Trajectory Graph Learning: Aligning with Long Trajectories in Reinforcement Learning Without Reward Design

Yunfan Li* University of California, Los Angeles yunfanli@g.ucla.edu

Eric Liu University of Southern California eliu4913@usc.edu

Lin F. Yang *
University of California, Los Angeles
linyang@ee.ucla.edu

Abstract

Reinforcement learning (RL) often relies on manually designed reward functions, which are difficult to specify and can lead to issues such as reward hacking and suboptimal behavior. Alternatives like inverse RL and preference-based RL attempt to infer surrogate rewards from demonstrations or preferences but suffer from ambiguity and distribution mismatch. A more direct approach, inspired by imitation learning, avoids reward modeling by leveraging expert demonstrations. However, most existing methods align actions only at individual states, failing to capture the coherence of long-horizon trajectories.

In this work, we study the problem of directly aligning policies with expert-labeled trajectories to preserve long-horizon behavior without relying on reward signals. Specifically, we aim to learn a policy that maximizes the probability of generating the expert trajectories. Nevertheless, we prove that, in its general form, this trajectory alignment problem is NP-complete. To address this, we propose *Trajectory Graph Learning* (TGL), a framework that leverages structural assumptions commonly satisfied in practice—such as bounded realizability of expert trajectories or a tree-structured MDP. These enable a graph-based policy planning algorithm that computes optimal policies in polynomial time under known dynamics. For settings with unknown dynamics, we develop a sample-efficient algorithm based on UCB-style exploration and establish sub-linear regret. Experiments on grid-world tasks demonstrate that TGL substantially outperforms standard imitation learning methods for long-trajectory planning.

1 Introduction

Reinforcement learning (RL) has emerged as a powerful tool with numerous successful applications, ranging from early advancements in robotics and control [Lee et al., 2020] to more recent breakthroughs in self-driving technology [Dosovitskiy et al., 2017] and the fine-tuning of Large Language Models (LLMs) [Ouyang et al., 2022]. However, the success of RL in real-world applications often relies heavily on the design of the reward function, which typically requires significant prior knowledge. We face challenges such as reward hacking

^{*}Corresponding authors

[Amodei et al., 2016] where unintended behaviors maximize the given reward and reward shaping [Ng et al., 1999] where improperly crafted rewards lead to suboptimal learning. Since designing scalar, numeric rewards is often impractical for complex real-world tasks, some alternative paradigms have been proposed. Inverse Reinforcement Learning (IRL) [Ng et al., 2000] aims to recover a reward function that explains and justifies an expert's demonstrated behavior—so the agent can reproduce comparable policies without ever being given explicit rewards. More recently, Preference-based Reinforcement Learning (PbRL) [Akrour et al., 2011b, Christiano et al., 2017, Xu et al., 2020, Abdelkareem et al., 2022 replaces handcrafted numeric rewards with human preferences—typically pairwise or ordinal feedback over trajectories or behaviors—and learns either a surrogate reward or a policy that aligns with those preferences to guide decision-making. However, learning a surrogate reward from demonstrations or preferences does not guarantee alignment with expert intent; ambiguity [Waugh et al., 2013, Lambert and Calandra, 2023, Hu et al., 2023], overfitting [Brown et al., 2019a, Szot et al., 2023] and distribution shift [Fu et al., 2017] all conspire to degrade final policy quality. These empirical and theoretical findings motivate approaches—such as direct trajectory alignment that bypass reward modelling altogether.

Imitation learning [Hussein et al., 2017] circumvents the need for handcrafted reward functions by training policies to replicate expert behavior, typically by learning a mapping from observed states to corresponding expert actions. However, its classical instantiation—behavior cloning (BC) [Torabi et al., 2018]—focuses solely on state-action pair alignment, capturing the expert action conditioned on individual states while neglecting the broader trajectory-level structure. As a result, discrepancies between the trajectories generated by the learned policy and the expert demonstrations can accumulate over time, ultimately undermining the preservation of coherent long-horizon behaviors [Ross et al., 2011, Chang et al., 2021]. We illustrate this limitation with a concrete example in Appendix A.2, where BC fails to reliably reproduce entire expert trajectories with probability 1 even in a deterministic environment. This shortcoming motivates our study of direct trajectory alignment, which seeks to directly maximize the likelihood of reproducing complete expert trajectories. Such alignment is particularly critical in applications like large language model (LLM) response generation [Zeng et al., 2024] and autonomous driving [Huang et al., 2024], where even small local deviations can propagate into significant degradations in overall quality or safety. To the best of our knowledge, the theoretical foundations of directly aligning policies with expert-labeled trajectories—without relying on reward modeling—remain largely unexplored.

