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“Find Me a Dataset”’: Scientific Dataset Recommendation

Abstract ‘

Much of modern science relies on public
datasets to develop research ideas. Finding a
dataset for a given task can be difficult, partic-
ularly for new researchers. We aim to improve
the process of dataset discovery by introduc-
ing a system called DatasetFinder which rec-
ommends relevant datasets given a short nat-
ural language description of a research idea.
For the new task of dataset recommendation,
we construct an English-language dataset that
leverages existing annotations and compare
several ranking models on this dataset. We
also compare our proposed models against ex-
isting commercial search engines and find evi-
dence that leveraging natural language descrip-
tions improves search relevance. To encourage
development on this new task, we release our
constructed dataset and models to the public.!

1 Introduction

“Data is food for AL” (Ng, 2021)

Innovation in modern artificial intelligence (AI)
research depends on the dual workhorses of meth-
ods and data. The revolution of neural network
models in computer vision (Krizhevsky et al., 2012)
was enabled by the ImageNet Large Scale Visual
Recognition Challenge (Deng et al., 2009). Simi-
larly, data-driven models for syntactic parsing saw
rapid development after adopting the Penn Tree-
bank (Marcus et al., 1993; Palmer and Xue, 2010).

In research using machine learning, the data col-
lection stage of the scientific process (Crawford
and Stucki, 1990) involves selecting a benchmark
dataset. There are hundreds of datasets published
every year in Al (shown in Figure 1) and knowing
which datasets to use for a given research idea can
be difficult (Paullada et al., 2021). This problem is
greater for new researchers who are not intimately
familiar with a subfield.

!Code and data: https://anonymous.4open.science/r/
dataset-recommendation-75D1/
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Figure 1: # of Al datasets released each year from 1990
to 2021, according to Papers with Code?
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Figure 2: Usage counts of datasets in our training set
show a long tail of rarely-used datasets. The rank and
frequency for some example datasets are marked.

Consequently, researchers in Al typically focus
their efforts on a small number of datasets they
are already familiar with. The awareness of high-
quality data for a task leads to an increase in pub-
lished research on the task, which in turn raises
awareness even further for that dataset. For illus-
tration, for a large set of 17.5K papers obtained
from the S20RC corpus (Lo et al., 2020) (method-
ology details given in Section 2.4.2), we plot the
frequency of datasets used in Figure 2. The dataset
counts appear to follow a Zipfian distribution (New-
man, 2004), with the vast majority of datasets oc-
curring in the tail of the distribution. This “rich get
richer” effect has the result of narrowing the scope
of methodological development to methods that are
applicable to these datasets.

In this paper, we consider that the scientific
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method may be improved in Al research if re-
searchers could more easily find datasets for a
given research question. Our goal is to recommend
datasets by relevance rather than popularity.

Taking a step towards this goal, we introduce
the task of “dataset recommendation": given a
short description of an Al research idea, recom-
mend datasets for building or testing such an idea.
We show a concrete example in Figure 3. We in-
troduce a strong baseline system, which we call
DatasetFinder, as a step towards solving this task.

Dataset search has been studied extensively
(Chapman et al., 2019) and dataset recommenda-
tion has been studied using either a set of relevant
papers (Altaf et al., 2019) or an initial set of known
relevant datasets (Ben Ellefi et al., 2016) as input.
This is the first attempt at a natural language inter-
face for dataset recommendation.

To operationalize this task, we first build a
dataset to measure how well we can recommend
datasets for a given description. As a proxy for
natural method descriptions, we leverage segments
from paper abstracts to describe a researcher’s in-
formation need. We then identify the exact datasets
used in a given paper, either through heuristic
matching (for our large training set) or by using
existing human annotations (for our small test set).

We then frame this task as a retrieval problem
(Manning et al., 2005), by treating the system de-
scription as a query and the set of known datasets
as a search corpus. We use standard ranking met-
rics such as mean reciprocal rank (Radev et al.,
2002) to measure performance and also measure
how well we can recommend datasets that are rare
but relevant to a user.

For this ranking problem, we consider several ap-
proaches: BM25 (Robertson and Zaragoza, 2009),
nearest neighbor retrieval and dense retrieval with
neural bi-encoder (Karpukhin et al., 2020). Com-
pared with the currently available keyword-centric
dataset search engines, we find that our approach
that leverages natural language description is far
more effective at finding relevant datasets. We also
show that our baseline leaves significant room for
improvement, which we believe makes this an ap-
pealing task for the research community.

