statistic. We denote V-statistic by the operator P1,nP̃1,n, which
takes an average over all pairs of observations with replacement. That is, V-statistic over observations O1, O2, . . . , On is
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computed as 1
n2

∑n
i=1

∑n
j=1 v(Oi, Oj) for some function v. The tilde notation P̃1,n is used to distinguish between the

arguments to v. Debiased estimator for MEE given the fitted nuisance parameters η̂ is expressed as a ratio M̂cEEY(s) =

M̂cEE
num
Y (s)/Pn[hA(x)] where M̂cEE

num
Y (s) is

M̂cEE
num
Y (s) = P1,nP̃1,nℓ(Y, f(Xs, X̃−s))hA(Xs, X̃−s)π̂V (Xs, X̃−s|µ̂bin) (14)

+ P1,n

∑
y

ℓ(y, f(X))hA(X)p̂1(y|Xs, µ̂bin(X)) (15)

− P1,n

∑
y

ℓ(y, f(Xs, X̃−s)hA(Xs, X̃−s)π̂V (Xs, X̃−s|µ̂bin(X))p̂1(y|Xs, µ̂bin(X)) (16)

Detailed test for covariate shift. Define the conditional loss function Z0,s(x) = E0[ℓ|xs, hA(x)] and its estimate as Ẑ0,s.
Debiased estimator for MEE in the case of covariate shift given the fitted nuisance parameters η̂ is expressed as a ratio
M̂cEEX(s) = M̂cEE

num
X (s)/Pn[hA(x)] where M̂cEE

num
X (s) is

M̂cEE
num
X (s) = P1,n[Ẑ0(x)hA(x)]− P0,n[ℓπ̂s,A(x)] (17)

+ P0,n[(ℓ− Ẑ0(x))π̂A(x)] (18)

+ P0,n[Ẑ0,s(x)π̂s,A(x)]− P1,n[Ẑ0,s(x)] (19)

C.4. Inference

For inference, we use the Gaussian multiplier bootstrap method to construct bootstrap distributions for the test statistic
(McEE) under the null (Hsu, 2017). Each bootstrap sample, involves sampling n variables distributed as standard normal,
ξ1, . . . , ξn ∼ N(0, 1) and recomputing the centered McEE with ξ as per-sample weights. We construct the p-value as the
proportion of times the bootstrap test statistics exceeds the observed test statistic.

D. Theoretical results
Here, we provide details of type-I error and power guarantees of our testing procedures for the four hypotheses, two
aggregate (covariate/outcome) and two detailed level (covariate/outcome for a subset). Specifically, we analyze the McEE
for the restricted version of the tests with a singleton detector {hA}. Extension to maxima over multiple detectors follows
from Gaussian approximations of maxima over averages (e.g. Chernozhukov et al. (2013)).

Outline. At a high-level, we show that our debiased estimators of McEE are asymptotically linear. It implies that they
converge to a normal distribution centered at the true McEE. Because of the normality, we can conduct inference using
standard tests such as z-test or Wald test for the null hypothesis McEE ≤ 0. Properties of type-I error control and power will
follow. So, the key is to show asymptotic linearity of the estimators.

We first give an outline of the linearity analysis, which applies the techniques developed for analyzing V-statistics (van der
Vaart, 1998). Our estimators of McEE, (14) and (17), are one-step corrected estimators which start from a plug-in estimate,
McEE(P̂), and debias it by adding its canonical gradient Pnψ(o; P̂) (also called an influence function).

McEE(P̂) + Pnψ(o; P̂)

Here, the canonical gradient ψ is a function of the probability distribution P over the observationsO = (X,Y,D). Following
the von-Mises expansion of McEE(P̂), the bias of the one-step corrected estimator can be decomposed into three terms,(

McEE(P̂) + Pnψ(o; P̂)
)
− McEE(P)

= (Pn − P)ψ(o; P̂) +R(P̂,P)

= (Pn − P)ψ(o;P) + (Pn − P)(ψ(o; P̂)− ψ(o;P)) +R(P̂,P)

for a second-order remainder term R(P̂,P). The goal of our analysis is to show that each of the terms is negligible at
op(n

−1/2) rate such that we get an asymptotically linear representation of the one-step corrected estimator.(
McEE(P̂) + Pnψ(o; P̂)

)
− McEE(P) = Pnψ(o;P) + op(n

−1/2).
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The form implies that the one-step corrected estimator is asymptotically normal with mean McEE(P) and variance
var(ψ(o;P))/n, which allows constructing valid tests such as z-test or Wald test.

We present the theoretical results for detailed tests in the next section.

D.1. Detailed test of outcome shift

For pathwise differentiability of the McEE, we require a mild condition to hold for the binned outcome shift µbin. It states
that the true shifted probabilities µbin lie inside the bins almost surely. Additionally, we require that the nuisance parameters
are consistently estimated. It is possible to ensure consistency by using nonparametric ML estimators. Most importantly,
we require that the product of estimation errors in the V-statistic density ratio model π̂V and the Xs-specific outcome shift
model converges at op(n−1/2) rate. In the average treatment effect literature, similar assumptions is made for the outcome
and treatment propensity models (Chernozhukov et al., 2018). Note that this condition is significantly milder than requiring
that both the models have fast convergence. The condition holds as long as we can guarantee op(n−1/4) rate of convergence
for the models.
Condition D.1. For variable subset s, assume the following holds:

• (binning) For all bin edges b of µ0(x) except {0, 1}, the set {x : |µ0(x)− b| ≤ ϵ} is measure zero for some ϵ.
• (consistency) Nuisance parameter estimates µ̂bin, π̂V , p̂s are consistent.
• (product of errors) P1(π̂V − πV )(p̂s − ps) = op(n

−1/2).