In this paper, we systematically investigate the problem of direct trajectory alignment in reinforcement learning and develop a theoretical framework that enables efficient policy learning through whole-trajectory alignment. Our approach eliminates the need for explicit reward modeling and leverages structural assumptions such as reachable expert trajectories in terms of probability and tree-structured MDP to ensure computational tractability. We summarize our key contributions below.

Our Contributions

- Hardness result for direct trajectory alignment. We prove that the general problem of finding an optimal policy via direct trajectory alignment is NP-complete, by presenting a novel reduction from a classical NP-complete problem. This result highlights the fundamental computational challenge of directly aligning policies with expert trajectories.
- Theoretical framework: Trajectory Graph Learning (TGL). We introduce Trajectory Graph Learning (TGL), a theoretical framework that casts the direct trajectory alignment problem as a maximum weight independent set problem over a trajectory-induced graph. Under structural assumptions—such as bounded realizability of expert trajectories or a tree-structured MDP—we show that the optimal policy can be computed in polynomial time. In the setting with unknown dynamics, we integrate an upper-confidence bound (UCB) exploration strategy and design a learning algorithm with provably sub-linear cumulative regret.
- Empirical validation. We empirically evaluate TGL on grid-world benchmarks. Our results show that TGL consistently aligns with expert-labeled trajectories more faithfully than standard behavior cloning across various trajectory sets.

Related work We review several classical RL approaches. The first line of work is inverse reinforcement learning (IRL), which infers surrogate rewards from expert demonstrations; the second is preference-based RL (PbRL), which learns from preferences over trajectories; and the third is imitation learning, which directly maps expert demonstrations to policies without reward modeling.

Inverse RL Early work framed IRL as reward reconstruction: Ng et al. [2000]'s linear program formulation and Abbeel and Ng [2004]'s feature expectation matching seek a reward under which the expert is optimal, a paradigm later disambiguated with maximum-entropy regularization [Ziebart et al., 2008]. Deep variants such as Guided Cost Learning [Finn et al., 2016], GAIL [Ho and Ermon, 2016], and AIRL [Fu et al., 2018] scale this two-stage pipeline, yet their rewards remain trustworthy only near the demonstration distribution, leading to policy mis-alignment after exploration. Recent extrapolation and theory papers such as T-REX [Brown et al., 2019b], the finite-sample analysis [Komanduru and Honorio, 2019], and empirical audits of RLHF reward models [Kaplan and et al., 2023] confirm that surrogate rewards do not guarantee alignment, motivating the need to analyze direct trajectory alignment as an alternative.

From the first simulator-free preference-based policy learning algorithms [Akrour et al., 2011a, Wilson et al., 2012, Busa-Fekete et al., 2013 to the widely cited deep RL from human preferences framework [Christiano et al., 2017], most PbRL methods fit a surrogate reward to pairwise or K-wise feedback and then optimize it with standard RL. Recent PbRL algorithms still fit implicit reward surrogates whose quality hinges on prechosen feature embeddings and Bradley-Terry-Luce (BTL) style preference models. For instance, Saha et al. [2023] established finite-time regret bounds only after projecting trajectories into a hand-crafted feature space, so alignment requires that this embedding fully captures task-relevant differences. The finite-sample analysis of Xu et al. [2020] likewise assumes an unobserved latent reward and proves guarantees under the oracle condition that pairwise labels reflect that hidden function. Empirical pipelines such as Direct Preference Optimisation (DPO) [Rafailov et al., 2023] and Direct PB-PO [An et al., 2023] optimize the same BTL-based surrogate, while more recent theory—SeqRank's principled comparison loss [Zhu et al., 2023], the reward-agnostic RAPT optimiser [Zhan et al., 2023], and bestpolicy identification from preferences [Agnihotri et al., 2025]—all rely on accurate trajectory embeddings and preference-likelihood calibration to recover near-optimal policies. These dependencies indicate that PbRL, which relies on feature embeddings and preference models, may fail to guarantee alignment with expert behavior—highlighting the need to study the problem of direct trajectory alignment.