2 Task and Dataset
2.1 Task

We establish a new task for automatically recom-
mending relevant datasets for a description of an
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Figure 3: Example research idea with relevant datasets

Al system. Given a natural language method de-
scription ¢ and a set of datasets D, retrieve the most
relevant subset R C D one could use to test the
idea described in ¢. Figure 3 illustrates this with
a real example which has been condensed for clar-
ity. The query is a brief summary of a paper by
Kipf and Welling (2017) and the relevant datasets
shown are the actual datasets used in their study.
We leverage this data to illustrate patterns in how
the Al research community uses datasets.

In contrast to prior work, our input is a method
description described briefly in natural language.
We hypothesize that by defining the query as a
textual description, the system is more user-friendly
and will lead to better search results, compared to
using a small set of keywords. In Section 5.1, we
offer evidence to support this hypothesis.

To support this task, we construct a dataset con-
sisting of (g, R) pairs extracted from published
English-language scientific proceedings. Each
query ¢ in our dataset is a simulated method de-
scription constructed from published scientific ab-
stracts and R is the set of relevant datasets used
by the authors. We describe an automatic method
for creating this data, summarized in Figure 4. For
our test set, we leverage a small human-annotated
dataset to maintain high data quality. To obtain
enough training data for modern deep retrieval
models, we generate training data from unlabeled
papers, using information in the body of each pa-
per for supervision. We release our data under a
permissive Apache 2.0 License.

2.2 Search Corpus

Our first step in approaching this as a search prob-
lem is to construct a collection of datasets. We
search against the full set of datasets listed on “Pa-
pers with Code”,? a large public index of papers,
which includes metadata for over 5000 datasets

and benchmarks.* For most datasets, Papers with

3www.paperswithcode.com

*Not all items in our search corpus are datasets, strictly
speaking. For example, the MuJoCo simulator is not a dataset
but is widely used as a benchmark in reinforcement learning
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Figure 4: Architecture of the DatasetFinder system.
“Qry” denotes “query”.

Code stores a short human-written description and
a list of different names used to refer to the dataset
(known as “variants”). Many datasets are also
tagged with the paper that introduced that dataset.
We store this data for later processing.

2.3 Test Set Construction
2.3.1 Raw Data

Our test set is generated from a human-annotated
set of Al papers, SciREX (Jain et al., 2020).
SciREX is a dataset of 438 full-text papers from ma-
jor Al venues whose intended use was document-
level information extraction.

2.3.2 Queries

To construct simulated method descriptions from
published papers, we extract the abstract from the
paper then automatically summarize the abstract.

We summarize each paper’s abstract using the
TLDR system (Cachola et al., 2020). TLDR can
generate very brief summaries of scientific docu-
ments. Given a scientific abstract, this model trains
BART (Lewis et al., 2020) to generate both a short
human-generated summary and a paper title.”> We
use the generated summaries of scientific abstracts
as “method descriptions” to simulate queries for
our retrieval system. Examples of generated TL-
DRs are shown in the “Ideas” in Figure 9.

Many of these queries did not describe the in-
tended experiment sufficient clarity to recommend
a dataset. Consider the example “We equip CNNs

research (Todorov et al., 2012)
SWe use a maximum word length of 90 and BART length
penalty parameter of 1.5 to generate detailed summaries.

with a more principled pooling strategy, ‘spatial
pyramid pooling’, to eliminate the above require-
ment”. This query suggests a general methodologi-
cal contribution, that could apply to almost any Al
task, though the true label here was “Pascal VOC
20077 (Everingham et al., 2009). Our annotator®
manually reviewed the generated natural language
method descriptions in our test set. For any cases
that were sufficiently ambigiuous that a trained an-
notator could not make an educated guess of the
datasets used in the paper, we removed that exam-
ple from our test set.’

For 17 instances in our test set, the generated
TLDR explicitly mentioned one of the paper’s rel-
evant datasets. In these cases, we masked out the
spans containing the dataset name with the token

[DATASET], to avoid label leakage.

2.3.3 Relevant Datasets

For each paper, SciREX contains annotations
for mentions of all “salient" datasets, defined as
datasets that “take part in the results of the article”
(Jain et al., 2020). For each salient dataset in a pa-
per, spans of all mentions of that dataset throughout
the paper are provided. To link these annotations
with the datasets in our search corpus, we first col-
lect the set of mention strings used to refer to each
dataset in a paper. We then check if any of these
mention names matches one of the dataset variants
from Papers with Code. Finally, each match was
manually inspected (and corrected, if necessary) by
the same annotator to ensure accurate linking.