Theorem D.2. Suppose Condition D.1 holds. Then the estimator M̂cEEY(s) follows a normal distribution asymptotically,
centered at the estimand McEEY(s).

To prove the above theorem, recall that McEEY(s) is defined as the ratio, McEEnum
Y (s)/Pn[hA(x)]. The following lemma

will first show that the estimator for the numerator is asymptotically linear. Denominator can be estimated simply as an
empirical average of hA(x), hence it is linear. Then, we will use the Delta Method (van der Vaart, 1998) to estimate the
ratio and prove it has a normal distribution asymptotically.

Suppose the nuisance parameters in M̂cEE
num
Y (s) are ηnum

Y,s = (πV , µbin, ps). We write the one-step corrected estimate of

M̂cEE
num
Y (s) as a V-statistic.

M̂cEE
num
Y (s) = P1,nP̃1,nℓ(Y, f(Xs, X̃−s))hA(Xs, X̃−s)π̂V (Xs, X̃−s|µ̂bin)

+ P1,nP̃1,n

∑
y

ℓ(y, f(X))hA(X)p̂1(y|Xs, µ̂bin(X))

− P1,nP̃1,n

∑
y

ℓ(y, f(Xs, X̃−s)hA(Xs, X̃−s)π̂V (Xs, X̃−s|µ̂bin(X))p̂1(y|Xs, µ̂bin(X))

=: P1,nP̃1,nv(X,Y, X̃, Ỹ ; η̂num
Y,s ) (20)

Lemma D.3. Assuming Condition D.1 holds, M̂cEE
num
Y (s) is an asymptotically linear estimator for McEEnum

Y (s)

M̂cEE
num
Y (s)− McEEnum

Y (s) = P1,nψ(x, y; η̂
num
Y,s ) + op(n

−1/2)

for the influence function

ψ(x, y; η̂num
Y,s ) = P1ℓ(y, f(xs, X−s))hA(xs, X−s)πV (xs, X−s|µbin) (21)

+
∑
ỹ

ℓ(ỹ, f(x))hA(x)p1(ỹ|xs, µbin(x)) (22)

−
∑
ỹ

ℓ(ỹ, f(xs, x̃−s)hA(xs, x̃−s)πV (Xs, X̃−s|µbin(X))p1(ỹ|xs, µbin(x)) (23)

(24)

Proof. Define the symmetrized version of v in (20) as vsym(X,Y, X̃, Ỹ ) = v(X,Y,X̃,Ỹ )+v(X̃,Ỹ ,X,Y )
2 . Then, we rewrite the

estimator as
M̂cEE

num
Y (s) = P1,nP̃1,nvsym

(
X,Y, X̃, Ỹ ; η̂num

Y,s

)
.
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Following Theorem 12.3 in (van der Vaart, 1998), the Hájek projection of M̂cEE
num
Y (s) is

ûnum
Y (s) =

n∑
i=1

P1

[
P1,nP̃1,nvsym

(
X,Y, X̃, Ỹ ; η̂num

Y,s

)
− ¯̂McEE

num

Y (s) | Xi, Yi

]
=

n∑
i=1

P1

[
vsym

(
Xi, Yi, X

(2), Y (2); η̂num
Y,s

)
− ¯̂McEE

num

Y (s) | Xi, Yi

]
=

n∑
i=1

vsym,1

(
Xi, Yi; η̂

num
Y,s

)

where ¯̂McEE
num

Y (s) = P1P̃1vsym

(
X,Y, X̃, Ỹ ; η̂num

Y,s

)
.

Decompose the bias of the estimator as,

M̂cEE
num
Y (s)− McEEnum

Y (s) =P1,nP̃1,nvsym

(
X,Y, X̃, Ỹ ; η̂num

Y,s

)
− P1P̃1vsym

(
X,Y, X̃, Ỹ ; ηnum

Y,s

)
=P1,nP̃1,nvsym

(
X,Y, X̃, Ỹ ; η̂num

Y,s

)
− P1,n

[
hsym,1

(
X,Y ; η̂num

Y,s

)
+

¯̂McEE
num

Y (s)
]

(25)

+ (P1,n − P1)
(
vsym,1

(
X,Y ; η̂num

Y,s

)
+

¯̂McEE
num

Y (s)− vsym,1 (X,Y )− McEEnum
Y (s)

)
(26)

+ (P1,n − P1) (vsym,1 (X,Y ) + McEEnum
Y (s)) (27)

+ P1

(
vsym,1

(
X,Y ; η̂num

Y,s

)
+

¯̂McEE
num

Y (s)− vsym,1

(
X,Y ; ηnum

Y,s

)
− McEEnum

Y (s)
)
.

