WETOK: POWERFUL DISCRETE TOKENIZATION FOR
HIGH-FIDELITY VISUAL RECONSTRUCTION
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Figure 1: Zero-shot reconstruction comparison with state-of-the-art tokenizers. (a) Our WeTok
establishes a new state-of-the-art trade-off between compression and reconstruction performance
among the compared methods. (b) WeTok achieves a significant improvement in reconstruction
quality over previous discrete tokenizers such as VQVAE and Open-MAGVIT2.

ABSTRACT

Visual tokenizer is a critical component for vision generation. However, the ex-
isting tokenizers often face unsatisfactory trade-off between compression ratios
and reconstruction fidelity. To fill this gap, we introduce a powerful and concise
WeTok tokenizer, which surpasses the previous leading tokenizers via two core
innovations. (1) Group-wise lookup-free Quantization (GQ). We partition the la-
tent features into groups, and perform lookup-free quantization for each group.
As aresult, GQ can efficiently overcome memory and computation limitations of
prior tokenizers, while achieving a reconstruction breakthrough with more scal-
able codebooks. (2) Generative Decoder (GD). Different from prior tokenizers,
we introduce a generative decoder with a prior of extra noise variable. In this
case, GD can probabilistically model the distribution of visual data conditioned
on discrete tokens, allowing WeTok to reconstruct visual details, especially at high
compression ratio. On the ImageNet 50k validation set, at a high-fidelity setting,
WeTok achieves a record-low zero-shot rFID of 0.12, outperforming leading con-
tinuous tokenizers like FLUX-VAE (0.18) and SD-VAE 3.5 (0.19) with 400%
compression ratio. Furthermore, in a high-compression regime, WeTok achieves
a zero-shot rFID of 3.49 at a 768 x compression ratio, substantially surpassing
Cosmos, which scores 4.57 at only 50% our compression ratio. Code and models
are available: https://github.com/zhuangshaobin/WeTok.
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1 INTRODUCTION

In visual generation, the high computational cost of pixel-based data is a central challenge (Chen
et al., 2020b; [Rombach et al., [2022b). Visual tokenizer is a key solution that uses an encoder to
compress image into a compact latent representation and a decoder to reconstruct it (Kingma &
Welling| 2013} Rezende et al. 2014), allowing generative models to operate efficiently in latent
space (Rombach et al.||2022a)). These tokenizers are broadly divided into two categories: continuous
(Kingma & Welling, 2013)) and discrete (Van Den Oord et al., [2017). Continuous tokenizers map
images to a continuous latent space, while discrete tokenizers employ a quantizer to produce a finite
set of codes. This architectural difference introduces a critical trade-off. Discrete tokenizers can
achieve a higher compression ratio, but this efficiency often comes at the cost of lower reconstruction
fidelity compared to continuous methods. This leads to a natural question: Can we build a discrete
tokenizer that can maintain high compression as well as achieve high-fidelity reconstruction?

To achieve this goal, two critical issues must be resolved. (1) Scalable Codebook. To minimize
quantization error of discrete tokenizers, the existing methods attempt to enlarge the codebook (Yu
et al.,[2024a; Zhao et al.| 2024c;[Sun et al.,[2024). In particular, the Lookup-Free Quantization (LFQ)
(Yu et al., 2024a) quantizes the latent features directly, which largely increases the codebook size
for better reconstruction. However, the substantial memory and computational overhead required to
manage such a large codebook during training hinders further scalability. (2) Generative Modeling.
Discrete tokenizers are inherently deterministic. Rather than modeling data distribution of images,
decoder is trained to reconstruct the expected value of images (Esser et al.| [2020)), corresponding to
the latent codes from encoder. Such a manner is limited to capture rich diversity and fine details in
the original images, leading to unsatisfactory reconstruction, particularly at high compression ratios.

To fill the gap, we introduce a powerful discrete tokenizer, WeTok, which consists of two concise
designs to solve the issues above. First, we develop a Group-Wise Lookup-Free Quantization (GQ),
which groups the latents and employs LFQ for each group. As shown in Tab. |I{and Fig. 3} GQ
addresses the challenge in LFQ where entropy loss (Chang et al., 2022} Jansen et al., 2019)) causes
memory usage to grow with the codebook, while yielding superior reconstruction performance.
Furthermore, we analyzed that the theoretical error caused by GQ is strictly smaller than that of BSQ.
Second, we introduce the GAN-style generator into the decoder (GD). In Fig. [/] GD effectively
models data distribution of images, allowing to reconstruct visual details at high compression ratios.

Finally, we conduct extensive experiments on mainstream benchmarks, via scaling WeTok across
group size, model size, and training data size. Moreover, we pre-train our WeTok on a 400M
general-domain dataset across multiple compression ratios. As illustrated in Fig. |1| (a), WeTok
consistently outperforms the state-of-the-art continuous and discrete tokenizers with a 400% com-
pression ratio, e.g., rFID on ImageNet 50k validation set: WeTok: 0.12 vs. FLUX-VAE: 0.18
(Batifol et al., 2025) vs. SD-VAE 3.5: 0.19 (Esser et al.| [2024a). Furthermore, our highest com-
pression model also achieves the superior reconstruction performance, e.g., rFID on ImageNet 50k
validation set: WeTok: 3.59 vs. Cosmos: 4.57 (Agarwal et al.| [2025), while Cosmos (384) only has
50% compression ratio of our WeTok (768), showing effectiveness and efficiency of WeTok.

2 RELATED WORK

VQVAE (Van Den Oord et al., 2017) and VQGAN (Esser et al.l 2021) employ vector-quantization
(VQ) to transform visual input into discrete tokens. But they both suffer from low reconstruction
quality caused by instability of the codebook utilization. To overcome these drawbacks, one line
of work introduces optimization strategies or modules to improve performance (Lee et al., [2022bj
Shi et al., 2024} |Zhu et al., 2024; |Yu et al.| 2024c). Another line of work focuses on scaling up the
codebook size by grouping codebooks (Ma et al., 2025} Jia et al., 2025} Zhang et al., 2025} Bai et al.,
2024). ImageFolder (Li et al., 2024}, DualToken (Song et al.,|[2025)) and TokenFlow (Qu et al.|[2024)
use multiple codebooks to assist in optimizing model understanding and generation capabilities.
However, VQ-based tokenizers still introduce additional costs due to the lookup operation (Yu et al.,
2021b; [Lee et al., [2022b; [Fang et al., [2025). MAGVIT-v2 (Yu et al} 2024a) introduces Lookup-
Free Quantization (LFQ) to address extra cost and proposes the entropy loss (Chang et al., 2022;
Jansen et al.l 2019) to ensure the utilization of the codebook. BSQ (Zhao et al.l [2024b)) assumes
independence between the bits of the binary code to eliminate unbearable computational overhead
from entropy loss, while this assumption leads to performance degradation. In contrast, WeTok does
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Figure 2: WeTok with Group-Wise Lookup-Free Quantization and Generative Decoder.

not rely on explicit codebooks, and eliminate the memory usage caused by entropy loss while having
better performance than LFQ. More related works could be found in Sup.

DiTo (Chen et al.,|2025b)), consistency decoder (Betker et al.) and e-VAE (Zhao et al. 2024a) intro-
duce diffusion into decoder to help visual reconstruction of continuous image tokenizer. Our WeTok
is the first to introduce a generative decoder into discrete tokenizer, overcoming the instability of
generative training caused by the stopping gradient estimation operation. Compare to diffusion
modeling, Compared to diffusion modeling, our GAN-based WeTok achieves more efficient single-
step sampling while also achieving state-of-the-art reconstruction performance.

3 METHOD

In this section, we first establish the necessary preliminaries for discrete tokenization. We then in-
troduce the Group-Wise Lookup-Free Quantization (GQ) to unify Lookup-Free Quantization (LFQ)
(Yu et al.} 2024a) and Binary Spherical Quantization (BSQ) (Zhao et al., 2024c). Finally, we present
a Generative Decoder (GD) specifically engineered for high-compression scenarios to reconstruct
high-fidelity outputs from the compact representations generated by our GQ.

3.1 PRELIMINARIES

Vector Quantized Variational Autoencoder (Esser et al.,[2020). VQVAE first compresses image
T € REXW>3 into latent feature U=E (T), UER ¥ ¥4 through the encoder €. Then it is quantized
into latent codes Q by searching the nearest neighbor in the codebook CERX *4=[c;, ¢y, ...,ck] ",

Qli, j] = argmin ||U[i, j] — c||?, (1)
ceC

Notice that here we define Q to have a backward gradient only with respect to C, and introduce
Ug = U +sg[Q — U] as a variable that shares the same value as Q but has a backward gradient only
with respect to U. Here, sg[-] denotes the stop-gradient operation.

Finally, the intermediate quantized result Q is reconstructed into image space 1= G(Uyg) through
the decoder G. The loss function of VQ-VAE consists of the following five parts,

Lyvoak = || = Z|* + | Q — sglUd]||* +a | — sg[Q)|* +8 Lurwes (Z,T) +7 LoanUa),  (2)
—_——— —_————

Recon. Loss Codebook Loss Commitment Loss Perceptual Loss GAN Loss

where perceptual loss (Zhang et al.,|[2018)) and GAN loss are introduced for better visual quality.

