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Abstract
Much of modern science relies on public001
datasets to develop research ideas. Finding a002
dataset for a given task can be difficult, partic-003
ularly for new researchers. We aim to improve004
the process of dataset discovery by introduc-005
ing a system called DatasetFinder which rec-006
ommends relevant datasets given a short nat-007
ural language description of a research idea.008
For the new task of dataset recommendation,009
we construct an English-language dataset that010
leverages existing annotations and compare011
several ranking models on this dataset. We012
also compare our proposed models against ex-013
isting commercial search engines and find evi-014
dence that leveraging natural language descrip-015
tions improves search relevance. To encourage016
development on this new task, we release our017
constructed dataset and models to the public.1018

1 Introduction019

“Data is food for AI.” (Ng, 2021)020

021

Innovation in modern artificial intelligence (AI)022

research depends on the dual workhorses of meth-023

ods and data. The revolution of neural network024

models in computer vision (Krizhevsky et al., 2012)025

was enabled by the ImageNet Large Scale Visual026

Recognition Challenge (Deng et al., 2009). Simi-027

larly, data-driven models for syntactic parsing saw028

rapid development after adopting the Penn Tree-029

bank (Marcus et al., 1993; Palmer and Xue, 2010).030

In research using machine learning, the data col-031

lection stage of the scientific process (Crawford032

and Stucki, 1990) involves selecting a benchmark033

dataset. There are hundreds of datasets published034

every year in AI (shown in Figure 1) and knowing035

which datasets to use for a given research idea can036

be difficult (Paullada et al., 2021). This problem is037

greater for new researchers who are not intimately038

familiar with a subfield.039
1Code and data: https://anonymous.4open.science/r/

dataset-recommendation-75D1/
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Figure 1: # of AI datasets released each year from 1990
to 2021, according to Papers with Code2
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Figure 2: Usage counts of datasets in our training set
show a long tail of rarely-used datasets. The rank and
frequency for some example datasets are marked.

Consequently, researchers in AI typically focus 040

their efforts on a small number of datasets they 041

are already familiar with. The awareness of high- 042

quality data for a task leads to an increase in pub- 043

lished research on the task, which in turn raises 044

awareness even further for that dataset. For illus- 045

tration, for a large set of 17.5K papers obtained 046

from the S2ORC corpus (Lo et al., 2020) (method- 047

ology details given in Section 2.4.2), we plot the 048

frequency of datasets used in Figure 2. The dataset 049

counts appear to follow a Zipfian distribution (New- 050

man, 2004), with the vast majority of datasets oc- 051

curring in the tail of the distribution. This “rich get 052

richer” effect has the result of narrowing the scope 053

of methodological development to methods that are 054

applicable to these datasets. 055

In this paper, we consider that the scientific 056
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method may be improved in AI research if re-057