(28)

Now, we consider the four terms of the decomposition one-by-one.

Term (25): Suppose P1v
2
sym(X,Y, X̃, Ỹ ; η̂num

Y,s ) < ∞. Via a straightforward extension of the proof in Theorem 12.3 in
van der Vaart (1998), one can show that

var
(
P1,nP̃1,nvsym

(
X,Y, X̃, Ỹ ; η̂num

Y,s

))
var

(
P1,nvsym,1

(
X,Y ; η̂num

Y,s

)) →p 1.

Then by Theorem 11.2 in van der Vaart (1998) and Slutsky’s lemma, we have

P1,nP̃1,nvsym

(
X,Y, X̃, Ỹ ; η̂num

Y,s

)
− P1,n

[
vsym,1

(
X,Y ; η̂num

Y,s

)
+

¯̂McEE
num

Y (s)
]
= op

(
n−1/2

)
.

Term (26): This term is asymptotically negligible since we perform sample splitting to estimate the nuisance parameters and

evaluate the estimator for M̂cEE
num
Y (s) on separate datasets. Then by Lemma 1 in Kennedy (2024), we have that

(P1,n − P1)
(
vsym,1

(
X,Y ; η̂num

Y,s

)
+

¯̂McEE
num

Y (s)− vsym,1

(
X,Y ; ηnum

Y,s

)
− McEEnum

Y (s)
)
= op(n

−1/2)

as long as the estimators for the nuisance parameters are consistent.

Term (27): This term is the difference between empirical and population average of a population-level quantity, hence it
follows a normal distribution asymptotically by standard CLT.
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Term (28): We show that the term is asymptotically negligible as well given the condition on nuisance estimation errors.

P1P̃1

(
vsym

(
X,Y, X̃, Ỹ ; η̂num

Y,s

)
+

¯̂McEE
num

Y (s)− vsym

(
X,Y, X̃, Ỹ ; ηnum

Y,s

)
− McEEnum

Y (s)
)

=P1P̃1

(
v(X,Y, X̃, Ỹ ; η̂num

Y,s )− v(X,Y, X̃, Ỹ ; ηnum
Y,s

)
(29)

=P1P̃1ℓ(Y, f(Xs, X̃−s))hA(Xs, X̃−s)
(
π̂V (Xs, X̃−s|µ̂bin)− πV (Xs, X̃−s|µbin)

)
+ P1

∑
y

ℓ(y, f(X))hA(X) (p̂1(y|Xs, µ̂bin(X))− p1(y|Xs, µbin(X)))

− P1P̃1

∑
y

ℓ(y, f(Xs, X̃−s)hA(Xs, X̃−s) (30)

×
(
π̂V (Xs, X̃−s|µ̂bin(X))p̂1(y|Xs, µ̂bin(X))− πV (Xs, X̃−s|µbin(X))p1(y|Xs, µbin(X))

)
(31)

By the law of iterated expectation, we can expand the first summand as,

= P1P̃1ℓ(Y, f(Xs, X̃−s))hA(Xs, X̃−s)
(
π̂V (Xs, X̃−s|µ̂bin)p1(y|Xs, µbin(X))− πV (Xs, X̃−s|µbin)p1(y|Xs, µbin(X))

)
+ P1

∑
y

ℓ(y, f(X))hA(X) (p̂1(y|Xs, µ̂bin(X))− p1(y|Xs, µbin(X)))

− P1P̃1,n

∑
y

ℓ(y, f(Xs, X̃−s)hA(Xs, X̃−s) (32)

×
(
π̂V (Xs, X̃−s|µ̂bin(X))p̂1(y|Xs, µ̂bin(X))− πV (Xs, X̃−s|µbin(X))p1(y|Xs, µbin(X))

)
Cancelling terms from the first and third estimand gives us,

=− P1P̃1ℓ(Y, f(Xs, X̃−s))hA(Xs, X̃−s)π̂V (Xs, X̃−s|µ̂bin) (p̂1(y|Xs, µ̂bin(X))− p1(y|Xs, µbin(X)))

+ P1

∑
y

ℓ(y, f(X))hA(X) (p̂1(y|Xs, µ̂bin(X))− p1(y|Xs, µbin(X)))

By the definition of the density ratio πV , the second summand can written as a V-statistic.

= −P1P̃1ℓ(Y, f(Xs, X̃−s))hA(Xs, X̃−s)π̂V (Xs, X̃−s|µ̂bin) (p̂1(y|Xs, µ̂bin(X))− p1(y|Xs, µbin(X)))

+ P1P̃1

∑
y

ℓ(y, f(X))hA(X)πV (Xs, X̃−s|µbin(X)) (p̂1(y|Xs, µ̂bin(X))− p1(y|Xs, µbin(X)))

Collecting the common terms, the sum simplifies to

= P1P̃1

∑
y

ℓ(y, f(X))hA(X) (33)

×
(
πV (Xs, X̃−s|µbin(X))− π̂V (Xs, X̃−s|µ̂bin(X))

)
(p̂1(y|Xs, µ̂bin(X))− p1(y|Xs, µbin(X))) ,

which is op(n−1/2) by Condition (D.1) on product of errors in π̂V and p̂s models.

Hence, the bias of the estimator is op(n−1/2).