Lookup-Free Quantization (Yu et al.,[2024a). LFQ introduces an implicit and learning-free code-
book Crrg = {—1, 1} to perform lookup-free quantization on each channel of latent feature,

Qli, j, k] = sign(U[i, j, k])- 3)



Since the codebook in LFQ is fixed, there is no need for codebook loss during LFQ training. To
address the issue of codebook utilization collapse in VQVAE, LFQ introduces the following entropy
loss in replace of the commitment loss in equation 2]

h w h w
Leniropy (U % ZZH clU[i, 5])) — ZZ(] (clt]i, 5]) | - “4)

=1 j=1 1j5=1
Token Entropy Loss Codebook Entropy Loss
where H(X) = — ..y XilogX; , q(c|U[i, j]) denote the conditional distribution of c given

Ui, j] , and ( refers to the weight of codebook entropy loss.

Binary Spherical Quantization (Zhao et al., 2024c). When increasing the codebook size, i.e.,
increasing d, the H(-) calculation in the Lenwopy of LFQ leads to significant memory consumption.
To alleviate this issue, BSQ processes each binary of LFQ seperately. Firstly, rewrite the token en-

tropy loss as ﬁz ZJ 1Zk 1 H(gp(c[k]|U][i, j,k])). Next, the codebook entropy loss could
be transformed into Zk 1 H(gp(c [ I hw Zl 1 21 Uli, §, k])) by assuming the approximation

ﬁ i 123 1 q(c|Uli, g])) =~ k 1 hw Zz 123 1 98(clk]|U[i, j, k])). Both operations reduce

the variable space of the H(-) calculation from {—1,1}? to the linear combination of d {—1,1},
significantly decreasing memory consumption. However, as the approximation for the codebook
entropy loss would introduce additional errors, which leads to performance degradation.

3.2 GROUP-WISE LOOKUP-FREE QUANTIZATION

As shown in Eq. E], the computational cost of H (-) increases linearly with the codebook. To address
it and the optimization error of BSQ, we group the latents and perform LFQ. As shown in Fig. 2

we group the latent features in channel dimension, reshape I into UgeR"*w>9%d’ \where d=gd’
and g and d’ represent the number and channel of groups. For k-th group, there is a non-learnable

grouped codebook Cgq r={—1, 1}d/. The conditional probability can be reformulated as

g

q(clUi, 4]) H (clUcli, g, k]), 5

where ¢y, refers to the k-th latent code after c is divided into g parts, i.e., ¢, = c[(k—1)d’'+1 : kd'].
Considering the additivity of entropy and Eq. [5] we can rewrite the token entropy loss term as

w
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We first transform the token entropy loss from the {—1,1}? space into a linear combination of g
{-1, l}d, spaces. This change eliminates the token entropy loss as the memory bottleneck.

For the codebook entropy loss, the H (> -) operation prevents us to decompose the {—1, 1}¢ space
into a linear combination of multiple subspaces. We propose the assumption that

w h w g

g h w
ZZ (clU[i, 5]) :ZZH (cxlUsli, j, k )%HZZchk|MGz],k]) (7
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Thus, we could transform the codebook entropy loss into

h w g h w
1 1 .
‘CCodebook Entropy Loss = @ Z Z q\c ‘Z/[ i .7 = Z H(m Z Z QG(Ck |Z/{G [Zv Js kD) (8)
k=1
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Similar to the token entropy loss, the codebook entropy loss is converted from {—1,1}% space
into a grouped form, which eliminates the memory bottleneck caused by this term. GQ provides a
tunable trade-off between approximation accuracy and memory cost by g. Experiments in Sec. [4.1]
demonstrate that by selecting an appropriate g, GQ significantly reduces memory overhead while
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Figure 3: Quantization method ablation. GQ and LFQ are significantly better than BSQ.
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Figure 4: Number of group ablation. G refers to the number of group. The reconstruction perfor-
mance of the model increases significantly with the increase of G.
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Figure 5: Model architecture ablation. C' and B refer to the number of base channel and residual
block respectively. C' = 256 and B = 4 achieve the best reconstruction performance.

introducing minimal optimization error. This allows GQ to surpass the LFQ and BSQ. Furthermore,
this tunable design provides the flexibility to scale the codebook to a virtually unlimited size.

Proposition 3.1. For any choice of group G, the codebook entropy approximation error (as in Eq.
[2) of our GQ method is smaller than that of the BSQ method.

Remark 3.2. The detailed proof and definition of the approximation error of the Proposition[3.1]is
deferred to Sup. [A] We mainly adopt the order theory in abstract algebra to derive such a conclusion.

3.3 GENERATIVE DECODER

Unlike the continuous tokenizer, the decoders in previous discrete (Esser et al.l 2021} [Yu et al.}
2024a)) tokenizers fit deterministic transformations. Although GAN loss is employed during training
as shown in Eq. 2]and its specific form is as follows

Lean(Ug) = log(1 —D(G(Uo))), ©

where D is the discriminator. However, the GAN loss only serves to assist in improving the percep-
tual quality. In high compression ratio scenarios, the correspondence between U/ and the ground
truth is likely not unique. In such cases, what we need is a generative decoder. As shown in Fig. 2]
we randomly sample z € N(0,I), concatenate it with g along the channel dimension, and then
feed the result into the decoder. In this way, the GAN loss is subsequently reformulated as

Loan(Ug) = Ezenro,1)[log(l — D(G(z,Ug)))], (10)
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Figure 6: Training data and learning rate schedule ablation. GD refers to general-domain data.
The model trained on general-domain data is not as good as the model trained on in-distribution data
in terms of distribution fitting metrics, but has better generalization on PSNR and SSIM. The effect
of consistent learning schedule is significant compared with warm up + cosine decay.

Table 1: Memory usage ablation. We set Table 2: Generative decoder modeling ablation.
d'=8 in GQ. OOM refers to out of memory. Stage2 refers to generative decoder modeling.

Ili’[;gl‘)d : g 5: (?B 1% z é‘; d( ;} ‘244 d{;} ?/]2 d(;) 4\/10 Stagel | Stage2 | tFID | | LPIPS | | SSIM 1 | PSNR 1
BSQ | 105GB | 105GB | 10.6GB | 10.6GB | 106GB v X 5.37 0.17 0.54 20.53
GQ 10.5GB | 10.6 GB | 10.6GB | 10.6 GB | 10.6 GB v v 3.90 0.16 0.55 20.72

where Ug serves as a condition for the generation process. The development from Eq. [9]to Eq. [I0]
is not merely concatenating z to the input of the decoder. More importantly, the decoder shifts to
modeling the transformation from Gaussian noise conditioned on /g to the ground truth distribution.
In previous discrete tokenizer, the decoder is trained to minimize a reconstruction loss like L2 or
LPIPS. When a single, highly compressed discrete token (/g could correspond to multiple ground-
truth images (e.g., different textures of fur , different patterns of leaves), the decoder learns to output
the conditional expectation or the “average” of all these possibilities. Our GD, by incorporating z as
an additional input, transforms the decoder into a conditional generative model. It no longer learns
a one-to-one mapping but instead models the conditional distribution. The noise vector z allows
the decoder to sample one specific, plausible instance from this distribution. This single sample
can contain coherent, high-frequency details (e.g., a specific fur texture), making the output appear
much more realistic and less blurry than the “average” image.

To ensure training stability, we employ a two-stage training strategy. In first stage, we train our
WeTok with the reconstruction loss, i.e., Eq. E] and In the second stage, we adapt the model for
generative tasks. Specifically, we expand the channel dimension of the conv_in layer in decoder
and employ zero-initialization to new channel to accept z as additional input. This strategy ensures
that at the beginning of the second stage, the decoder’s behavior is identical to its pre-trained state.

4 EXPERIMENTS

Datasets. We perform large-scale training on two datasets: (i) 1.2M ImageNet (Russakovsky et al.,
2014)) training set; (ii) 400M general-domain dataset. For comparison, we evaluate WeTok perfor-
mance on ImageNet 50k validation set and MS-COCO 2017 validation set (Lin et al.;, 2014)). Unless
otherwise stated, we conduct a series of ablation studies on the ImageNet training set. Besides, we
train the class-to-image model on the ImageNet training set and test it on the validation set.

Settings. WeTok adopts the architecture proposed in Open-MAGVIT?2 (Luo et al.,2024), employing
the CNN architecture for encoder, decoder, and discriminator. Images are randomly cropped to
256 x 256 for training. For ablation study, all models are trained for 250K steps with Adam (Kingma
& Bal 2014) and a consistent set of hyperparameters. For large-scale training, hyperparameters are
individually tuned for each model to achieve optimal performance. For class-to-image generation,
we adopt the transformer architecture in LlamaGen (Sun et al.,[2024). More details in Sup.

4.1 ABLATION STUDY

We conducted a comprehensive ablation study to validate the key components of WeTok. We first
verify the effectiveness of our proposed GQ and GD. Then we ablate the performance improvements
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Figure 7: Qualitative ablation of GD on MS-COCO val2017. The images reconstructed by the
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Figure 8: Parameter ablation experiments of the Autoregressive model with WeTok. The per-
formance of the AR model with WeTok improves more significantly with the increase of parameters.

in various dimensions, including the number of groups, model architecture, training data, and learn-
ing rate schedule. In addition, we conduct parameter ablation experiments on the AR model based
on WeTok. More details in Sup. [E.T} We employ validation loss, rFID (Heusel et al.l 2017), LPIPS

(Zhang et al.} [2018)), SSIM (Wang et al.,[2004), and PSNR to evaluate the quality of ablation study.

