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ABSTRACT

Offline model-based reinforcement learning (RL) offers a principled approach to
using a learned dynamics model as a simulator to optimize a control policy. Despite
the near-optimal performance of existing approaches on benchmarks with high-
quality datasets, most struggle on datasets with low state-action space coverage or
suboptimal demonstrations. We develop a novel offline model-based RL approach
that particularly shines in low-quality data regimes while maintaining competitive
performance on high-quality datasets. Neural Stochastic Differential Equations for
UNcertainty-aware, Offline RL (NUNO) learns a dynamics model as neural stochas-
tic differential equations (SDE), where its drift term can leverage prior physics
knowledge as inductive bias. In parallel, its diffusion term provides distance-aware
estimates of model uncertainty by matching the dynamics’ underlying stochasticity
near the training data regime while providing high but bounded estimates beyond
it. To address the so-called model exploitation problem in offline model-based RL,
NUNO builds on existing studies by penalizing and adaptively truncating neural
SDE’s rollouts according to uncertainty estimates. Our empirical results in D4RL
and NeoRL MuJoCo benchmarks evidence that NUNO outperforms state-of-the-art
methods in low-quality datasets by up to 93% while matching or surpassing their
performance by up to 55% in some high-quality counterparts.

1 INTRODUCTION

Offline reinforcement learning (RL) concerns the problem of learning control policies from offline
datasets of interactions (Lange et al., 2012; Levine et al., 2020). This paradigm captures safety-critical
real-world settings such as healthcare (Tseng et al., 2017; Wang et al., 2018), robotics (Levine et al.,
2018; Rafailov et al., 2021) and autonomous driving (Yu et al., 2020a), where logged data is abundant,
simulators are computationally expensive, or online learning causes hazardous behavior. Although
off-policy RL algorithms can, in principle, address settings with a priori available data, they fail in the
offline setting due to the distribution shift between the dataset and learned policies (Fujimoto et al.,
2019; Kumar et al., 2019). To resolve distribution shift, model-free offline RL methods introduce
conservatism via constraining learned policies to available data (Jaques et al., 2019; Wu et al., 2019;
Fujimoto & Gu, 2021) or penalizing out-of-distribution actions (Kumar et al., 2020; Bai et al., 2022).
However, such approaches struggle with sub-optimal behavior policies (Yu et al., 2020b).

Offline model-based RL trains a control policy via synthetic data generated by a learned dynamics
model (Kidambi et al., 2020; Yu et al., 2021). Compared to offline model-free RL, employing
the learned model improves generalization beyond the training data regime Rigter et al. (2022).
However, naive application of model-based RL causes a phenomenon called model exploitation:
Learned control policies exploit the parts of the state-action space where the model is inaccurate
and overestimates the return Janner et al. (2019); Yu et al. (2020b); Kurutach et al. (2018). Model
exploitation can result in learning policies that perform worse than data-logging policies.

Prior works in offline model-based RL address model exploitation by enforcing conservatism for
learning policies (Janner et al., 2019; Yu et al., 2020b; Kidambi et al., 2020; Yu et al., 2021) or
dynamics models (Rigter et al., 2022). A standard methodology of imposing conservatism is to
penalize the agent with respect to the predicted uncertainty of the learned model on a taken transition
Yu et al. (2020b); Kidambi et al. (2020); Yang et al. (2021); Zhang et al. (2023b). Given a true
admissible error estimator for learned dynamics, these approaches provide theoretical guarantees for
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Figure 1: NUNO learns a dynamics model as neural stochastic differential equations, where its drift
term can leverage prior physics knowledge as inductive bias, and its diffusion term provides distance-
aware estimates of uncertainty. NUNO addresses model exploitation inherent in offline model-based
RL by penalizing and adaptively truncating neural SDE’s rollouts according to uncertainty estimates.

lower bounds on the expected cumulative reward in the groundtruth environment (Yu et al., 2020b).
In practice, the standard architecture for learning dynamics models is deep probabilistic ensembles.
The error estimators rely on heuristics such as maximum aleatoric uncertainty, i.e., the maximum
standard deviation of learned models in the ensemble, the maximum pairwise difference between
predictions of ensemble members, or variance of the log-likelihood of members. (Lu et al., 2021).
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Figure 2: Comparison in random datasets of D4RL MuJoCo bench-
mark Fu et al. (2020). MOPO and TATU+MOPO penalize and trun-
cate, rollouts based on uncertainty estimates from Gaussian ensembles,
whereas NUNO achieves SOTA results in all environments via distance-
aware uncertainty estimates of learned neural SDEs (see Fig. 1) NUNOR
predicts rewards, whereas NUNO uses the groundtruth reward function.

Inspired by Djeumou et al.
(2023) that shows neural
stochastic differential equa-
tions improve uncertainty
estimates and prediction
accuracy over probabilistic
ensembles, we develop an
offline model-based RL
approach that leverages
them: Neural Stochastic
Differential Equations for
UNcertainty-aware, Offline
RL (NUNO; see Figure 1).
NUNO learns a dynamics
model as neural stochastic
differential equations
(SDE) and introduces
conservatism through its
uncertainty estimates. Neural SDEs consist of two main terms: drift and diffusion. A priori available
physics knowledge imposes inductive biases on the drift term as a differentiable composition of
separately parameterized known and unknown functions. At the same time, the diffusion term
provides aleatoric and distance-aware estimate of the model uncertainty: It emulates the stochasticity
of groundtruth dynamics around the training data regime while corresponding to conservative
estimates of uncertainty beyond the dataset. Building on Yu et al. (2020b); Zhang et al. (2023b),
NUNO addresses model exploitation by penalizing control policies and truncating training rollouts
according to distance-aware uncertainty estimates of neural SDEs. NUNO provides a consistently
high-performing framework, especially in randomly collected datasets (see Figure 2), by exploiting
neural SDEs’ capability of accurate predictions over long horizons with separate and theoretically
motivated quantification of aleatoric and epistemic uncertainty.
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Contribution. Our contribution is three-fold:

(1) We develop an uncertainty-aware offline model-based RL approach, NUNO, that (i) learns
a dynamics model as a neural SDE, where the drift term leverages minimal prior physics
knowledge as inductive bias, and the diffusion term provides distance-aware estimates
of model uncertainty, and (ii) addresses model exploitation by penalizing and adaptively
truncating synthetic rollouts based on estimated distance-aware uncertainty estimator.

(2) In control benchmarks D4RL (Fu et al., 2020) and NeoRL (Qin et al., 2022), NUNO imposes
structure on the drift term by exploiting the fact that MuJoCo environments are governed by
rigid body dynamics, and decomposing state into position and velocity components.

(3) Our empirical results evidence that NUNO outperforms state-of-the-art methods in low-
quality datasets (’random-v2’ in D4RL and ’Low’ in NeoRL) by up to 93% while either
matching or surpassing their performance by up to 55% in high-quality counterparts.

2 RELATED WORK

Our work focuses on the intersection of offline RL and physics-informed learning of dynamics models.
Appendix A investigates existing works on offline model-free RL.