Proof of Theorem D.2. Applying Delta Method to the numerator and denominator estimates, which we know to be asymp-
totically linear from Lemma D.3, we get that the estimator M̂cEEY(s) = M̂cEE

num
Y (s)/P1,n[hA(x)] is asymptotically

linear,
M̂cEE

num
Y (s)/P1,n[hA(x)]− McEEnum

Y (s)/P1[hA(x)] = P1,nψY,s(X,Y, η
num
Y,s ) + op(n

−1/2),

with the influence function

ψY,s(X,Y ; ηnum
Y,s ) =

1

P1[hA(x)]
ψnum

Y,s (X,Y ; ηnum
Y,s )−

McEEnum
Y (s)

(P1[hA(x)])2
hA(x)
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where ψnum
Y,s (X,Y ; ηnum

Y,s ) is defined in (21).

As a consequence, the estimator is asymptotically normal,
√
n
(

M̂cEEY(s)− McEEY(s)
)
→d N(0, var(ψY,s(X,Y ; ηnum

Y,s )) (34)

We can estimate the variance from the data to construct valid tests, for example a z-test or a Wald test. Alternatively, we can
use a multiplier bootstrap which bypasses estimating the variance.

D.2. Detailed test of covariate shift

The form of the debiased estimator McEEX is similar to those in indirect effects literature and follow straightforwardly from
the approach outlined in the previous section. Therefore, we omit derivations for asymptotic linearity. See Lemma G.2 in
Singh et al. (2024) for an illlustration.

We require the following conditions for asymptotic linearity. For the density ratios πA, πs,A to be well-defined, we need
the support of covariates in the source domain to be larger than the support in the target domain. This can be ensured by
restricting the target domain to the common support (Cai et al., 2023). Importantly, we require that only the product of
estimation errors of the nuisance parameters is asympotically negligible at op(n−1/2). Therefore, even though the estimator
involves fitting many models, debiasing relaxes the conditions required on their estimation errors.
Condition D.4. Assume the following holds,

• (consistency) Nuisance parameter estimates Ẑ0, Ẑ0,s, π̂A, π̂s,A are consistent.
• (contiguity) p0(x) > 0 whenever p1(x) > 0.
• (product of errors in Ẑ0 and π̂A) P0(Z0(x)− Ẑ0(x))(π̂A(x)− πA(x)) = op(n

−1/2)

• (product of errors in Ẑ0,s and π̂s,A) P0(Ẑ0,s − Z0,s)(π̂s,A − πs,A) = op(n
−1/2).

Theorem D.5. Given Condition (D.4) holds, the estimator M̂cEEX(s) = M̂cEE
num
X (s)/Pn[hA(x)] defined in (17) follows a

normal distribution asymptotically, centered at the estimand McEEX(s).

E. More details on related work
Hypothesis tests for distribution shift. Rabanser et al. (2019) compares multiple distribution shift detection methods
and find that two-sample testing on learned representation works well. Kulinski et al. (2020) finds features that shift via
conditional independence tests using a divergence measure based on score function. However, it requires specifying a density
model, a challenging problem in high-dimensions, and does not provide inferential guarantees. Hindy et al. (2024) proposes
a conformal prediction method to test for distribution shift over time. They focus on finding shifts in intermediate steps of a
multi-step process instead of finding feature subsets. Much of the shift detection literature does not focus on finding shifts
that significantly vary performance. In contrast, Panda et al. (2024) proposes a hypothesis test to find contributing features
for a performance change. To determine whether a feature is important, they test whether the effect of adding the feature to
the algorithm on its performance is the same across the two distributions. However, the specifics of how they add/remove
features, essentially by zero-ing in the features, do not respect feature correlations. They do not show whether the tests have
a controlled type-I error rate, which means the test could falsely identify many features as important.

Hypothesis tests for unfairness. One application of SHIFT is to test for disparities in an algorithm’s performance
(unfairness) by considering the source and target datasets to be data for the two protected groups. Hence, literature on
auditing unfairness is relevant. Zahn et al. (2023) searches through the covariate space to find subgroups with high unfairness.
The tests are limited to certain fairness notions such as demographic parity and equalized odds, and make parametric
assumptions for inference since they use a χ2 test. We note that an extensive literature exists on multi-calibration or
multi-accuracy which aims to train models that are accurate for all computationally-identifiable groups (Kearns et al., 2018;
Hebert-Johnson et al., 2018; Kim et al., 2019). Apart from similarities in the focus on identifiable subgroups, the objectives
of the work are different. Such methods are complementary to our testing approach and can be used if the tests suggest to
retrain the model.

Challenges in testing when performance decay is zero. Prior works (Hines et al., 2023; Quintas-Martinez et al., 2024;
Singh et al., 2024) on VI for treatment effects propose tests that suffer from undercoverage when the null hypothesis
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Figure 6: Testing VIs at boundary of parameter space. Existing methods for the related problem of explaining treatment
effect heterogeneity (Hines et al., 2023; Quinzan et al., 2023; Williamson et al., 2021) do not give valid tests for importance
of a variable. We observe that the coverage rate of confidence intervals for their test statistics (specifically, TE-VIM)
severely decreases below the desired rate when the variable importance goes to zero.

holds (Figure 6). Therefore, they do not give valid tests for importance of a variable. We observe similar behavior for the
comparator TE-VIM in experiments.