searchers could more easily find datasets for a058

given research question. Our goal is to recommend059

datasets by relevance rather than popularity.060

Taking a step towards this goal, we introduce061

the task of “dataset recommendation": given a062

short description of an AI research idea, recom-063

mend datasets for building or testing such an idea.064

We show a concrete example in Figure 3. We in-065

troduce a strong baseline system, which we call066

DatasetFinder, as a step towards solving this task.067

Dataset search has been studied extensively068

(Chapman et al., 2019) and dataset recommenda-069

tion has been studied using either a set of relevant070

papers (Altaf et al., 2019) or an initial set of known071

relevant datasets (Ben Ellefi et al., 2016) as input.072

This is the first attempt at a natural language inter-073

face for dataset recommendation.074

To operationalize this task, we first build a075

dataset to measure how well we can recommend076

datasets for a given description. As a proxy for077

natural method descriptions, we leverage segments078

from paper abstracts to describe a researcher’s in-079

formation need. We then identify the exact datasets080

used in a given paper, either through heuristic081

matching (for our large training set) or by using082

existing human annotations (for our small test set).083

We then frame this task as a retrieval problem084

(Manning et al., 2005), by treating the system de-085

scription as a query and the set of known datasets086

as a search corpus. We use standard ranking met-087

rics such as mean reciprocal rank (Radev et al.,088

2002) to measure performance and also measure089

how well we can recommend datasets that are rare090

but relevant to a user.091

For this ranking problem, we consider several ap-092

proaches: BM25 (Robertson and Zaragoza, 2009),093

nearest neighbor retrieval and dense retrieval with094

neural bi-encoder (Karpukhin et al., 2020). Com-095

pared with the currently available keyword-centric096

dataset search engines, we find that our approach097

that leverages natural language description is far098

more effective at finding relevant datasets. We also099

show that our baseline leaves significant room for100

improvement, which we believe makes this an ap-101

pealing task for the research community.102

2 Task and Dataset103

2.1 Task104

We establish a new task for automatically recom-105

mending relevant datasets for a description of an106

“We present a scalable approach 
for semi-supervised learning on 

graph-structured data”

Citeseer Cora NELL PubMed

Figure 3: Example research idea with relevant datasets

AI system. Given a natural language method de- 107

scription q and a set of datasets D, retrieve the most 108

relevant subset R ⊂ D one could use to test the 109

idea described in q. Figure 3 illustrates this with 110

a real example which has been condensed for clar- 111

ity. The query is a brief summary of a paper by 112

Kipf and Welling (2017) and the relevant datasets 113

shown are the actual datasets used in their study. 114

We leverage this data to illustrate patterns in how 115

the AI research community uses datasets. 116

In contrast to prior work, our input is a method 117

description described briefly in natural language. 118

We hypothesize that by defining the query as a 119

textual description, the system is more user-friendly 120

and will lead to better search results, compared to 121

using a small set of keywords. In Section 5.1, we 122

offer evidence to support this hypothesis. 123

To support this task, we construct a dataset con- 124

sisting of (q,R) pairs extracted from published 125

English-language scientific proceedings. Each 126

query q in our dataset is a simulated method de- 127

scription constructed from published scientific ab- 128

stracts and R is the set of relevant datasets used 129

by the authors. We describe an automatic method 130

for creating this data, summarized in Figure 4. For 131

our test set, we leverage a small human-annotated 132

dataset to maintain high data quality. To obtain 133

enough training data for modern deep retrieval 134

models, we generate training data from unlabeled 135

papers, using information in the body of each pa- 136

per for supervision. We release our data under a 137

permissive Apache 2.0 License. 138

2.2 Search Corpus 139

Our first step in approaching this as a search prob- 140

lem is to construct a collection of datasets. We 141

search against the full set of datasets listed on “Pa- 142

pers with Code”,3 a large public index of papers, 143

which includes metadata for over 5000 datasets 144

and benchmarks.4 For most datasets, Papers with 145

3www.paperswithcode.com
4Not all items in our search corpus are datasets, strictly

speaking. For example, the MuJoCo simulator is not a dataset
but is widely used as a benchmark in reinforcement learning
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Figure 4: Architecture of the DatasetFinder system.
“Qry” denotes “query”.

Code stores a short human-written description and146

a list of different names used to refer to the dataset147

(known as “variants”). Many datasets are also148

tagged with the paper that introduced that dataset.149

We store this data for later processing.150

2.3 Test Set Construction151

2.3.1 Raw Data152

Our test set is generated from a human-annotated153

set of AI papers, SciREX (Jain et al., 2020).154

SciREX is a dataset of 438 full-text papers from ma-155

jor AI venues whose intended use was document-156

level information extraction.157

2.3.2 Queries158

To construct simulated method descriptions from159

published papers, we extract the abstract from the160

paper then automatically summarize the abstract.161

We summarize each paper’s abstract using the162

TLDR system (Cachola et al., 2020). TLDR can163

generate very brief summaries of scientific docu-164

ments. Given a scientific abstract, this model trains165

BART (Lewis et al., 2020) to generate both a short166

human-generated summary and a paper title.5 We167

use the generated summaries of scientific abstracts168

as “method descriptions” to simulate queries for169

our retrieval system. Examples of generated TL-170

DRs are shown in the “Ideas” in Figure 9.171

Many of these queries did not describe the in-172

tended experiment sufficient clarity to recommend173

a dataset. Consider the example “We equip CNNs174

research (Todorov et al., 2012)
5We use a maximum word length of 90 and BART length

penalty parameter of 1.5 to generate detailed summaries.

with a more principled pooling strategy, ‘spatial 175

pyramid pooling’, to eliminate the above require- 176

ment”. This query suggests a general methodologi- 177

cal contribution, that could apply to almost any AI 178

task, though the true label here was “Pascal VOC 179

2007” (Everingham et al., 2009). Our annotator6 180

manually reviewed the generated natural language 181

method descriptions in our test set. For any cases 182

that were sufficiently ambigiuous that a trained an- 183

notator could not make an educated guess of the 184

datasets used in the paper, we removed that exam- 185

ple from our test set.7 186

For 17 instances in our test set, the generated 187

TLDR explicitly mentioned one of the paper’s rel- 188

evant datasets. In these cases, we masked out the 189

spans containing the dataset name with the token 190

[DATASET], to avoid label leakage. 191

2.3.3 Relevant Datasets 192

For each paper, SciREX contains annotations 193

for mentions of all “salient" datasets, defined as 194

datasets that “take part in the results of the article” 195

(Jain et al., 2020). For each salient dataset in a pa- 196

per, spans of all mentions of that dataset throughout 197

the paper are provided. To link these annotations 198

with the datasets in our search corpus, we first col- 199

lect the set of mention strings used to refer to each 200

dataset in a paper. We then check if any of these 201

mention names matches one of the dataset variants 202

from Papers with Code. Finally, each match was 203

manually inspected (and corrected, if necessary) by 204

the same annotator to ensure accurate linking. 205

2.4 Training Set Construction 206

2.4.1 Raw Data and Queries 207

We generate training data by automatically tagging 208

full-text papers from S2ORC (Lo et al., 2020), a 209

corpus of scientific papers. We use TLDR to sum- 210

marize each abstract, to extract a short “query”, in 211

the same manner as we do for the test set (§2.3). 212

2.4.2 Relevant Datasets 213

Our training set is automatically labeled using the 214

body text corresponding to a given abstract. We 215

apply a rule-based procedure to identify the dataset 216

used in a given paper. For each paper, we tag all 217

datasets that satisfy two conditions: the paper must 218

6The annotator was one of the authors of this paper, a
graduate student studying natural language processing with
previous experience in vision, robotics, and ML research.

7Out of 402 SciREX-based method descriptions, we dis-
carded 78 descriptions due to excessive ambiguity.
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cite the paper that introduces the dataset, and the219

paper must mention the dataset by name twice.8220

This tagging procedure is restrictive, and empha-221

sizes precision over recall. Nonetheless, using this222

procedure, we tag 17,495 papers from S2ORC with223

at least one dataset from our search corpus.224

To estimate the quality of these tagged labels,225

the annotator manually examined 200 tagged paper-226

dataset pairs. Each pair was labeled as correct if the227

paper authors would have realistically had to down-228

load the dataset in order to write the paper. 92.5%229

(185/200) of dataset tags were deemed correct.230

2.5 Limitations231

Our dataset construction methodology suffers from232

three key limitations:233

Recency bias The ages of papers used to gener-234

ate method descriptions in our train and test sets235

are skewed towards the present. The median years236

of papers in our train and test set are 2018 and237

2017, respectively. This is in part because our238

datasets come from Papers with Code, which may239

not include historic datasets no longer popular to-240

day. Moreover, the rate of publication in AI has241

been growing rapidly in recent years (Dean, 2020).242

Popular dataset bias in the test set Our test set is243

derived from the SciREX corpus (Jain et al., 2020).244

This corpus is biased towards popular works: we245

found the median number of citations of a paper in246

SciREX to be 129, compared to 19 for any com-247

puter science paper in S2ORC. Our test set method248

descriptions are therefore more likely to describe249

mainstream ideas in popular subields of AI.250

Automatic tagging Our training data is gener-251

ated automatically using a list of canonical dataset252

names from Papers with Code. This tagger will253

mislabel papers where a dataset is used but never254

referred to by one of these canonical names (e.g.255

non-standard abbreviations or capitalizations).256

2.6 Dataset Analysis257

Using this set of paper-dataset tags, what can we258

learn about how researchers use datasets?259

2.6.1 Rank-frequency distribution of datasets260

In Figure 2, we plot the frequency that each dataset261

is tagged in a paper in our training set. We see a262

distribution with a dramatic long tail. Though our263

8We apply the additional requirement that the counted
dataset mentions must occur in a section with section title con-
taining “results”, “experiment”, “evaluation”, “result”, “train-
ing”, or “testing”, to avoid non-salient dataset mentions, such
as those commonly occurring in “related work".

data collection procedure considered all papers that 264

use AI datasets, the most frequent datasets belong 265

to the computer vision community. This is due to 266

both the large volume of computer vision publica- 267

tions relative to other fields of AI and the popularity 268

of computer vision datasets as benchmarks for core 269

machine learning research. 270

2.6.2 Popular datasets by domain 271

How do different communities of AI interact with 272

datasets in their research? We define “communities” 273

within AI by the venues that researchers publish 274

in.9 We analyze the most popular datasets in each 275

community, measuring the percentage of papers 276

that use each dataset in NLP, Vision, Robotics, and 277

Machine Learning in Figure 5. 278

The distribution of dataset usage in the NLP com- 279

munity is closest to uniform, suggesting a relatively 280

broad set of datasets in use. In contrast, nearly half 281

of the papers tagged in the robotics community use 282

the KITTI dataset (Geiger et al., 2013), among all 283

papers that use some publicly available dataset. 284

2.6.3 How old are datasets used? 285

In Figure 6, we show the distribution of relative 286

ages of datasets used. We observe that the majority 287

of datasets used are within the previous 5 years, but 288

there is a significant long tail of older datasets. 289

2.6.4 Most popular datasets by year 290

To understand dataset trends over time, we plot 291

the most popular computer vision datasets in 2009, 292

2014, and 2019 in Figure 7. We observe signifi- 293

cantly more data from 2019 than 2014 or 2009 for 294

reasons described in Section 2.5. 295

2.6.5 Dataset counts per paper 296

In Figure 8, we see that our training set tags asso- 297

ciates queries with a single dataset more frequently 298

than our test set does. This is due to our rule-based 299

tagging scheme, which emphasizes precise labels 300

over recall. 301

3 DatasetFinder 302

We formulate dataset recommendation as a ranking 303

task. Given a method description q and a search cor- 304

pus of datasets D, rank the datasets d ∈ D based on 305

9ACL, EMNLP, NAACL, TACL, and COLING for NLP,
CVPR, ICCV, and WACV for Computer Vision, IROS, ICRA,
and IJRR for Robotics, and NeurIPS, ICML and ICLR for
Machine Learning. We include proceedings from associated
workshops of these conferences in our analysis.
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a query-dataset similarity function sim(q, d) and re-306

turn the top k datasets. To better our understanding307

of this new task, we conduct a benchmark compari-308

son of models for computing the similarity scores.309

3.1 Term-Based Retrieval310

We implement a BM25 retriever (Robertson and311

Zaragoza, 2009) using Pyserini (Lin et al., 2021).10312

We index each dataset in our search corpus with its313

dataset description from Papers with Code and the314

title of its introducing paper.315

3.2 Nearest-Neighbor Retrieval316

We experiment with direct k-nearest-neighbor re-317

trieval. We map each test set query to a feature318

space and identify the closest training set queries in319

feature space using efficient similarity search (John-320

son et al., 2017). We return the relevant datasets321

associated with these queries. In practice we in-322

vestigate two types of feature extractor: TF-IDF323

10We run BM25 with k1 = 0.8 and b = 0.4.
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Figure 7: Popular CV datasets in 2009, 2014, and 2019.

(Jones, 2004) and SciBERT (Beltagy et al., 2019). 324

3.3 Neural Retrieval 325

We implement a bi-encoder retriever using the Teva-
tron package.11 In this framework, we encode each
query and document into a shared vector space, and
estimate similarity via the inner product between
query and document representations. For each text
sequence (query or document) we use the BERT
embedding (Devlin et al., 2019) of that text’s [CLS]
token to represent the document:

sim(q, d) = cls(BERT(q))T cls(BERT(d))
11https://github.com/texttron/tevatron
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where cls(·) denotes the operation of accessing the326

[CLS] token representation from the contextual327

encoding (Gao et al., 2021). For retrieval, we sep-328

arately encode all queries and documents and re-329

trieve using efficient similarity search. Following330

recent work (Karpukhin et al., 2020), we minimize331

a contrastive loss and select hard negatives using332

BM25 for training. We initialize the bi-encoder333

with SciBERT (Beltagy et al., 2019). This model334

takes 20 minutes to train on one 11GB Nvidia GPU.335

3.4 Commercial Search Engines336

The standard paradigm for dataset search is to use337

a conventional search engine with short queries338

(Kacprzak et al., 2019). To demonstrate the im-339

pact of using natural language descriptions to find340

datasets, we compare with two commercial dataset341

search engines - Google Dataset Search12 (Brick-342

ley et al., 2019) and Papers with Code13 dataset343

search. For Google Dataset Search, we limit re-344

sults to datasets from Papers with Code so retrieved345

results can be compared with our ground truth.346

To simulate typical user behavior, we carefully347

constructed short keyword search queries for each348

natural language method description in our test set.349

A trained annotator14 read each natural language350

method description in our test set, and assessed the351

dataset need underlying the method description.352

Note that for the purpose of dataset search, natu-353

ral language queries may convey multiple informa-354

tion needs. For example, the query “[..] we propose355

a very deep fully convolutional encoding-decoding356

framework for image restoration such as denoising357

and super-resolution” suggests two dataset needs:358

image denoising and image super-resolution.359

Accordingly, the annotator wrote a query con-360

12https://datasetsearch.research.google.com
13https://paperswithcode.com/datasets
14A computer science graduate student with experience

using both search engines.

taining 4 or fewer keywords for each query intent 361

conveyed by the description, using initial search re- 362

sults to iteratively refine the queries. After running 363

each query against a commercial search engine, the 364

results from all query intents were combined using 365

balanced interleaving (Joachims, 2002). 366

For comparison, we measured the commercial 367

search engines taking as input either keyword 368

queries or natural language method descriptions. 369

3.5 DatasetFinder for Keyword Search 370

To better compare with keyword-based search sys- 371

tems, we train a version of our system on keyphrase 372

inputs. We extract keyphrases from each abstract 373

in our training set using BART (Lewis et al., 2020) 374

finetuned on the OpenKP dataset (Xiong et al., 375

2019). We train our bi-encoder model with these 376

keyphrases as a surrogate for keyword queries. 377

4 Evaluation 378

4.1 Evaluation Metrics 379

Information retrieval metrics estimate search rel- 380

evance. These metrics count all queries equally 381

when computing an aggregate test set metric 382

value. We use four standard metrics using the 383

trec_eval package (with the ‘-c’ flag). Each 384

is computed for a given test set query as follows: 385

Precision@k 386

P@k =
# of relevant items in top k retrieved

k
387

Recall@k 388

R@k =
# of relevant items in top k retrieved

# of relevant items
389

Mean Average Precision 390

MAP =
1

m

m∑
n=1

Precision@kn 391

m is the total number of relevant items and kn is the 392

smallest integer such that the nth relevant item is in 393

the top k retrieved items (Manning et al., 2005). 394

Mean Reciprocal Rank 395

MRR =
1

m

m∑
n=1

1

Rankn
396

Rankn is the rank of the nth relevant item in the 397

retrieved results (Voorhees and Harman, 1999). 398

4.2 Time Filtering 399

The queries in our test set were made between 2012 400

and 2020, with a median year of 2017. On the other 401

hand, half the datasets in our search corpus were 402

introduced in 2018 or later. 403

6
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P@5 R@5 MAP MRR

BM25 3.9 14.2 8.4 10.8
kNN (TF-IDF) 8.3 28.1 19.2 25.9
kNN (SciBERT) 5.7 20.7 11.5 14.9
Bi-Encoder 11.8 38.3 27.1 35.3

Table 1: Benchmarking results on standard metrics

P@5 R@5 MAP MRR

PwC (descriptions) 0.6 1.7 0.9 1.2
PwC (keywords) 3.5 10.0 6.5 9.1

Google (descriptions) 0.0 0.0 0.0 0.0
Google (keywords) 7.6 23.2 11.6 15.4

Ours (descriptions) 11.8 38.3 27.1 35.3
Ours (keywords) 8.9 28.6 19.1 25.5

Table 2: Comparing external search engines (Papers
with Code and Google Dataset Search) against our
DatasetFinder system using a bi-encoder architecture.

To account for this discrepancy, for each query404

q, we do not rank the full search corpus D. Rather,405

we consider the subset D′ = {d ∈ D | year(d) ≤406

year(q)} consisting of datasets introduced in the407

same year as the query or earlier.408

4.3 Test Set Evaluation409

4.3.1 Comparing Proposed Methods410

In Table 1, we report performance on standard re-411

trieval metrics of the methods described in Sec-412

tion 3 using a single seed when applicable. Term-413

based retrieval (BM25) performs very poorly in414

this setting, while the neural bi-encoder model ex-415

cels. This suggests term matching heuristics in web416

search do not transfer to this task, which requires417

semantic matching with learned representations.418

4.3.2 Comparing with Commercial Search419

Engines420

In Table 2, we compare our proposed retrieval sys-421

tem against two commercial dataset search engines.422

For each search engine, we choose the top 5 results423

before computing metrics.424

We find these commercial search engines do425

not effectively support long natural language de-426

scriptions as input. Even with hand-written key-427

words, which these search engines are designed428

to use, our neural retriever still gives better search429

results. With these observations, we speculate that430

the commercial search engines are adapted from431

term-based web search engines. In comparison, our432

neural retrievers gain a performance advantage by433

semantic search with neural retrievers.434

Idea: We show that sequence-to-sequence method achieves state-of-the-art results 
on syntactic parsing, whilst making almost no assumptions about the structure of the 
problem.
Keywords: syntactic parsing

Actual Google PwC Ours

Penn Treebank 1 GitHub-Python AI2D Penn Treebank

2 English Web 
Treebank

PNT SICK

3 Spades SST

Idea: We propose a novel ResNet-like architecture that combines multi-scale 
context with pixel-level accuracy for Semantic Image Segmentation.
Keywords: semantic image segmentation

Actual Google PwC Ours

Cityscapes 1 Agriculture-Vision Semantic 
Scholar

Cityscapes

2 BIG Semantic 
Trails

SBD

3 PASCAL VOC BCSS ADE20K

Idea: We propose a dual pathway, 11‐layers deep, multi‐scale, three‐dimensional 
Convolutional Neural Network for the challenging task of brain lesion segmentation. 
Keywords: brain lesion segmentation

Actual Google PwC Ours

BraTS 2015 1 BraTS 2017 Lesion Boundary 
Segmentation

DRIVE

2 BraTS 2013 Brain US STARE

3 BraTS 2015 Brain-Score LUNA

Figure 9: Qualitative comparison of the DatasetFinder
system with external dataset search engines.
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Figure 10: Examining recall on the test set on datasets
with varying training set frequency.

4.3.3 Qualitative Results 435

We show examples in Figure 9. In the first two, we 436

see keyword-based search engines are sensitive to 437

ambiguous search terms, such as “semantic,” un- 438

like our system. In the final example, we see a 439

downside of our approach: given a query for brain 440

lesion segmentation, our system recommends data 441

for the related (but incorrect) tasks of retinal vessel 442

segmentation and lung nodule segmentation. 443

4.3.4 Evaluating Retrieval of Rare Datasets 444

For our retrieval task, we are particularly interested 445

in the ability to retrieve datasets for users that they 446

may not already be aware of. To this end, we group 447

our search corpus into a six buckets, based on the 448
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P@5 R@5 MAP MRR

DatasetFinder 11.8 38.3 27.1 35.3
w/ Tasks Hidden 11.7 38.8 26.0 34.3
w/ Methods Hidden 10.8 36.1 24.6 31.8

Table 3: Eliding mentions of methods from queries has
a minor impact on search quality.

frequency that dataset is tagged as relevant to a449

natural language description in our training set.450

We then measure how often we correctly retrieve451

datasets in each bucket at test time.452

We find that supervised system performs poorly453

on datasets rarely seen in the training, while BM25454

performs poorly in all scenarios. Our strongest455

architecture, the bi-encoder, performs worse for456

rare datasets compared to popular datasets. Though457

it outperforms other systems in the rare-dataset458

regime, the bi-encoder may still bias users towards459

popular datasets. Addressing this is an important460

area of future work.461

5 Analysis462

5.1 Descriptions vs. Keywords463

One defining characteristic of our recommendation464

system is that it uses natural language method de-465

scriptions. To what extent are natural language466

descriptions critical to our system’s performance?467

In Table 2, we compare two versions of the468

DatasetFinder system: one trained and tested with469

description queries and the other with keyword470

queries, as described in Section 3.5. We ob-471

serve providing method descriptions leads to better472

search quality by a wide margin on every metric.473

This supports the claim that natural language de-474

scriptions provide a richer input for dataset search.475

Moreover, this suggests that the performance gap476

between our system and the other commercial477

search systems reported in Table 2 cannot be ex-478

plained completely by the fact that our ranker was479

trained using task-specific supervision.480

5.2 Analysis of Successful Queries481

Two types of mentions frequently seen in the input482

are tasks (e.g. “CNN”) and methods (e.g. “image483

classification”). To understand how these seman-484

tic categories affect the value of natural language485

descriptions, we experiment with concealing task486

and method spans from descriptions. We extract a487

large list of known tasks and methods from Papers488

with Code and performing exact span matching.489

We replace task or method spans with the tokens 490

[TASK] or [METHOD], respectively. 491

We train and evaluate models on this elided data. 492

In Table 3, we see concealing task mentions has no 493

impact on search results, while concealing method 494

names reduces performance slightly. This suggests 495

our model may learn to associate method names 496

(e.g. “CNN”) with appropriate datasets. However, 497

given these small differences, the DatasetFinder 498

system is not relying on these surface-level lexical 499

features; we argue it is able to understand the query 500

to make up for missing information. 501

6 Related Work 502

Most work on scientific dataset recommendation 503

uses a conventional information retrieval perspec- 504

tive (Lu et al., 2012; Kunze and Auer, 2013; San- 505

sone et al., 2017; Chapman et al., 2019; Brickley 506

et al., 2019; Lhoest et al., 2021). In 2019, Google 507

Research launched Dataset Search (Brickley et al., 508

2019), offering access to over 2 million public 509

datasets. Our work considers a subset of Google 510

Dataset Search’s search corpus - those datasets that 511

have been posted on Papers with Code. 512

Some work has considered other forms of dataset 513

recommendation. Ben Ellefi et al. (2016) presented 514

a system for dataset recommendation where the 515

query is a “source dataset” relevant to the user. 516

More recently, Altaf et al. (2019) reported a sys- 517

tem where the user’s query is a set of research 518

papers. Ours is the first to study natural language 519

queries for dataset search, in contrast to conven- 520

tional dataset search where queries are usually 3 or 521

fewer tokens in length (Kacprzak et al., 2019). 522

7 Conclusion 523

We introduce a new task for dataset retrieval. We 524

develop a system called DatasetFinder for this 525

task with the goal of helping researchers discover 526

new, relevant datasets for their work. Our system 527

achieves superior search results than conventional 528

dataset search engines, and we show evidence that 529

natural language method descriptions are superior 530

inputs for dataset search than traditional search 531

keywords. We release our automatically generated 532

dataset along with our ranking systems to the pub- 533

lic with the hope that we spur the community to 534

work on this task. 535
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