Imitation Learning Imitation learning (IL) dispenses with reward design by training a policy to copy expert demonstrations [Hussein et al., 2017]. The dominant variant, behaviour cloning, maps each observed state to the expert's action [Torabi et al., 2018]; because it matches actions *state-by-state*, it incurs covariate shift, so small errors push the learner into unseen states and the mismatch compounds along a trajectory [Ross et al., 2011]. Recent analyses confirm that even with offline fixes such as MILO trajectory-level fidelity remains loosely bounded [Chang et al., 2021]. Thus, no existing IL framework directly optimizes expected alignment with a set of expert-labelled trajectories.

2 Problem Formulation

In this section, we first introduce and define the direct trajectory alignment problem. We consider a finite-horizon Markov Decision Process (MDP) $M = (S, A, \mathbb{P}, \mathcal{T}_{\text{sel}}, H, \mu)$, where S is the state space, A is a finite action space, $\mathbb{P}: S \times A \to \Delta(S)$ is the transition kernel, H is the planning horizon (i.e., episode length), and μ is the initial state distribution. The agent interacts with the environment episodically. In each episode of length H, the agent follows a policy $\pi = \{\pi_h\}_{h=1}^H$, where each $\pi_h: S \to A$ maps a state to an action at time step $h \in [H]$. A policy π induces a trajectory $\tau = (s_1, a_1, s_2, a_2, \dots, s_H, a_H)$, where $s_1 \sim \mu$, $a_1 = \pi_1(s_1)$, $s_2 \sim \mathbb{P}(\cdot \mid s_1, a_1)$, $a_2 = \pi_2(s_2)$, and so on. Let \mathcal{T} denote the set of all possible H-length trajectories in the environment. Instead of having a reward function as in traditional RL, we

are given a Expert-Labeled Trajectory Set, defined as a small subset $\mathcal{T}_{\text{sel}} = \{\tau_i\}_{i=1}^M \subset \mathcal{T}^2$, where each τ_i is a trajectory. Typically, the size of the expert-labeled trajectory set is small relative to the entire trajectory space, i.e., $M \ll |\mathcal{T}|$.

Each policy π induces a distribution d^{π} over the space of H-length trajectories \mathcal{T} , where $d^{\pi}(\tau) = \mu(s_1) \prod_{h=1}^{H} \pi(a_h \mid s_h) \cdot \mathbb{P}(s_{h+1} \mid s_h, a_h)$. The objective is to find a policy that maximizes the visitation probability of the trajectories in the expert-labeled set.

$$\pi^* = \arg\max_{\pi \in \Pi} \sum_{\tau \in \mathcal{T}_{\text{sel}}} d^{\pi}(\tau)$$

Direct trajectory alignment replaces the cumulative reward used in standard RL with an expert-labeled trajectory set as the criterion for policy evaluation. In standard RL, the effectiveness of a learning algorithm is often measured by regret, defined as the difference between the cumulative reward of the optimal policy and that of the agent's learned policy over time. Analogously, in our direct trajectory alignment setting, we can define a notion of regret that captures the performance gap in aligning with the expert-labeled trajectories. Specifically, for each round $k \in [K]$, suppose the agent starts from the same initial distribution μ and executes policy π^k to generate a trajectory. The cumulative regret after K rounds is then defined as

$$\operatorname{Regret}(K) = \sum_{k=1}^{K} \left(\max_{\pi \in \Pi} \sum_{\tau \in \mathcal{T}_{\text{sel}}} d^{\pi}(\tau) - \sum_{\tau \in \mathcal{T}_{\text{sel}}} d^{\pi_k}(\tau) \right), \tag{1}$$

where $d^{\pi}(\tau)$ denotes the probability of generating trajectory τ under policy π .

Notation We use [n] to represent index set $\{1, \dots n\}$. For $x \in \mathbb{R}$, $\lfloor x \rfloor$ represents the largest integer not exceeding x and $\lceil x \rceil$ represents the smallest integer exceeding x. We use O to represent leading orders in asymptotic upper bounds and \widetilde{O} to hide the polylog factors. For a finite set \mathcal{A} , we denote the cardinality of \mathcal{A} by $|\mathcal{A}|$.

3 Hardness of General Direct Trajectory Alignment Problem

In this section, we will show the hardness of solving a general direct trajectory alignment problem. We will show that getting the optimal policy in a general direct trajectory alignment problem is equivalent to solving a Maximum-Weight Independent Set (MWIS) problem in a graph. First, we will introduce some concepts here.