F. Options for defining detailed shifts with respect to a subset
We discuss some alternatives to defining the detailed level tests.

Detailed outcome shifts. Another choice for the null hypothesis HY |X
0,s is that

sup
h
E[Z1(x)− Z0(x)− Z∗

s (xs)|x ∈ A] = 0

where Zs(xs) = E1[Z1(x)− Z0(x)|xs].

This test, however, will fail to flag some subsets as important explanations. To illustrate, consider a simple example where
the conditional loss function does not change with respect to a subset but still the hypothesis will be rejected.

Example 1. Assume the conditional loss functions for the domains are Z0(x) = σ(x1 + 0.5x2) and Z1(x) = σ(x1 + x2)
for the sigmoid function σ(x) = 1/(1 + exp(−x)). Even though there is no change in loss functions with respect to x1, the
null hypothesis does not hold for x1 since the difference of sigmoids is still a function of x1. However, the target loss can be
defined as a function of x2 and Z0(x) alone, Z1(x) = σ(σ−1(Z0(x)) + 0.5x2).

The unintuitive behavior in the example occurs because we explain the discrepancy between Z1 and Z0 by taking their
difference as opposed to any other scale.

Detailed covariate shifts. A natural choice for the null hypothesis is to posit that Z0(x)P1(x) = Z0(x)P0(x) for all x.
However, this formulation would attribute performance change to covariate shifts in variables which are irrelevant to the loss
function. Consider a simple example to illustrate the issue.

Example 2. Assume conditional loss and one of the two features are distributed the same in source and target, Y |X =
(x1, x2) ∼ N(x1, 1), x1 ∼ N(0, 1) in P0 and P1. For simplicity, consider ℓ = Y . Second feature has a covariate shift from
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x2 ∼ N(0, 1) in P0 to x2 ∼ N(1, 1) in P1. That is, P1(x) ̸= P0(x). Since Z0(x) = Z0(x1) and x1 does not shift, there is
no performance change. Even though x2 is irrelevant to the loss, the shift in x2 will leads us to reject the null and attribute
performance change to covariate shift.

As the example suggests, one way to address this undesired behavior is to focus only on shifts in variables important to the
conditional loss Z0(x) instead of all variables x.

G. Experiment details
Code to reproduce the experiments is at the link http://github.com/jjfeng/shift. We describe important
details of the experiments and the implementation.

G.1. Simulations

For simulation setups 2 and 3, we generate n = 8000 data points in both the source and target domains. We split datasets
into equal halves for training and evaluation. For Setup 1, we reduce data points to n = 2000 for all methods since
the kernel-based baselines take a long time. We split the sample in the ratio 20-80% for SHIFT to ensure more data for
evaluation. The ML algorithm is a logistic regression model fitted on a separate sample of n = 10000 points from the source
domain.

Setup 1a (Outcome shift in a subgroup): Define a subgroup A = {x ∈ R10|x /∈ [−3.5, 3.5]}. m0 = µ1 =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),Σ0 = Σ1 = diag(2, 2, 2, 2, 2, 2, 2, 2, 2, 2), ϕ0 = (0.8, 0.5, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1). The
logit for target domain is ϕ1 = (0.2, 0.5, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) when x ∈ A and ϕ0(x) otherwise. Accuracy
overall is similar across source and target (drops by 0.5%). Since the baselines test for any difference in conditional
outcome distribution, SHIFT similarly tests for τ = 0. Given the subgroup A is 7.8% of the data, SHIFT tests for minimum
prevalence of ϵ = 0.05.

Setup 1b (Covariate shift in a subgroup): Logits are same as Setup 1a ϕ1 = ϕ0 = (0.8, 0.5, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).
We vary the mean of the first covariate from 1 to 0 in the subgroup defined as A = {x ∈ R10|x1 /∈ [−4, 4]}. Covariance
matrices are the same as Setup 1a. SHIFT tests for tolerance τ = 0 and prevalence of ϵ = 0.05.

Setup 2 (Outcome shift only): m0 = µ1 = (0, 0, 0, 0),Σ0 = Σ1 = diag(2, 2, 2, 2), ϕ0(x) = 0.8x1 + 0.5x2 + x3 + 0.6x4
and ϕ1(x) = 0.2x1 + 0.4x2 + x3 + 0.6x4. Therefore, the outcome shifts with respect to both X1 and X2, but the shift in
X2 is minimal and below tolerance τ . Accuracy of the ML algorithm by 5.9% from 83.8% in source domain to 77.9% in
target domain. SHIFT tests for τ = 0.05, ϵ = 0.05.

Setup 3 (Covariate shift only): m0 = (1, 0, 0, 1 ),Σ0 = diag(2, 2, 2, 2) and µ1 = (0, 0, 0, 0),Σ1 = diag(1, 2, 2, 2).
ϕ0 = ϕ1 = 2.5x1+x2+0.5x3+0.1x4. Both X1 and X4 shift but X4’s shift is very small and below tolerance τ . Accuracy
drops by 5.4% from 90.9% to 85.5%. SHIFT tests for τ = 0.02, ϵ = 0.05.