2.4 Training Set Construction
2.4.1 Raw Data and Queries

We generate training data by automatically tagging
full-text papers from S20RC (Lo et al., 2020), a
corpus of scientific papers. We use TLDR to sum-
marize each abstract, to extract a short “query”, in
the same manner as we do for the test set (§2.3).

2.4.2 Relevant Datasets

Our training set is automatically labeled using the
body text corresponding to a given abstract. We
apply a rule-based procedure to identify the dataset
used in a given paper. For each paper, we tag all
datasets that satisfy two conditions: the paper must

®The annotator was one of the authors of this paper, a
graduate student studying natural language processing with
previous experience in vision, robotics, and ML research.

"Out of 402 SciREX-based method descriptions, we dis-
carded 78 descriptions due to excessive ambiguity.



cite the paper that introduces the dataset, and the
paper must mention the dataset by name twice.®

This tagging procedure is restrictive, and empha-
sizes precision over recall. Nonetheless, using this
procedure, we tag 17,495 papers from S20RC with
at least one dataset from our search corpus.

To estimate the quality of these tagged labels,
the annotator manually examined 200 tagged paper-
dataset pairs. Each pair was labeled as correct if the
paper authors would have realistically had to down-
load the dataset in order to write the paper. 92.5%
(185/200) of dataset tags were deemed correct.

2.5 Limitations

Our dataset construction methodology suffers from
three key limitations:

Recency bias The ages of papers used to gener-
ate method descriptions in our train and test sets
are skewed towards the present. The median years
of papers in our train and test set are 2018 and
2017, respectively. This is in part because our
datasets come from Papers with Code, which may
not include historic datasets no longer popular to-
day. Moreover, the rate of publication in Al has
been growing rapidly in recent years (Dean, 2020).
Popular dataset bias in the test set Our test set is
derived from the SciREX corpus (Jain et al., 2020).
This corpus is biased towards popular works: we
found the median number of citations of a paper in
SciREX to be 129, compared to 19 for any com-
puter science paper in S20RC. Our test set method
descriptions are therefore more likely to describe
mainstream ideas in popular subields of Al
Automatic tagging Our training data is gener-
ated automatically using a list of canonical dataset
names from Papers with Code. This tagger will
mislabel papers where a dataset is used but never
referred to by one of these canonical names (e.g.
non-standard abbreviations or capitalizations).

2.6 Dataset Analysis

Using this set of paper-dataset tags, what can we
learn about how researchers use datasets?

2.6.1 Rank-frequency distribution of datasets

In Figure 2, we plot the frequency that each dataset
is tagged in a paper in our training set. We see a
distribution with a dramatic long tail. Though our

8We apply the additional requirement that the counted
dataset mentions must occur in a section with section title con-
taining “results”, “experiment”, “evaluation”, “result”, “train-
ing”, or “testing”, to avoid non-salient dataset mentions, such
as those commonly occurring in “related work".

data collection procedure considered all papers that
use Al datasets, the most frequent datasets belong
to the computer vision community. This is due to
both the large volume of computer vision publica-
tions relative to other fields of Al and the popularity
of computer vision datasets as benchmarks for core
machine learning research.

2.6.2 Popular datasets by domain

How do different communities of Al interact with
datasets in their research? We define “communities’
within Al by the venues that researchers publish
in.® We analyze the most popular datasets in each
community, measuring the percentage of papers
that use each dataset in NLP, Vision, Robotics, and
Machine Learning in Figure 5.

The distribution of dataset usage in the NLP com-
munity is closest to uniform, suggesting a relatively
broad set of datasets in use. In contrast, nearly half
of the papers tagged in the robotics community use
the KITTTI dataset (Geiger et al., 2013), among all
papers that use some publicly available dataset.

’

2.6.3 How old are datasets used?

In Figure 6, we show the distribution of relative
ages of datasets used. We observe that the majority
of datasets used are within the previous 5 years, but
there is a significant long tail of older datasets.

2.6.4 Most popular datasets by year

To understand dataset trends over time, we plot
the most popular computer vision datasets in 2009,
2014, and 2019 in Figure 7. We observe signifi-
cantly more data from 2019 than 2014 or 2009 for
reasons described in Section 2.5.