Definition 1 (Conflict in State-Action Pair). Two state-action pairs (s, a) and (s', a') are in conflict if they share the same state but have different actions:

$$s = s'$$
 and $a \neq a'$.

Definition 2 (Conflict in Trajectories). Consider two trajectories of length H:

$$\tau_1 = (s_1, a_1, \dots, s_H, a_H), \quad \tau_2 = (s'_1, a'_1, \dots, s'_H, a'_H).$$

They are in conflict if there exists $h \in \{1, ..., H\}$ such that

$$s_h = s'_h$$
 and $a_h \neq a'_h$.

Remark. If τ_1 and τ_2 conflict, and τ_1 and τ_3 do not conflict, it does not imply that τ_2 and τ_3 are conflict-free.

Definition 3 (Trajectory-Induced Policy Set). For a trajectory $\tau = (s_1, a_1, \dots, s_H, a_H)$, its trajectory-induced policy set π^{τ} contains all policies $\pi = \{\pi_h\}_{h=1}^H$ satisfying $\pi_h(s_h) = a_h$ for each h, while $\pi_h(s')$ is arbitrary for $s' \neq s_h$:

$$\pi^{\tau} = \{ \pi \mid \pi_h(s_h) = a_h \ \forall h = 1, \dots, H; \ \pi_h(s') \ arbitrary \ for \ s' \neq s_h \}.$$

²Our setting can be naturally extended to scenarios where the expert-labeled trajectory set is accompanied by scalar feedback, such as scores provided by experts. In this case, we have $\mathcal{T}_{\text{sel}} = \{(\tau_i, y_i)\}_{i=1}^M \subset \mathcal{T} \times \mathcal{Y}$, where each τ_i denotes a trajectory and $y_i \in \mathcal{Y}$ represents its associated scalar label. Accordingly, the objective should incorporate the feedback by weighting each trajectory with its corresponding label y_i .

This set represents all policies that exactly reproduce τ on its specific states. Since we focus on deterministic policies, conflicts arise when a policy must choose a unique action at the same state, unlike randomized policies which can mix actions.

Remark. If τ_1 and τ_2 conflict, then $\pi^{\tau_1} \cap \pi^{\tau_2} = \emptyset$ because a deterministic policy cannot choose conflicting actions at the same state. Conversely, if a set of trajectories $\{\tau_1, \ldots, \tau_m\}$ are pairwise conflict-free, then $\bigcap_{i=1}^m \pi^{\tau_i} \neq \emptyset$.

For each trajectory $\tau_i = (s_1^{(i)}, a_1^{(i)}, \dots, s_H^{(i)}, a_H^{(i)})$, let

$$p_i = \mu(s_1^{(i)}) \cdot P_1(s_2^{(i)} \mid s_1^{(i)}, a_1^{(i)}) \cdots P_{H-1}(s_H^{(i)} \mid s_{H-1}^{(i)}, a_{H-1}^{(i)}).$$

If a deterministic policy π belongs to $\bigcap_{i=1}^k \pi^{\tau_i}$, then

$$P(\text{Agent visits } \{\tau_1, \dots, \tau_k\} \mid \pi) = \sum_{i=1}^k p_i.$$

At the same time we can consider a **Conflict Graph** G = (V, E, W): where the vertex set V represents the trajectories $\tau_1, \tau_2, \cdots, \tau_M$ in \mathcal{T}_{sel} , the edge set E is constructed if any pair of trajectories are conflict. For the weight set $W = \{w_i\}$, we let $w_i = p_i$, the probability product of realizing that trajectory.

Thus, the original problem reduces to the following Maximum-Weight Independent Set (MWIS) problem on graph G with weights p_i :

$$\max \sum_{i=1}^{k} p_i x_i, \quad x_i + x_j \le 1 \ \forall (v_i, v_j) \in E, \quad x_i \in \{0, 1\} \ \forall i.$$
 (2)

Let $S = \{v_i : x_i = 1\}$ be the optimal node set; the corresponding policy selects $\pi_h(s_h^{(i)}) = a_h^{(i)}$ for all $v_i \in S$ and $h = 1, \dots, H$.