G.2. Real-world case studies

Background of case studies. We chose the case studies to mirror the real-world application of the framework. They
consist of settings where covariate or outcome shifts impact performance and domain experts do not know which shifts are
detrimental. Such settings are highly prevalent in healthcare where ML performance varies widely across hospitals and time.

The first case study is based on a systematic analysis in Liu et al. (2023) that analyzed performance drops of an algorithm
for predicting insurance coverage across different US states in the American Community Survey dataset. Among many
state pairs, Liu et al. (2023) primarily found a large decay when transfering the algorithm from Nebraska to Louisiana.
We decided to dive deeper into this analysis by identifying which subgroups were affected and why. SHIFT detected that
people who are unemployed or whose parents are not in the labor force experience a large decay (Fig 3c). Since health
insurance coverage is tied to employment in the US, and insurance rates and incomes differ between the states, such a decay
is expected.

The readmission case study analyzes an algorithm to predict readmission that is trained on a well-resourced academic
hospital and applied to a safety-net hospital. Since safety-net hospitals serve patients regardless of their ability to pay, their
populations are quite different. SHIFT detected that patients with many emergency encounters experience a large decay
(Fig 3d), which is expected because safety-net hospital patients seek care from emergency departments for very different
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reasons than at academic hospitals. Thus, SHIFT helps detect subgroups in realistic benchmarks.

Health insurance prediction. We extract datasets for the two states from the 2018 yearly American Community Survey. It
is available to download using the folktables package (Ding et al., 2021). Source (Nebraska) and target (Louisiana)
domains have 3166 and 12000 points respectively, and 34 features. For the covariate shift tests, we filter out features
that are uncorrelated with the loss function, resulting in a total of 18 features. Outcome shift tests keep all features. The
features are categorized into 5 broad categories (Table 6). Outcome is whether the person has public health insurance. We
train a multi-layer perceptron on separate datasets of 3166 points from source domain. Public health insurance rate (class
prevalence) increases drastically from 19.9% to 40.4% in Louisiana. SHIFT tests for tolerance τ = 0.05 and prevalence
ϵ = 0.05.

Table 6: Featues for health insurance prediction. Demo refers to demographics and Misc refers to Miscellaneous features.

Feature name Category SHAP importance for
ML algorithm

Sex Demo 0.072
Citizenship status not a citizen Demo 0.010
Citizenship status naturalized Demo 0.001
Citizenship status born abroad Demo 0.001
Citizenship status born in Puerto Rico, Guam Demo 0.000
Citizenship status born in US Demo 0.003
Race White Demo 0.003
Never married or under 15 years Demo 0.006
Divorced Demo 0.043
Widowed Demo 0.030
Married Demo 0.062
Separated Demo 0.002
Nativity Demo 0.021
Ancestry Demo 0.023
Age Demo 0.018
Cognitive difficulty Health 0.016
Vision difficulty Health 0.007
Hearing difficulty Health 0.001
Disability Health 0.074
Gave birth to child in past 12 months Misc 0.006
Military service Health 0.054
Mobility status Health 0.052
Employment status of parents Health 0.022
Employment status armed Employment 0.000
Employment status unemployed Employment 0.009
Employment status partial employed Employment 0.001
Employment status employed Employment 0.008
Employment status not in labor force Employment 0.012
Employment status partial armed Employment 0.000
Total person’s income Employment 0.244
School at least high school or GED Education 0.000
School at least bachelor Education 0.010
Educational attainment Education 0.186
School postgrad Education 0.001

Readmission prediction. We access electronic health records from an academic and a safety-net hospital and extract
datasets for predicting readmission within 30-day of discharge for patients diagnosed with heart failure. Source (academic
hospital) and target (safety-net hospital) domains have 7468 and 6515 points respectively, and 27 features. Covariate shift
tests are run after filtering out features uncorrelated with the loss function, resulting in a total of 20 features. The features
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belong to 4 broad categories (Table 7). We train a random forest on a separate dataset of 22403 points from source domain.
Readmissions increase considerably from 12.4% to 18.5% in the safety-net hospital. SHIFT tests for tolerance τ = 0.02 and
prevalence ϵ = 0.05.

Table 7: Features for readmission prediction. Demo refers to demographic variables.

Feature name Category SHAP importance for
ML algorithm

Num ED encounters Encounters 0.499
Firstrace Decline/Other/Unknown Demo 0.005
Sex Female Demo 0.004
First race White Demo 0.000
First race Native Hawaiian or Other Pacific Islander Demo 0.000
Sex Male/Other Demo 0.004
First race Black or African American Demo 0.007
First race Asian Demo 0.003
Age Demo 0.026
First race Native American or Alaska Native Demo 0.000
Vital Weight/Scale Vitals 0.003
Vital Pulse Vitals 0.007
Labs Calcium, total, Serum / Plasma Labs 0.001
Labs Hemoglobin Labs 0.233
Labs Potassium, Serum / Plasma Labs 0.032
Labs MCV Labs 0.004
Labs Chloride, Serum / Plasma Labs 0.003
Labs WBC Count Labs 0.015
Labs Lactate, whole blood Labs 0.020
Labs Carbon Dioxide, Total Labs 0.000
Labs eGFR - low estimate Labs 0.021
Labs eGFR - high estimate Labs 0.023
Labs Phosphorus, Serum / Plasma Labs 0.016
Labs Sodium, Serum / Plasma Labs 0.022
Labs Magnesium, Serum / Plasma Labs 0.022
Labs Creatinine Labs 0.017
Labs Anion Gap Labs 0.011