Quantization method. We ablate quantization methods under the same compression ratio, ¢.e.,
d=gd'=16. As shown in Tab. |1} GQ does not introduce additional memory usage as BSQ. In Fig.
we set the same compression ratio for 3 different quantization methods (LFQ: g=1, d'=16; BSQ:
g=16, d'=1; GQ: g=2, d'=8), GQ performs better than LFQ and far exceeds BSQ.

Generative decoder. When the performance of the model is saturated after the first stage of recon-
struction training, we conduct the second stage of generative training. As shown in Tab. [2] the results
show that GD continues to improve the reconstruction performance of the model, especially in rFID.
We present qualitative ablation results in Fig. [7] After converting the decoder to a generative model,
the reconstructed images are more realistic, demonstrating the effectiveness of our GD.

Number of groups in GQ. We increase the number of groups g by a power of 2. As shown in Fig.
[] the results show that as g increases, the reconstruction performance of the model continues to
increase significantly and does not encounter the memory bottleneck like LFQ.

Model architecture. We ablate the number of base channels and residual blocks in the encoder and
decoder to scale up WeTok. As shown in Fig. [5] across 9 different settings, a configuration with 256
base channels and 4 residual blocks achieves the best reconstruction performance. The encoder and
decoder for this optimal architecture contain 198M and 261M parameters, respectively.

Training data. As shown in Fig. [6, we ablated models trained on ImageNet versus a large 400M
general-domain dataset. The model trained on the general-domain data achieves a lower validation
loss and higher SSIM and PSNR, but performs worse on rFID and LPIPS. We attribute to the dis-
tribution gap between the general-domain data and the in-distribution ImageNet dataset. This result
highlights a trade-off between generalization and performance on in-distribution evaluation metrics.

Learning rate schedule. The warm-up and cosine decay learning rate schedule is widely adopted
in training. However, this convention may be suboptimal for the training of discrete tokenizers. In
Fig. |6} the model trained with a constant learning rate demonstrates better performance. Based on
this, we adopt the constant learning rate schedule for all subsequent large-scale training in WeTok.



Ground Truth SD-VAE 1.5 SDXL-VAE WeTok (Ours)

Figure 9: Qualitative comparison of 512 x 512 image reconstruction on TokBench.

Table 3: Reconstruction evaluation on 256 x 256 ImageNet 50K validation set. All models are
trained on ImageNet. WeTok achieves SOTA results on different downsampling rates. * specifies
that it is obtained through our testing.

Token . Train Codebook Codebook

Method Type Tokens Ratio Resolution Size rFID| PSNRT Usaget
VQGAN (Esser et al.| 2020 2D 16x16 16 256 x 256 1024 8.30 1951 -
VQGAN (Esser et al.|[2020 2D 16x16 16 256 x 256 16384 499  20.00 -
SD-VQGAN (Rombach et al.|2022b) 2D 16x 16 16 256 x256 16384  5.15 - -
MaskGIT (Chang et al.|[2022 2D 16x16 16 256 x 256 1024 2.28 - -
ReVQ ﬁgmﬁ%ﬁ_ 2D 16x16 16 256 x 256 65536 2.57  21.69 -
LlamaGen (Sun et al.]2024 2D 16x16 16 256 x 256 32768 226  20.59 85%
LlamaGen (Sun et al.| 2024 2D 16x16 16 256 x256 16384  2.19  20.79 97%
ReVQ (Zhang et al.|[2025 2D 16x16 16 256 x 256 218 205 21.96 -
SweetTok (Yu et al.|[2024b 1D 256 16 256 x 256 10481  0.73 - -
TiTok* (Yu et al.[2024b) 1D 256 16 256 x 256 4096 1.66  20.01 100%
FlexTok (Bachmann et al.|[2025) ID 256 —  256x256 64000 145 1853 -
VAR (Tian et al.[[2024 2D 16x16 16 256 x 256 4096 - 2130 97%
1BQ ( 2D 16x16 16 256 x 256 16384 137 2235 96%
Open-MAGVIT2 (Lu 2D 16x16 16 256 x 256 218 117 2264  100%
IBQ (Shi et al.|[2025 2D 16x16 16 256 x 256 218 1.00  20.30 84%
FlowMo-Lo (Sargent et al.|[2025) 1D 256 — 256 x 256 218 095 22,07 -
VFMTok (Zheng et al.|[2025) 1D 256 - 256x256 16384  0.89 - 100%
GigaTok (Xiong et al.[[2025] 1D 256 —  256x256 16384 079  21.65 -
AliTok (Wu et al.][2025¢ 1D 273 - 256x256 4096 0.84 - -
MGVQ (Jia et al.| 2025 2D 16x16 16 256 x 256 252 064 2371  100%
WeTok (Ours) 2D 16x16 16 256 x 256 232 0.61 2450  100%
ViT-VQGAN (Yu et al.[[2021a) 2D 32x32 8 256x256 8192 1.28 — -
OmiTokenizer-VQ (Wang et al. 2024a} 2D 32x32 8 256 x 256 8192 1.11 — -
LlamaGen (Sun et al.[2024 2D 32x32 8 256x256 16384 059 2445 -
Open-MAGVIT2 (Luo et al.|[2024) 2D 32x32 8 128x128 218 034 27.02 100%
BSQ (Zhao et al.] 2%_'02% ID 1024 — 256 x 256 218 1.14 2536 100%
FlowMo-Hi (Sargent et al.|[2025 1D 1024 — 256 x 256 218 0.56 2493 -
Selftok (Wang et al.|[2025] ID 1024 - 256x256 21 054 2630 -
BSQ (Zhao et al.|[2024b} ID 1024 - 256 x 256 236 045 28.14  100%
SweetTok (Yu et al.][2024b) ID 1024 16 256 x256 10481  0.37 - -
MGVQ (Jia et al.| 2D 32x32 8  256x256 2% 031 2842  100%
WeTok (Ours) 2D 32x32 8 256 x 256 232 019  29.69  100%

Parameter of autoregressive model. As shown in Fig. [§] we ablate the parameter size of the
WeTok-based AR model and compared it with Open-MAGVIT2-based AR models. The results
show that the performance of the WeTok-based AR model is slightly inferior than the Open-



Table 4: Zero-shot reconstruction comparison on ImageNet and MS-COCO val2017 validation
set. Our WeTok achieves the best performance on both resolution settings.

Tokenizer Training . Compression MS-COCO 2017 Imagenet-1k
Method Ratio
Type Data Ratio}  rFID| PSNRt SSIMt rFID| PSNR{ SSIM{
Resize 256 x 256
WeTok (Ours) Discrete 400M 32 768 894  20.31 0.55 349 20.77 0.55
Cosmos (Agarwal et al.|[2025) Discrete - 16 384 11.97 19.22 0.48 4.57 19.93 0.49
Show-o (Xie et al.|[2024) Discrete 35M 16 473 926 2090 059 350 21.34 0.59
Open-MAGVIT2-1I-PT (Luo et al.|[2024)  Discrete 100M 16 439 793 2221 0.62 255 2221 0.62
LlamaGen (Sun et al.|[2024) Discrete 70M 16 439 8.40 20.28 0.55 2.47 20.65 0.54
WeTok (Ours) Discrete 400M 16 384 6.55  21.99 0.63 1.58  22.38 0.62
DALL-E dVAE (Ramesh et al.||2021a) Discrete 103M 18 118 48.60 2697  0.08 32.63 2731 0.79
BSQ (Zhao et al.[[2024c) Discrete 1B - 219 - - - 381 2412 0.66
QLIP-B (Zhao et al.|2025) Discrete 1B - 219 - - - 3.21 23.16 0.63
QLIP-L (Zhao et al.||2025) Discrete 1B - 168 - - - 146 2536 0.69
SD-VAE 1.x (Rombach et al.|2022a) Discrete 1B 8 110 575 2417 0.70 1.13 2448 0.69
WeTok (Ours) Discrete 400M 16 192 441 2444 074 0.60 24.77 0.73
SD-VAE 1.x (Rombach et al.|[2022a) Continuous 1B 8 24 594 2321 0.69 1.22 23.54 0.68
QLIP-B (Zhao et al.|[2025) Discrete 1B - 55 - - - 0.70  26.79 0.79
SD-VAE 2.x (Rombach et al.|2022a) Continuous 6B 8 24 426  26.62 0.77 0.70  26.90 0.76
SDXL-VAE (Podell et al.|[2023) Continuous ~ >6B 8 24 393 27.08 0.80 0.67  27.37 0.78
UniTok (Ma et al.[2025) Discrete 1B 16 64 - - - 0.41 - -
e-VAE-SD (Zhao et al.|[2024a) Continuous - 8 24 3.65 2601 0.86 038  29.49 0.85
WeTok (Ours) Discrete 400M 8 48 218 2949 089 020  29.63 0.88
SD-VAE 3.5 (Esser et al.|[2024b) Continuous - 8 6 1.66  31.08 0.90 0.19  31.19 0.90
FLUX-VAE (Labs![2024) Continuous - 8 6 1.35 3232 093 0.18  32.74 0.92
WeTok (Ours) Discrete 400M 8 24 143 3200 093 0.12  32.06 0.93
Original Resolution