It is well known that the Maximum Weight Independent Set (MWIS) problem in a graph is NP-complete [Garey and Johnson, 1979]. We have demonstrated that our original problem—finding the optimal policy in the binary-labeled setting—can be reduced to an instance of the MWIS problem. This motivates us to explore whether these two problems are equivalent in computational complexity. In fact, we establish the following result:

Theorem 1. The problem of finding the optimal policy in the direct trajectory alignment setting is NP-complete.

Remark. We prove this by showing reduction from a known NP-complete problem —the **MWIS** problem. We show that any weighted graph can be represented as a subset of trajectories with corresponding probabilities. We achieve this by using a novel BFS-Based trajectory construction to transfer any weighted graph to a subset of trajectories in one MDP. Then we show that good policy implies high weight independent set, which concludes the proof. The details is provided in the Appendix A.3.

4 Trajectory Graph Learning with Known Model

When we face the hardness of finding the exact optimal solution of the general problem in polynomial time implied by Theorem 1, one may think of the path to find approximation solution with polynomial time. Unfortunately, prior work by Johan [1999] shows that the MWIS problem is extremely hard to approximate, establishing that unless P = NP, there is no $\frac{1}{n^{1-\varepsilon}}$ -approximation algorithm for MWIS for any fixed $\varepsilon > 0$, where n denotes the number of nodes in the graph. However, we establish the *Trajectory Graph Learning* (TGL) framework with positive results when certain assumptions is added on the MDP or the expert-labeled trajectory set.

Case 1: Bounded realizability of expert trajectory set In the first case, we assume that all trajectories in $\mathcal{T}_{\mathrm{sel}}$ are reachable, meaning they have non-negligible probability under the environment. This is a standard and practical assumption, as trajectories with vanishingly small probability are often ignored or excluded during data collection or preprocessing. As a result, the selected set $\mathcal{T}_{\mathrm{sel}}$ contains only trajectories that the agent has a reasonable chance of encountering.

Algorithm 1 TGL-CP

```
Require: Finite-horizon MDP (S, A, P, H); Expert-Labeled Trajectory Set \mathcal{T}_{sel} \{\tau_1, \ldots, \tau_M\}; MWIS oracle MWIS(G, w) \rightarrow S
Ensure: Chosen trajectory subset S and derived policy \pi
      /* Conflict graph */
 1: V \leftarrow \{v_i \mid \tau_i \in \mathcal{T}_{\text{sel}}\}, E \leftarrow \varnothing
 2: for all (\tau_i, \tau_j) with i < j do
            if \exists h : s_h^i = s_h^j \wedge a_h^i \neq a_h^j then E \leftarrow E \cup \{(v_i, v_j)\}
 /* Weights */
5: for all \tau_i \in \mathcal{T}_{\mathrm{sel}} do
6: p_i \leftarrow \prod_{h=1}^{H-1} P(s_{h+1}^i \mid s_h^i, a_h^i)
      /*MWIS Oracle */
 7: S \leftarrow \text{MWIS}(G, (p_1, \dots, p_M))
 8: for all v_i \in S with \tau_i = (s_1^i, a_1^i, ..., s_H^i, a_H^i) do
            for h = 1 to H do
 9:
10:
                  \pi_h(s_h^i) \leftarrow a_h^i
11: For states not covered by \bigcup_{v_i \in S} \tau_i, set \pi_h via a default rule
12: return S, \pi
```

Definition 4 (ε - Realizable). We say a trajectory $\tau = (s_1, a_1, s_2, a_2, \dots, s_H, a_H)$ is ε -Realizable if the probability product $P_1(s_2|s_1, a_1) \cdot P_2(s_3|s_2, a_2) \cdots P_{H-1}(s_H|s_{H-1}, a_{H-1}) \geq \varepsilon$.

Example. In a nearly deterministic environment, where transitions are deterministic or have high probability (e.g., $P(s_{h+1} \mid s_h, a_h) \geq 0.9$ for all steps), many trajectories are ε -realizable with relatively large ε (e.g., $\varepsilon \approx 0.9^{H-1}$). In contrast, in highly stochastic environments, some trajectories may have exponentially small realization probabilities (e.g., $\sim p^{H-1}$ for small p), making them effectively unreachable in practice unless ε is extremely small.