Model update experiment. We demonstrate the actionability of the SHIFT results on health insurance prediction. The
detailed outcome shift test in Figure 3c detects a subgroup affected by outcome shifts and identifies demographic variables
as a potential explanation. Based on this, SHIFT allows a targeted update to mitigate the decay in the detected subgroup.
To address outcome shift, we fine-tune the ML algorithm with respect to demographic variables by fitting a new model
that takes original algorithm’s predictions and demographic variables to predict the outcome in target data. The updated
algorithm applies the new model only for the detected subgroup and defaults to the original model otherwise. Thus, the
targeted update addresses the decay in affected subgroup while keeping the algorithm behavior the same for everyone else.

We compare the targeted update to a standard practice in response to distribution shifts that is to retrain the model on
all features and use it for everyone. We call it a non-targeted update. Additionally, we update the model on only the
employment-related features identified by the TE-VIM method. Table 3 reports the AUC of the targeted and the two
non-targeted updates. For the update, we take 2000 points from target domain held out from earlier tests and fit an MLP
model. We evaluate the updates (on subgroups) in another held-out 2440 points from target domain. We observe that
the targeted update achieves around the same performance on the detected subgroup as the non-targeted one. However,
the non-targeted have the unintended effect of reducing the performance on another subgroup where the original model
performed better. We find the other subgroup affected by the non-targeted updates by again applying SHIFT. Hence, the
experiment demonstrates that SHIFT can help to adapt ML algorithms to new settings while making minimal changes to
them.
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H. Implementation details
Estimation of nuisance parameters. We use sample-splitting to estimate all nuisance parameters on 50% of the source
and target domain data and evaluating the test statistics on the remaining data. We use implementations provided in
scikit-learn package to fit ML models (Pedregosa et al., 2011). For outcome models, we search through a grid
of estimators and their hyperparameters through cross-validation, which includes logistic regression, random forest, and
gradient boosting classifiers. Density models are chosen from logistic regression and calibrated random forest. We clip
the density ratios by restricting predicted probabilities from the density models between [10−3, 1 − 10−3] to avoid high
variance in our McEE estimates. We bin the outcome shift µbin into B = 40 equally-spaced intervals in [0, 1] for detailed
outcome shifts in all experiments.

Setting testing hyperparameters τ and ϵ. The hypotheses require specifying two hyperparameters, namely, minimum
subgroup size ϵ and minimum shift magnitude τ . Both are intuitive and can be set by anyone, but they are domain-specific.
The τ specifies the smallest performance change that is deemed to be meaningful to detect. For safety-critical settings like
healthcare, even a 1-2 % change might be meaningful. Accuracy changes below τ are part of the null hypotheses and will
not be flagged, hence allowing the domain expert to ignore very small changes.

The ϵ allows us to only consider shifts that affect subgroups of at least size ϵ. If the prevalence of the subgroup experiencing
performance change goes below ϵ, the null hypothesis would be true and this tiny subgroup would no longer be of interest.
In general, the power of SHIFT decreases as the prevalence of the shifting subgroup decreases. Existing tests also decrease
in power but they set the minimum threshold to zero, stating that all shifts are of practical interest and yet have limited power
to detect them. We show in experiments (Figures 8 and 7) that SHIFT can detect changes in datasets with as low as 500 data
points (ϵ = 5% would mean subgroups of 25 data points), but we recommend setting ϵ to have at least 100 data points to
have decent power.

Together, τ and ϵ ensure that the tests are practical and reduce alarm fatigue caused by detecting negligible shifts.

Computational complexity. SHIFT runs in under 10 minutes for the real-world datasets with around 10,000 points. The
bulk of the computation is dedicated to fitting the nuisance models, so the runtime is O(V ) where V is the number of
cross-validation folds. Moreover, fitting these nuisance models is easily parallelizable.

Visualizing the fitted detectors. We explain the detectors by fitting decision sets using the MLIC package (Ghosh et al.,
2022). Decision sets output propositional logic statements on the features, such as (If X1 > 0 AND X2 < 1), to classify
points into detected and not detected. We fit decision sets to classify detected subgroups in either source or target data, and
report the sets for the detected class in Figures 3a, 3b, 3c, and 3d.

Comparators. We give details for the kernel-based comparators for the aggregate tests.

Aggregate tests: For outcome shift tests, KCI tests for D ⊥ ℓ|X . MMD typically is used to test unconditional independence
between two variables. We repurpose MMD for conditional outcome shifts by testing D ⊥ (ℓ,X). Since the joint
distribution factorizes into p(ℓ,X,D) = p(ℓ|X,D)p(X|D) and we know that covariate distribution does not vary in Setup
1, the null hypothesis is equivalent to D ⊥ ℓ|X .

For the comparators of the detailed tests, Xs is a good explanation when the null is rejected whereas it is likely to be a good
explanation when we fail to reject.