WeTok (Ours) Discrete 400M 32 768 894  20.31 0.55 349 20.77 0.55
Cosmos (Agarwal et al.|[2025) Discrete - 16 384 723 2045 0.53 252 2049 0.52
Open-MAGVIT2-I-PT (Luo et al.|[2024)  Discrete 100M 16 439 6.65 21.61 0.57 1.39 21.74 0.56
WeTok (Ours) Discrete 400M 16 384 530 2194 059 081  21.99 0.58
DALL-E dVAE (Ramesh et al.||2021a) Discrete 103M 18 118 55.07 25.15 0.75 36.84 25.46 0.74
SD-VAE 1.x (Rombach et al.|2022a) Discrete 1B 8 110 6.07 22.54 0.65 1.23 22.82 0.64
WeTok (Ours) Discrete 400M 16 192 380 2370 0.67 040 2375 0.67
SD-VAE 1.x (Rombach et al.|2022a) Continuous 1B 8 24 594 21.68 0.64 135 21.99 0.63
SD-VAE 2.x (Rombach et al.|[2022a) Continuous 6B 8 24 4.63 24.82 0.72 0.78 25.08 0.71
SDXL-VAE (Podell et al.||2023) Continuous >6B 8 24 4.23 25.11 0.74 0.72 25.38 0.73
WeTok (Ours) Discrete 400M 8 48 209 2750 0.82 0.18 27.54 0.82
SD-VAE 3.5 (Esser et al.|[2024b) Continuous - 8 6 1.64 2835 0.86 024 2839 0.86
WeTok (Ours) Discrete 400M 8 24 146 2947 0.88 0.12 2951 0.88

MAGVIT2-based AR model when the parameter size is small. However, as the parameter size
increases, WeTok-based AR model surpasses the Open-MAGVIT2-based AR model in all metrics.

4.2 COMPARISON WITH STATE-OF-THE-ART

Visual Reconstruction. We first evaluate WeTok’s performance in in-distribution setting on Ima-
geNet. As shown in Tab. [3] WeTok outperforms existing methods across different downsampling
ratios. Subsequently, we evaluate WeTok’s performance in general-domain setting. As shown in
Tab. @ WeTok shows the state-of-the-art reconstruction performance in a wide range of compres-
sion ratio scenarios. It not only shows the strongest performance among discrete tokenizers, but also
even surpasses the current strongest continuous tokenizers, FLUX-VAE (Labs} |2024)) and SD-VAE
3.5 (Esser et al.|[20244). As shown in Fig. [9]and[I4] we present qualitative comparison results on the
TokBench (Wu et al., 2025b)), our WeTok outperforms the widely used SDXL-VAE (Podell et al.,
2023) and SD-VAE 1.5 (Rombach et al.,[2022b) under the same compression ratio.

Iterative Visual Reconstruction. The use of a tokenizer for iterative image compression-
decompression is a promising approach for information transmission (Joshi et al., [2000). As shown
in Fig. @], we compare WeTok (192 compression ratio) with SOTA tokenizers (Labs|, 2024; |[Esser
et al.,[2024b) on iterative image compression-decompression. We surprisingly find that while recon-
structions from leading models like FLUX-VAE and SD-VAE 3.5 collapse after iterations, WeTok’s
outputs are remarkably robust and converge to a fixed value. More details in Sup. [C]

Visual Generation. To evaluate WeTok’s capabilities for visual generation, we modifys LlamaGen
like Open-MAGVIT2. We employ the in-distribution WeTok with 16 x downsampling in Tab. [3]as



Image_1 Degradation over 200 Iteration Iteration 25 Iteration 50 Iteration 100

Cosine Similarity
/

Models
27| = WeTok (Ours) \
-=- FLUX-VAE B
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Figure 10: Qualitative and quantitative comparison of iterative image reconstruction.

Table 5: Class-conditional generation on 256 x 256 ImageNet. * specifies the generated images
are 384 x 384 and are resized to 256x256 for evaluation.

Type  Model #Para. FID| ISt PrecisionT Recall?
ADM (Dhariwal & Nichol|[2021) 554M 1094 101.0 0.69 0.63
CDM (Ho et al.[[2021) — 4.88 158.7 — —
Diffusion LDM-4 (Rombach et al.}|[2022b 400M  3.60 247.7 — —
DiT-XL/ ] 675M 227 2782 0.83 0.57
SIT-X1/2 (Ma et al.|[2024 675M  2.06 277.50 0.83 0.59
VQGAN (Esser et al.| 2020 227M 18.65 80.4 0.78 0.26
VQGAN (Esser et al.|[2020 14B 1578 743 — -
VQGAN:-re (Esser et al.|[2020 1.4B  5.20 280.3 - -
VIT-VQGAN (Yu et al.[[2021a 1.7B 4.17 175.1 — —
ViT-VQGAN:-re (Yu et al.[[2021a 1.7B  3.04 2274 — —
RQTran. (Lee et al.[[2022a 38B 7.55 134.0 — —
RQTran.-re (Lee et al.||2022a 3.8B  3.80 323.7 — —
LlamaGen-L* (Sun et al.|[2024] 343M  3.07 256.06 0.83 0.52
AR LlamaGen-XL* (Sun et al.||2024 TI5M 2.62  244.08 0.80 0.57
LlamaGen-XXL* (Sun et al.[[2024) 14B 234 253.90 0.80 0.59
LlamaGen-L 343M  3.80 248.28 0.83 0.51
LlamaGen-XL (Sun et al.|[[2024] 775M  3.39 227.08 0.81 0.54
LlamaGen-XXL (S 14B  3.09 253.61 0.83 0.53
UniTok (Ma et al.. 14B 251 2167 0.82 0.57
Open-MAGVIT2-AR-B (Luo et al.| 2024 343M  3.08 258.26 0.85 0.51
Open-MAGVIT2-AR-L (Cuo et al.|| 804M 2.51 271.70 0.84 0.54
Open-MAGVIT2-AR-XL (Luo et al.| 2024} 1.5B  2.33 271.77 0.84 0.54
WeTok-AR-XL (Ours) 1.5B  2.31 276.55 0.84 0.55

tokenizer. More details in Sup. [E.2] As shown in Tab. [5] our WeTok-based AR model achieves state-
of-the-art performance on the ImageNet 50K validation set. This result demonstrates that WeTok is a
effective tokenizer not only for image reconstruction but also for high-fidelity visual generation. As
shown in Fig. [I3] we show the realistic and diverse image generation results of our WeTok-AR-XL.

5 CONCLUSION

In this paper, we introduce WeTok, a family of powerful discrete visual tokenizer designed to resolve
the conflict between compression ratio and reconstruction. We propose GQ to provides a scalable
and memory-efficient solution for codebooks, and GD that excels at producing high-fidelity images
even from highly compressed representations. Through extensive experiments, we demonstrated
that WeTok consistently outperforms existing state-of-the-art discrete and continuous tokenizers in
both in-distribution and zero-shot reconstruction tasks across a wide range of compression ratios.
Furthermore, by integrating WeTok into an autoregressive framework, we achieved state-of-the-art
performance in class-conditional image generation, confirming that its learned tokens are highly ef-
fective for downstream generative tasks. WeTok proves that discrete tokenizers can achieve superior
reconstruction quality without compromising their inherent advantage in compression.
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A THEORETICAL ANALYSIS ON APPROXIMATION ERRORS

A.1 ABSTRACT ALGEBRA MODELING OF THE GROUPING OF THE GQ METHOD

To rigorously analyze the relationships between different grouping strategies within the Group
Quantization (GQ) framework, we employ concepts from abstract algebra, specifically lattice the-
ory. This formalization allows us to create a structured understanding of how different groupings
relate to one another in terms of granularity. We begin by defining the set of all possible grouping
configurations.

Let the latent feature be represented by a sequence of d elements, indexed by the set S =
{1,2,...,d}.

Definition A.1. (The Set of Groupings G) A grouping g € G of the set of indices S is a collection
of non-empty, disjoint, and contiguous blocks whose union is S. A block is a set of consecutive
integers. For any g € G, if we order its blocks By, Bo, . .., By such that for any i < j, every
element in B; is smaller than every element in B, then this grouping is unique.

Remark A.2. The cardinality of the grouping set G is 2¢~'. This is because we can think of placing
a divider in any of the d — 1 spaces between the elements {1,2},{2,3},...,{d — 1,d}. For each
space, we can either place a divider or not, leading to 2%~ possible groupings.

Having established the universe of all possible groupings, we now introduce a relation to formally
compare them based on their level of subdivision.

Definition A.3. (The Refinement Ordering Relation <) Let g1 and go be two groupings in G. We
say that g1 =< g2 if g is a refinement of g1. This means that every block in g- is a subset of some
block in g;.

Remark A4. For example, let g1 = {{1,2,3},{4}} and go = {{1},{2,3},{4}}. Here, {1} C
{1,2,3}, {2,3} C {1,2,3}, and {4} C {4}. Therefore, g1 = go.

This refinement relation imposes a formal structure on the set G. We first demonstrate that this
structure satisfies the fundamental properties of a partially ordered set.

Lemma A.5. (G, %) is a partially ordered set.

Proof. A partially ordered set must satisfy three properties: reflexivity, antisymmetry, and transitiv-
ity.