Offline model-based RL: The objective of offline model-based RL is to learn a dynamics model
from a static dataset of environment interactions in a supervised manner and subsequently generate
synthetic data to train a control policy. To tackle model exploitation, most offline model-based
RL approaches impose conservatism by constraining the learning policy to the behavior policy
(Matsushima et al., 2020; Swazinna et al., 2021; Cang et al., 2021; Bhardwaj et al., 2023), learning
conservative value functions (Yu et al., 2021; Rigter et al., 2022), learning pessimistic policies
via biased sampling from a belief distribution over dynamics (Guo et al., 2022) or via uncertainty
penalization (Yu et al., 2020b; Kidambi et al., 2020; Yang et al., 2021; Rafailov et al., 2021; Zhang
et al., 2023b; Sun et al., 2023). To address compounding estimation error in model-based approaches,
Jeong et al. (2022) propose a methodology that combines model-based and model-free value estimates
for policy evaluation based on their epistemic uncertainties. A recent line of works casts offline model-
based RL as a sequence modeling problem and learns a dynamics model as a transformer (Chen et al.,
2021; Janner et al., 2021; Yamagata et al., 2023) without enforcing conservatism. NUNO inherits
its principle of uncertainty penalization and rollout truncation from MOPO (Yu et al., 2020b) and
TATU+MOPO (Zhang et al., 2023b), respectively. Both methods train a deep probabilistic ensemble
as a dynamics model and penalize the reward based on their uncertainty estimator. TATU+MOPO
extends MOPO by truncating synthetic trajectories if the accumulated uncertainty exceeds a threshold
based on single-step estimates on the training data. NUNO builds on them by training a neural SDE as
a dynamics model to improve uncertainty estimation and prediction accuracy (Djeumou et al., 2023).

Neural differential equations for physics-informed learning: Neural ordinary differential equations
(ODEs) specify a structure that parameterizes a differential equation via neural networks using a
priori known physics knowledge. Many existing works utilize neural ODE-based physics-informed
architectures to learn dynamics models for control tasks Liu & Wang (2021); Shi et al. (2019); Plaza
et al. (2022); Furieri et al. (2022); Wong et al. (2022); Menda et al. (2019); Gupta et al. (2020); Duong
& Atanasov (2021); Lutter et al. (2019). Although not for control tasks, some inform the structure of
neural ODEs via Hamiltonian Greydanus et al. (2019); Chen et al. (2019); Zhu et al. (2020); Zhong
et al. (2020); Eidnes et al. (2023), Port-Hamiltonian Desai et al. (2021); Neary & Topcu (2023),
or Lagrangian Roehrl et al. (2020); Finzi et al. (2020); Cranmer et al. (2020); Allen-Blanchette
et al. (2020); Zhong et al. (2021b;a) formulation of dynamics. Neural ODE-based structures are
commonly deterministic and, hence do not provide a notion of uncertainty. In contrast, neural SDEs
allow uncertainty-aware models, and previous works investigate their use for learning dynamics of
stochastic systems (Jia & Benson, 2019; Yang et al., 2023), estimating the uncertainty in parameters
of neural networks Kong et al. (2020); Li et al. (2020); Kidger (2022); Xu et al. (2022), and generative
modeling Kidger et al. (2021). However, these approaches do not deal with epistemic uncertainty
in a way tailored to offline RL. Djeumou et al. (2023) propose using neural SDEs to leverage a
priori physics knowledge and capture epistemic uncertainty to control dynamical systems and offline
model-based RL. In comparison to our work, Djeumou et al. (2023) does not address the model
exploitation problem and does not use a loss function that properly models aleatoric uncertainty.
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3 PRELIMINARIES

3.1 MARKOV DECISION PROCESSES

We formalize the environments of interest in this work as Markov decision processes (MDP), specified
by a tuple M = ⟨S,A, T,R, γ, ρ0⟩, where S and A are state and action spaces, T : S ×A → ∆(S)
is the transition distribution, R : S ×A → R, γ ∈ (0, 1) is the discount factor, and ρ0 is the initial
state distribution, i.e., ∆(S). A policy π : S → ∆(A) in an MDP M outputs a probability simplex
over the action space A given a state s ∈ S. The objective of RL is to learn an optimal policy
π∗, which maximizes the expected discounted return in M, i.e., π∗ ∈ argmaxπ ηM(π), where
ηM(π) = Eπ,T,ρ0 [

∑∞
t=0 γ

tR(st,at)] is the expected discounted return, at ∼ π(st) is the policy’s
action, and st+1 ∼ T (st,at) is the new state at time t by starting in s0 ∼ ρ0.

3.2 OFFLINE MODEL-BASED RL

The offline RL problem assumes access to a dataset D = {τi}i of interactions τ = {(s,a, r, s′)t}t
with the environment M. Multiple behavior policies πb, optimal or suboptimal, can contribute to D.
The objective is to learn a policy π that minimizes the sub-optimality gap, namely, ηM(π∗)− ηM(π).
Offline model-based RL methods approach this problem by first learning a dynamics model T̂ from
the dataset D. Then, they utilize the learned dynamics model to optimize the policy. Depending on
the access, one can learn a reward function R̂ or an initial state distribution ρ0 from the dataset D.

A naive way to optimize the policy is to interact with the learned MDP, e.g., as online RL algorithms.
However, such an approach can cause model exploitation, i.e., the estimated return in the learned
environment is greater than the true return: ηM̂(π)− ηM(π) > 0 (Yu et al., 2020b). Due to the finite
coverage of the dataset D, the policy π learns to exploit regions of the state-action space where the
epistemic uncertainty of the learned model T̂ and the estimated return ηM̂(π) are high.

A common strategy to undertake model exploitation is to penalize the agent in correlation to the
estimated model uncertainty, as in Model-based Offline Policy Optimization (MOPO) (Yu et al.,
2020b), which defines a pessimistic reward function: R̃(s,a)

.
= R(s,a)−λpenu(s,a), where u(s,a)

is the estimation of the model uncertainty at the state-action pair (s,a) and λpen is the regularization
coefficient for the uncertainty penalty. Utilizing the pessimistic reward function, MOPO constructs a
pessimistic learned MDP M̃ = ⟨S,A, T̂ , R̃, γ, ρ0⟩ and modifies the policy optimization objective
as maxπ ηM̃(π). Zhang et al. (2023b) proposes Trajectory Truncation with Uncertainty, TATU,
which truncates model rollouts if the accumulated uncertainty exceeds a predetermined threshold.
The theoretical results follow a similar line of argument in MOPO and construct a pessimistic MDP,
then provide suboptimality bounds for policies learned in pessimistic MDPs. TATU’s uncertainty
truncation threshold depends on uncertainty estimates over the single-step transitions from the
datasets, which is a limitation considering that TATU trains policies with longer rollouts.

3.3 NEURAL STOCHASTIC DIFFERENTIAL EQUATIONS AS DYNAMICS MODELS

Stochastic differential equations (SDEs) offer a principled approach to modeling uncertain, real-world,
and time-varying stochastic processes. Their continuous-time nature and ability to encode prior
physics knowledge (world models) as inductive bias make them suitable for modeling dynamical
systems from data. A neural SDE is an SDE parameterized by neural networks as follows

ds = fθ(s,a) dt+Σϕ(s,a) ⋆ dW, (1)
where fθ : S ×A → Rns and Σϕ : S ×A → Rns×nw are the drift and diffusion terms parameterized
by θ and ϕ, W is the nw-dimensional Wiener process, and ⋆ expresses that the SDE is either in Ito
Ito et al. (1951) or Stratonovich Stratonovich (1966) form. The reader unfamiliar with these forms
should feel free to ignore the distinction (Van Kampen, 1981; Massaroli et al., 2021; Kidger, 2022),
which becomes an arbitrary modeling choice when fθ and Σϕ are learned.

Given a dataset D of interactions of a behavior policy πb in MDP M, we seek the unknown functions
fθ and Σϕ of a neural SDE that best fit the sequences of states and actions in the dataset. Specifically,
we build on the framework proposed in Djeumou et al. (2023) and extend it to train neural SDEs in
such a way that the diffusion term Σϕ captures aleatoric uncertainty as well as epistemic uncertainty
in the form distance-aware estimates of model uncertainty.
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4 NUNO

In this section, we discuss the details of NUNO’s design. First, we provide insight into the use of
a distance-aware uncertainty estimator and discuss our parametric estimator and its corresponding
training algorithm. Then, we introduce our physics-based neural SDE approach for modeling the
dynamics of the MDP while capturing aleatoric and epistemic uncertainty. Finally, we show how
our uncertainty estimator can efficiently enforce conservatism when training the RL policy. In the
remainder of the paper, we assume access to the dataset D of realized state-actions trajectories. We
also assume access to the time steps ∆t between consecutive states st and st+1.