Then we provide a generic framework $\mathbf{TGL-CP}$ ($\mathit{Trajectory}$ Graph $\mathit{Learning-Conflict}$ $\mathit{Planner}$), which is also shown in Algorithm 1. Basically, the algorithm will first construct a conflict graph, where the edges can be determined by checking the conflicts in the expertlabeled trajectory set and the weights can be calculated by the probability product of each trajectory. Then, a MWIS oracle is applied to select a subset of trajectories S that forms a solution to the problem. The desired policy is subsequently obtained by following the actions specified in the trajectories contained in S, ensuring the policy aligns with the selected subset of trajectories. To implement this step explicitly, we introduce a simple enumeration-based oracle for MWIS, detailed in Algorithm 3 in Appendix A.1. Then we have the following theorem.

Theorem 2. Assume that any trajectory in the expert-labeled trajectory set \mathcal{T}_{sel} is ε_0 -Realizable, then after applying Algorithm 1 and 3, it can return the optimal policy π^* with time complexity $O(M^2H + M^{1/\lfloor 1/\epsilon_0 \rfloor})$.

Remark. The enumeration-based oracle exploits the lower bound $w(v) \ge \varepsilon_0$ implied by the ε_0 -realizable assumption to deduce that any feasible independent set can contain at most $K = \lfloor 1/\varepsilon_0 \rfloor$ vertices. Leveraging this, the oracle exhaustively enumerates all subsets of vertices of size at most K, checks each for independence, and calculates their total weight. By keeping track of the heaviest feasible subset encountered, the oracle returns the exact maximum-weight independent set in time polynomial in the graph size, assuming K is treated as a constant.

Case 2: Tree-Structured MDP In the second case, instead of focusing on a general MDP, we instead look for some special structured but very useful MDP setting. The one we will display here is a so-called Tree MDP.

Definition 5 (Tree MDP). A Tree MDP is defined as follows:

1. No subsequent crossover for different states: For any step $h \in [H]$, for any two different states $s_h^{(1)}$ and $s_h^{(2)}$, the subsequent states after these two states should be different, i.e. if

- the possible visited states after $s_h^{(1)}$ and $s_h^{(2)}$ are $\sigma(s_h^{(1)})$ and $\sigma(s_h^{(1)})$ respectively, then we have $\sigma(s_h^{(1)}) \cap \sigma(s_h^{(1)}) = \emptyset$.
- 2. No subsequent crossover for different actions: For any step $h \in [H]$, each state s_h has possible actions leading to possible successor states with no merges; i.e. if action a_1 leads to possible states $\sigma^{(1)}(s_h)$ and a different action a_2 leads to $\sigma^{(2)}(s_h)$, then $\sigma^{(1)}(s_h) \cap \sigma^{(2)}(s_h) = \emptyset$.
- 3. No revisits: once the MDP leaves s_h , it never returns to it in future steps.

Consequently, the transition graph is a forward-branching tree. A trajectory is any path from the initial state s_1 to a layer-H leaf. Two trajectories conflict if at some time h they coincide in the same state but choose different actions, forming an edge in the conflict graph. Tree MDPs arise naturally in applications where future decisions unfold independently and paths do not merge. In LLMs, decoding strategies like beam search or top-k sampling generate diverse continuations from a prompt, forming a forward tree where each branch represents a distinct sequence [AssemblyAI, 2023]. In self-driving, planning algorithms simulate future actions (e.g., turn, accelerate) under constraints that avoid revisiting past states, resulting in a branching structure of possible trajectories [Zhao et al., 2025].

Under the Tree MDP structure, we provide a novel algorithm **TGL-PrunedTree**, which is detailed in Algorithm 4 in Appendix A.1. It is a backward trajectory selection and pruning algorithm tailored for solving the policy optimization problem in a finite-horizon Tree MDP. Given a set of M trajectories $\mathcal{T}_{\text{sel}} = \{\tau_i\}_{i=1}^M$, each of fixed length H, the algorithm first computes a weight for each trajectory based on the product of transition probabilities along its path. It then proceeds in a backward fashion, from the final timestep H to the root, performing aggregation and pruning at each level. For each state s_h at timestep h, it aggregates the weights of trajectories sharing the same action a_h and keeps only the action with the highest total weight. This approach prunes conflicting or suboptimal paths and merges consistent ones, yielding a compatible, high-weights subset of the original trajectories.

Theorem 3. Under the Tree MDP assumption (Definition 5), Algorithm 4 computes an optimal policy π^* with time complexity $\mathcal{O}(H \cdot M \cdot |\mathcal{A}|)$.