Detailed outcome: Tests are set up such that the subset explains the outcome shift if we fail to reject the null for (a) and (d),
and if we reject the null in the case of (b) and (c).

Detailed covariate: Tests are set up such that the subset explains the covariate shift if we fail to reject the null for (c), and if
we reject the null in the case of (a) and (b).

I. Additional simulation results
We validate type-I and power properties of the tests by repeating them on N = 50 random draws of the dataset with varying
sample size and reporting the rejection rates.

Recall that Setup 2 only has conditional outcome shifts with respect to variables X1 and X2. Aggregate tests reject the
outcome shift test with power tending to 1 as sample size increases (Figure 8). Rejection rate for agg X-test, which
corresponds to an estimate of type-I error, is within α = 0.05. Since X1 is the variable with the most shift, the test for
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subset Xs = {X1} has a low rejection rate. The test for subset {X1, X2} achieves type-I error control. Alone neither of X2,
X3, and X4 explains the shift, thus, they are correctly rejected. The rejection rates tend to 1 even with n = 2000 samples.
Figure 9a shows that none of the comparators flags the shifting subset.

The advantage of double/debiased inference is evident from the results for Setup 3 (Figure 7). Recall that covariate
distribution shifts only for X1 and X4 in Setup 3. For the aggregate tests, plug-in rejects agg Y-test even when there is
no outcome shift. On the other hand, one-step achieves type-I error control. Similarly, we observe that detailed test for
subset {X1, X4} achieves type-I error control. However, the type-I error control comes at the cost of lower power in case
of the remaining subsets. Thus, the one-step tests are likely to flag more subsets as candidates than needed to explain the
performance shift. It could be desirable to have such conservative tests if we do not want to miss potential ways to fix the
performance shift. Figure 9b shows that KCI identifies the shifting subset correctly while other comparators testing subsets
either in principle (KS is for univariate samples) or in their implementation (Score).

J. Additional case study
Although SHIFT is primarily designed for tabular data, its aggregate-level tests are suitable for analyzing unstructured
data; its detailed-level tests can also be used, if one has prespecified concepts. As an example, we apply SHIFT to the
CivilComments dataset (Koh et al., 2021), which contains comments on online articles and are judged to be toxic or
not. We consider a DistilBERT-base-uncased model (Sanh et al., 2019) fine-tuned to classify toxic comments. Given the
768-dimensional embeddings from this BERT model, we can apply SHIFT to understand differences in accuracy when
classifying comments that mention the female gender (target domain) versus the remaining (source). Accuracy of the model
drops by 1.3% in the target. Results from SHIFT’s aggregate-level test find evidence for covariate shift, i.e. there exists a
subgroup of size ≥ 5% that experiences an accuracy drop greater than 5% due to covariate shift (Table 8).

Table 8: Results on a high-dimensional text dataset. We report p-values from the aggregate tests on CivilComments data
which consists of internet comments and their toxicity labels. SHIFT finds evidence for accuracy drop due to covariate shift.

Aggregate test p-value

Covariate shift 0.00
Outcome shift 0.83

To run detailed-level tests in SHIFT, we require variables to be interpretable. Given unstructured data, one solution is to
combine SHIFT with concept bottleneck models (Koh et al., 2020). We note that another solution, if one does not need
statistical inference at the detailed level, is to simply analyze differences between the comments from the detected subgroup
from SHIFT in the source and target domains. Using a combination of GPT-4o (OpenAI et al., 2024) and manual review, we
found that in the subgroup where the toxicity classifier experienced performance decay at the target domain, the comments
tended to discuss politics, society, race, and identity more. This shift in topics may explain the performance drop. For
instance, the combination of female references with discussions of race and political ideology might compound biases that
the classifier has inadvertently learned.

Finally, we note that although the proofs for SHIFT’s validity require sufficiently fast estimation rates for the nuisance
parameters which tend to slow down as dimensionality increases, estimation rates for nuisance parameters may still be
sufficiently fast if these parameters are sparse (e.g. (Wager & Walther, 2015; Belloni & Chernozhukov, 2011)).
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Figure 7: Covariate shift setup. Covariate test, tolerance τ = 0.0 and prevalence ϵ = 0.05.
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Figure 8: Outcome shift setup. Outcome test, tolerance τ = 0.05 and prevalence ϵ = 0.05.
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(a) Setup 2. Outcome-only shift (b) Setup 3. Covariate-only shift

Figure 9: Detailed tests for variable subsets in simulation setups.

31


	Introduction
	Related Work
	Hierarchical Testing Framework
	Aggregate tests: Where?
	Detailed tests: How?
	Visualization of SHIFT

	Inference Procedure
	Results
	Simulations
	Real-world case studies

	Conclusion
	Connection to causal mediation analysis
	Modified covariate shift test
	Step-by-step testing procedures
	Fitting nuisance parameters
	Fitting detectors
	Estimating the Maximum conditional Expectation of the Exceedence (McEE)
	Inference

	Theoretical results
	Detailed test of outcome shift
	Detailed test of covariate shift

	More details on related work
	Options for defining detailed shifts with respect to a subset
	Experiment details
	Simulations
	Real-world case studies

	Implementation details
	Additional simulation results
	Additional case study