2.6.5 Dataset counts per paper

In Figure 8, we see that our training set tags asso-
ciates queries with a single dataset more frequently
than our test set does. This is due to our rule-based
tagging scheme, which emphasizes precise labels
over recall.

3 DatasetFinder

We formulate dataset recommendation as a ranking
task. Given a method description ¢ and a search cor-
pus of datasets D, rank the datasets d € D based on

°ACL, EMNLP, NAACL, TACL, and COLING for NLP,
CVPR, ICCV, and WACYV for Computer Vision, IROS, ICRA,
and IJRR for Robotics, and NeurIPS, ICML and ICLR for
Machine Learning. We include proceedings from associated
workshops of these conferences in our analysis.
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a query-dataset similarity function sim(q, d) and re-
turn the top k datasets. To better our understanding
of this new task, we conduct a benchmark compari-
son of models for computing the similarity scores.

3.1 Term-Based Retrieval

We implement a BM25 retriever (Robertson and
Zaragoza, 2009) using Pyserini (Lin et al., 2021).'0
We index each dataset in our search corpus with its
dataset description from Papers with Code and the
title of its introducing paper.

3.2 Nearest-Neighbor Retrieval

We experiment with direct k-nearest-neighbor re-
trieval. We map each test set query to a feature
space and identify the closest training set queries in
feature space using efficient similarity search (John-
son et al., 2017). We return the relevant datasets
associated with these queries. In practice we in-
vestigate two types of feature extractor: TF-IDF

OWe run BM25 with k1 = 0.8 and b = 0.4.
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Figure 7: Popular CV datasets in 2009, 2014, and 2019.

(Jones, 2004) and SciBERT (Beltagy et al., 2019).

3.3 Neural Retrieval

We implement a bi-encoder retriever using the Teva-
tron package.!! In this framework, we encode each
query and document into a shared vector space, and
estimate similarity via the inner product between
query and document representations. For each text
sequence (query or document) we use the BERT
embedding (Devlin et al., 2019) of that text’s [CLS]
token to represent the document:

sim(q, d) = cls(BERT(q))” cIs(BERT(d))

Uhttps://github.com/texttron/tevatron
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Figure 8: The distribution of the number of datasets
tagged in each paper, in train and test sets

where cls(-) denotes the operation of accessing the
[CLS] token representation from the contextual
encoding (Gao et al., 2021). For retrieval, we sep-
arately encode all queries and documents and re-
trieve using efficient similarity search. Following
recent work (Karpukhin et al., 2020), we minimize
a contrastive loss and select hard negatives using
BM25 for training. We initialize the bi-encoder
with SciBERT (Beltagy et al., 2019). This model
takes 20 minutes to train on one 11GB Nvidia GPU.

3.4 Commercial Search Engines

The standard paradigm for dataset search is to use
a conventional search engine with short queries
(Kacprzak et al., 2019). To demonstrate the im-
pact of using natural language descriptions to find
datasets, we compare with two commercial dataset
search engines - Google Dataset Search'? (Brick-
ley et al., 2019) and Papers with Code'? dataset
search. For Google Dataset Search, we limit re-
sults to datasets from Papers with Code so retrieved
results can be compared with our ground truth.

To simulate typical user behavior, we carefully
constructed short keyword search queries for each
natural language method description in our test set.
A trained annotator'* read each natural language
method description in our test set, and assessed the
dataset need underlying the method description.

Note that for the purpose of dataset search, natu-
ral language queries may convey multiple informa-
tion needs. For example, the query “[..] we propose
a very deep fully convolutional encoding-decoding
framework for image restoration such as denoising
and super-resolution” suggests two dataset needs:
image denoising and image super-resolution.

Accordingly, the annotator wrote a query con-

Phttps://datasetsearch.research.google.com

Bhttps://paperswithcode.com/datasets

A computer science graduate student with experience
using both search engines.

taining 4 or fewer keywords for each query intent
conveyed by the description, using initial search re-
sults to iteratively refine the queries. After running
each query against a commercial search engine, the
results from all query intents were combined using
balanced interleaving (Joachims, 2002).

For comparison, we measured the commercial
search engines taking as input either keyword
queries or natural language method descriptions.