Remark. The full proof is provided in Appendix A.5. The key insight here is that, under the Tree MDP structure, the optimal policy can be computed efficiently using a linear-time dynamic programming approach—rather than solving an NP-hard problem as in the general graph case. This result paves the way for analyzing more efficient algorithms, both in terms of time and sample complexity, within learning settings that exhibit tree-like structure.

5 Trajectory Graph Learning with Unknown Model

In real-world scenarios, even when expert trajectories or human-labeled datasets are available, the underlying environment dynamics are typically unknown—that is, the transition matrix \mathbb{P} must still be learned. In this section, we investigate methods for jointly learning the environment and identifying a good policy, a setting commonly referred to as *online learning*. Specifically, we introduce a UCB-based exploration algorithm and provide its corresponding regret analysis.

In the online learning setting, we propose **TGL-UCB** (Algorithm 2), which learns an optimal subset of expert-labeled trajectories by combining Monte Carlo sampling with an Upper Confidence Bound (UCB) exploration strategy [Auer et al., 2002] over a conflict graph. Each node in the graph represents a trajectory, and edges connect conflicting pairs that cannot be realized simultaneously. For each trajectory node $v_i \in V$, we track: T_i (the total number of times a matching policy has been played), N_i (the number of times trajectory v_i has been realized), and $\widehat{\mu}_i = N_i/T_i$ (the empirical realization probability). Initially, for each v_i , we generate a policy π_i by selecting an arbitrary maximal independent set containing v_i and play each once to initialize estimates. In each round, TGL-UCB computes optimistic upper confidence bounds for all trajectories, invokes an MWIS oracle to select an independent set maximizing the total UCB values, executes the corresponding policy, and updates estimates. This iterative process balances exploration and exploitation, enabling TGL-UCB to progressively refine its trajectory selection and align with expert-labeled demonstrations. Before presenting the main theoretical result, we introduce some essential definitions.

Algorithm 2 TGL-UCB

Require: Expert-Labeled Trajectory Set $\mathcal{T}_{\text{sel}} = \{\tau_1, \dots, \tau_M\}$; Total number of rounds n; MWIS oracle $\text{MWIS}(G, w) \rightarrow S$

Ensure: Chosen trajectory subset S and derived policy π

/* Conflict graph */
1:
$$V \leftarrow \{v_i \mid \tau_i \in \mathcal{T}_{sel}\}, \ E \leftarrow \varnothing$$
2: for all (τ_i, τ_j) with $i < j$ do
3: if $\exists h : s_h^i = s_h^j \land a_h^i \neq a_h^j$ then
4: $E \leftarrow E \cup \{(v_i, v_j)\}$

- 5: Initialization:
- 6: For each node (trajectory) $v_i \in V$, use variable T_i as the total number of policies played that matches trajectory v_i , variable N_i as the times that v_i is sampled so far, and variable $\widehat{\mu}_i$ as the current estimated empirical probability of realizing trajectory τ_i , where $\widehat{\mu}_i = \frac{N_i}{T_i}$.
- 7: For each node $v_i \in V$, select an arbitrary maximum independent $S_i \subset V$ such that $v_i \in S_i$, and get the corresponding policy π_i from S_i .
- 8: For each $i \in [M]$, play π_i once and update variables T_i and $\widehat{\mu}_i$.
- 9: **for** $t = M + 1, M + 2, \dots, n$ **do**
- 10: for $i \in [M]$ do

11: Set
$$u_i = \widehat{\mu}_i + \sqrt{\frac{3 \log t}{2T_i}}$$

- 12: Compute $S^+ \leftarrow \text{MWIS}(G, \{u_v\}_{v \in V})$
- 13: Play the corresponding policy π^+ from S^+ and update all $T_i's$, N_i 's and $\widehat{\mu}_i$'s.

For any independent set $S \subset V$, define $p_S = \sum_{v \in S} p_v$ and the optimal value $p^* = \max_{S \text{ indep. }} p_S$. The set of sub-optimal solutions is

$$S_{\text{sub}} = \{ S \subset V \mid p_S < p^* \} .$$

For each node $v \in V$, define the sub-optimal gaps:

$$\Delta_{\min}^v = p^* - \max \{ p_S \mid S \in \mathcal{S}_{\text{sub}}, v \in S \}, \quad \Delta_{\max}^v = p^* - \min \{ p_S \mid S \in \mathcal{S}_{\text{sub}}, v \in S \}.$$

The global gap bounds are:

$$\Delta_{\min} = \min_{v \in V} \Delta_{\min}^v, \quad \Delta_{\max} = \max_{v \in V} \Delta_{\max}^v.$$

Theorem 4. The expected regret of Algorithm 2 over K rounds is at most $O\left(\frac{M^3 \log K \cdot \Delta_{\max}}{\Delta_{\min}^2}\right)$.