4.1 DISTANCE-AWARE UNCERTAINTY ESTIMATOR

By investigating particle-based estimators of the cross entropy between the learned model’s transition
distribution and the unknown transition distribution, Zhang et al. (2023a) provides a theoretical
framework for characterizing model uncertainty u(s,a) as a function of the distance, in the appropriate
space, between the query point (s,a) and its k-th nearest neighbor (KNN) in the dataset D. We build
on this idea and propose a parametric distance-aware uncertainty estimator ηϕ : S × A → R that
captures such distance to the closest k-th neighbor in the dataset without the need for a KNN search.
Besides bypassing intractable KNN search, our parametric estimator can be trained alongside the
neural SDE model (see Section 4.2) such that the model can capture both aleatoric and epistemic
uncertainty in the dynamics. The estimator is smooth and differentiable and thus blends well with the
requirements for numerical integration of the neural SDE model.

A simple choice for ηϕ for which we can provide theoretical guarantees is given by

η̄ϕ = argminη E(s,a)∼D
[
E(s′,a′)∼Uniform(S×A)[η(s

′,a′)− ∥(s,a)− (s′,a′)∥]2
]
. (2)

Lemma 1 The optimal solution η̄ϕ of equation 2 is a convex function with respect to (s,a) and is an
upper bound of the distance to the state-action centroid of the training dataset. Additionally, we have
that the negative gradient −∇s,aη̄ϕ at any point (s,a) points inside the convex hull of D.

We provide the proof of Lemma 1 in Appendix B. The first property above illustrates that η̄ϕ is a
suitable choice for a distance-aware uncertainty estimator. In contrast, the second property enables
conservatism by suggesting that any reward penalization with η̄ϕ will encourage the policy to stay
within the convex hull of the training dataset. However, the estimator η̄ϕ approximates only the
distance to the centroid of the entire dataset, which may not be sufficient to accurately capture the
uncertainty in the model’s predictions if the geometry of the dataset has multiple clusters.

To address this limitation, we enforce additional constraints to encourage ηϕ to cluster the dataset
properly. Informally speaking, we model the term ηϕ(·) with neural networks such that when
evaluated near points in the training dataset D, such term provides low values with almost-zero
gradients. In contrast, it provides high but bounded values when evaluated far from the training data.
Specifically, a strong property of our approach is that by sampling only locally around the training
dataset, we can train the parameters of ηϕ to enforce the desired distance-based properties globally. In
particular, we translate the distance-aware requirement into several mathematical properties that ηϕ
must satisfy, and propose a loss function that encourages the neural network to learn these properties.

(a) Increasing ηϕ along state-action paths that move away from the training data. As the query point
(s,a) moves away from the training data, the distance-aware term ηϕ should monotonically increase
accordingly. Let Γ be any path along which the distance from the current point to the nearest training
datapoint always increases. Then, along Γ, the entries of ηϕ should monotonically increase. We
enforce this property via local strong convexity constraints near the training dataset. Specifically,
for every state action (st,at) ∈ D and a fixed radius r > 0, we enforce strong convexity of ηϕ
within a ball Br(st,at) := {(s,a) | ∥(s,a)− (st,at)∥ ≤ r} with a convexity constant µt > 0. More
specifically, we want to enforce that for any (s,a), (s′,a′) ∈ Br(st,at), the convexity constraint
(s,a, s′,a′)µt

≥ 0 holds, where the constraint is defined as

(s,a, s′,a′)µt
:= ηϕ(s

′,a′)− ηϕ(s,a)−∇(s,a)ηϕ(s,a)
⊤((s,a)− (s′,a′))− µt∥(s,a)− (s′,a′)∥2.

We parametrize a function µϕ : S ×A → R+ using a neural network to predict the strong convexity
constants µt = µϕ(st,at) for each (st,at) ∈ D instead of manually tuning them. Thus, we define
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the following loss functions to enforce the desired properties at a sample (st,at) ∈ D as follows:

Lsc =
∑

(s,a),(s′,a′)
∼N ((st,at),r)

{
0, if (s,a, s′,a′)µt

≥ 0

(s,a, s′,a′)2µt
, otherwise

and Lµ =
∑

(st,at)∈D

1

µϕ(st,at)
, (3)

where N ((st,at), r) is a Gaussian distribution with mean (st,at) and standard deviation r, and Lµ

is a regularization loss term that encourages high values of µt. Intuitively, such regularization ensures
that the distance-aware term ηϕ reaches its maximum value as close as possible to the boundaries of
the training dataset, enabling dataset clustering.

(b) Zero-gradient and distance-aware estimate near training data. We enforce that the distance-
aware term ηϕ has almost zero gradients near the training dataset such that, with the local convexity
constraints, points in the dataset become local minima of ηϕ and the negative gradient of ηϕ near a
cluster is directed towards the cluster. This constraint can be enforced at a sample (st,at) ∈ D as

Lgrad = ∥∇(s,a)ηϕ(st,at)∥2 + ηϕ(st,at)
2, (4)

where the last term encourages ηϕ to be zero when evaluated on the training data. Appendix B.2
provides insights about the distance-aware uncertainty estimator, as well as toy 2-D dataset examples
to demonstrate how ηϕ efficiently clusters the training dataset to capture datapoints distance.

4.2 PHYSICS-INSPIRED NEURAL SDES

We aim to learn a neural SDE’s drift and diffusion terms that best fit the sequences of states and
actions in the dataset D. Specifically, we first consider the following black-box neural SDE

ds = fθ(s,a) dt+
(
σϕ(s,a) + hϕ(ηϕ(s,a))

)
⋆ dW, (5)

where we simplify the diffusion term Σϕ from equation 1 to be a diagonal matrix composed of two
complementary terms. The first term σϕ : S × A → Rns is an unconstrained neural network that
captures the aleatoric uncertainty of the dynamics, while we design the second term hϕ(ηϕ(·)) to
estimate heterogeneous epistemic uncertainty in the model’s predictions. Here hϕ : R → Rns is a
bounded, monotonic, and learnable transformation that ensures the diffusion term is positive and
monotonically increasing in the proposed distance-aware term ηϕ : S × A → R. In the following,
we use Σϕ to refer to σϕ + hϕ(ηϕ) when the distinction is unnecessary.

Monotonicity and boundedness of hϕ. To ensure globally monotonic and bounded diffusion values
as a function of ηϕ, we adopt a simple design choice for hϕ: A scaled sigmoid function to transform
ηϕ into a heterogeneous diffusion term. Specifically, we define hϕ(ηϕ) = Wmaxsigmoid(Wηϕ + b),
where sigmoid(x) = (1 + exp(−x))−1, W ∈ Rns and b ∈ Rns are the learnable parameters of the
neural network. We constrain W to be greater than 1. Besides, the term Wmax is a hyperparameter
that controls the desired maximum value of the diffusion term outside the training data regime. We
emphasize that this design choice works well in our experiments, but others are possible.