3.5 DatasetFinder for Keyword Search

To better compare with keyword-based search sys-
tems, we train a version of our system on keyphrase
inputs. We extract keyphrases from each abstract
in our training set using BART (Lewis et al., 2020)
finetuned on the OpenKP dataset (Xiong et al.,
2019). We train our bi-encoder model with these
keyphrases as a surrogate for keyword queries.

4 Evaluation

4.1 Evaluation Metrics

Information retrieval metrics estimate search rel-
evance. These metrics count all queries equally
when computing an aggregate test set metric
value. We use four standard metrics using the
trec_eval package (with the ‘-¢’ flag). Each
is computed for a given test set query as follows:
Precision @k

# of relevant items in top k retrieved

Pak = 5
Recall@k
Rak — # of relevant items in top k retrieved

# of relevant items
Mean Average Precision

1 m
MAP = — 2 Precision@¥k,,
m
n=1

m is the total number of relevant items and &, is the
smallest integer such that the n'™ relevant item is in
the top k retrieved items (Manning et al., 2005).
Mean Reciprocal Rank

m

MRR:lZ 1

m Rank,,
n=1

Rank,, is the rank of the n' relevant item in the
retrieved results (Voorhees and Harman, 1999).

4.2 Time Filtering

The queries in our test set were made between 2012
and 2020, with a median year of 2017. On the other
hand, half the datasets in our search corpus were
introduced in 2018 or later.
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P@5 R@5 MAP MRR

BM25 3.9 14.2 8.4 10.8
kNN (TF-IDF) 8.3 28.1 19.2 25.9
kNN (SciBERT) 5.7 20.7 11.5 14.9
Bi-Encoder 11.8 383 27.1 353

Table 1: Benchmarking results on standard metrics

P@5 R@5 MAP MRR
PwC (descriptions) 0.6 1.7 0.9 1.2
PwC (keywords) 35 10.0 6.5 9.1
Google (descriptions) 0.0 0.0 0.0 0.0
Google (keywords) 7.6 23.2 11.6 15.4
Ours (descriptions) 11.8 383 271 353

Ours (keywords) 8.9 28.6 19.1 25.5

Table 2: Comparing external search engines (Papers
with Code and Google Dataset Search) against our
DatasetFinder system using a bi-encoder architecture.

To account for this discrepancy, for each query
q, we do not rank the full search corpus D. Rather,
we consider the subset D’ = {d € D | year(d) <
year(q)} consisting of datasets introduced in the
same year as the query or earlier.

4.3 Test Set Evaluation

4.3.1 Comparing Proposed Methods

In Table 1, we report performance on standard re-
trieval metrics of the methods described in Sec-
tion 3 using a single seed when applicable. Term-
based retrieval (BM25) performs very poorly in
this setting, while the neural bi-encoder model ex-
cels. This suggests term matching heuristics in web
search do not transfer to this task, which requires
semantic matching with learned representations.

4.3.2 Comparing with Commercial Search
Engines

In Table 2, we compare our proposed retrieval sys-

tem against two commercial dataset search engines.

For each search engine, we choose the top 5 results

before computing metrics.

We find these commercial search engines do
not effectively support long natural language de-
scriptions as input. Even with hand-written key-
words, which these search engines are designed
to use, our neural retriever still gives better search
results. With these observations, we speculate that
the commercial search engines are adapted from
term-based web search engines. In comparison, our
neural retrievers gain a performance advantage by
semantic search with neural retrievers.

Idea: We show that sequence-to-sequence method achieves state-of-the-art results
on syntactic parsing, whilst making almost no assumptions about the structure of the
problem.

Keywords: syntactic parsing

Actual Google PwC Ours
Penn Treebank 1 GitHub-Python Al2D Penn Treebank
2 English Web PNT SICK
Treebank
3 Spades SST

Idea: We propose a novel ResNet-like architecture that combines multi-scale
context with pixel-level accuracy for Semantic Image Segmentation.
Keywords: semantic image segmentation

Actual Google PwC Ours
Cityscapes 1 Agriculture-Vision Semantic  Cityscapes
Scholar
2 BIG Semantic  SBD
Trails
3 PASCALVOC BCSS ADE20K

Idea: We propose a dual pathway, 11-layers deep, multi-scale, three-dimensional
Convolutional Neural Network for the challenging task of brain lesion segmentation.
Keywords: brain lesion segmentation

Actual Google PwC Ours
BraTS 2015 1 BraTS 2017 Lesion Boundary DRIVE
Segmentation
2 BraTS 2013 Brain US STARE
3 BraTS 2015 Brain-Score LUNA

Figure 9: Qualitative comparison of the DatasetFinder
system with external dataset search engines.
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4.3.3

We show examples in Figure 9. In the first two, we
see keyword-based search engines are sensitive to
ambiguous search terms, such as “semantic,” un-
like our system. In the final example, we see a
downside of our approach: given a query for brain
lesion segmentation, our system recommends data
for the related (but incorrect) tasks of retinal vessel
segmentation and lung nodule segmentation.

Qualitative Results

4.3.4 Evaluating Retrieval of Rare Datasets

For our retrieval task, we are particularly interested
in the ability to retrieve datasets for users that they
may not already be aware of. To this end, we group
our search corpus into a six buckets, based on the



P@5 R@5 MAP MRR
DatasetFinder 11.8 38.3 27.1 353
w/ Tasks Hidden 11.7  38.8 26.0 343
w/ Methods Hidden 10.8  36.1 24.6 31.8

Table 3: Eliding mentions of methods from queries has
a minor impact on search quality.

frequency that dataset is tagged as relevant to a
natural language description in our training set.
We then measure how often we correctly retrieve
datasets in each bucket at test time.

We find that supervised system performs poorly
on datasets rarely seen in the training, while BM25
performs poorly in all scenarios. Our strongest
architecture, the bi-encoder, performs worse for
rare datasets compared to popular datasets. Though
it outperforms other systems in the rare-dataset
regime, the bi-encoder may still bias users towards
popular datasets. Addressing this is an important
area of future work.

5 Analysis

5.1 Descriptions vs. Keywords

One defining characteristic of our recommendation
system is that it uses natural language method de-
scriptions. To what extent are natural language
descriptions critical to our system’s performance?

In Table 2, we compare two versions of the
DatasetFinder system: one trained and tested with
description queries and the other with keyword
queries, as described in Section 3.5. We ob-
serve providing method descriptions leads to better
search quality by a wide margin on every metric.

This supports the claim that natural language de-
scriptions provide a richer input for dataset search.
Moreover, this suggests that the performance gap
between our system and the other commercial
search systems reported in Table 2 cannot be ex-
plained completely by the fact that our ranker was
trained using task-specific supervision.

5.2 Analysis of Successful Queries

Two types of mentions frequently seen in the input
are tasks (e.g. “CNN”) and methods (e.g. “image
classification”). To understand how these seman-
tic categories affect the value of natural language
descriptions, we experiment with concealing task
and method spans from descriptions. We extract a
large list of known tasks and methods from Papers
with Code and performing exact span matching.

We replace task or method spans with the tokens
[TASK] or [METHOD], respectively.

We train and evaluate models on this elided data.
In Table 3, we see concealing task mentions has no
impact on search results, while concealing method
names reduces performance slightly. This suggests
our model may learn to associate method names
(e.g. “CNN”) with appropriate datasets. However,
given these small differences, the DatasetFinder
system is not relying on these surface-level lexical
features; we argue it is able to understand the query
to make up for missing information.

6 Related Work

Most work on scientific dataset recommendation
uses a conventional information retrieval perspec-
tive (Lu et al., 2012; Kunze and Auer, 2013; San-
sone et al., 2017; Chapman et al., 2019; Brickley
et al., 2019; Lhoest et al., 2021). In 2019, Google
Research launched Dataset Search (Brickley et al.,
2019), offering access to over 2 million public
datasets. Our work considers a subset of Google
Dataset Search’s search corpus - those datasets that
have been posted on Papers with Code.

Some work has considered other forms of dataset
recommendation. Ben Ellefi et al. (2016) presented
a system for dataset recommendation where the
query is a “source dataset” relevant to the user.
More recently, Altaf et al. (2019) reported a sys-
tem where the user’s query is a set of research
papers. Ours is the first to study natural language
queries for dataset search, in contrast to conven-
tional dataset search where queries are usually 3 or
fewer tokens in length (Kacprzak et al., 2019).

7 Conclusion

We introduce a new task for dataset retrieval. We
develop a system called DatasetFinder for this
task with the goal of helping researchers discover
new, relevant datasets for their work. Our system
achieves superior search results than conventional
dataset search engines, and we show evidence that
natural language method descriptions are superior
inputs for dataset search than traditional search
keywords. We release our automatically generated
dataset along with our ranking systems to the pub-
lic with the hope that we spur the community to
work on this task.
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