* Reflexivity: For any g € G, g < g. This is true because every block in g is a subset of
itself.

* Antisymmetry: For any g1,¢92 € G, if g1 =< g2 and g2 < g1, then g1 = go. If g1 < go,
every block of g5 is a subset of a block of g;. If go < g1, every block of g; is a subset of
a block of go. Let By be a block in g5. Then By C B for some block By in g;. Also,
B; C B for some block Bj in go. Thus, B C By C B). Since the blocks of a grouping
are disjoint, we must have By = B}. This implies B; = Bs. Since this holds for all blocks,
g1 and go consist of the same blocks, so g1 = gs.

* Transitivity: For any g1, 92,93 € G, if g1 < g2 and g2 =< g3, then g1 < g3. If g1 < go,
every block in g5 is a subset of some block in g;. If g5 < g3, every block in g3 is a subset
of some block in gy. Let B3 be a block in g3. Then B3 C By for some block Bs in go.
And B, C B for some block Bj in g;. Therefore, Bs C B;. Since this is true for every
block in gs, it follows that g; < gs.
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The poset (G, <) possesses an even stronger and more useful structure. We show that for any two
groupings, we can always find a unique common coarser grouping (meet) and a unique common
finer grouping (join), which establishes the structure as a lattice.

Lemma A.6. (G, =) is a Lattice.

Proof. To prove that it is a lattice, we must show that for every pair of elements g, g2 € G, there
exists a unique greatest lower bound (GLB or meet) and a unique least upper bound (LUB or join).

¢ The Greatest Lower Bound (Meet)

Let g1, g2 € G. Their meet, denoted g; A g2, is the finest grouping that is still coarser than
both g; and go. The meet is constructed as follows: the blocks of g; A g2 are formed by
taking unions of blocks from g; and g that overlap.

Formally, we can define an equivalence relation ~ on the set of indices S = {1,...,d},
where ¢ ~ j if and only if ¢ and j belong to the same block in both ¢g; and g- after transi-
tively closing the relation (i.e., if ¢ and k are in the same block of ¢1, and k and j are in the
same block of go, then ¢ ~ 7). The equivalence classes of this relation form the blocks of a
new grouping, which is g; A ga.

By its construction, g; A g2 < g1 and g1 A g2 = g2. Any other grouping ¢’ that is also a
lower bound (¢’ < g1 and ¢’ < go) will be coarser than g; A g2, meaning ¢’ < g1 A ga.
Thus, g; A g2 is the unique greatest lower bound.

e The Least Upper Bound (Join)

The join of g; and g, denoted g, V g, is the coarsest grouping that is a refinement of both
g1 and go. The blocks of the join are formed by the non-empty intersections of the blocks
from g; and gs.

Formally, for each block By; € g; and each block By ; € go, we form a new block
By ; N By ;. The set of all such non-empty intersections forms the grouping g1 V g2.

By its construction, every block in g; V g2 is a subset of a block in g; and a block in g3, so
g1 =2 g1Vgeand go < g1V go. Any other grouping ¢’ that is also an upper bound (¢g; < ¢”
and go =< ¢'") will be a finer partition than g; V go, meaning g1 V g2 < ¢”’. Thus, g1 V go is
the unique least upper bound.

Since a unique meet and join exist for any pair of elements in G, (G, =) is a lattice. O

Finally, we consider the extremal elements of this lattice. These correspond to the LFQ and BSQ
quantization strategies.

Proposition A.7. (G, <) is a bounded lattice, and its universal least element is the case of k = 1
(corresponding to the case of LFQ). Its universal greatest element is the case of k = d (corre-
sponding to the case of BSQ).

Proof. obvious. O

A.2 ANALYSIS ON THE APPROXIMATION ERROR

Having established the lattice structure of the grouping strategies, we now analyze how the choice of
a specific grouping g affects a defined approximation error e(g). This error measures the difference
between a sum of products and a product of sums of spatially-dependent probabilities, which can be
interpreted as a measure of the statistical coupling across the spatial dimensions.
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Definition A.8. For any g € G, let its approximation error be defined as:

lgl B w
go(cklUsli, 5, k H D0 aclerlUsli, 3, k) (11
k=11:1=1 j=1

We now propose that this approximation error behaves monotonically with respect to the refinement
ordering relation <. Specifically, a finer grouping (one with more blocks) will result in a larger
approximation error.

Proposition A.9. Given two groupings g1, g2 € G such that go =X ¢1 (i.e., g1 is a refinement of
g2), then under the assumption that the variables associated with each block are independent, the
approximation error is non-decreasing with refinement:

e(g2) < e(g1) (12)

Proof. To simplify the proof, let’s introduce more compact notation.

Let the spatial index s represent the pair (i, j), where s ranges from 1 to N = hw. Let X, (g) =
g6 (ck|Usi, 7, k]) denote the non-negative term for block & of grouping g at spatial location s. Where
the context is clear, we write X, . Let m = |g| be the number of blocks in grouping g.

The error can now be written as:

The product of sums can be expanded as:

m N
HZXSJC Z Z Z s1,1 527 -Xsm,m)

k=1 s=1 S1= 152 1 m—l
This summation is over all combinations of spatial indices (s Sm ). We can split this sum into
two parts: one where all indices are identical (s; = --- = s, = s) and one where the indices are

not all identical.

11> x. Z(H}M) Y Kt Xepm)
k=1 (

k=1 s=1 s=1 S1yeeesSm)
not all equal

Xs,k _ZHXs,k = Z (Xsl,l"'XSmym)

k=1s=1 s=1k=1 (81,--,8m,)
not all equal
Since ¢g(-) is the output of a softmax function, each term X j is non-negative. Therefore, the sum
on the right-hand side is also non-negative. This allows us to drop the absolute value bars.

m N N m
:HZXS,IC*ZHXSJCZO

k=1 s=1 s=1 k=1

The relation go < g means that g; is obtained from go by a sequence of one or more block subdivi-
sions. It is sufficient to prove that the error increases after a single subdivision, as the general result
follows by repeated application.

Let |g2| = m and |g1| = m + 1. Per the hint that a finer group has more terms, we model refinement
by introducing an additional multiplicative set of variables { X ,,+1}2_; into the error calculation.
Let A,,, = e(g2) and A, 11 = e(g1).

m+1 N N m—+1
A = (H sz,k) =S (H X)
k=1 s=1 s=1
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We separate the (m + 1)-th term:

m N N N m
B = (H 5 X) (z Xs,mﬂ) S (H X> e
k=1s=1 s=1

= s=1 \k=1

From the definition of A,,, we substitute [[;* | >, Xsr = Ay + > T Xoge

N m N N m
Am—‘,—l = <Am + Z H Xs,k') (Z Xs,m-i—l) - Z H Xs,k') Xs,m-i—l
s=1k=1 s=1

Distributing the terms yields the recurrence relation:

s (£ () £ () )

s=1k=1
The expression is a sum of two components.

1. The first component is A, (Zi\;l XS’erl). Since A,,, > 0 and X, 1 > 0, this term
is non-negative.

2. The second component, in brackets, is of the form (D A,) (D", Bs) — >, (AsBs) where

A, = H;?:l X, and B, = X, ,,,41 are non-negative. As shown in Step 2, this form is
always non-negative.

Thus, A,,+1 is the sum of two non-negative quantities. This leads to the inequality A,,+1 >
A, (Zi\;l Xs)m+1). To ensure that A1 > A,,, we rely on the reasonable assumption that

for any block k, the total probability mass over the large spatial domain is not contractive, i.e.,
25:1 X, > 1. With this assumption, we have:

A'rn—i— 1 Z Am

We have shown that for a single refinement step that increases the number of blocks from m to
m + 1, the error is non-decreasing. Since any refinement g; of g» corresponds to a sequence of such
steps, the error for the finer grouping g; will be greater than or equal to the error for the coarser
grouping go.

e(g1) = e(g2)

This proves the proposition. O

Then, the Proposition [3.1]in the main paper is a direct result of Proposition and[A.9]

B MORE RELATED WORK

B.1 CONTINUOUS TOKENIZER

Generative modeling in the pixel space typically requires extensive compute resources (Chen et al.,
2020a; |Ho et al.| 2020). Subsequent works (Rombach et al., 2022b; [Podell et al.| 2023} |Peebles &
Xie), 2023} [Esser et al.| [2024bj Batifol et al.| 2025} Zhuang et al., 2025} 2024 [Esser et al.| |2024a;
Zha et al., 2025; [Chen et al., 2025a) adopt VAE (Kingma & Welling, |2013)), which projects visual
content from pixels to latent features, achieving efficient and photo-realistic visual generation at
high resolution. FLUX-VAE (Batifol et al.| 2025)) shows the state-of-the-art performance in both
reconstruction quality and generalization ability across all continuous tokenizers. However, contin-
uous tokenizer is criticized for its low compression rate, because latent features are usually stored
and calculated in £1oat32 or bfloat16. Therefore, discrete tokenizers that can store data in
int or bool seem to be more promising in terms of compression capabilities.
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B.2 DISCRETE TOKENIZER

VQVAE (Van Den Oord et al., 2017) and VQGAN (Esser et al., [2021)) employ vector-quantization
(VQ) to transform visual input into discrete tokens. But they both suffer from low reconstruction
quality caused by instability of the codebook utilization. To overcome these drawbacks, one line
of work introduces specific optimization strategies or modules to improve performance (Lee et al.,
2022b;|Shi et al.| 2024} Zhu et al.,[2024; |Yu et al.,|2024c). Another line of work focuses on mitigating
the training instability when scaling up the codebook size by using grouped codebooks (Ma et al.,
2025} Jia et al.l [2025; [Zhang et al.l[2025)). These methods split the input feature into groups along
the channel dimension, where each group is then looked up using a sub-codebook. However, VQ-
based tokenizers still introduce additional inference and training costs due to the lookup operation
(Yu et al| 20210} [Lee et al., 2022b; [Fang et al., [2025). MAGVIT-v2 (Yu et al., 2024a) introduces
Lookup-Free Quantization (LFQ) to address this extra cost and proposes the entropy loss (Chang
et al., 2022} Jansen et al., [2019) to ensure the utilization of the codebook. However, the entropy
loss causes unaffordable memory cost as it scales linearly with the codebook, limiting the further
expansion of the codebook. BSQ (Zhao et al.,2024b) is proposed to mitigate this issue by assuming
independence between the bits of the binary code, while this strong assumption leads to performance
degradation. In contrast, WeTok does not rely on explicit codebooks, and eliminate the memory
usage caused by entropy loss while having better performance than LFQ.

B.3 AUTOREGRESSIVE VISUAL GENERATION

The autoregressive (AR) modeling paradigm, which underpins modern Large Language Models
(LLMs) (Vaswani et al.| |2017), has been successfully adapted for visual generation (Chen et al.}
2020a), where models learn to predict sequences of discrete tokens for images (Ramesh et al.,[2021b;
Ding et al., 2021} [Liu et al.| 2024) and videos (Hong et al.,|[2022; Kondratyuk et al.| 2023). Recent
AR models (Sun et al, 2024} Team), 2024} Wu et al., 2025a; Wang et al., 2024b; [Liu et al.| [2025)
achieve remarkable image quality, highlighting the potential of this paradigm. Notably, the AR mod-
els is critically dependent on the visual tokenizer. Therefore, we adopt our WeTok to the AR (Sun
et al.| 2024)) framework to enable high-fidelity autoregressive generation. This shows that WeTok is
not only capable of compression, but its compressed features are also suitable for generative models.

C ITERATION INVARIANCE OF WETOK

A common use case in practice involves compressing images for transmission and subsequently de-
compressing them upon reception. However, this process is often iterative, where an image may
undergo multiple cycles of compression and decompression (Joshi et al., 2000). While modern tok-
enizers have proven effective for image compression and even show potential as next-generation
compression algorithms, an unexpected issue arises. As illustrated in Fig. [T1] and [I2] we ob-
serve that when state-of-the-art continuous tokenizers (Esser et al.| [2024b; [Labs| [2024) are used
for compression-decompression iterations, the image quality progressively degrades with each iter-
ation. Accordingly, we proceeded to quantitatively analyze the cosine similarity between the latent
representation of the original image and that of the image after undergoing multiple compression-
decompression iterations. As illustrated in Fig. we selected WeTok trained on general-domain
data with a compression rate of 192 for our evaluation. The results demonstrate that after multiple
iterations, the image processed by WeTok gradually converges to a stable state. In contrast, the
images processed by FLUX-VAE and SD-VAE 3.5 collapse.

D MORE RESULT

D.1 COMPARISON WITH STATE-OF-THE-ART

Visual Reconstruction. As shown in Fig.
Visual Generation. As shown in Fig. [I5]and Tab. [6]
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Figure 11: Qualitative comparison of image_1 on compression-decompression iteration.
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Figure 12: Qualitative comparison of image_2 on compression-decompression iteration.
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Figure 13: Quantitative comparison of image_1 and image_2 on compression-decompression
iteration. After multiple iterations, the images processed by WeTok gradually converged to a stable
value, while the images processed by FLUX-VAE and SD-VAE 3.5 collapse.
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Figure 14: More qualitative comparison of 512 x 512 image reconstruction on TokBench.
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Figure 15: More WeTok-AR-XL generated samples at 256 x 256 resolution.
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Table 6: Class-conditional generation on 256 x 256 ImageNet. * specifies the generated images
are 384 x 384 and are resized to 256x256 for evaluation.

Type  Model #Para. FID| ISt Precisionf Recallf
BigGAN (Brock et al., 112M 695 2245 0.89 0.38

GAN  GigaGAN (Kang et al. l 56OM 345 2255 0.84 0.61
StyleGan-XL (Sauer et al.[[2022) 166M 230 265.1 0.78 0.53
ADM (Dhariwal & Nichol|[2021) 554M 1094 101.0 0.69 0.63
CDM (Ho et al.;[2021) — 4.88 1587 — —

Diffusion LDM-4 (Rombach et al.|[2022b) 400M  3.60 247.7 — —
DiT-XL/2 (Peebles & Xi ] 675M 227 2782 0.83 0.57
SiT-XL/2 (Ma et al. 675M  2.06 277.50 0.83 0.59

Mask. MaskGIT (Chang et al.] 2022} 227M  6.18 182.1 0.80 0.51
MaskGIT-re (Chang et al.| |2022} 227M  4.02 355.6 — —
VAR-d16 (Tian et al.| 2024 310M 330 2744 0.84 0.51

VAR VAR-d20 (Tian et al.| 2024 600M 2.57 302.6 0.83 0.56

VAR-d24 (Tian et al.| 2024 1.0B 2.09 3129 0.82 0.59

VAR-d30 (Tian et al.}| 2024 20B 192 3231 0.82 0.59

VQGAN (Esser et al.| 2020 227M  18.65 80.4 0.78 0.26
VQGAN (Esser et al.| 2020 14B 1578 743 — —
VQGAN:-re (Esser et al.|[2020 14B 520 2803 - -
ViT-VQGAN 'Wl' 1.7B 4.17 175.1 — —
ViT-VQGAN-re (Yu et al.||2021a 1.7B 3.04 2274 — —
RQTran (Lee et al. 2022a 3.8B 7.55 1340 — —
‘ 3.8B 3.80 3237 — —

343M  3.07 256.06 0.83 0.52

AR 775M  2.62 244.08 0.80 0.57

14B  2.34 253.90 0.80 0.59

343M  3.80 248.28 0.83 0.51

775M  3.39 227.08 0.81 0.54

1.4B  3.09 253.61 0.83 0.53

14B 2.51 216.7 0.82 0.57

.12024 343M  3.08 258.26 0.85 0.51

Open-MAGVIT2-AR-L (Luo et al.|| 804M 2.51 271.70 0.84 0.54

Open-MAGVIT2-AR-XL (Luo et al.| 2024} 1.5B  2.33 271.77 0.84 0.54

WeTok-AR-XL (Ours) 1.5B 231 276.55 0.84 0.55

E MORE IMPLEMENTATION DETAILS

E.1 ABLATION STUDY

Quantization method. As shown in Tab. [7] [§]and [0}
Generative decoder. As shown in Tab. [[0land [I1]
Number of group in GQ. As shown in Tab. [12} [13] [14] [T3] [I6] and

Model architecture. As shown in Tab. [T8}[T9} 20| 21} 221 23] 24} [23] and 26}
Training data. As shown in Tab. 27)and 28]

Learning rate schedule. As shown in Tab. 29]
Parameter of autoregressive model. As shown in Tab. [30] 3T]and[32]

E.2 COMPARISON WITH STATE-OF-THE-ART

Visual Reconstruction. The settings of in-distribution comparison are shown in Tab. 33| and [34]
The settings of general-domain comparison are shown in Tab. 33| [36] [37] [38]and 39] .

Visual Generation. As shown in Tab.
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Table 7: GQ training setting. Table 8: LFQ training setting. Table 9: BSQ training setting.

config GQ config LFQ config BSQ
training data IN-1K training set training data IN-1K training set training data IN-1K training set
image size [256, 256] image size [256, 256] image size [256, 256]
data augmentation random crop data augmentation random crop data augmentation random crop
downsample 16 x 16 downsample 16 x 16 downsample 16 x 16
ema True ema True ema True
g (group number) 2 g (group number) 1 g (group number) 16
d’ (group channel) 8 d’ (group channel) 16 d' (group channel) 1
optimizer Adam optimizer Adam optimizer Adam
optimizer momentum B1, f2=0.5,0.9 optimizer momentum B1,$2=0.5,0.9 optimizer momentum 51, 2=0.5,0.9
weight decay 0 weight decay 0 weight decay
learning rate schedule consistent learning rate schedule consistent learning rate schedule consistent
learning rate le-4 learning rate le-4 learning rate le-4
warmup steps 0 warmup steps 0 warmup steps 0
cos decay end ratio 1 cos decay end ratio 1 cos decay end ratio 1
total steps 250250 total steps 250250 total steps 250250
channel_mult [1,1,2,2,4] channel_mult [1,1,2,2,4] channel_mult [1,1,2,2,4]
channel 128 channel 128 channel 128
num_res_blocks 4 num_res_blocks 4 num_res_blocks 4
generative decoder False generative decoder False generative decoder False
per GPU batchsize 16 per GPU batchsize 16 per GPU batchsize 16
global batchsize 128 global batchsize 128 global batchsize 128
GPU number 8 H20 GPU number 8 H20 GPU number 8 H20
Table 10: Stage-1 training setting. Table 11: Stage-2 training setting.
config Stage-1 config Stage-2
training data general domain dataset training data general domain dataset
image size [256, 256] image size [256, 256]
data augmentation random crop data augmentation random crop
downsample 32 x 32 downsample 32 x 32
ema True ema True
¢ (group number) 4 g (group number) 4
d’ (group channel) 8 d’ (group channel) 8
optimizer Adam optimizer Adam
optimizer momentum 51, f2=0.5,0.9 optimizer momentum 51, 82=0.5,0.9
weight decay 0 weight decay
learning rate schedule consistent learning rate schedule consistent
learning rate le-4 learning rate le-4
warmup steps 0 warmup steps 0
cos decay end ratio 1 cos decay end ratio 1
total steps 550550 total steps 550550
channel_mult [1,1,2,2,4,8] channel_mult [1,1,2,2,4,8]
channel 256 channel 256
num_res_blocks 4 num_res_blocks 4
generative decoder False generative decoder True
per GPU batchsize 6 per GPU batchsize 6
global batchsize 1056 global batchsize 1056
GPU number 176 H20 GPU number 176 H20
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Table 12: 1 group training set-

Table 13: 2 group training set-

Table 14: 2 group training set-

ting. ting. ting.
config 1 group config 2 group config 4 group
training data IN-1K training set training data IN-1K training set training data IN-1K training set
image size [256, 256] image size [256, 256] image size [256, 256]
data augmentation random crop data augmentation random crop data augmentation random crop
downsample 16 x 16 downsample 16 x 16 downsample 16 x 16
ema True ema True ema True
g (group number) 1 g (group number) 2 g (group number) 4
d’ (group channel) 8 d’ (group channel) 8 d’ (group channel) 8
optimizer Adam optimizer Adam optimizer Adam
optimizer momentum 51, 82=0.5,0.9 optimizer momentum 51, 2=0.5,0.9 optimizer momentum 51, 2=0.5,0.9
weight decay 0 weight decay 0 weight decay 0

learning rate schedule

consistent

learning rate schedule

consistent

learning rate schedule

consistent

learning rate le-4 learning rate le-4 learning rate le-4

warmup steps 0 warmup steps 0 warmup steps 0

cos decay end ratio 1 cos decay end ratio 1 cos decay end ratio 1

total steps 250250 total steps 250250 total steps 250250

channel_mult [1,1,2,2,4] channel_mult [1,1,2,2,4] channel_mult [1,1,2,2,4]

channel 128 channel 128 channel 128

num_res_blocks 4 num_res_blocks 4 num_res_blocks 4

generative decoder False generative decoder False generative decoder False

per GPU batchsize 16 per GPU batchsize 16 per GPU batchsize 16

global batchsize 128 global batchsize 128 global batchsize 128

GPU number 8 H20 GPU number 8 H20 GPU number 8 H20
Table 15: 8 group training set- Table 16: 16 group training Table 17: 32 group training
ting. setting. setting.

config 8 group config 16 group config 32 group

training data IN-1K training set training data IN-1K training set training data IN-1K training set

image size [256, 256] image size [256, 256] image size [256, 256]

data augmentation random crop data augmentation random crop data augmentation random crop

downsample 16 x 16 downsample 16 x 16 downsample 16 x 16

ema True ema True ema True

g (group number) 8 g (group number) 16 g (group number) 32

d' (group channel) 8 d’ (group channel) 8 d’ (group channel) 8

optimizer Adam optimizer Adam optimizer Adam

optimizer momentum 51, 2=0.5,0.9 optimizer momentum 51, 2=0.5,0.9 optimizer momentum 51, 2=0.5,0.9

weight decay 0 weight decay 0 weight decay 0

learning rate schedule
learning rate
warmup steps

cos decay end ratio
total steps
channel_mult
channel
num_res_blocks
generative decoder
per GPU batchsize
global batchsize
GPU number

consistent
le-4
0
1
250250
[1,1,2,2,4]
128
4
False
16
128
8 H20

learning rate schedule
learning rate
warmup steps

cos decay end ratio
total steps
channel_mult
channel
num_res_blocks
generative decoder
per GPU batchsize
global batchsize

GPU number
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consistent
le-4
0
1
250250
[1,1,2,2,4]
128
4
False
16
128
8 H20

learning rate schedule
learning rate
warmup steps

cos decay end ratio
total steps
channel_mult
channel
num_res_blocks
generative decoder
per GPU batchsize
global batchsize
GPU number

consistent
le-4
0
1
250250
[1,1,2,2,4]
128
4
False
16
128
8 H20



Table 18: 128 channel 4 block

training setting.

Table 19: 192 channel 4 block

training setting.

Table 20: 256 channel 4 block

training setting.

config 128 channel 4 block config 192 channel 4 block config 256 channel 4 block
training data IN-IK training set training data IN-IK training set training data IN-IK training set
image size [256, 256] image size [256, 256] image size [256, 256]
data augmentation random crop data augmentation random crop data augmentation random crop
downsample 16 x 16 downsample 16 x 16 downsample 16 x 16
ema True ema True ema True

g (group number) 4 g (group number) 4 g (group number) 4

d' (group channel) 8 d' (group channel) 8 d' (group channel) 8
optimizer Adam optimizer Adam optimizer Adam
optimizer momentum B, 82=0.5,0.9 optimizer momentum B, 82=0.5,0.9 optimizer momentum B, 82=0.5,0.9
weight decay 0 weight decay 0 weight decay 0
learning rate schedule consistent learning rate schedule consistent learning rate schedule consistent
learning rate le-4 learning rate le-4 learning rate le-4
warmup steps 0 warmup steps 0 warmup steps 0

cos decay end ratio 1 cos decay end ratio 1 cos decay end ratio 1

total steps 250250 total steps 250250 total steps 250250
channel_mult [1,1,2,2,4] channel_mult [1,1,2,2,4] channel_mult [1,1,2,2,4]
channel 128 channel 192 channel 256
num_res_blocks 4 num_res_blocks 4 num_res_blocks 4
generative decoder False generative decoder False generative decoder False

per GPU batchsize 16 per GPU batchsize 8 per GPU batchsize 4

global batchsize 128 global batchsize 128 global batchsize 128

GPU number 8 H20 GPU number 16 H20 GPU number 32 H20

Table 21: 128 channel 8 block

training setting.

config 128 channel 8 block
training data IN-1K training set
image size [256, 256]
data augmentation random crop
downsample 16 x 16

ema True

g (group number) 4

d’ (group channel) 8
optimizer Adam

optimizer momentum
weight decay
learning rate schedule
learning rate

warmup steps

cos decay end ratio
total steps
channel_mult

channel
num_res_blocks
generative decoder
per GPU batchsize
global batchsize
GPU number

B1,62=0.5,0.9
0

consistent
le-4
0
1
250250
[1,1,2,2,4]
128
8
False
8

128
16 H20

Table 24: 256 channel 2 block

training setting.

Table 22: 128 channel 16 block

training setting.

config 128 channel 16 block
training data IN-1K training set
image size [256, 256]
data augmentation random crop
downsample 16 x 16
ema True

g (group number) 4

d’ (group channel) 8
optimizer Adam
optimizer momentum 51, $2=0.5,0.9
weight decay 0
learning rate schedule consistent
learning rate le-4
warmup steps 0

cos decay end ratio 1

total steps 250250
channel_mult [1,1,2,2,4]
channel 128
num_res_blocks 16
generative decoder False

per GPU batchsize 4

global batchsize 128

GPU number 32 H20

Table 25: 384 channel 4 block

training setting.

Table 23: 192 channel 8 block

training setting.

config

192 channel 8 block

training data
image size

data augmentation
downsample

ema

g (group number)
d’ (group channel)
optimizer
optimizer momentum
weight decay
learning rate schedule
learning rate
warmup steps

cos decay end ratio
total steps
channel_mult
channel
num_res_blocks
generative decoder
per GPU batchsize
global batchsize
GPU number

IN-1K training set
[256, 256]
random crop
16 x 16
True
4
8
Adam
b1, £2=0.5,0.9
0

consistent
le-4
0
1
250250
[1,1,2,2,4]
192
8
False
4
128
32 H20

Table 26: 256 channel 8 block

training setting.

config 256 channel 2 block config 384 channel 4 block config 256 channel 8 block
training data IN-IK training set training data IN-IK training set training data IN-IK training set
image size [256, 256] image size [256, 256] image size [256, 256]
data augmentation random crop data augmentation random crop data augmentation random crop
downsample 16 x 16 downsample 16 x 16 downsample 16 x 16
ema True ema True ema True

g (group number) 4 g (group number) 4 g (group number) 4

d' (group channel) 8 d' (group channel) 8 d’ (group channel) 8
optimizer Adam optimizer Adam optimizer Adam
optimizer momentum 1, 82=0.5,0.9 optimizer momentum 1, 82=0.5,0.9 optimizer momentum 1, 82=0.5,0.9
weight decay 0 weight decay 0 weight decay 0
learning rate schedule consistent learning rate schedule consistent learning rate schedule consistent
learning rate le-4 learning rate le-4 learning rate le-4
warmup steps 0 warmup steps 0 warmup steps 0

cos decay end ratio 1 cos decay end ratio 1 cos decay end ratio 1

total steps 250250 total steps 250250 total steps 250250
channel_mult [1,1,2,2,4] channel_mult [1,1,2,2,4] channel_mult [1,1,2,2,4]
channel 256 channel 384 channel 256
num_res_blocks 2 num_res_blocks 4 num_res_blocks 8
generative decoder False generative decoder False generative decoder False

per GPU batchsize 8 per GPU batchsize 2 per GPU batchsize 2

global batchsize 128 global batchsize 128 global batchsize 128

GPU number 16 H20 GPU number 64 H20 GPU number 64 H20
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Table 27: ImageNet training setting.

Table 28: General-domain training setting.

config 1.2M config 400M
training data IN-1K training set training data general domain dataset
image size [256, 256] image size [256, 256]
data augmentation random crop data augmentation random crop
downsample 16 x 16 downsample 16 x 16
ema True ema True

g (group number) 4 g (group number) 4

d’ (group channel) 8 d’ (group channel) 8
optimizer Adam optimizer Adam
optimizer momentum b1, 82=0.5,0.9 optimizer momentum B1,82=0.5,0.9
weight decay 0 weight decay 0
learning rate schedule consistent learning rate schedule consistent
learning rate le-4 learning rate le-4
warmup steps 0 warmup steps 0

cos decay end ratio 1 cos decay end ratio 1

total steps 550550 total steps 550550
channel_mult [1,1,2,2,4] channel_mult [1,1,2,2,4]
channel 128 channel 128
num_res_blocks 4 num_res_blocks 4
generative decoder False generative decoder False
per GPU batchsize 16 per GPU batchsize 16
global batchsize 128 global batchsize 128
GPU number 8 H20 GPU number 8 H20

Table 29: Warm up + cosine decay learning

rate schedule training setting.

config warm up + cosine decay
training data general domain dataset
image size [256, 256]

data augmentation random crop
downsample 16 x 16

ema True

g (group number) 4

d’ (group channel) 8

optimizer Adam
optimizer momentum b1, 82=0.5,0.9
weight decay 0

learning rate schedule | warm up + cosine decay
learning rate le-4

warmup steps 10000

cos decay end ratio 0.01

total steps 550550
channel_mult [1,1,2,2,4]
channel 128
num_res_blocks 4
generative decoder False

per GPU batchsize 16

global batchsize 128

GPU number 8 H20
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Table 30:

LlamaGen Base Table 31:

training setting.

LlamaGen Large

training setting.

Table 32: LlamaGen X-Large
training setting.

config LlamaGen Base config LlamaGen Large config LlamaGen X-Large
training data IN-1K training set training data IN-1K training set training data IN-1K training set
image size [256, 256] image size [256, 256] image size [256, 256]
data augmentation random crop data augmentation random crop data augmentation random crop
downsample 16 x 16 downsample 16 x 16 downsample 16 x 16
ema False ema False ema False
optimizer AdamW optimizer AdamW optimizer AdamW
optimizer momentum 1, £2=0.9,0.95 optimizer momentum 1, £2=0.9,0.95 optimizer momentum 1, £2=0.9,0.95
weight decay Se-2 weight decay Se-2 weight decay Se-2
learning rate schedule | warm up + linear decay learning rate schedule | warm up + linear decay learning rate schedule | warm up + linear decay
learning rate 3e-4 learning rate 3e-4 learning rate 3e-4
warmup epochs 6 warmup epochs 6 warmup epochs 6

linear decay end ratio 0.1 linear decay end ratio 0.1 linear decay end ratio 0.1

total epochs 1000 total epochs 1000 total epochs 1000

dim 1024 dim 1280 dim 1536
num_head 16 num_head 20 num_head 24
trans_layers 24 trans_layers 36 trans_layers 48
cond_dim 1024 cond_dim 1280 cond_dim 1536
factorized_layers 2 factorized_layers 3 factorized_layers 4
factorized_k 4 factorized_k 4 factorized_k 4
token_drop 0.1 token_drop 0.1 token_drop 0.1
residual_drop 0.1 residual_drop 0.1 residual_drop 0.1

per GPU batchsize 64 per GPU batchsize 32 per GPU batchsize 16

global batchsize 3072 global batchsize 3072 global batchsize 3072

GPU number 48 H20 GPU number 96 H20 GPU number 192 H20

Table 33: Large scale training on Ima-
geNet training set at 16 downsample ratio.

Table 34: Large scale training on Ima-
geNet training set at 8 downsample ratio.

config IN-1K 16x SOTA
training data IN-1K training set
image size [256, 256]
data augmentation random crop
downsample 16 x 16
ema True

g (group number) 4

d' (group channel) 8
optimizer Adam
optimizer momentum b1, 82=0.5,0.9
weight decay 0
learning rate schedule consistent
learning rate le-4
warmup steps 0

cos decay end ratio 1

total steps 400400
channel _mult [1,1,2,2,4]
channel 256
num_res_blocks 4
generative decoder False

per GPU batchsize 8

global batchsize 1024
GPU number 128 H20

config IN-1K 8x SOTA
training data IN-1K training set
image size [256, 256]
data augmentation random crop
downsample 8 x 8

ema True

g (group number) 4

d’ (group channel) 8
optimizer Adam
optimizer momentum B1,82=0.5,0.9
weight decay 0

learning rate schedule
learning rate
warmup steps

cos decay end ratio
total steps
channel_mult
channel
num_res_blocks
generative decoder
per GPU batchsize
global batchsize
GPU number

consistent
le-4
0
1
350350
[1,2,2,4]
256
4
False
8
1024
128 H20



Table 35: Large scale training

Table 36: Large scale training

Table 37: Large scale training

on general-domain dataset at on general-domain dataset at on general-domain dataset at

768 compression ratio.

384 compression ratio.

192 compression ratio.

config 768 compression ratio SOTA config 384 compression ratio SOTA config 192 compression ratio SOTA
training data general domain dataset training data general domain dataset training data general domain dataset
image size [256, 256] image size [256, 256] image size [256, 256]

data augmentation random crop data augmentation random crop data augmentation random crop
downsample 32 x 32 downsample 16 x 16 downsample 16 x 16

ema True ema True ema True

g (group number) 4 g (group number) 2 g (group number) 4

d’ (group channel) 8 d’ (group channel) 8 d’ (group channel) 8

optimizer Adam optimizer Adam optimizer Adam
optimizer momentum B1,82=0.5,0.9 optimizer momentum B1,82=0.5,0.9 optimizer momentum 51, $2=0.5,0.9
weight decay 0 weight decay 0 weight decay 0

learning rate schedule consistent learning rate schedule consistent learning rate schedule consistent
learning rate le-4 le-4 le5 learning rate le-4 le-5 le-6 learning rate le-4 le-5 le-6
warmup steps 0 warmup steps 0 warmup steps 0

cos decay end ratio 1 cos decay end ratio 1 cos decay end ratio 1

total steps 550550 550550 330330 total steps 550550 200200 50050 total steps 470470 90090 10010
channel_mult [1.1,2,2.4.8] channel_mult [1,1,2,2,4] channel_mult [1,1,2,2,4]
channel 256 channel 256 channel 256
num_res_blocks 4 num_res_blocks 4 num_res_blocks 4
generative decoder False True True generative decoder False False False generative decoder False False False
per GPU batchsize 6 per GPU batchsize per GPU batchsize

global batchsize 1056 global batchsize 1024 global batchsize 1024

GPU number 176 H20 GPU number 128 H20 GPU number 128 H20

Table 38: Large scale training on general-
domain dataset at 48 compression ratio.

config 48 compression ratio SOTA
training data general domain dataset
image size [256, 256]

data augmentation random crop
downsample 8§ x 8

ema True

g (group number) 4

d’ (group channel) 8

optimizer Adam
optimizer momentum 51, 82=0.5,0.9
weight decay 0

learning rate schedule consistent
learning rate le-4 le-5 le-6
warmup steps 0

cos decay end ratio 1

total steps 200200 200200 20020
channel_mult [1,2,2,4]
channel 256
num_res_blocks 4
generative decoder False

per GPU batchsize 8

global batchsize 1024

GPU number 128 H20

Table 39: Large scale training on general-
domain dataset at 24 compression ratio.

config 24 compression ratio SOTA
training data general domain dataset
image size [256, 256]

data augmentation random crop
downsample 8 x 8

ema True

g (group number) 8

d’ (group channel) 8

optimizer Adam

optimizer momentum 1, 82=0.5,0.9
weight decay 0

learning rate schedule consistent
learning rate le-4 le-5 le-5
warmup steps 0

cos decay end ratio 1

total steps 300300 50050 400400
channel_mult [1,2,2,4]

channel 256
num_res_blocks 4

generative decoder False

per GPU batchsize 8

global batchsize 1024 1024 4096
GPU number 128 H20 128 H20 512 H20
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F DECLARATION OF USE OF LARGE LANGUAGE MODELS (LLM)

We affirm that this paper was primarily written by the authors. Large Language Models (LLMs)
were utilized solely as general-purpose assistive tools for language refinement, grammar correction,
and stylistic improvements during the writing process. Specifically, Gemini 2.5 Pro (DeepMind,
2025) was employed for minor text polishing and rephrasing to enhance clarity and readability.
No LLM was used for conceptual ideation, experimental design, data analysis, or generating any
substantive content of the research.
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