Training the neural SDE. In contrast to the standard approaches such as probabilistic ensembles
where the model fits a single-step transition, the proposed neural SDE is designed and trained to fit
sequences of states and the uncertainty in the model’s predictions. Given a sequence of states and
actions {st,at, . . . , st+H} with H being the prediction horizon, we aim to minimize the negative
log-likelihood (NLL) of the sequence under the neural SDE model. However, estimating the NLL
of neural SDE-generated sequences is challenging due to the intractability of computing the kernel
density of the underlying stochastic process. To address this issue, we adopt numerical integration
schemes to approximate the sequence’s NLL through Monte Carlo sampling. Specifically, assuming
approximate Gaussian transitions between discrete time steps of the stochastic process, e.g., when
employing the Euler-Maruyama sampler, we can approximate the NLL as

Ldata = Es̃θ,ϕt+1,...,s̃
θ,ϕ
t+H

[∑t+H−1

k=t
∥sk+1 − s̃θ,ϕk+1∥

2
(Σ−1

ϕ )k
+ log(det(Σϕ)k)

]
, (6)

where (Σϕ)k = Σϕ(s̃
θ,ϕ
k ,ak), and s̃θ,ϕt+1, . . . , s̃

θ,ϕ
t+H are the sample states obtained by any differential

SDE numerical integration scheme. Note that the accuracy of the NLL approximation depends on
the quality of the numerical integration scheme. the stepsize to discretize the SDE between two
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consecutive states, and the number of samples used to estimate the expectation. In practice, though,
we can fit accurate neural SDE models to the data even with Euler-Maruyama and a single sample.

The problem of learning the SDE model parameters with distance-aware uncertainty estimates can be
formulated as the following optimization problem:

minimize
θ,ϕ

Est,at,...,st+H∼D [λdataLdata + λscLsc + λgradLgrad + λµLµ] , (7)

Incorporating prior physics knowledge. We can incorporate prior physics knowledge into the neural
SDE model by designing the drift term fθ to encode structural knowledge from first principles or
domain expertise. To this end, we represent the drift term fθ as the composition of a known function –
derived from a priori knowledge – and a collection of unknown functions that must be learned from
data. That is, we write fθ(s,a) := F (s,a, gθ1(·), . . . , gθd(·)), where F is a known differentiable
function and gθ1(·), . . . , gθd(·) are unknown terms within the underlying model. The inputs to these
functions could themselves be arbitrary functions of the states and control inputs. Additionally,
known constraints on gθi can be enforced during training using the augmented Lagrangian method.

We exploit the fact that rigid body dynamics govern our benchmark environments to constrain the
structure on the drift term. We typically decompose the state as s = [spos, svel], where spos and svel
are the position and velocity components, respectively, and we define the drift term as

fpos
θ (s,a) = svel, f

vel
θ (s,a) = Gϕ(svel)a+Hϕ(s)svel, fθ = [fpos

θ , fvel
θ ] + f res

θ , (8)
where Gϕ and Hϕ are learnable neural networks, and f res

θ is a residual term that captures the
unmodeled dynamics. We additionally penalize the residual term in the loss function to ensure
minimal deviation from the structured drift term. We note that this formulation integrates minimal
prior knowledge into the neural SDE model, and such prior knowledge does not affect modeling
performance in the large dataset regime seen in our experiments.

Incorporating reward learning. We can incorporate reward learning into the neural SDE model by
augmenting the state representation with a variable representing cumulative rewards. Specifically, we
define the new state as s = [spos, svel, rc], where rc is the cumulative reward up to the current time
step. We then augment the neural SDE model with drc = f rew

θ (s,a) dt, where f rew
θ is a learnable

neural network that captures the reward dynamics. We can then train the combined neural SDE model
to minimize the NLL of the sequence of states, actions, and rewards under the model.

4.3 DISTANCE-AWARE REGULARIZED OFFLINE RL

We now discuss incorporating the distance-aware uncertainty estimate ηϕ into the offline RL frame-
work to enforce conservatism in the learned policy. Specifically, we build on the work by Zhang
et al. (2023b) and use our distance-aware uncertainty estimate to penalize and truncate the transitions
generated by the learned neural SDE model during the RL policy training.

Reward penalty. Following MOPO penalization criteria, we use the distance-aware uncertainty to
define the pessimistic reward as R̃(s,a) = R(s,a)− λpenηϕ(s,a).

Trajectory truncation. During the RL agent training, we use the current policy and the neural SDE
model to generate synthetic trajectories for policy improvement. To figure out whether the synthetic
trajectory is reliable, we set a truncating threshold ϵ on the accumulated distance-aware estimate
ηϕ over the sequence. Specifically, we compute T =

∑h
t=0 ηϕ(st,at), and we compare its value

with the threshold ϵ. If the accumulated quantity exceeds the threshold, we truncate the trajectory
and do not use it for policy optimization. The choice of the threshold ϵ is a crucial hyperparameter
that varies accross environments or tasks while enforcing the level of conservatism in the policy
training. To account for different task and environment complexities, we propose automatically
setting the threshold based on the entire training dataset. We propose to use a user-defined Conditional
Value-at-Risk (CVaR) as the threshold to compute the hyperparameter ϵ via performing statistics on
the entire dataset over all possible sequences of horizon h.

5 EXPERIMENTAL RESULTS

We empirically evaluate NUNO against state-of-the-art (SOTA) offline model-based and model-free
approaches in continuous control benchmarks, namely MuJoCo datasets in D4RL Fu et al. (2020)
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Table 1: Average human-normalized scores of NUNO and other model-based and model-free offline
RL approaches on D4RL MuJoCo v2 datasets. Due to limited space, we use abbreviations of task
and dataset names: hc = halfcheetah, hp = hopper, wk = walker2d; r = random, m = medium, mr
= medium-replay, me = medium-expert. For NUNO, we provide the mean and standard deviation
(following ±) of best scores among independent runs. Bold scores indicate the best for each task.

Task NUNO (Ours) NUNOR (Ours) MOBILE MOPOT MOPO COMBO MOREL RAMBO EDAC

hc-r 52.7±3.4 52.2±0.5 39.3±3.0 33.3 35.9 38.8 38.9 39.5 28.4
hp-r 73.2±9.8 53.7±13.9 31.9±0.6 31.9 16.7 17.9 38.1 25.4 25.3
wk-r 27.7±0.9 28.1±1.2 17.9±6.6 10.4 4.2 7.0 16.0 0.0 16.6

hc-m 68.8±0.4 64.7±0.5 74.6±1.2 61.9 73.1 54.2 60.7 77.9 65.9
hp-m 104.6±0.2 104.4±0.3 106.6±0.6 104.3 38.3 97.2 84.0 87.0 101.6
wk-m 85.4±0.9 92.6±1.3 87.7±1.1 77.9 41.2 81.9 72.8 84.9 92.5

hc-mr 66.5±0.2 64.6±0.3 71.7±1.2 67.2 69.2 55.1 44.5 68.7 61.3
hp-mr 107.8±1.2 106.6±1.9 103.9±1.0 104.4 32.7 89.5 81.8 99.5 101.0
wk-mr 97.0±1.4 101.1±3.9 89.9±1.5 75.3 73.7 56.0 40.8 89.2 87.1

hc-me 97.0±0.5 95.8±1.2 108.2±2.5 74.1 70.3 90.0 80.4 95.4 106.3
hp-me 112.2±0.3 111.9±0.5 112.6±0.2 107.0 60.6 111.1 105.6 88.2 110.7
wk-me 113.2±0.5 112.6±0.6 115.2±0.7 107.9 77.4 103.3 107.5 56.7 114.7

Average 83.8 82.4 80.0 71.3 49.4 66.8 64.3 67.7 76.0

and NeoRL Qin et al. (2022). Through our empirical evaluation, we answer the following questions:
1) How does NUNO perform in terms of human normalized score? 2) Can NUNO’s uncertainty
estimator, i.e., distance-aware estimate of a neural SDE, effectively quantify uncertainty? 3) How
does NUNO address the model exploitation phenomenon in contrast to TATU+MOPO and MOPO?