Remark. This theorem establishes a gap-dependent regret bound and guarantees sub-linear regret, indicating that efficient learning is achievable in our setting given access to a good MWIS oracle. The detailed proof is provided in Appendix A.6. The key idea is to reduce our UCB-based graph learning problem to a classical combinatorial multi-armed bandit (CMAB) problem, enabling the application of standard analysis techniques.

6 Experiments

To further demonstrate the effectiveness of our method, we conduct experiments comparing our TGL-UCB approach with the classical imitation learning baseline, behavior cloning. This experiment is deliberately designed to stress trajectory-level alignment.

Environment. All experiments use a 4×4 FROZEN LAKE environment [Brockman et al., 2016] modified to make *holes* non-terminating and yield a -1 reward. The goal square returns +1 and ends the episode; otherwise the horizon is H=10. On every step the intended action is replaced by a uniformly–random valid action with probability 0.10. Observations are one-hot state vectors and actions are the four cardinal moves.

Demonstrations. For each condition in Table 1, we build a set $\mathcal{D} = \{\tau_i\}$ of "expert" trajectories that serve as offline data: these trajectories are produced by a deterministic expert or by its stochastic variant. By our definition of trajectory conflicts, the trajectories produced by any deterministic agent are not conflicting, which is why we sample some trajectories from a stochastic agent to induce more conflicts. We then tested various

Table 1: Trajectory match probability († better) over 10,000 episodes with 95% CIs	$(\pm).$
Each row shows how many deterministic and stochastic demos are in \mathcal{D} .	

Expert-Labeled Set	TGL-UCB (Ours)	BC	PPO Expert
15 det. & 5 stoch.	$\textbf{0.794}\pm\textbf{0.008}$	0.775 ± 0.008	0.778 ± 0.008
10 det. & 10 stoch.	$\textbf{0.801}\pm\textbf{0.008}$	0.778 ± 0.008	0.800 ± 0.008
5 det. & 15 stoch.	$\textbf{0.801}\pm\textbf{0.008}$	0.771 ± 0.008	0.793 ± 0.008
10 det. & 5 stoch.	$\textbf{0.814}\pm\textbf{0.008}$	0.793 ± 0.008	0.803 ± 0.008
8 det. & 7 stoch.	$\textbf{0.810}\pm\textbf{0.008}$	0.774 ± 0.008	0.801 ± 0.008
5 det. & 10 stoch.	0.779 ± 0.008	0.758 ± 0.009	$\textbf{0.780}\pm\textbf{0.008}$
10 det. only	$\textbf{0.778}\pm\textbf{0.008}$	0.753 ± 0.009	0.775 ± 0.009
5 det. & 5 stoch.	0.740 ± 0.009	0.713 ± 0.009	0.735 ± 0.009
10 stoch. only	0.738 ± 0.009	0.714 ± 0.009	$\textbf{0.739}\pm\textbf{0.009}$
5 det. only	$\textbf{0.730}\pm\textbf{0.009}$	0.703 ± 0.009	0.713 ± 0.009
5 stoch. only	$\boldsymbol{0.675\pm0.009}$	0.673 ± 0.009	0.661 ± 0.009
3 det. only	$\boldsymbol{0.672\pm0.009}$	$\textbf{0.672}\pm\textbf{0.009}$	0.670 ± 0.009
3 stoch. only	$\boldsymbol{0.657\pm0.009}$	0.653 ± 0.010	0.648 ± 0.010
1 det. only	$\textbf{0.634}\pm\textbf{0.010}$	0.627 ± 0.010	0.621 ± 0.010

trajectory set sizes (from 1 to 20) and various deterministic/stochastic compositions. No further interaction with the environment is allowed during training.

Methods compared.

- TGL (ours). Algorithm 2 (TGL-UCB) is run on \mathcal{D} with initial number of samples $m_0 = 10$, and successful probability $\delta = 0.9$. We solve for the exact MWIS solution in the algorithm (since our environment is small). The resulting maximum-weight independent set \mathcal{S}^+ is turned into a time-indexed lookup policy as described in Section 5 of the paper.
- