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ABSTRACT

As LLMs develop stronger multilingual capabilities, the long-standing English-
centric bias is gradually diminishing. In some reasoning tasks, responses in non-
English languages even surpass those in English. Existing approaches, such as
majority voting or weighting across languages, have explored this potential but
often fall short due to task complexity and suboptimal language selection. To inves-
tigate the role of language diversity in reasoning, we conduct a Polyglot Thinking
Experiment, prompting models to answer each question in ten different languages
or without any language restriction. Results show that non-English responses often
achieve higher accuracy than English ones, and the best performance frequently
emerges when the model is free to choose its response language. These findings
suggest that LLMs benefit from a broader and more flexible multilingual think-
ing space. Building on this insight, we propose Multilingual Group Relative
Policy Optimization (mGRPO), a reinforcement learning framework that im-
proves LLM reasoning by generating multilingual preference data online using
both language-constrained and unconstrained prompts. The model is optimized
through group-wise reward comparisons based on accuracy and reasoning for-
mat. Despite relying on only 1̃8.1k training examples without chain-of-thought
supervision, mGRPO achieves consistent gains across four benchmarks: MGSM,
MATH500, PolyMath, and X-CSQA, outperforming two base LLMs (Qwen2.5
and Llama3) by an average of 7.5% and obtains SOTA performance. These results
highlight the value of multilingual thinking and demonstrate that mGRPO provides
a lightweight yet effective approach to unlock reasoning potential in LLMs.
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(a) The framework of our mGRPO method. (b) The results in four reansoning tasks.

Below is an instruction that 
describes a task. Think it 
step by step [LANGUAGE] 
and output the final answer 
after '#### '.

### Instruction: [Question]

### Response:

in Arabic

in English

in Chinese

...
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Figure 1: An Overview and Key Results. (a) Our mGRPO method’s framework. It enhances the
reasoning process by compelling the model to engage in Multi-lingual Thinking, which is then
optimized via group relative policy. (b) A comparison of performance on four reasoning tasks. The
results indicate that mGRPO achieves a significant improvement over both the Qwen2.5-7B-Instruct
baseline and the standard GRPO approach (only output in English), demonstrating its efficacy.

1 INTRODUCTION

Large Language Models (LLMs) excel at a wide range of tasks, particularly reasoning (Jaech et al.,
2024; DeepSeek-AI et al., 2025). However, they often display an English bias—achieving stronger
performance with English inputs or responses (Chen et al., 2024; Shi et al., 2023; Huang et al., 2023;
2022). Recent advances suggest that this bias is weakening. LLMs trained on more diverse corpora
increasingly demonstrate strong, and in some cases superior, reasoning abilities when operating in
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min max

Answer Languages

M
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M
  L

an
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ag
es Unconstrained en de fr es ru zh ja th te bn sw

en 81.20 81.20 78.00 84.00 84.80 80.40 87.20 80.80 74.00 18.40 49.60 54.00 
de 77.20 73.20 72.40 74.80 73.60 74.80 75.20 71.60 65.60 18.80 43.20 53.20 
fr 74.80 71.20 68.00 74.80 71.20 72.00 76.00 68.40 63.60 22.00 46.00 52.40 
es 76.40 75.20 72.40 75.20 76.40 75.20 77.60 70.40 68.80 22.80 46.00 52.00 
ru 76.40 77.20 72.80 77.60 74.00 77.60 75.20 71.60 68.40 21.20 45.20 48.80 
zh 75.20 72.80 70.40 75.60 72.00 72.40 76.00 68.80 70.80 24.00 47.20 48.80 
ja 64.00 66.80 60.40 62.80 65.20 63.60 70.00 64.00 57.60 18.40 32.80 44.80 
th 69.20 70.00 68.00 70.80 72.40 67.60 70.80 67.60 67.60 20.00 43.60 40.40 
te 22.40 32.80 28.00 24.40 31.60 32.00 33.60 32.00 22.00 12.80 27.60 20.40 
bn 62.00 65.60 61.20 62.00 61.60 61.20 59.60 56.00 56.40 27.60 43.60 36.40 
sw 16.00 20.40 14.40 13.60 13.60 16.00 14.80 16.00 16.40 7.60 9.20 14.00 

AVG 63.16 64.22 60.55 63.24 63.31 62.98 65.09 60.65 57.38 19.42 39.45 42.29 60.0

65.0

70.0

75.0

80.0

85.0

en de fr es ru zh ja th bn

Best response-language
Answer in English
Unconstrained response-language

Figure 2: Polyglot Thinking Experiment results (left part) on MGSM (Shi et al., 2023) in Qwen2.5-
7B-Instruct (Yang et al., 2024a) model, including ten languages: English (en), German (de), French
(fr), Spanish (es), Russian (ru), Chinese (zh), Japanese (Ja), Thai (th), Telugu (te), Bengali (Bn), and
Swahili (sw). The right panel highlights the best score (red area) under specified-language settings,
the score when responding in English (blue area), and the score when the response language is
unconstrained (blue dashed line).

non-English languages (Qin et al., 2024; Zhu et al., 2024a; Dubey et al., 2024; Yang et al., 2024a;
Aryabumi et al., 2024; Gao et al., 2025; Huang et al., 2025; Etxaniz et al., 2024).

Recent work suggests that multilingual thinking—the ability to reason across diverse languages—can
enhance performance on complex tasks (Gao et al., 2025). Training-free approaches, such as majority
voting (Qin et al., 2023) or automatic language selection with response weighting (Zhang et al.,
2024), attempt to exploit this language diversity without model fine-tuning. Yet their effectiveness is
often limited by task complexity and suboptimal language choices (Gao et al., 2025). Meanwhile,
reinforcement learning (RL)-based methods, such as PPO (Schulman et al., 2017), or RL-like
approaches such as DPO (Rafailov et al., 2023) and GRPO (DeepSeek-AI et al., 2025), have shown
promise in improving LLM reasoning. However, most existing RL training relies on English-centric
or English-estimated preference data (Yang et al., 2024c; She et al., 2024), which restricts models
from fully benefiting from multilingual thinking, particularly when English is not the most effective
reasoning language.

Previous observations suggest that for certain tasks, reasoning in non-English languages can outper-
form English. To systematically investigate this effect, we introduce a Polyglot Thinking Experiment
on MGSM (Shi et al., 2023). In this setup, for each language in MGSM, we construct prompts
that elicit responses in both unconstrained response-languages, where the model can freely choose
the output language, and constrained response-languages settings. The detailed prompt design is
illustrated in Figure 1(a), and the corresponding results are shown in Figure 2. Our findings indicate
that, in constrained response-language settings, Chinese responses, on average, outperform English,
while no single setting consistently dominates across all languages. Notably, under the unconstrained
response-language setting, models often outperform the English-only baseline.We observe that this
is enabled by a flexible reasoning space, manifested in the use of multiple response languages and
code-switching—where responses mix surface entities (e.g., names of people or places) from question
with English or Chinese. These results suggest that allowing the model to operate without strict
language constraints expands its thinking space and flexibility.

Motivated by this insight, we combine language-constrained and unconstrained prompts to form pref-
erence groups that capture diverse multilingual thinking variations. Building on GRPO (DeepSeek-AI
et al., 2025), we propose multilingual GRPO (mGRPO), a reinforcement learning method that ex-
plicitly leverages this multilingual thinking space to enhance LLM reasoning. As shown in Figure 3,
mGRPO consists of three components: the Polyglot Thinking Generation Module, the Reward
Module, and the Group Relative Policy Optimization Module. For each question, we generate a
group of responses—one under an unconstrained setting and others in randomly assigned target
languages—thereby creating diverse multilingual thinking data. The reward function is rule-based,
combining correctness (measured by the final answer) and format (encouraging reasoning steps).
Based on these reward scores, group-relative advantages are computed to establish preference rank-
ings, which guide policy optimization through GRPO.

We evaluated mGRPO on four reasoning benchmarks: MGSM (Shi et al., 2023), mMATH (Lightman
et al., 2023), PolyMath (Wang et al., 2025), and X-CSQA (Lin et al., 2021), covering 23 languages.
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Using ∼18k multilingual mathematics training examples and training on the Qwen2.5-7B-Instruct
model, mGRPO achieves average improvements of 2.91%, 1.74%, 1.65%, and 3.36% over the
standard GRPO approach (which only outputs in English) on the four benchmarks, respectively, as
shown in Figure 1(b).

Our contributions are summarized as follows:

• We reveal that English is not always the best response language in reasoning tasks, and that
unconstrained language responses often yield surprising results. Based on this, we propose
leveraging multilingual thinking to enhance LLM reasoning capabilities.

• We introduce mGRPO, a novel reinforcement learning framework that online generates multilingual
preference sets constructed from multilingual thinking to optimize LLMs.

• Through experiments on four reasoning benchmarks and two base models, mGRPO significantly im-
proves LLM performance on both mathematical and commonsense reasoning tasks, demonstrating
the powerful impact of multilingual thinking in enhancing LLM reasoning abilities.

2 RELATED WORK

Multilingual Thinking of LLMs. Early LLMs were predominantly trained on English-centric
data, resulting in better performance when questions or responses were in English (Shi et al., 2023).
To improve reasoning capabilities in other languages, recent work has proposed cross-lingual chain-
of-thought (CoT) prompting strategies (Ranaldi & Zanzotto, 2023; Huang et al., 2023). From a
training perspective, beyond merely increasing multilingual training data, some studies translate
English questions (Huang et al., 2024; Zhu et al., 2024b) or CoT responses (Chen et al., 2024; Lai
& Nissim, 2024; Chai et al., 2025) into multiple languages and fine-tune models on the augmented
data. Besides translation-based methods, multilingual preference training has gained traction (She
et al., 2024; Yang et al., 2024c), often treating English reasoning as the reference to guid multilingual
outputs. However, as multilingual LLMs improve, their reasoning in certain languages can surpass
English (Gao et al., 2025), sparking growing interest in leveraging multilingual thinking to boost
overall performance.

Enhancing LLM Reasoning with Multilingual Thinking. Gao et al. (2025) showed that aggregat-
ing reasoning across k languages (Acc@k) can outperform English-only reasoning by up to 10 points,
with robustness to both translation quality and language selection. Building on similar insights,
Qin et al. (2023) proposed cross-lingual prompting, which first guides the model to understand the
question in English before generating answers in multiple languages, with final predictions deter-
mined by majority voting. However, their method suffers from instability due to arbitrary language
choices. To address this, AutoCAP (Zhang et al., 2024) introduces an automated scheme in which
the LLM selects languages and assigns weights to CoTs, generating final answers through weighted
multilingual outputs. Despite these efforts, such approaches remain limited by task complexity and
generalization challenges.

In contrast, our method, mGRPO, adopts a reinforcement learning framework that allows the model to
internally explore and integrate multilingual thinking without relying on post-hoc voting or language-
specific heuristics, while improving generalization with minimal supervision (i.e., only gold answers).
It supports online generation of preference data during training, scales effectively across model sizes,
and achieves consistent gains in both high- and low-resource language settings.

3 METHOD

Motivated by the diverse performance exhibited in multilingual thinking, we aim to let the model
learn from such diversity instead of aligning all reasoning to English. We propose a multilingual
reinforcement learning framework, mGRPO (Multilingual Group Relative Policy Optimization), to
enhance LLMs’ reasoning abilities through multilingual thinking. As illustrated in Figure 3, mGRPO
consists of three modules: (1) Polyglot Reasoning Generation Module (§ 3.1), (2) Reward Module
(§ 3.2), and (3) Group Relative Policy Optimization Module (§ 3.3).
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Below is an instruction that 
describes a task. Think it step by 
step [LANGUAGE] and output the 
final answer after '#### '.

### Instruction: 
একটি টিমান 325 মাইল/ঘন্িা টিকক 
পূকিব্ এিং আকবকটি টিমান 275 মাইল/
ঘন্িা টিকক পট্্িকম ভ্বমণ ককব। তাবা 
একই সমক ে় এিং একই জা ে়গা ে় কেক ে় 
়া ে়। তাকিব িুটি টিমান 2100 মাইল িূকব 
হকল তাকিব কত ঘন্িাব মক়্্ হকি?
(Translation: One plane is 
traveling east at 325 miles/hour 
and another plane is traveling 
west at 275 miles/hour. They 
leave at the same time and at the 
same place. If their two planes 
are 2100 miles apart, how many 
hours will they be apart?)
### Response:

in Swahili

in German

in Russian 
Ra

nd
om

ly
 g

iv
en

 la
ng

ua
ge

in Japanese 

[LANGUAGE]

まず、2100マイルを両方の飛行機が同時に進む方向から見る。(First, look at the 2100 miles from the direction 
both planes are going at the same time)
...
距離と速度を使って時間（t）を計算する。ターゲット距離は2100マイルで、速さは500マイル/時間。すると、t = 距
離 ÷ 速度 = 2100 ÷ 500 _future_。(Use the distance and speed to calculate time (t). The target distance is 2100 
miles and the speed is 500 miles/hour. So, t = distance ÷ speed = 2100 ÷ 500 _future_.)
これを計算すると、4.2時間になる。(This calculates to 4.2 hours.)...
#### 4.2

টিক আকে, আমবা এই সমস়্াটি টিটহ্নত ককব কেলাব জন়্ টকেু েন্ি টনই(Okay, let's take some time to figure out this 
problem): 
1. ঘন্িাগুটল ্ুবু কবা হকল: অনুমান কবুন িুইটি টিমান একই সম ে় এিং একই জা ে়গা ে় কেক়ে ়া ে়। (Assume two planes leave at 
the same time and at the same place.) 
. . .
4. 进一步的分析 (Further analysis):
- 每小时两架飞机的相对接近距离为两架飞机的速度之和，即 \(325 + 275 = 600\) 英里/小时。
(The relative close distance of two airplanes per hour is the sum of their speeds, which is \(325 + 275 = 600\) 
miles per hour.) 
... 
- 绳距 \(2100 \) 千英里，相对速度 \(600\) 英里/小时，时间 = 2100/600 = 3.5小时...
(- Rope length \(2100\) kmi, relative speed \(600\) mph,time = 2100/600 = 3.5hours)
#### 3.5

Для решения этой задачи давайте сделаем следующие шаги:(To solve this problem, let's take the following 
steps:)

1. Запишем скорость каждого самолета (Let's write down the speed of each aircraft):
...
4. Вычислим результат (Let's calculate the result): 2100 / 600 = 3.5 часов (hours)
Итак, они встретятся через 3.5 часов.(So they will meet in 3.5 hours.)
#### 3.5

in Japanese 

in Russian 

...

. . .

Polyglot Reasoning Generate Module

Accuracy Reward
Format Reward

             “[Thinking]
             #### [Answer]”

�1 ...�2 �� Rewards

Group Computation

�1 �2 ��... Advantages

Group Relative Policy Optimization 

Kwa s(ab) samaaanini hii, tafadhali kujifunza (For this s(ab)samaaanini, please learn):
1. Tafadhali kufanya kifeleti kwa vitam vingine kama vile tuna vimaani na vitamini hii (Please make a list of other 
vitamins as we have meanings for this vitamin):
...
2. Tumebaliame kuwa kama vimaani vingine vingi zinahitaji (We have agreed that like many other meanings, it 
requires):
- 2100 miles / 325 mph = 6.465533333333333 hours
- 2100 miles / 275 mph = 7.636363636363636 hours

3. Tenzi tofauti una kwenye vitamini viwili (The different mechanisms are present in the two vitamins):
- 7.636363636363636 - 6.465533333333333 = 1.170830303030303 hours
....
#### 1.7

in Swahili 

Reward
M

odule

ℒ����

Empty

Empty

Figure 3: The framework of mGRPO, including Polyglot Reasoning Generate Module (PRGM),
Reward Module and Group Relative Policy Optimization Module.

3.1 POLYGLOT REASONING GENERATION MODULE

GRPO (DeepSeek-AI et al., 2025) is a reinforcement learning method that improves upon PPO by
removing the value function and estimating advantages in a group-relative manner. To construct the
training group for a question-answer pair (q, a) ∈ D, it sample n responses {oi}ni=1 from the old
policy πθref .

Our proposed Polyglot Reasoning Generation Module (PRGM) is designed to guide the LLM in
generating a group of n multilingual responses for each input. As shown in the upper part of Figure 3,
given an input question, we generate a set of n responses using prompts {pi}ni=1 with or without
explicit language instructions. Specifically, one response is generated with no language constraint
(i.e. "[LANGUAGE]" is empty), while the remaining responses are generated using prompts that
specify a reasoning language randomly chosen from a predefined languages set. These responses
form the Multilingual Thinking set {oi}ni=1, which may include both correct and incorrect answers.

This module operates online during training, enabling the model to continuously generate fresh
multilingual responses. Such an online approach reduces storage overhead than (She et al., 2024;
Yang et al., 2024c) and facilitates broader exploration of the multilingual thinking space.

3.2 REWARD MODULE

Each response oi is then evaluated using a reward module to obtain an individual reward ri. To assess
response quality, we design a rule-based reward function composed of two parts ri = AR(oi) +
FR(oi), where:

• Accuracy Reward (AR): A binary reward that evaluates whether the final predicted answer exactly
matches the gold-standard answer. Formally,

AR(oi) =
{
1, if Answer(oi) = Gold(q)
0, otherwise

(1)
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• Format Reward (FR): A binary reward that encourages structured reasoning. It returns 1 if the
response contains a reasoning process (denoted by the keyword [Thinking]) and presents the
final answer in the required format (i.e., following "#### "). Formally,

FR(oi) =
{
1, ifoi contains[Thinking] and [Answer] follows"#### "

0, otherwise
(2)

To prevent the model from taking shortcuts, e.g., generating minimal text before directly outputting
the answer, we additionally enforce a minimum length constraint of 100 characters for the reasoning
content within the [Thinking] section as part of the format reward.

The final reward ri ∈ {0, 1, 2} thus encourages both correctness and structured reasoning format,
without requiring annotated reasoning steps.

3.3 GROUP RELATIVE POLICY OPTIMIZATION MODULE

Then, we follows the GRPO (DeepSeek-AI et al., 2025) to optimization our model as shown in
left-downer corner of Figure 3 and right part of Figure 1(a). The advantage Ai of the i-th response is
calculated by normalizing the rewards {ri}ni=1 of the group:

Ai =
ri − mean({ri}ni=1)

std({ri}ni=1)
. (3)

GRPO adopts a PPO-style clipped objective, with a KL penalty between the current policy πθ and
the reference model πθref directly integrated into the loss to simplify training.

So, the loss of our mGRPO is:

LmGRPO(θ) =E(q,a)∼D,{oi}n
i=1∼πθref (oi|pi,q)

n
i=1

[
1

n

n∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πi,t
θ

πi,t
θref

Âi, clip

(
πi,t
θ

πi,t
θref

, 1− ϵ, 1 + ϵ

)
Âi

]
− βDKL(πθ∥πref)

}]
(4)

where πi,t denotes the conditional probability of the token at position t, formally:

πi,t = π(oi,t|pi, q, oi,<t), (5)

where pi is the i-th prompt with or without explicit language instructions to obtain oi.

Compared with previous approaches that rely on supervised translations (She et al., 2024) or fixed
language anchors (Yang et al., 2024c), mGRPO enables LLMs to autonomously explore and learn
from multilingual thinking behaviors, promoting a more flexible and effective reasoning paradigm.

4 EXPERIMENTS

4.1 DATASETS

Training Datasets. We use the mathematical reasoning dataset from MAPO (She et al., 2024) as
training data. It consists of 1,703 English questions from a subset of NumGLUE (Mishra et al., 2022),
together with ChatGPT-translated versions in nine languages, including Bengali (BN), Thai (TH),
Swahili (SW), Japanese (JA), Chinese (ZH), Russian (RU), German (DE), Spanish (ES), and French
(FR), resulting in a total of 18,140 examples.

Benchmarks. Our evaluation is based on three mathematical reasoning benchmarks (MGSM,
MATH500, and PolyMath) and one commonsense reasoning benchmark (X-CSQA) to assess im-
provements in LLM reasoning abilities. MGSM (Shi et al., 2023) serves as an in-domain benchmark,
derived from 250 GSM8K (Chen et al., 2024) test samples translated by native speakers into 10
typologically diverse languages. MATH500 (Lightman et al., 2023) is an out-of-domain benchmark
consisting of 500 diverse mathematical problems in English, with six additional translated versions

5
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Table 1: The results in 4 multilingual reasoning benchmarks. Languages in MGSM are categorized
into high-resource (HRL: ZH, FR, DE, JA, RU, ES) and underrepresented-resource (URL: BN, SW,
TE (Telugu), TH) groups based on their presence in pretraining corpora such as mC4 (Xue et al.,
2021). AVG represents the average performance of all languages in a benchmark. Best score in bold.

Model
MGSM MATH500 PolyMath X-CSQA

AVG HRL URL EN AVG low medium high top AVG

Qwen2.5-7B-Instruct
Base (Yang et al., 2024a) 67.16 75.73 48.80 70.80 57.89 73.20 23.69 9.02 5.07 54.27
xRFT (Chen et al., 2024) 68.47 81.07 43.20 73.40 53.12 60.80 18.40 7.69 7.73 49.25
LIDR (Yang et al., 2024c) 69.60 79.07 50.30 73.20 62.46 74.93 25.07 9.87 4.62 53.18
MAPO (She et al., 2024) 66.29 75.80 47.40 76.20 61.20 76.31 23.24 8.04 5.87 50.69
GRPO (DeepSeek-AI et al., 2025) 73.02 81.07 56.60 74.80 63.20 78.22 23.42 8.84 6.36 57.10
mGRPO (Ours) 75.93 84.40 58.70 76.80 64.94 79.87 25.24 9.87 7.07 60.46
Llama3-8B-Instruct
Base (Dubey et al., 2024) 52.22 57.33 37.70 29.20 26.00 60.44 4.84 1.91 2.53 45.12
xRFT (Chen et al., 2024; She et al., 2024) 53.89 58.40 42.30 27.40 23.37 50.62 4.93 2.44 1.96 48.15
LIDR (Yang et al., 2024c) 55.53 58.47 45.10 28.00 24.31 52.71 5.02 2.00 2.18 52.22
MAPO (She et al., 2024) 60.69 63.93 50.90 30.40 25.26 58.84 4.31 1.73 2.76 43.89
GRPO (DeepSeek-AI et al., 2025) 64.58 68.80 54.20 30.00 24.43 53.87 4.76 2.44 3.82 53.36
mGRPO (Ours) 68.11 72.33 58.30 32.00 26.71 66.48 5.51 2.76 3.42 53.64

included for multilingual evaluation. PolyMath (Wang et al., 2025) provides a multilingual reasoning
benchmark with 9,000 math problems across 18 languages with four difficulty levels. X-CSQA (Lin
et al., 2021) extends CSQA to 16 languages and challenges models to interpret complex logical
relations expressed across diverse linguistic forms. The total number of evaluation languages is 23,
and the details of the languages covered by each benchmark can be found in Appendix B.

4.2 EXPERIMENTAL SETUP

Base Models and Baselines. We evaluate mGRPO on the Qwen2.5-7B-Instruct(Yang et al., 2024a)
and Llama3-8B-Instruct (Dubey et al., 2024) models. For baselines, we compare mGRPO with
several strong methods: (1) xRFT (Yuan et al., 2023), a rejection sampling-based method using CoT
traces generated and translated from Qwen-Math-7B-Instruct (Yang et al., 2024b); (2) MAPO (She
et al., 2024), which aligns multilingual thinking paths to English through translation-estimated-
based preference optimization; (3) LIDR (Yang et al., 2024c), which employs self-improving DPO
training based on performance disparities between non-English languages and English; and (4)
GRPO (DeepSeek-AI et al., 2025), which uses our multilingual training data and only generates
English responses, to compare the influence of multilingual thinking on LLM reasoning. Full training
configurations and data construction details are provided in Appendix C.

Training Details. For PRGM, we use a 10-language set to guide the roll-out, aligned with the
languages in the training data. The roll-out is set to n = 5, including one non-language-constrained
response and four responses in randomly selected languages from the set. Training is implemented
using the verl1 RL framework. For Qwen2.5-7B-Instruct, mGRPO is trained for 5 epochs with a
learning rate of 1e−6 and a batch size of 256. For the Llama3-8B-Instruct base model, mGRPO is
trained for 1 epoch with the same settings. All models are trained using 8 NVIDIA A100 GPUs.

Inference Setup. At inference time, we use the same prompt format as during training (as shown
in the left part of Figure 1(a)), leaving the language token [LANGUAGE] empty to allow the model
to freely choose its response language. Reasoning steps are generated via greedy decoding. Final
answers are extracted using rule-based parsing and evaluated using accuracy as the main metric.

4.3 RESULTS

We systematically evaluated mGRPO’s performance on two mainstream baseline models. Table 1
presents the results on four reasoning benchmarks. Our method outperforms existing approaches in
both reasoning performance and generalization across different difficulty levels. Per-language results
for all test sets are provided in Appendix D.

1https://github.com/volcengine/verl
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Based on Qwen2.5-7B-Instruct, mGRPO achieved state-of-the-art or competitive results on all tasks.
Specifically, it achieved an average accuracy of 75.93% on the MGSM dataset, an 8.76% improvement
over the base model, and outperformed GRPO by 2.1% on low-resource languages (i.e., URL). On
MATH500 and its six language translation versions, mGRPO achieved an average score of 64.94%,
surpassing GRPO and LIDR by 1.74% and 2.48%, respectively.

Table 2: The results of MATH500 on Qwen2.5-7B-Instruct
with the 134 hardest examples.

Model AVG EN IT JA TR ZH TE SW

Qwen2.5-7B-Instruct
Base 33.3 46.3 45.5 29.1 21.6 41.8 28.4 20.2
xRFT 30.6 50.8 38.8 34.3 28.4 36.6 14.9 10.5
LIDR 39.8 51.5 49.3 44.8 38.8 38.8 32.8 22.4
MAPO 37.0 54.5 43.3 32.1 30.6 46.3 30.6 21.6
GRPO 37.5 50.8 44.0 42.5 40.3 38.1 29.9 17.2
mGRPO (Ours) 42.9 53.7 50.8 50.0 44.8 47.8 32.1 20.9

Table 2 reports that on the 134
most difficult examples in MATH500,
mGRPO outperformed the strongest
LIDR baseline by 2.9%. This advan-
tage is primarily evident in higher-
resource languages. For example, on
Japanese and Turkish, mGRPO sur-
passes the LIDR method by 5.2%
and 6.0%, respectively. Further-
more, across all languages, mGRPO
surpasses the original GRPO setup,
demonstrating that learning multilingual thinking has indeed stimulated stronger reasoning ca-
pabilities. On the latest PolyMath, due to the small size of the model, all methods failed to achieve
significant improvements on tasks above medium. Therefore, we focused on the "low" difficulty tasks.
Table 3 reports the performance of mGRPO on 18 languages in PolyMath-low, achieving state-of-the-
art performance on 14 of them. Furthermore, on the commonsense reasoning task X-CSQA, mGRPO
achieves a 3.36% improvement over the strongest baseline GRPO, validating the effectiveness of
multilingual thinking in improving more general reasoning capabilities.

Table 3: The results in PolyMath-low across 18 languages.
Model AVG EN ZH ES AR FR BN PT RU ID DE JA SW VI IT TE KO TH MS

Qwen2.5-7B-Instruct
Base 74.6 89.6 79.2 87.2 80.0 84.0 66.4 80.8 83.2 81.6 76.0 68.8 14.4 79.2 83.2 36.8 74.4 73.6 79.2
xRFT 63.1 83.2 72.8 70.4 66.4 68.0 50.4 68.0 68.8 62.4 65.6 64.8 10.4 68.8 68.0 20.0 67.2 54.4 64.8
LIDR 76.4 89.6 84.8 84.8 80.8 86.4 66.4 80.0 84.0 83.2 80.8 75.2 17.6 80.0 81.6 38.4 76.8 76.8 81.6
MAPO 77.7 92.0 81.6 88.0 80.8 84.8 67.2 80.0 89.6 84.8 77.6 75.2 23.2 85.6 85.6 43.2 77.6 74.4 82.4
GRPO 79.7 92.0 84.0 86.4 87.2 82.4 71.2 85.6 88.0 87.2 80.8 75.2 32.8 83.2 87.2 44.8 81.6 76.0 82.4
mGRPO (Ours) 81.5 94.4 83.2 88.8 87.2 86.4 76.0 88.0 87.2 85.6 82.4 78.4 36.0 85.6 88.8 44.8 80.0 80.8 84.0
Llama3-8B-Instruct
Base 61.4 73.6 54.4 65.6 59.2 69.6 52.8 67.2 62.4 68.8 60.8 57.6 39.2 67.2 69.6 38.4 59.2 56.0 66.4
xRFT 51.3 65.6 42.4 56.0 53.6 52.0 40.0 54.4 62.4 53.6 53.6 45.6 36.0 51.2 63.2 34.4 48.8 52.0 46.4
LIDR 54.1 61.6 49.6 59.2 50.4 60.8 44.0 65.6 58.4 56.0 56.8 45.6 37.6 57.6 58.4 36.8 47.2 52.0 51.2
MAPO 59.7 72.8 58.4 68.8 57.6 56.8 52.0 69.6 61.6 62.4 64.8 52.0 39.2 60.0 67.2 41.6 59.2 59.2 56.0
GRPO 55.0 68.0 60.0 56.0 51.2 60.8 39.2 63.2 62.4 50.4 63.2 53.6 34.4 52.0 62.4 39.2 48.8 57.6 47.2
mGRPO (Ours) 67.6 78.4 71.2 72.0 65.6 68.8 57.6 74.2 70.4 69.6 72.8 61.6 52.0 64.8 74.4 48.8 64.8 63.2 66.4

On Llama3-8B-Instruct, despite the original model’s limited multilingual capabilities, mGRPO
demonstrates strong potential for improvement. It achieved nearly a 16% improvement over the
base model on MGSM and maintained a significant advantage on the more challenging MATH500.
On PolyMath-low, mGRPO was the only method to surpass the base model, achieving substantial
performance gains across multiple languages. For example, mGRPO improved over the base model
by 16.8%, 12.8%, and 10.4% on Chinese, Swahili, and Telugu, respectively. mGRPO also performed
remarkably well on X-CSQA, similar to GRPO, improving the base model’s performance by 8.52%.

Overall, mGRPO demonstrated comprehensive superiority on both LLMs with different architectures,
highlighting the versatility and robustness of our approach. Compared to GRPO, our mGRPO method
further improved multiple key metrics, fully demonstrating the effectiveness of multilingual thinking
in enhancing model reasoning performance.

5 ANALYSIS

5.1 ABLATION STUDY

We conduct ablation studies on the Qwen2.5-7B-Instruct model and evaluate it on the MGSM
benchmark. First, we examine the impact of the format reward (i.e., w/o format reward). Next, we
compare three PRGM roll-out variants: (1) without the unconstrained response-language roll-out
(i.e., w/o unconstrained response); (2) with only the unconstrained response-language setting for
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roll-out (i.e., only roll-out unconstrained response); and (3) only the English response roll-out (i.e.,
GRPO setting). Additionally, to assess the performance of our method on smaller models, we include
two other sizes of Qwen2.5-Instruct models, with 1.5B and 3B parameters, respectively. Results are
shown in Figure 4, with further details in Appendix E.
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Figure 4: Ablation results on MGSM with three sizes of Qwen2.5-Instruct models.

The ablation studies validate the importance of each setting for the effectiveness of mGRPO. Based
on the results and model behavior, we can make three observations:

Format reward is crucial for guiding LLMs to generate multilingual thinking paths and valid
final answers. Without the format reward, during the roll-out phase of PRGM, the model often
degenerates into uncontrolled behavior in low-resource languages (e.g., Thai, Swahili), such as
skipping reasoning steps, adding irrelevant text, or reproducing the same content.

Response without constrained language benefits smaller LLMs, while language-specified re-
sponses help improve performance in low-resource languages. We observe that when all roll-outs
are language-constrained, the performance of the 1.5B and 3B models drops significantly. The uncon-
strained language roll-out improves high-resource languages (e.g., a 1.1% gain on the 3B model),
but causes a 1.6% drop in low-resource settings. Both response-language settings are important for
constructing the multilingual thinking roll-out.

Multilingual thinking unlocks more powerful LLM reasoning capabilities. We find that later
training roll-outs of mGRPO often converge to English. To verify if improvements come only
from English reasoning, we ran experiments restricting all responses to English (i.e., the original
GRPO setting). Its performance consistently falls short of our multilingual thinking roll-out setting,
especially for smaller models.

5.2 LANGUAGE SET IN PRGM
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Figure 5: The results in MGSM with different
language set for multilingual thinking base on
Qwen2.5-7B-Instruct.

The "languages" of multilingual thinking in
PRGM are primarily randomly selected from
a language set. To align with the MAPO and
LIDR methods, our language set consists of all
10 languages in the training data, including both
high-resource languages and low-resource lan-
guages (as defined in MGSM). Observing the
impact of different language sets on mGRPO
can also help us better understand the robustness
or bias of our method with respect to language
selection.

First, we established two language sets, low-
resource (LR) and high-resource (HR) lan-
guages, each consisting of 10 languages and
determined by their presence in pretraining cor-
pora (such as mC4 (Xue et al., 2021) mentioned
in MGSM). The LR set includes Bengali (BN), Thai (TH), Swahili (SW), Telugu (TE), Vietnamese
(VI), Basque (EU), Arabic (AR), Hindi (HI), Urdu (UR), and Turkish (TR). The HR set includes
Italian (IT), Chinese (ZH), English (EN), French (FR), German (DE), Japanese (JA), Russian (RU),
Spanish (ES), Korean (KO), and Portuguese (PT). Models trained with HR or LR languages are
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referred to as mGRPO w/ HR and mGRPO w/ LR, respectively. Second, to test the robustness of
mGRPO with a mix of HR and LR languages, we created two additional sets (random seeds 42 and
222), each randomly sampling 5 HR and 5 LR languages: (1)Seed=42: [EN, KO, ZH, DE, FR, VI,
BN, TR, TH, AR]; (2)Seed=222: [FR, ES, IT, KO, JA, SW, TE, VI, BN, UR].

The results on MGSM are shown in Figure 5. We observed that using only HR languages for
multilingual thinking obtained comparable performance compared to the original setting. However,
using only LR languages limited the performance gains. When the 10-language set included both
HR and LR languages, the differences caused by language selection were reduced. The set with
significant differences (seed=222) performed slightly worse overall due to the omission of the primary
language EN and the resource-rich language ZH. We further experiment on the impact of different
language quantities and roll-out values on performance, with results reported in the Appendix F and
G, respectively.

5.3 HOW MANY LANGUAGE ARE UTILIZED DURING THE REASONING PROCESS
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Figure 6: Layer-wise statistics of the number of distinct languages present in each tokens.

Since mGRPO tends to converge toward English reasoning in the later stages of training (detailed anal-
ysis can be seen in Appendix H)—and predominantly generates English CoT during inference—we
hypothesize that the model integrates multilingual thinking paths into a unified English-centric latent
space. Consequently, we expect it to rely on fewer non-English language tokens during reasoning.

To verify this, we adopt a logit lens–based analysis (Wang, 2025) to examine the token activations at
the decoding step on each layer. After excluding generic digits and punctuation, we use the langid2

toolkit to identify the language of each token and compute the number of distinct languages used per
layer. This analysis is performed on the mGRPO model based on Qwen2.5-7B-Instruct, evaluated on
the first 50 MGSM examples in three low-resource languages. The average results, shown in Figure6,
indicate that mGRPO consistently activates fewer language types compared to baselines—supporting
our hypothesis that multilingual thinking has been fused into an English-dominant latent space
that facilitates stronger reasoning capabilities in our method. So the reasoning path is almost
generated in English. We explore a simple test-time strategy (see Appendix I) that enables mGRPO
to achieve a significantly higher language accuracy with only a minor performance trade-off.

6 CONCLUSION

This work introduces mGRPO, a reinforcement learning framework that enhances reasoning in
LLMs by leveraging multilingual thinking. By generating polyglot reasoning paths and optimizing
accuracy- and format-aware rewards, mGRPO encourages models to internalize multilingual thinking
strategies. Our results demonstrate that mGRPO improves performance on four reasoning tasks
across 23 languages using both Qwen2.5 and Llama3 architectures. It achieves an average 7.5%
improvement over two base LLMs on MGSM, multilingual-version MATH500, and PolyMath-
low, while preserving generalization to non-mathematical domains. Analysis shows that the model
gradually shifts from multilingual to English reasoning during training, achieving better performance
than training solely in English. This suggests that multilingual thinking traces act as scaffolding for
stronger, language-agnostic reasoning capabilities. However, the model still tends to favor English
during reasoning, prompting us to introduce a simple test-time strategy to balance performance gains
with improved language consistency. This is a direction worth exploring in future research.

2https://github.com/saffsd/langid.py
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ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive information. All datasets used
in our experiments (training data from MAPO, test data from MGSM, MATH500, and its open-source
translations, PolyMath, and X-CSQA) are publicly available and intended solely to enhance and
evaluate LLM reasoning capabilities. We strictly adhere to ethical research practices and did not
perform any data collection that could raise privacy, safety, or fairness concerns. Our approach
improves reasoning by leveraging multilingual thinking generated by the models themselves, without
introducing risks of harmful applications. To the best of our knowledge, this research complies with
the ICLR ethical guidelines and presents no foreseeable ethical issues.

REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure the reproducibility of our work. Detailed dataset descrip-
tions can be found in Section 4.1 and Appendix B, while training configurations and hyper-parameters
are reported in Section 4.2 and Appendix C. As our method is implemented on the open-source VERL
framework, it can be clearly reproduced through our settings for multilingual thinking outputs and
reward functions from Section 3.1 and 3.2. Upon acceptance of this paper, we will release our models
along with the training and inference code to facilitate replication and further research.
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A LLM USAGE

In this section, we clarify the role of LLMs in this work. The model was used solely for language
polishing, including improving grammar, style, and readability, and did not contribute to the research
design, analysis, or conclusions.

B BENCHMARKS AND COVERED LANGUAGES

In this section, we provide the languages covered by the benchmarks used in our evaluation, as shown
in Table 4.

Table 4: Summary of benchmarks and their covered languages.
Dataset #Languages Languages

MGSM (Shi et al., 2023) 10 Chinese (ZH), French (FR), German (DE), Japanese (JA), Russian (RU), Spanish (ES) (HRL);
Bengali (BN), Swahili (SW), Telugu (TE), Thai (TH) (URL)

MATH500 (Lightman et al., 2023) 7 English (EN), Chinese (ZH), Japanese (JA), Telugu (TE), Swahili (SW), Italian (IT), Turkish (TR)
PolyMath (Wang et al., 2025) 18 English (EN), Chinese (ZH), Spanish (ES), Arabic (AR), French (FR), Bengali (BN), Portuguese (PT), Russian (RU),

Indonesian (ID), German (DE), Japanese (JA), Swahili (SW), Vietnamese (VI), Italian (IT), Telugu (TE), Korean (KO), Thai (TH), Malay (MS)
X-CSQA (Lin et al., 2021) 16 Arabic (AR), German (DE), English (EN), Spanish (ES), French (FR), Hindi (HI), Italian (IT), Japanese (JA),

Dutch (NL), Polish (PL), Portuguese (PT), Russian (RU), Swahili (SW), Urdu (UR), Vietnamese (VI), Chinese (ZH)
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For MATH500 benchmark, the ZH, JA, TE, and SW versions of MATH500 are
from https://huggingface.co/datasets/appier-ai-research; the IT and TR versions are from
https://huggingface.co/datasets/bezir/MATH-500-multilingual.

C BASELINES

We compare mGRPO with several strong baselines:

• The base model, Qwen2.5-7B-Instruct and Llama3-8B-Instruct, already demonstrates strong
performance on reasoning tasks, which serves as a solid reference point.

• xRFT (Yuan et al., 2023) is a rejection sampling–based fine-tuning approach. It uses CoT traces
generated by Qwen2.5-Math-7B-Instruct (Yang et al., 2024b), translated into multiple languages.
After filtering for correctness and translation quality, around 9.7k multilingual CoT samples are
retained. The model based on Qwen2.5-7B-Instruct is fine-tuned with a learning rate of 1e-5, batch
size 128, for 3 epochs. Based on Llama3-8B-Instruct, the learning rate is 9e-7, batch size 64, for 1
epochs.

• LIDR (Language Imbalance Driven Rewarding) (Yang et al., 2024c) leverages performance gaps
between dominant and underrepresented languages as implicit preference signals. LIDR applies
DPO training on constructed preference bilingual CoT pairs in 10 languages align to our training
data. Based on Qwen2.5-7B-Instruct and Llama3-8B-Instruct, we used 8.9K or 6.4k preference
pairs data to train the LIDR model, respectively. The learning rate is 9e-7, batch size is 64, and
epoch is 1 for both of them.

• MAPO (Multilingual-Alignment-as-Preference Optimization) (She et al., 2024) aligns reasoning
across languages using translation-based alignment scores. Following the original setup, we fine-
tune using DPO with a learning rate of 1e-6, batch size 128, up to 1,000 steps, and select the best
checkpoint based on validation loss.

D PER-LANGUAGE RESULTS

The per-language results on four benchmarks are shown in Table 5, Table 6, Table 7, Table 8, and
Table 9.

Table 5: The per-language results in MGSM benchmark.
MGSM AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

Qwen2.5-7B-Instruct
Base 67.2 75.7 48.8 89.2 73.6 74.8 79.2 78.8 80.0 68.0 73.6 36.4 68.0 17.2
xRFT 68.5 81.1 43.2 94.0 81.6 78.0 84.4 83.6 85.2 73.6 69.6 25.2 54.4 23.6
LIDR 69.6 79.1 50.3 90.0 79.6 76.8 82.8 82.4 82.4 70.4 76.4 39.2 69.6 16.0
MAPO 66.3 75.8 47.4 84.8 78.4 76.4 79.2 78.8 74.8 67.2 74.4 33.2 62.8 19.2
GRPO 73.0 81.1 56.6 90.4 82.8 80.0 83.6 83.2 82.4 74.4 77.6 40.8 72.0 36.0
mGRPO 75.9 84.4 58.7 94.0 86.0 83.2 88.8 86.4 84.8 77.2 81.2 42.8 74.8 36.0

Llama3-8B-Instruct
Base 52.2 57.3 37.7 79.6 59.6 60.8 63.6 59.2 57.6 43.2 48.4 26.0 41.2 35.2
xRFT 53.9 58.4 42.3 73.2 58.0 62.4 64.0 64.8 50.8 50.4 52.4 38.8 45.2 32.8
LIDR 55.5 58.5 45.1 79.6 66.4 62.4 61.6 61.2 52.8 46.4 56.4 43.6 35.2 45.2
MAPO 60.7 63.9 50.9 80.4 66.8 65.2 67.2 65.6 60.4 58.4 63.6 44.8 53.2 42.0
GRPO 64.6 68.8 54.2 80.8 72.0 72.4 72.4 70.0 64.4 61.6 62.8 48.4 57.6 48.0
mGRPO 68.1 72.3 58.3 82.0 74.8 75.2 80.0 74.8 65.6 63.6 63.2 51.2 64.8 54.0

E ABLATION STUDY

The details results of our ablation study is shown in Table 10.
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Table 6: The per-language results in MATH500 benchmark and its translation version in other 6
target languages.

MATH-500 AVG HRL URL EN IT JA TR ZH TE SW

Qwen2.5-7B-Instruct
Base 57.9 60.9 45.5 70.8 68.4 61.6 51.8 61.6 52.4 38.6
xRFT 53.1 59.0 31.3 73.4 63.0 59.0 54.0 59.8 32.8 29.8
LIDR 62.5 66.7 48.6 73.2 70.6 68.4 65.6 62.2 57.2 40.0
MAPO 61.2 64.6 46.9 76.2 68.4 63.0 58.6 68.4 54.6 39.2
GRPO 63.2 68.0 47.8 74.8 69.6 68.4 68.4 65.6 56.2 39.4
mGRPO 64.9 69.8 49.2 76.8 71.8 68.4 70.4 68.8 57.6 40.8

Llama3-8B-Instruct
Base 26.0 27.0 22.3 29.2 26.0 29.0 26.6 26.6 25.4 19.2
xRFT 23.4 24.5 19.0 27.4 26.2 26.4 20.6 25.0 21.2 16.8
LIDR 24.3 24.5 22.1 28.0 25.8 25.4 24.2 22.6 26.0 18.2
MAPO 25.3 25.6 21.9 30.4 28.0 26.4 24.2 24.0 24.6 19.2
GRPO 24.4 25.7 19.1 30.0 28.0 24.6 24.8 25.4 19.2 19.0
mGRPO 26.7 27.1 23.2 32.0 29.8 27.2 26.4 25.2 24.6 21.8

Table 7: The per-language results in four difficulty levels of PolyMath benchmark based on Qwen2.5-
7B-Instruct.

Model
PolyMath-Low

AVG EN ZH ES AR FR BN PT RU ID DE JA SW VI IT TE KO TH MS

Qwen2.5-7B-Instruct 74.65 89.6 79.2 87.2 80.0 84.0 66.4 80.8 83.2 81.6 76.0 68.8 14.4 79.2 83.2 36.8 74.4 73.6 79.2
xRFT 63.08 83.2 72.8 70.4 66.4 68.0 50.4 68.0 68.8 62.4 65.6 64.8 10.4 68.8 68.0 20.0 67.2 54.4 64.8
LIDR 76.43 89.6 84.8 84.8 80.8 86.4 66.4 80.0 84.0 83.2 80.8 75.2 17.6 80.0 81.6 38.4 76.8 76.8 81.6
MAPO 77.72 92.0 81.6 88.0 80.8 84.8 67.2 80.0 89.6 84.8 77.6 75.2 23.2 85.6 85.6 43.2 77.6 74.4 82.4
GRPO 79.69 92.0 84.0 86.4 87.2 82.4 71.2 85.6 88.0 87.2 80.8 75.2 32.8 83.2 87.2 44.8 81.6 76.0 82.4
mGRPO 81.48 94.4 83.2 88.8 87.2 86.4 76.0 88.0 87.2 85.6 82.4 78.4 36.0 85.6 88.8 44.8 80.0 80.8 84.0

Model
PolyMath-Medium

AVG EN ZH ES AR FR BN PT RU ID DE JA SW VI IT TE KO TH MS

Qwen2.5-7B-Instruct 24.00 26.4 20.0 24.8 21.6 29.6 25.6 23.2 27.2 26.4 27.2 20.8 14.4 24.8 26.4 20.8 25.6 18.4 23.2
xRFT 19.20 28.8 16.0 21.6 20.0 21.6 15.2 20.0 20.8 19.2 16.8 19.2 12.8 17.6 21.6 16.0 13.6 14.4 16.0
LIDR 25.05 28.0 20.0 28.8 26.4 27.2 23.2 27.2 26.4 27.2 24.0 22.4 18.4 26.4 29.6 16.8 25.6 28.0 25.6
MAPO 23.02 32.0 23.2 24.8 23.2 22.4 2.4 21.6 29.6 23.2 27.2 24.0 17.6 28.0 25.6 24.0 20.8 23.2 25.6
GRPO 23.88 26.4 23.2 26.4 24.0 22.4 18.4 25.6 28.8 24.8 24.0 22.4 17.6 26.4 27.2 18.4 24.0 21.6 20.0
mGRPO 25.97 29.6 31.2 26.4 31.2 24.8 22.4 28.0 26.4 24.0 25.6 23.2 21.6 23.2 27.2 20.0 26.4 22.4 20.8

Model
PolyMath-High

AVG EN ZH ES AR FR BN PT RU ID DE JA SW VI IT TE KO TH MS

Qwen2.5-7B-Instruct 9.05 8.8 7.2 9.6 8.8 6.4 10.4 10.4 10.4 9.6 14.4 5.6 3.2 12.8 10.4 6.4 8.8 10.4 8.8
xRFT 7.88 9.6 8.0 12.0 8.0 8.8 6.4 8.0 8.8 7.2 7.2 7.2 6.4 4.8 5.6 4.8 8.0 7.2 10.4
LIDR 10.03 9.6 11.2 10.4 9.6 10.4 8.8 11.2 11.2 8.0 13.6 8.0 6.4 12.0 6.4 7.2 11.2 12.0 10.4
MAPO 8.12 11.2 8.0 7.2 8.0 5.6 9.6 7.2 7.2 8.8 8.0 12.0 3.2 9.6 9.6 5.6 7.2 8.8 8.0
GRPO 8.68 8.0 8.0 8.0 8.0 9.6 8.0 8.8 12.0 8.8 9.6 8.0 7.2 8.8 11.2 6.4 9.6 9.6 9.6
mGRPO 10.03 8.8 9.6 12.0 10.4 12.0 8.8 9.6 10.4 12.0 10.4 11.2 5.6 9.6 13.6 6.4 8.8 8.0 10.4

Model
PolyMath-Top

AVG EN ZH ES AR FR BN PT RU ID DE JA SW VI IT TE KO TH MS

Qwen2.5-7B-Instruct 5.29 7.2 4.0 6.4 4.0 7.2 4.0 4.0 6.4 5.6 4.0 4.8 5.6 5.6 5.6 4.0 2.4 5.6 4.8
xRFT 7.94 5.6 6.4 5.6 8.8 4.8 11.2 7.2 7.2 5.6 10.4 9.6 14.4 6.4 5.6 12.0 9.6 3.2 5.6
LIDR 4.74 4.8 4.0 4.8 5.6 5.6 3.2 5.6 6.4 4.0 5.6 4.8 1.6 5.6 5.6 3.2 3.2 4.0 5.6
MAPO 6.09 5.6 5.6 4.8 6.4 8.0 5.6 5.6 7.2 6.4 10.4 4.8 2.4 6.4 4.8 3.2 5.6 4.8 8.0
GRPO 6.71 8.0 6.4 7.2 7.2 5.6 7.2 8.0 7.2 8.0 8.8 4.8 1.6 7.2 8.8 3.2 2.4 4.0 8.8
mGRPO 7.69 6.4 8.0 8.0 7.2 7.2 9.6 8.0 8.8 7.2 8.8 6.4 5.6 8.8 7.2 4.8 5.6 4.8 4.8
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Table 8: The per-language results in four difficulty levels of PolyMath benchmark based on Llama3-
8B-Instruct.

Model
PolyMath-Low

AVG EN ZH ES AR FR BN PT RU ID DE JA SW VI IT TE KO TH MS

Llama3-8B-Instruct 61.42 73.6 54.4 65.6 59.2 69.6 52.8 67.2 62.4 68.8 60.8 57.6 39.2 67.2 69.6 38.4 59.2 56.0 66.4
xRFT 51.26 65.6 42.4 56.0 53.6 52.0 40.0 54.4 62.4 53.6 53.6 45.6 36.0 51.2 63.2 34.4 48.8 52.0 46.4
LIDR 54.09 61.6 49.6 59.2 50.4 60.8 44.0 65.6 58.4 56.0 56.8 45.6 37.6 57.6 58.4 36.8 47.2 52.0 51.2
MAPO 59.69 72.8 58.4 68.8 57.6 56.8 52.0 69.6 61.6 62.4 64.8 52.0 39.2 60.0 67.2 41.6 59.2 59.2 56.0
GRPO 54.95 68.0 60.0 56.0 51.2 60.8 39.2 63.2 62.4 50.4 63.2 53.6 34.4 52.0 62.4 39.2 48.8 57.6 47.2
mGRPO 67.62 78.4 71.2 72.0 65.6 68.8 57.6 74.2 70.4 69.6 72.8 61.6 52.0 64.8 74.4 48.8 64.8 63.2 66.4

Model
PolyMath-Medium

AVG EN ZH ES AR FR BN PT RU ID DE JA SW VI IT TE KO TH MS

Llama3-8B-Instruct 4.49 8.0 3.2 6.4 5.6 2.4 2.4 4.8 5.6 5.6 4.0 6.4 2.4 1.6 4.0 4.8 7.2 6.4 6.4
xRFT 5.17 6.4 8.0 7.2 4.8 3.2 2.4 5.6 5.6 4.0 5.6 3.2 3.2 8.0 7.2 0.8 4.8 3.2 5.6
LIDR 4.98 7.2 7.2 4.0 4.8 5.6 1.6 7.2 3.2 2.4 7.2 6.4 4.0 4.0 9.6 3.2 5.6 3.2 4.0
MAPO 4.68 6.4 2.4 4.0 4.8 7.2 5.6 4.8 4.8 4.0 4.8 5.6 2.4 4.0 0.8 4.8 3.2 4.8 3.2
GRPO 5.11 8.0 2.4 7.2 5.6 6.4 2.4 6.4 2.4 8.0 4.8 3.2 3.2 6.4 4.8 4.0 4.0 3.2 3.2
mGRPO 5.54 9.6 4.0 8.8 4.8 4.0 4.0 6.4 4.0 5.6 7.2 4.0 4.0 5.6 6.4 6.4 5.6 4.0 4.8

Model
PolyMath-High

AVG EN ZH ES AR FR BN PT RU ID DE JA SW VI IT TE KO TH MS

Llama3-8B-Instruct 1.91 2.4 3.2 1.6 2.4 3.2 0.8 2.4 0.0 2.4 2.4 1.6 1.6 0.8 1.6 1.6 1.6 2.4 2.4
xRFT 2.34 3.2 1.6 1.6 3.2 3.2 1.6 1.6 1.6 1.6 4.0 3.2 1.6 2.4 4.0 2.4 1.6 2.4 3.2
LIDR 2.03 1.6 2.4 1.6 2.4 2.4 2.4 3.2 0.0 3.2 2.4 2.4 1.6 0.8 0.8 2.4 2.4 2.4 1.6
MAPO 1.78 2.4 0.8 3.2 1.6 1.6 2.4 2.4 0.8 2.4 1.6 0.8 1.6 1.6 3.2 1.6 0.8 1.6 0.8
GRPO 2.46 4.0 4.0 4.0 2.4 0.8 2.4 0.8 3.2 1.6 2.4 4.0 0.8 1.6 2.4 1.6 4.0 1.6 2.4
mGRPO 2.83 2.4 4.8 2.4 1.6 4.0 3.2 2.4 3.2 3.2 3.2 1.6 1.6 3.2 3.2 1.6 1.6 3.2 3.2

Model
PolyMath-Top

AVG EN ZH ES AR FR BN PT RU ID DE JA SW VI IT TE KO TH MS

Llama3-8B-Instruct 3.02 2.4 4.0 1.6 2.4 3.2 3.2 1.6 2.4 1.6 3.2 3.2 4.8 5.6 2.4 0.8 0.8 1.6 0.8
xRFT 1.85 0.8 2.4 1.6 1.6 2.4 0.8 2.4 2.4 1.6 3.2 0.8 0.8 3.2 0.8 3.2 3.2 2.4 1.6
LIDR 2.22 1.6 4.0 0.0 0.8 0.8 1.6 3.2 4.0 2.4 3.2 1.6 3.2 2.4 3.2 0.8 2.4 0.8 3.2
MAPO 2.89 4.8 3.2 3.2 1.6 4.0 1.6 2.4 2.4 4.0 1.6 1.6 4.0 3.2 3.2 0.8 4.0 2.4 1.6
GRPO 4.18 4.8 4.8 2.4 4.8 3.2 5.6 4.0 5.6 4.8 2.4 3.2 4.0 4.8 4.8 1.6 0.0 4.0 4.0
mGRPO 3.57 2.4 3.2 4.0 3.2 3.2 4.8 5.6 3.2 3.2 5.6 2.4 3.2 2.4 4.0 0.8 1.6 5.6 3.2

Table 9: The per-language results in X-CSQA benchmark.
Model AVG AR DE EN ES FR HI IT JA NL PL PT RU SW UR VI ZH

Qwen2.5-7B-Instruct
Base 54.3 53.0 56.0 77.1 62.9 59.3 43.2 59.5 50.6 58.0 53.8 63.6 52.9 25.5 36.3 56.0 60.6
xRFT 49.3 46.9 60.5 70.3 61.0 56.8 37.2 56.1 43.4 55.1 53.4 60.3 39.3 17.3 27.3 50.1 53.0
LIDR 53.2 53.3 58.1 75.1 60.5 57.0 40.7 54.6 52.5 54.1 55.1 56.0 54.1 26.3 36.2 57.3 60.0
MAPO 50.7 48.6 49.7 77.1 61.1 55.5 39.2 55.2 45.2 51.9 49.8 54.7 50.7 25.1 33.4 56.5 57.3
GRPO 57.1 56.4 62.4 75.5 64.1 62.1 46.1 62.5 57.1 59.8 60.8 62.6 58.2 28.3 37.8 60.1 59.8
mGRPO (Ours) 60.5 58.8 65.1 82.0 68.4 67.0 50.3 66.8 57.7 61.7 62.3 65.9 62.0 31.2 40.3 63.5 64.4
Llama3-8B-Instruct
Base 45.1 41.7 49.7 66.3 50.6 50.6 36.8 48.1 39.0 46.6 42.0 49.3 45.7 31.4 32.5 45.8 45.8
xRFT 48.2 46.2 51.8 67.7 54.9 53.3 40.7 50.4 42.2 49.7 46.4 52.8 50.4 33.1 35.2 48.3 47.3
LIDR 52.2 47.0 55.5 69.5 57.6 55.9 46.9 55.4 47.6 52.8 51.5 55.3 54.8 38.5 41.4 52.4 53.4
MAPO 43.9 42.4 48.9 62.3 48.1 44.7 37.5 46.6 39.0 47.0 42.1 48.8 42.7 27.8 33.2 46.0 45.2
GRPO 53.4 50.4 57.0 68.8 59.3 57.6 45.4 55.5 49.1 56.4 53.7 59.2 53.8 40.0 40.2 52.0 55.4
mGRPO (Ours) 53.6 50.9 57.6 70.9 60.2 58.2 47.0 57.1 50.1 55.0 52.1 57.1 54.1 39.1 42.1 54.5 52.3

Table 10: The results of Ablation Study on MGSM. Best in bold.
MGSM AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

Qwen2.5-7B-Instruct 67.2 75.7 48.8 89.2 73.6 74.8 79.2 78.8 80.0 68.0 73.6 36.4 68.0 17.2
GRPO 73.0 81.1 56.6 90.4 82.8 80.0 83.6 83.2 82.4 74.4 77.6 40.8 72.0 36.0
mGRPO 75.9 84.4 58.7 94.0 86.0 83.2 88.8 86.4 84.8 77.2 81.2 42.8 74.8 36.0

w/o format reward 71.7 79.7 55.4 88.4 78.8 79.6 83.6 82.0 79.2 75.2 80.8 41.2 66.0 33.6
w/o unconstrained response 75.6 84.4 58.0 92.8 84.0 81.6 86.8 85.6 85.6 82.8 81.2 43.2 74.4 33.2

only roll-out unconstrained response 70.4 78.2 54.7 86.4 79.2 77.2 80.4 80.4 76.4 75.6 79.6 43.6 64.4 31.2

Qwen2.5-3B-Instruct 52.4 63.1 30.4 76.4 64.4 66.4 65.6 62.4 64.0 56.0 56.0 14.4 40.4 10.8
GRPO 61.7 72.6 39.7 84.4 74.0 73.6 79.2 71.6 73.2 64.0 68.8 21.2 53.2 15.6
mGRPO 64.7 74.9 44.3 84.4 75.6 76.8 80.0 75.6 74.8 66.8 75.2 23.6 62.4 16.0

w/o format reward 61.6 71.3 42.1 82.0 76.4 69.2 73.2 73.6 70.8 64.4 65.2 23.2 60.0 20.0
w/o unconstrained response 59.3 69.2 38.8 81.6 73.2 72.0 71.2 70.0 69.6 59.2 64.0 22.4 54.4 14.4

only roll-out unconstrained response 64.9 76.0 42.7 86.8 78.8 77.6 79.6 78.4 76.0 65.6 70.8 21.6 57.6 20.8
Qwen2.5-1.5B-Instruct 26.1 31.5 14.1 41.2 24.4 29.6 34.4 35.2 40.0 25.6 29.2 6.4 17.6 3.2
GRPO 47.2 58.9 23.5 72.0 63.6 60.0 62.0 62.8 58.4 46.4 47.2 8.8 32.0 6.0
mGRPO 51.0 62.5 26.9 78.4 61.6 65.6 66.8 66.0 65.6 49.6 53.6 12.8 34.0 7.2

w/o format reward 14.0 16.9 7.5 23.2 17.2 15.2 15.2 16.4 24.0 13.2 12.4 4.8 8.0 4.8
w/o unconstrained response 47.5 57.7 25.1 76.0 58.4 58.8 64.8 60.8 56.4 46.8 50.0 11.6 28.4 10.4

only roll-out unconstrained response 47.9 59.7 23.7 73.6 59.2 62.0 64.0 62.4 62.0 48.4 47.6 10.4 29.2 7.6
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F THE NUMBER OF LANGUAGE SETS

To assess the effect of language diversity, we expand it to 15 by adding Arabic (AR), Korean (KO),
Portuguese (PT), Telugu (TE), and Vietnamese (VI). We also evaluate reduced settings by randomly
selecting 5 languages from the original set, repeating this process three times to assess stability. All
experiments are conducted on Qwen2.5-1.5B-Instruct and evaluated on MGSM. Results are shown in
Table 11, the 15-language setup slightly hurts overall performance. Reducing to 5 languages leads
to further degradation and high variance depending on language selection. These findings indicate
that the original 10-language configuration offers a good trade-off between diversity and stability of
language sets.

Table 11: Effects of different number of language sets on MGSM with Qwen2.5-1.5B-Instruct.
MGSM AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

Qwen2.5-1.5B-Instruct 26.1 31.5 14.1 41.2 24.4 29.6 34.4 35.2 40.0 25.6 29.2 6.4 17.6 3.2
mGRPO 51.0 62.5 26.9 78.4 61.6 65.6 66.8 66.0 65.6 49.6 53.6 12.8 34.0 7.2

lang_num=15 48.7 60.5 24.7 73.2 59.6 64.0 64.4 64.0 64.4 46.8 54.0 9.6 28.4 6.8
lang_num=5, (DE, EN, ES, RU, SW) 47.6 59.0 24.8 70.0 59.2 62.0 61.6 58.4 63.2 49.6 50.0 8.4 33.6 7.2
lang_num=5, (ES, FR, SW, TH, ZH) 44.0 54.2 22.6 68.4 56.0 55.2 58.4 57.2 54.8 43.6 44.8 10.4 29.6 5.6
lang_num=5, (ES, FR, RU, SW, ZH) 15.6 20.1 6.6 25.2 18.0 20.8 16.0 17.6 30.4 17.6 10.0 2.4 7.6 6.4

G ROLL-OUT NUMBER

We also study the effect of varying the roll-out number n ∈ {4, 8, 10, 16} in 1.5B model, and results
shown in the top of Table 12. The best performance is observed with n = 4. Increasing n to 8 already
causes a noticeable drop in performance then ours. With n = 10, training becomes unstable due to
overexposure to low-resource languages, and we observe a significant amount of garbled text in the
model’s outputs during later training stages. At n = 16, duplicate sampling mitigates some instability.
To test whether n = 4 generalizes to other model sizes, we also evaluate n = 4 on the 3B and 7B
models in the Table 12 and lower than n = 5.

Table 12: Performance comparison when using different roll-out number (n) in our mGRPO based on
three Qwen2.5-Instruct models.

MGSM AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

Qwen2.5-1.5B-Instruct 26.1 31.5 14.1 41.2 24.4 29.6 34.4 35.2 40.0 25.6 29.2 6.4 17.6 3.2

n=4 52.0 62.3 29.3 80.8 60.8 64.8 68.0 60.8 67.2 52.4 56.4 16.0 35.6 9.2
n=5 51.0 62.5 26.9 78.4 61.6 65.6 66.8 66.0 65.6 49.6 53.6 12.8 34.0 7.2
n=8 48.3 59.3 24.8 76.8 60.8 60.4 62.4 62.0 63.2 46.8 47.6 9.2 34.0 8.4
n=10 15.2 19.1 8.5 18.8 17.6 17.2 18.8 20.4 25.2 15.6 16.0 5.2 7.6 5.2
n=16 39.9 49.9 19.3 62.4 48.4 53.2 50.8 53.6 50.8 42.8 38.0 8.4 23.6 7.2

Qwen2.5-3B-Instruct AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

n=5 64.7 74.9 44.3 84.4 75.6 76.8 80.0 75.6 74.8 66.8 75.2 23.6 62.4 16.0
n=4 59.4 69.5 38.8 81.2 75.6 72.0 70.4 70.8 68.0 60.4 67.2 19.6 54.0 14.4

Qwen2.5-7B-Instruct AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

n=5 75.9 84.4 58.7 94.0 86.0 83.2 88.8 86.4 84.8 77.2 81.2 42.8 74.8 36.0
n=4 73.5 82.1 56.3 90.8 84.0 81.2 85.6 83.6 80.4 78.0 79.2 39.2 72.0 34.8

H MULTILINGUAL THINKING DURING TRAINING

To investigate how the model adheres to "multilingual thinking" prompts during training, we track
language consistency ("0" or "1" score) throughout the training process. In the unconstrained setting,
we set the language consistency to "1" by default. In preliminary experiments with mGRPO, we
observed that in later epochs, the model gradually shifts toward generating English-only reason-
ing—effectively converging to a behavior similar to GRPO. To closely examine this transition and its
impact on performance, we extended training from the originally planned 5 epochs to 10 epochs (700
steps total), using the Qwen2.5-7B-Instruct model as the base.
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H.1 LANGUAGE CONSISTENCY OF PRGM

As shown in Figure 7, GRPO exhibits dominance of English output: while a small amount of non-
English (e.g., Chinese, German, Swahili) responses appear initially, the model quickly converges to
English-only reasoning. During training, mGRPO exhibits a gradual decline in language consistency
from an initially high level, allowing ample room for optimization through multilingual thinking.
By epoch 5, the model shifts to generating reasoning almost exclusively in English, indicating a
multilingual induction phase followed by a stable, English-dominant regime.
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Figure 7: The language consistency of GRPO and mGRPO during training process based on Qwen2.5-
7B-Instruct model with 10 epochs (700 steps total).

Under the unconstrained setting, the model initially generates mixed-language responses (e.g.,
47.18% English, 42.17% Chinese in epoch 1), rapidly shifting to English-dominant output by epoch
2 (82.70%) and near-exclusively English thereafter. A fine-grained analysis on Thai and Bengali
(Table 13) reveals similar dynamics: the base model exhibits multilingual thinking (e.g., Chinese/Thai
for Thai questions; English/Chinese for Bengali) and code-switching, while mGRPO transitions from
multilingual (base and epoch 1) to stable English-only reasoning. It shows a consolidation process of
multilingual exploration into a unified, English-centric reasoning strategy.

Table 13: The response languages for TH and BN on training data with unconstrained-languages
prompt.

MGSM TH BN
response languages response languages

Qwen2.5-7B-Instruct zh: 59.18% th: 40.82% en: 90.01% zh: 8.39% bn: 1.6%
mGRPO epoch=1 zh: 82.38% en: 17.20% zh: 67.73% en: 31.90%

epoch=2 zh: 28.13% en: 71.81% zh: 2.71% en: 96.87%
epoch=3 en: 99.70% en: 99.82%
epoch=4 en: 99.76% en: 99.88%
epoch=5 en: 99.76% en: 99.70%
epoch=6 en: 99.64% en: 99.94%
epoch=7 en: 99.76% en: 99.82%
epoch=8 en: 99.68% en: 99.82%
epoch=9 en: 99.94% en: 100.00%

epoch=10 en: 99.82% en: 99.88%

Indeed, our evaluation is conducted under unconstrained-language prompts. Although the dominant
reasoning language is English, code-switching still occurs in the final responses, e.g., inserting terms
or entity from question-language. This demonstrates that, even when outputting primarily in
English, mGRPO retains and leverages a flexible multilingual thinking space at test time.

H.2 PERFORMANCE TREND WITH 10 EPOCHS

Figure 8 illustrates the performance evolution on the MGSM benchmark. GRPO reaches near-peak
accuracy after just one epoch and quickly plateaus. For mGRPO, performance on HRL (High-
Resource Languages) rises sharply in the first epoch and maintains strong growth thereafter. On URL
(Under-resourced Languages), mGRPO exhibits a growth trend similar to GRPO during the first
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three epochs; however, it continues to improve up to epoch 5, while GRPO has already saturated and
struggles to gain further. Notably, even though the training dynamics of mGRPO gradually converge
to those of GRPO after epoch 5 (e.g., predominantly English-based reasoning), its performance
advantage persists. It indicates that multilingual thinking in early training establishes a stronger
foundation and effectively enhances the model’s reasoning capability. This aligns perfectly with
our motivation.
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Figure 8: The performance of GRPO and mGRPO in MGSM benchmark with 10 epochs checkpoints
trained based on Qwen2.5-7B-Instruct model.

H.3 EXPLAINING PERFORMANCE DYNAMICS FROM THE PERSPECTIVE OF ENTROPY

We further analyze training dynamics via the entropy of the policy distribution over actions (token-
level decisions). As shown in Figure 9, mGRPO starts with significantly higher entropy than GRPO,
reflecting greater stochasticity and exploration—likely attributable to the diverse multilingual thinking
trajectories. Over time, the entropy of mGRPO steadily decreases and stabilizes at a level lower than
that of GRPO, indicating its policy becomes more confident and achieves optimal overall performance.
The subsequent convergence of entropy to a level similar to GRPO is also intuitive, as mGRPO
increasingly relies on English for reasoning in later stages, aligning its training dynamics with those
of GRPO.
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Figure 9: The entropy of GRPO and mGRPO during training process based on Qwen2.5-7B-Instruct
model with 10 epochs (700 steps total).

H.4 CONCLUSION

Therefore, compared to GRPO, mGRPO introduces a beneficial inductive bias via multilingual
thinking:

• It fosters broader exploration in early training (higher entropy), leading to richer policy
learning;

• It achieves superior final performance, particularly in cross-lingual generalization (evident
in HRL and URL subsets);

• Despite eventual convergence toward English-dominated reasoning—a likely artifact of data
imbalance or tokenization bias—the intermediate multilingual thinking phase plays a critical
role in guiding optimization toward a better basin.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

This supports our hypothesis: explicitly encouraging multilingual internal thinking—even if tran-
sient—enhances the model’s capacity to learn robust, generalizable multilingual policies.

Future Work This work represents only a preliminary exploration of multilingual thinking, with
future exploration needed on richer multilingual signals—e.g., cross-lingual logical consistency and
language-specific reasoning traits.

I HOW TO GENERATE A RESPONSE LANGUAGE CONSISTENT WITH THE QUERY
LANGUAGE?

Our method focuses on enhancing reasoning capabilities through multilingual thinking, which has
shown promising results on both mathematical and commonsense reasoning benchmarks. However,
the reasoning process itself predominantly converges toward English, even when the questions are in
other languages. This reliance on English limits the direct applicability of the model in user-facing
multilingual scenarios.

We explore a simple test-time strategy that enables mGRPO to achieve a significantly higher
language accuracy with only a minor performance trade-off. We experiment with prepending
language-specific prefixes (e.g., “Okay,” for English, “D’accord,” for French, “Sawa,” for Swahili)
after the input to guide the model reason in user language. The user language is identified with langid
Tool. Besides accuracy, we add a language consistency score to measure whether the generated
reasoning matches the query language. The results in MGSM is shown in Table 14. With these prefix,
mGRPO obtain 100% language consistency in 10 languages expect low-resource Swahili, while still
outperforming GRPO.

Table 14: The results of Accuracy and Language Consistency on MGSM with language control by
language-specific prefix during inference.

Model
Accuracy

AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

Qwen2.5-7B-Instruct 67.2 75.7 48.8 89.2 73.6 74.8 79.2 78.8 80.0 68.0 73.6 36.4 68.0 17.2
w/ prefix 66.8 76.5 46.4 90.0 75.2 74.8 81.2 79.6 80.8 67.2 74.4 33.6 61.2 16.4

GRPO 73.0 81.1 56.6 90.4 82.8 80.0 83.6 83.2 82.4 74.4 77.6 40.8 72.0 36.0
w/ prefix 72.4 82.4 52.7 91.6 83.6 78.8 86.4 85.2 85.2 75.2 80.4 35.2 70.8 24.4

mGRPO 75.9 84.4 58.7 94.0 86.0 83.2 88.8 86.4 84.8 77.2 81.2 42.8 74.8 36.0
w/ prefix 74.3 83.7 55.7 92.4 83.6 83.2 88.0 85.2 85.2 76.8 79.2 38.4 70.8 34.4

Model
Language Consistency

AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

Qwen2.5-7B-Instruct 68.4 92.6 24.3 100.0 80.0 94.8 98.0 95.2 100.0 87.6 38.8 16.0 2.4 40.0
w/ prefix 99.7 99.9 99.6 99.6 100.0 100.0 100.0 99.2 100.0 100.0 99.2 99.6 99.6 100.0

GRPO 17.8 14.4 2.3 100.0 1.6 3.2 1.6 0.4 74.4 5.2 1.2 0.4 1.2 6.4
w/ prefix 99.7 99.9 99.4 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6 98.0

mGRPO 9.6 0.2 1.1 99.6 0.0 0.4 0.0 0.0 0.4 0.4 0.4 2.4 0.0 1.6
w/ prefix 99.1 100.0 97.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 89.6

To enable the model to perform reasoning in the input language, we also attempt a new version of
mGRPO, named mGRPOlang. This version introduces two main modifications: first, all prompts
in the PRGM module are constrained response-language; second, a language consistency reward
is added to the reward module as a language control signal, as mentioned in GRPO (DeepSeek-AI
et al., 2025). We use the FastText (Joulin et al., 2016; Grave et al., 2018) to detect the language of the
generated reasoning. When the generated language matches the prompt language, the reward is set
to 1; otherwise, it is 0. We train mGRPOlang on the Qwen2.5-7B-Instruct model, keeping all other
training parameters the same as before. Evaluation is conducted mainly on the MGSM dataset, with
both unconstrained and language-constrained prompts. The results, shown in the Table 15, although
mGRPOlang achieves better language consistency across most languages, it experiments a drop in
accuracy, especially in low-resource languages.

We present only a preliminary investigation into the language consistency reward, which requires
careful design. In particular, both the magnitude and the granularity (e.g., token- vs. sequence-
level) of the reward may significantly influence the model’s attention to linguistic alignment. For
instance, DeepSeek-AI et al. (2025) define the reward as the proportion of tokens conforming to
the target language at the token level. Magistral (Rastogi et al., 2025) achieves notable gains in
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Table 15: The results of Accuracy on MGSM and the Language Consistency between query and
response languages.

Model
Accuracy

AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

Qwen2.5-7B-Instruct 67.2 75.7 48.8 89.2 73.6 74.8 79.2 78.8 80.0 68.0 73.6 36.4 68.0 17.2
mGRPO 75.9 84.4 58.7 94.0 86.0 83.2 88.8 86.4 84.8 77.2 81.2 42.8 74.8 36.0
mGRPOlang w/ unconstrained prompt 74.4 83.4 56.0 93.6 86.8 81.2 88.4 85.2 85.6 73.2 79.6 44.8 72.8 26.8
mGRPOlang w/ language-constrained prompt 66.0 78.1 42.3 87.6 78.8 78.0 80.8 81.2 76.0 74.0 77.2 12.8 61.6 17.6

Model
Language Consistency

AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

Qwen2.5-7B-Instruct 68.4 92.6 24.3 100.0 80.0 94.8 98.0 95.2 100.0 87.6 38.8 16.0 2.4 40.0
xRFT 95.8 99.4 89.4 100.0 99.6 100.0 99.6 98.0 100.0 99.2 95.2 96.8 74.4 91.2
LIDR 52.3 69.1 15.2 100.0 27.6 72.8 98.0 80.4 98.8 37.2 11.2 1.1 0.8 47.6
MAPO 67.4 89.7 25.8 100.0 76.4 97.2 100.0 87.6 100.0 77.2 12.0 50.8 1.6 38.8
GRPO 17.8 14.4 2.3 100.0 1.6 3.2 1.6 0.4 74.4 5.2 1.2 0.4 1.2 6.4
mGRPO 9.6 0.2 1.1 99.6 0.0 0.4 0.0 0.0 0.4 0.4 0.4 2.4 0.0 1.6
mGRPOlang w/ unconstrained prompt 52.3 58.4 31.1 100 57.6 66.8 56.4 28.4 98.8 42.4 99.6 0.4 1.6 22.8
mGRPOlang w/ language-constrained prompt 99.1 100.0 97.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 89.6

language consistency—and with minimal performance degradation—by employing a small amount
of multilingual data together with a language consistency reward.

Future Work The language consistency reward likely requires more fine-grained design—for
instance, ensuring that linguistic consistency does not come at the cost of semantic meaningfulness.
Moreover, from an interpretability perspective, one could further investigate how language consistency
shapes internal representations and reasoning pathways, thereby informing the design of more targeted
reward schemes or training curricula.

J THE PERFORMANCE ON BASE LLM

Since LIDR and MAPO are evaluated on Instruct models, our main experiments use Instruct models
as well. We also experimented on Qwen2.5-7B base models. However, we observed that base models
indeed lack strong instruction-following capabilities, often leading to undesirable continuation
behaviors, such as generating additional samples (e.g., "### Instruction:" right after "#### final
answer").

Table 16: The results in MGSM benchmark based on two base LLM, Qwen2.5-7B and Qwen3-8B.
Model AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

Qwen2.5-7B
Base 51.45 65.27 25.00 74.40 64.0 63.2 68.8 69.2 73.2 53.2 38.8 13.2 38.8 9.2
LIDR 61.67 70.33 41.90 88.80 67.6 68.4 69.6 72.4 79.2 64.8 68.0 24.0 55.6 20.0
MAPO 61.85 72.20 40.30 86.00 68.0 71.6 79.6 76.4 75.6 62.0 65.2 24.8 51.6 19.6
GRPO 70.98 78.67 54.60 90.40 80.4 79.6 80.8 81.2 80.4 69.6 77.6 39.6 65.2 36.0
mGRPO 74.76 82.53 58.80 92.00 82.0 82.8 85.6 87.2 84.4 73.2 83.6 42.8 70.8 38.0
mGRPO w/ R1-format 76.07 83.80 61.30 88.80 82.8 83.2 83.6 86.0 88.0 79.2 84.8 46.8 75.6 38.0
Qwen3-8B
Base 81.45 84.93 73.20 93.60 84.4 82.0 86.8 88.0 85.2 83.2 84.4 72.8 80.0 55.6
mGRPO w/ R1-format 87.27 90.47 80.00 97.20 91.2 90.8 92.4 94.4 88.4 85.6 90.8 79.2 88.8 61.2

To address this, we introduced a penalty term in mGRPO’s format reward: if the model generates such
continuations, we subtract 0.5 from the original format reward. For LIDR and MAPO, we directly
removed the continuation content during preference data preparation. The experimental results are
shown in the top part of Table 16. mGRPO also obtain the SOTA score in MGSM benchmark trained
on the base LLM.

We also conducted mGRPO training on newest Qwen3-8B, directly adopting the R1 format used in
its original training. The R1 format is to places the reasoning process within "<think>...<\think>"
tags and sets the output format to "\boxed{final answer}". The model trained with R1 format is
named mGRPO w/ R1 format. The results are shown in bottom of Table 16 and represents that
mGRPO is suited for R1 format output and even obtain better performance; and for stronger base
LLM, Qwen3-8B, mGRPO also could obtain improvement of performance.
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K EXTENDING MULTILINGUAL THINKING TO GSPO

Since our method primarily modifies the rollout procedure of GRPO—i.e., sampling reasoning traces
in multiple languages—it can be readily adapted to GRPO variants such as DAPO (Yu et al., 2025)
and GSPO (Zheng et al., 2025). Notably, GSPO elevates the optimization unit in reinforcement
learning from the token level to the entire sequence level. Specifically, it replaces the per-token

importance ratio πi,t
θ

πi,t
θref

with a sequence-level ratio, normalized by sequence length:

si(θ) =

(
πi
θ(oi | pi, q)

πi
θref

(oi | pi, q)

) 1
|oi|

= exp

 1

|oi|

|oi|∑
t=1

log
πi,t(oi,t | pi, q, oi,<t)

πi,t
θref

(oi,t | pi, q, oi,<t)

 (6)

Additionally, GSPO discards the KL-divergence penalty term used in GRPO. Consequently, the
mGSPO objective simplifies to:

LmGSPO(θ) =E(q,a)∼D,{oi}n
i=1∼πθref (oi|pi,q)

n
i=1[

1

n

n∑
i=1

{
min

[
si(θ)Âi, clip

(
si(θ), 1− ϵ, 1 + ϵ

)
Âi

]}]
(7)

We implement both GSPO and mGSPO based on Qwen2.5-7B-Instruct, using identical data, hyper-
parameters, and evaluation protocols as in prior experiments. Results on the MGSM benchmark
(Table 17) show that: GSPO underperforms GRPO-based methods—likely due to its sequence-level
credit assignment being suboptimal for multi-step reasoning. Nevertheless, mGSPO outperforms
GSPO by +6.6% and GRPO by +1.3% in average accuracy, confirming that multilingual thinking
consistently enhances reasoning capability—even under different RL optimization granularities.

This further validates the robustness and transferability of multilingual thinking as a general inductive
bias mentioned in Appendix H.

Table 17: The results in MGSM benchmark based on GSPO and mGSPO.
MGSM AVG HRL URL EN DE FR ES RU ZH JA TH TE BN SW

Qwen2.5-7B-Instruct
Base 67.2 75.7 48.8 89.2 73.6 74.8 79.2 78.8 80.0 68.0 73.6 36.4 68.0 17.2
xRFT 68.5 81.1 43.2 94.0 81.6 78.0 84.4 83.6 85.2 73.6 69.6 25.2 54.4 23.6
LIDR 69.6 79.1 50.3 90.0 79.6 76.8 82.8 82.4 82.4 70.4 76.4 39.2 69.6 16.0
MAPO 66.3 75.8 47.4 84.8 78.4 76.4 79.2 78.8 74.8 67.2 74.4 33.2 62.8 19.2
GRPO 73.0 81.1 56.6 90.4 82.8 80.0 83.6 83.2 82.4 74.4 77.6 40.8 72.0 36.0
mGRPO 75.9 84.4 58.7 94.0 86.0 83.2 88.8 86.4 84.8 77.2 81.2 42.8 74.8 36.0
GSPO 67.7 76.8 49.5 85.6 76.8 73.2 81.2 78.8 80.0 70.8 74.0 30.0 65.6 28.4
mGSPO 74.3 83.9 55.5 92.4 84.4 84.0 84.8 88.4 85.2 76.4 76.4 42.0 69.6 34.0
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