5.1 HOW DOES NUNO PERFORM IN STANDARD CONTROL BENCHMARKS?

5.1.1 D4RL

We run experiments on 12 D4RL tasks, combining three MuJoCo environments (halfcheetah, hopper,
and walker2d) and four datasets (random, medium, medium-replay, and medium-expert) per envi-
ronment. We compare NUNO against the following methods: a model-free method called EDAC An
et al. (2021), that penalizes Q-values based on the estimated uncertainty of a Q-function ensemble;
and model-based methods: MOPO Yu et al. (2020b) and TATU+MOPO Zhang et al. (2023b),
from which NUNO inherits its principles of uncertainty penalization and truncation, respectively,
COMBO Kumar et al. (2020), which equally penalizes samples that are out-of-distribution according
to model uncertainty, MOBILE Sun et al. (2023), which penalizes the Bellman estimation based on
the inconsistency of Bellman estimations by an ensemble of learned dynamics models, RAMBO
that adversarially learns a policy and dynamics model, and finally, MOREL Kidambi et al. (2020),
which penalizes a transition when estimated uncertainty exceeds a threshold. In Table 1, we refer to
TATU+MOPO as MOPOT.

Table 1 demonstrates the mean and standard deviation of maximum human-normalized scores
that NUNO and NUNOR, which predicts the reward, reach in D4RL MuJoCo tasks (v2) during five
independent runs of one million gradient steps. In the random task involving datasets collected by
randomly initialized policies, NUNO and NUNOR outperform all approaches across every MuJoCo
environment by a significant margin. NUNO achieves this by building onto uncertainty penalization
and truncation principles proposed by MOPO and TATU+MOPO. NUNO’s advantage comes from
leveraging prior physics knowledge, though minimal, and exploiting the diffusion term’s capability
of estimating aleatoric and epistemic uncertainty. Given higher-quality datasets, namely, better-
performing data logging policies, NUNO either reaches SOTA results or closely follows existing ones.
Specifically, NUNO reaches state-of-the-art results in hopper-medium-replay-v2, walker-medium-
replay-v2, and hopper-medium-expert-v2. Table 1 also demonstrates that NUNO achieves the second-
best results in medium tasks of halfcheetah and hopper, as well as medium-expert task of hopper.
Overall, NUNO and NUNOR yield the highest average human-normalized scores in the D4RL MuJoCo
benchmark. Figure 3a visualize the progression of human normalized score for NUNO and NUNOR.
See Appendix E.2 for more details.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Average human-normalized scores of NUNO and other model-based and model-free offline
RL approaches on NeoRL MuJoCo datasets. Due to limited space, we use abbreviations of dataset
names: L = low, M = medium, H = high. For NUNO, we provide the mean and standard deviation
(following ±) of best scores among independent runs. Bold scores indicate the best for each task.

Task NUNO (Ours) NUNOR (Ours) MOBILE MOPO BC CQL TD3+BC EDAC

hc-L 52.5±0.6 58.4±0.5 54.7±3.0 40.1 29.1 38.2 30.0 31.3
hp-L 26.9±3.8 26.4±6.8 17.4±3.9 6.2 15.1 16.0 15.8 18.3
wk-L 52.5±2.4 49.4±1.9 37.6±2.0 11.6 28.5 44.7 43.0 40.2

hc-M 73.4±0.6 78.8±0.8 77.8±1.4 62.3 49.0 54.6 52.3 54.9
hp-M 103.3±2.2 92.3±1.7 51.1±13.3 1.0 51.3 64.5 70.3 44.9
wk-M 65.8±0.4 49.4±16.9 62.2±1.6 39.9 48.7 57.3 58.5 57.6

hc-H 85.2±0.6 84.9±0.4 83.0±4.6 65.9 71.3 77.4 75.3 81.4
hp-H 103.0±3.1 97.9±5.5 87.8±26.0 11.5 43.1 76.6 75.3 52.5
wk-H 72.9±1.6 74.5±1.6 74.9±3.4 18.0 72.6 75.3 69.6 75.5

Average 70.6 68 60.7 28.5 45.4 56.1 54.5 50.7

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

25

50

75

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(a) Human normalized score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

U
nc

er
ta

in
ty

random
data
progress

(b) Uncertainty-NUNO

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

U
nc

er
ta

in
ty

random
data
progress

(c) Uncertainty-NUNOR

Figure 3: Training progression in hopper-medium-expert-v2: (a) We report the progression of human
normalized score in evaluation episodes during training. (b-c) We demonstrate how the uncertainty
estimates of neural SDEs in NUNO and NUNOR evolve when evaluated with trained policies’ actions
in one-step rollouts from states in the dataset. ’random’ and ’data’ refer to the uncertainty estimates
of the learned model given actions from a random policy and the dataset, respectively.

5.1.2 NEORL

We further evaluate NUNO in NeoRL Qin et al. (2022), a benchmark developed to reflect real-world
characteristics by logging data via conservative policies. We investigate nine datasets involving
three environments (HalfCheetah-v3, Hopper-v3, Walker2d-v3) and three types of datasets (low,
medium, high) per environment with 1000 trajectories each. We compare NUNO against MOBILE,
MOPO, EDAC, CQL which penalizes OOD samples’ Q-values equally, behavior cloning (BC),
which imitates data-logging policies, and TD3+BC Fujimoto & Gu (2021), which extends TD3
Fujimoto et al. (2018) by regularizing the policy optimization objective via a behavioral cloning term.

Table 2 reports the mean and standard deviation of maximum human-normalized scores that NUNO
reaches in NeoRL MuJoCo tasks during four independent runs of one million gradient steps. NUNO
achieves the highest scores in the low tasks of NeoRL by outperforming existing SOTA results in
hopper and walker2d by a significant margin, as in the random tasks of D4RL. In addition, NUNO
or NUNOR reach the highest scores in medium and high tasks of all MuJoCo environments. Overall,
NUNO and NUNOR collect the highest average human normalized scores across nine tasks in NeoRL.

5.2 CAN NUNO’S UNCERTAINTY ESTIMATOR EFFECTIVELY QUANTIFY UNCERTAINTY?

Figures 3b and 3c demonstrate the evolution of uncertainty estimates of trained neural SDEs for
NUNO and NUNOR during training. Neural SDE’s uncertainty estimator assigns the largest values to
random actions and the smallest to the dataset, evidencing that the uncertainty estimators correctly
identify out-of-distribution and in-distribution actions, respectively. As trained policies progress,
see Figure 3a, the model uncertainty for learned policies’ actions approaches the uncertainty of
in-distribution samples because learned policies avoid out-of-distribution actions through penalization
and truncation based on distance-aware uncertainty estimates. Appendix D provides an ablation study
on the choice of the uncertainty estimator for penalization and truncation in policy learning.
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(b) Medium-replay
Figure 4: Model exploitation: We evaluate NUNO, NUNOR, TATU+MOPO, and MOPO in rollouts
from their learned dynamics models in (a) random and (b) medium-replay tasks, and report the average
score per step with (pessimistic, Pess) and without (groundtruth, GT) uncertainty penalization.
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(a) D4RL Walker2d: In-distribution
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(b) D4RL Walker2d: Out-of-distribution
Figure 5: Model analysis: We illustrate the evolution of model prediction error in different datasets
for D4RL Walker2d. (a) In-distribution: Evaluation of the datasets in which the models are trained.
(b) Out-of-distribution: Evaluation of models, trained via random, in trajectories from other datasets.

5.3 HOW DOES NUNO ADDRESS THE MODEL EXPLOITATION PHENOMENON?

We assess how NUNO addresses the model exploitation phenomenon based on two aspects: (1) con-
servativeness of the reward function of pessimistic learned MDPs, and (2) prediction accuracy of
learned dynamics models. Figures 4 and 5 evidence that NUNO enables less conservativeness and
better accuracy over longer horizons. Figure 4 addresses the first aspect in two sets of D4RL tasks:
random and medium-replay. Based on the gap between the groundtruth score and the pessimistic
score, we observe that NUNO and NUNOR construct pessimistic learned MDPs that are less conser-
vative than their counterparts in MOPO and TATU+MOPO, which use Gaussian ensembles. The
only exception is hopper-medium-replay, which may be why TATU+MOPO and MOPO perform
slightly better, as reported in Table 1. Model accuracy results in Figure 5 show that neural SDEs are
significantly more accurate than a Gaussian ensemble over longer horizons.

6 CONCLUSION

We develop a novel uncertainty-aware offline model-based RL algorithm, NUNO, that learns a single
dynamics model, in contrast to probabilistic ensembles in most existing work, as a neural SDE and
addresses model exploitation phenomenon by penalizing and adaptively truncating model rollouts
based on its uncertainty estimates. NUNO achieves this by imposing minimal prior physics knowledge
into the drift term of a neural SDE as inductive bias and learning distance-aware uncertainty estimates
via its diffusion term, which matches the dynamics’ underlying stochasticity around the training data
regime while providing high but bounded estimates beyond it. Through our empirical evaluations
of NUNO in these benchmarks, we demonstrate that NUNO outperforms state-of-the-art methods,
particularly in low-quality datasets with low state-action space coverage or suboptimal demonstrations
(’random-v2’ in D4RL and ’low’ in NeoRL) by up to 93%. In tasks involving higher quality datasets,
NUNO matches or exceeds the state-of-the-art performances in some environments by up to 55%.

Limitations and future work. Although we can extend our formulation to address partially observed
Markov decision processes, our experiments utilize full knowledge of the system state in MuJoCo
environments from both benchmarks. In the future, we aim to extend our uncertainty-aware approach
to address different settings, e.g., environments with image observations. Additionally, future work
can investigate formally proving properties of our distance-aware uncertainty estimator and extend
our formulation for non-Euclidean state-action spaces by adjusting the distance metrics accordingly.
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REPRODUCIBILITY STATEMENT

For the theoretical analysis of this work, we state all assumptions made in Section 4 and Appendix B.
For all the hyperparameters and detailed settings of the experiments, please refer to Appendix C.
Lastly, we put the core code of our approach in the supplementary details. The code includes
dataloaders, execution code, and links to download all the datasets and models used.
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A RELATED WORK - EXTENSION

Offline model-free RL: Model-free RL algorithms in the offline setting aim to learn an optimal
policy within the available data coverage without learning a dynamics model. Existing methods
focus on learning policies that stay close to the data logging policy and avoid out-of-distribution
actions by constraining the policy explicitly to the data logging policy Wu et al. (2019); Fujimoto
et al. (2019); Fujimoto & Gu (2021), importance sampling Precup et al. (2001); Sutton et al. (2016);
Gelada & Bellemare (2019); Nachum et al. (2019a); Rashidinejad et al. (2023), learning conservative
value functions Nachum et al. (2019b); Kumar et al. (2020); Kostrikov et al. (2021), and uncertainty
quantification Kumar et al. (2019); Agarwal et al. (2020); An et al. (2021); Wu et al. (2021); Bai
et al. (2022). Although they refrain from the computational expense of learning a dynamics model,
model-free approaches commonly struggle when the data logging policy is sub-optimal because
optimal actions become out-of-distribution.

B DISTANCE-AWARE UNCERTAINTY ESTIMATOR

B.1 PROOF OF LEMMA 1

This section provides results supporting the claim of Lemma 1. To this end, we analyze the extrema
of the optimization problem

η̄ϕ = argminη E(s,a)∼D
[
E(s′,a′)∼Uniform(S×A)[η(s

′,a′)− ∥(s,a)− (s′,a′)∥]2
]
. (9)

Under the assumption that S ×A is compact, we can reformulate the optimization problem according
to Fubini’s theorem as

minη E(s′,a′)∼Uniform(S×A)

[
E(s,a)∼D[η(s

′,a′)− ∥(s,a)− (s′,a′)∥]2
]
. (10)

Let z = (s,a) and z′ = (s′,a′). We can rewrite the objective function as

J(η(z′)) =

∫
S×A

1

|S × A|
Ez∼D[η(z

′)− ∥z − z′∥]2 dz. (11)

The extrema of the objective function are solutions of

∂J(η(z′))

∂η(z′)
= 0 (12)

⇒ ∂

∂η(z′)

(
Ez∼D[η(z

′)− ∥z − z′∥]2
)
= 0 (13)

⇒ Ez∼D[η(z
′)− ∥z − z′∥] = 0. (14)

Thus, by expanding the expectation, we have

Ez∼D[η(z
′)]− Ez∼D[∥z − z′∥] = 0 (15)

⇒ η(z′) = Ez∼D[∥z − z′∥]. (16)

We can then conclude that the optimal solution η is a convex function since it is a linear combination
of convex functions.

Additionally, we have through Jensen’s inequality that

η(z′) = Ez∼D[∥z − z′∥] ≥ ∥Ez∼D[z]− z′∥ = ∥z0 − z′∥ = 0, (17)

where z0 = Ez∼D[z] is the state-action centroid of the dataset. Thus, the first property of Lemma 1 is
proven.

Finally, let’s prove that the negative of the gradient points inside the convex hull. By linearity of the
gradient, we have

−∇η(z′) = Ez∼D[∥−
z′ − z

∥z′ − z∥
∥]. (18)

This implies that for any point z′ that lies outside of the training dataset, the negative of the gradient
is a non-negative combination of vectors − z′−z

∥z′−z∥ that points inside the convex hull of the dataset.
This concludes the proof of Lemma 1.
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B.2 ILLUSTRATION OF THE DISTANCE-AWARE TERM ON TOY 2-D EXAMPLES

Distance-aware estimator as model epistemic uncertainty estimator. Most offline model-based
reinforcement learning approaches employ either Monte Carlo (MC) dropout or model ensemble for
epistemic uncertainty estimation. Although such approaches have demonstrated incredible results,
Liu et al. (2020); Van Amersfoort et al. (2020) show that MC Dropout or model ensembles are
unaware of the distance between unseen samples and training datasets, even in simple toy examples.
Besides, these uncertainty estimators are parametric models targeted for reconstruction or regression
objectives solely based on in-distribution data rather than directly tasked for uncertainty estimation.
Therefore, they might discard relevant information, such as the distances between different samples
or distances to out-of-sample data. We also refer to Figure 1 from Zhang et al. (2023a), where the
authors demonstrate how these methods could not yield accurate distance-based uncertainty estimates.

Instead, using a distance-aware uncertainty estimator preserves the data’s mutual relations while
providing the ability to detect out-of-sample data. Besides, we can theoretically relate the problem
of estimating the cross entropy between learned model dynamics and ground truth dynamics to
calculating data point distances to a k-nearest neighbor clustering of the training dataset. Such
cross-entropy is crucial for enforcing pessimism when training offline RL policies and for providing
tight performance bounds. One of our goals is to design a parametric distance-aware uncertainty
estimator that can efficiently cluster the dataset without performing k-nearest neighbor clustering and
that can directly be embedded into the neural SDE formulation.

Our term ηϕ accurately provides distance-based uncertainty estimates. We seek to demonstrate
that the loss functions in equation 3 and equation 4 are sound and, upon convergence, provide a
distance-based uncertainty estimate term ηϕ that can efficiently cluster the training dataset. To this
end, we generate three datasets of a two-dimensional system as illustrated in Figure 6. Our approach
can cluster the training dataset in all examples while providing a clear delimitation between in-sample
and out-of-sample data points.

Figure 6: Visualization of the distance-aware uncertainty estimate ηϕ on three generated dataset. The
red points represent the state-action samples in the dataset. Yellow indicates high uncertainty, while
dark blue represents low uncertainty. X-axis and y-axis denote the states of the system.

C EXPERIMENTAL DETAILS

C.1 BENCHMARKS

We empirically evaluate NUNO in two continuous control benchmarks: D4RL and NeoRL. We utilize
three MuJoCo environments from both benchmarks: halfcheetah, hopper, and walker2d. In D4RL,
each environment comes with four types of datasets: (1) random-v2, where a randomly initialized
policy collects the samples; (2) medium-v2, where an early-stopped policy trained via SAC Haarnoja
et al. (2018) for one million steps is the data-logging policy; (3) medium-replay-v2, where the
datasets comprises of the samples from the buffer of the early-stopped policy used for medium-v2;
(4) medium-expert-v2, where half of the samples come from a medium-level policy and the other
from an expert one. Our experiments use the v2 version of D4RL datasets. We report the results of
MOBILE, RAMBO, and EDAC from their original papers, as the experiments were on v2 datasets.
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For the rest, we provide the scores reported in TATU+MOPO paper (Zhang et al., 2023b), as our
codebase is based on theirs. We note that MOBILE and EDAC train four independent runs for three
million gradient steps, and RAMBO reports five runs of two million gradient steps, in contrast to
five runs of one million steps for the rest.

In comparison, the NeoRL (Near real-world offline RL) benchmark consists of datasets collected
by policies with validated performance. More specifically, NeoRL trains a policy via SAC until
convergence and uses several checkpoints from the training to collect data. These checkpoints
correspond to policies with three levels of sub-optimality: 25%, 50%, and 75% of expert returns,
which NeoRL calls low, medium, and high. The datasets we investigate consist of 1000 trajectories.
We report the results of BC, CQL, and MOPO from the paper proposing NeoRL (Qin et al., 2022).
For the rest, we provide the scores reported in the MOBILE paper (Sun et al., 2023). We exclude
TATU+MOPO, TATU+MOPO, COMBO, and MOREL because NeoRL paper does not report
any results for them, and also it would be extremely time-consuming to carry out a hyperparameter
search for each approach. Similar to the experiments with D4RL, MOBILE results come from four
independent training runs of three million gradient steps.

C.2 POLICY OPTIMIZATION

Our implementation heavily relies on the codebase of Zhang et al. (2023b), which proposes uncertainty
truncation, e.g., TATU+MOPO and TATU+COMBO. We use the default parameters of SAC
described in Zhang et al. (2023b). We train RL agents on a cluster with NVIDIA RTX A5000 GPUs
and an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz. Given a memory of approximately 6GB, a
training run of 1 million gradient steps take around 12 hours.

C.3 HYPERPARAMETERS OF NUNO

NUNO has four hyperparameters: real ratio β, rollout length h, CVaR coefficient α to set a truncation
threshold, and uncertainty penalization threshold λpen. The real ratio parameter β refers to the
ratio of samples from the real dataset in a mini-batch used to update the SAC policy. We set β to
0.05, as TATU+MOPO, for all tasks in our experiments. For the rest of the parameters, we run a
search over the following set of values: h ∈ {5, 10, 15, 20}, α ∈ {0.9, 0.95, 0.98, 0.99, 1.0}, and
λpen ∈ {0.001, 0.1, 1}. Our hyperparameter search procedure starts by tuning for rollout length h
with α = 0.9 and λpen = 0.001. Using the best performing, namely, the highest human-normalized
score yielding rollout length, we tune for α. Finally, we run a search for λpen. Table 3 reports the
best-performing values for each task in our experiments. We use the same values for NUNOR.

C.4 NEURAL SDE TRAINING

We implement all the numerical experiments using the python library JAX Bradbury et al. (2018), in
order to take advantage of its automatic differentiation and just-in-time compilation features. We use
Python 3.8.5 for the experiments and train all our models on a laptop computer with an Intel i9-9900
3.1 GHz CPU with 32 GB of RAM and a GeForce RTX 2060, TU106.

For training the neural SDE, we use randomly sampled sequences of horizon 2 for all the environments.
We take the timestep of the ground truth environment and use it as the time step to integrate the
neural SDE models. We use Euler-Maruyama as the integration scheme in all our experiments and
generate one particle during each integration step to compute the expectation defined in Ldata. For the
regularization loss term Lµ, we define µϕ(st,at) = eNNϕ(st,at) ensuring that the output is positive,
where NNϕ is a neural network parametrized by ϕ.

For the neural SDE architecture, we parameterize ηϕ as a neural network with two hidden layers of
size 64 with swish activation functions. We parameterize the uncertainty term σϕ as a neural network
with two hidden layers of size 256 with tanh activation functions. The reward’s drift term f reward

θ is
parameterized as a neural network with three hidden layers of size 64 with swish activation functions
while the other drift terms are parameterized with three hidden layers of size 256 and swish activation
functions. Finally, the strong convexity neural network is parameterized with two hidden layers of
size 32 with swish activation functions.
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Table 3: Hyperparameters of NUNO in D4RL and NeoRL MuJoCo tasks

Task h α λpen

hc-random 20 1 0.001
hp-random 10 1 0.001
wk-random 10 0.99 0.001

hc-medium 5 0.99 1
hp-medium 10 0.99 1
wk-medium 10 0.98 1

hc-medium-replay 5 0.9 1
hp-medium-replay 10 0.99 1
wk-medium-replay 10 0.95 1

hc-medium-expert 10 0.95 1
hp-medium-expert 10 0.99 1
wk-medium-expert 10 0.98 1

hc-low 10 1 1
hp-low 10 0.99 0.001
wk-low 5 0.99 0.001

hc-medium 10 0.99 1
hp-medium 5 0.9 0.1
wk-medium 5 0.99 0.001

hc-high 5 0.99 1
hp-high 5 0.9 0.1
wk-high 5 0.99 1

The distance-aware diffusion term is trained with a ball radius of 0.1 in all environments and a strong
convexity coefficient of 1. We use λgrad = 10−4 and 20 samples to obtain the state-action needed to
enforce the strong convexity constraint.

Training optimizer hyperparameters. We use the Adam optimizer (Kingma & Ba, 2014) for all
optimization problems. We use the default hyperparameters for the optimizer, except for the learning
rate, which we linearly decay from 0.01 to 0.001 over the first 5000 gradient steps. We use early
stopping criteria for all our experiments. We use a batch size of 128 for the neural SDE training.

D ABLATION STUDY FOR UNCERTAINTY ESTIMATORS IN POLICY TRAINING

NUNO incorporates the distance-aware uncertainty estimate ηϕ into the offline RL framework to
enforce conservatism in the learned policy. Specifically, NUNO uses ηϕ to penalize and truncate the
transitions generated by the learned neural SDE model during the RL policy training. In an ablation
study, we investigate whether the choice of the uncertainty estimator impacts the learned policy. We
compare NUNO, which uses the distance-aware uncertainty estimate ηϕ, corresponding to epistemic
uncertainty, against NUNOal, which utilizes the aleatoric uncertainty estimate σϕ (5). We evaluate
NUNO and NUNOal in two types of datasets of the D4RL benchmark: random and medium-expert.
Random datasets have low-quality trajectories, as the data-logging policies are sub-optimal. At the
same time, random datasets have high coverage, as the trajectories showcase random behavior. In
comparison, medium-expert datasets have high-quality trajectories yet low coverage as the data-
logging policies are not random, and they act expert-like. D4RL benchmarks do not consist of very
noisy datasets. Hence, we expect to have low aleatoric uncertainty in both datasets. However, data
coverage determines epistemic uncertainty. We expect low epistemic uncertainty in random datasets
and high in medium-expert ones.

Table 4 shows the best average human-normalized scores NUNO and NUNOal achieve, whereas
Figure 7 demonstrates their performance progression. In random datasets, NUNO and NUNOal both
achieve SOTA results, with NUNO performing better in halfcheetah and walker2d. In contrast, NUNOal
performs significantly worse in medium-expert datasets, except in hopper, where NUNO and NUNOal
achieve similar scores. These results align with our expectations based on the coverage properties of
random and medium-expert datasets. A critical remark is that the reward penalty coefficient λpen

is set to a low value, λpen = 0.001, in random datasets. Hence, NUNO and NUNOal practically do
not penalize the agent, except when the uncertainty is estimated to be very high. In comparison, in
medium-expert datasets, the reward penalty coefficient is λpen = 1, hence they frequently penalize
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Table 4: Average human-normalized scores of NUNO and NUNOal in D4RL benchmarks. Due to
limited space, we use abbreviations of task and dataset names: hc = halfcheetah, hp = hopper, wk =
walker2d; r = random, me = medium-expert.We report the mean and standard deviation (following
±) of best scores among independent runs. Bold scores indicate the best for each task.

Task & Data hc-r hp-r wk-r hc-me hp-me wk-me

NUNO 52.7±3.4 73.2±9.8 27.7±0.9 97.0±0.5 112.2±0.3 113.2±0.5

NUNOal 50.6±2.8 71.7±9.8 18.3±1.7 10.5±0.4 112.6±0.9 48.3±11.7
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(b) halfcheetah-random-v2
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(c) walker2d-random-v2
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(e) halfcheetah-medium-expert-v2
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(f) walker2d-medium-expert-v2

Figure 7: Ablation study: The impact of the choice of uncertainty estimator on policy learning.

the agent. As the epistemic uncertainty is expected to be high in this setting, the distance-aware
uncertainty estimate is superior to the aleatoric uncertainty estimate.

E DETAILED RESULTS

This section provides detailed results on model accuracy and training progression.

E.1 MODEL ANALYSIS

Figure 8 provides model analysis results for D4RL Hopper and HalfCheetah (see Section 5 for results
in D4RL Walker2d). In-distribution evaluation demonstrates how learned dynamics models perform
over varying prediction horizons in trajectories from datasets with which the models are trained.
In D4RL Hopper, probabilistic ensembles yield significantly higher prediction errors than neural
SDEs as the horizon lengths increase. In D4RL HalfCheetah, the same pattern occurs, except in
halfcheetah-medium-replay-v2, where all models provide low prediction error. Out-of-distribution
evaluation assesses how learned dynamics models trained with low-quality datasets, i.e., random,
perform in trajectories collected by behavior policies that are better than a random policy. All models
perform well in trajectories from the random task, which is in-distribution. However, in D4RL
Hopper, ensembles yield high prediction error in medium-replay and medium-expert as the horizon
length increases. In D4RL HalfCheetah, we observe the same results, except in medium-replay.

E.2 TRAINING PROGRESSION

Figures 9, 10, and 11 demonstrate the training progression in D4RL domains, Hopper, HalfCheetah
and Walker2d, respectively. The first columns illustrate the progression of human normalized score in
evaluation episodes ran after every epoch during training. In most tasks, NUNO and NUNOR achieve
similar human normalized scores at the end of the training, with some exceptions such as hopper-
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(a) D4RL Hopper: In-distribution
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(c) D4RL HalfCheetah: In-distribution
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(d) D4RL HalfCheetah: Out-of-distribution

Figure 8: Model analysis: We illustrate the evolution of model prediction error in different datasets
for D4RL Hopper and HalfCheetah. (a) In-distribution: Evaluation of the datasets in which the
models are trained. (b) Out-of-distribution: Evaluation of models, trained via random, in trajectories
from other datasets.

random-v2, halfcheetah-medium-v2, halfcheetah-medium-replay-v2, and walker2d-medium-v2. The
second and third columns show the progression of the uncertainty estimates of neural SDEs trained
in NUNO and NUNOR, as well as those models’ uncertainty estimates for random actions and actions
from offline datasets. In random datasets, progress, random, and data curves are close to each other,
as these datasets consist of trajectories from a random policy. In the rest of the tasks, neural SDEs
can distinguish in-distribution actions (data) from out-of-distribution actions (random). Furthermore,
as the trained policy progresses, the corresponding uncertainty estimates of neural SDEs approach
the data curve. This is expected as neural SDEs generate synthetic trajectories close to offline data,
and the policies’ replay buffers are initially augmented with the offline dataset.

Figure 12 demonstrates the progression of human normalized score in NeoRL tasks. Like D4RL, in
most tasks, NUNO and NUNOR reach similar scores. In Hopper-v3-Medium-1000 and Walker2d-v3-
Medium-1000 NUNO outperforms NUNOR. The opposite occurs in HalfCheetah-v3-Low-1000 and
HalfCheetah-v3-Medium-1000.
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(b) Random: NUNO uncertainty
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(c) Random: NUNOR uncertainty
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(e) Medium: NUNO uncertainty
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(f) Medium: NUNOR uncertainty
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(h) MR: NUNO uncertainty
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(i) MR: NUNOR uncertainty
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(k) ME: NUNO uncertainty
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(l) ME: NUNOR uncertainty

Figure 9: Training progression in D4RL Hopper: In the first column, we report the progression of
human normalized score in evaluation episodes during training. In the second and third columns, we
demonstrate how the uncertainty estimates of NSDEs in NUNO and NUNOR evolve when evaluated
with trained policies’ actions in one-step rollouts from states in the dataset. ’random’ and ’data’
refer to the uncertainty estimates of the learned model given actions from a random policy and the
dataset, respectively. Each row corresponds to progression in a different task: random, medium,
medium-replay, and medium-expert.
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(b) Random: NUNO uncertainty
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(c) Random: NUNOR uncertainty
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(e) Medium: NUNO uncertainty
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(f) Medium: NUNOR uncertainty
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(h) MR: NUNO uncertainty
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(i) MR: NUNOR uncertainty
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(k) ME: NUNO uncertainty
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(l) ME: NUNOR uncertainty

Figure 10: Training progression in D4RL HalfCheetah: In the first column, we report the progression
of human normalized score in evaluation episodes during training. In the second and third columns,
we demonstrate how the uncertainty estimates of NSDEs in NUNO and NUNOR evolve when evaluated
with trained policies’ actions in one-step rollouts from states in the dataset. ’random’ and ’data’
refer to the uncertainty estimates of the learned model given actions from a random policy and the
dataset, respectively. Each row corresponds to progression in a different task: random, medium,
medium-replay, and medium-expert.
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(b) Random: NUNO uncertainty
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(c) Random: NUNOR uncertainty
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(e) Medium: NUNO uncertainty
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(f) Medium: NUNOR uncertainty
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(h) MR: NUNO uncertainty
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(i) MR: NUNOR uncertainty
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(k) ME: NUNO uncertainty
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(l) ME: NUNOR uncertainty

Figure 11: Training progression in D4RL Walker2d: In the first column, we report the progression of
human normalized score in evaluation episodes during training. In the second and third columns, we
demonstrate how the uncertainty estimates of NSDEs in NUNO and NUNOR evolve when evaluated
with trained policies’ actions in one-step rollouts from states in the dataset. ’random’ and ’data’
refer to the uncertainty estimates of the learned model given actions from a random policy and the
dataset, respectively. Each row corresponds to progression in a different task: random, medium,
medium-replay, and medium-expert.
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Figure 12: Training progression in NeoRL tasks: Each subfigure reports the progression of human
normalized score in evaluation episodes during training.
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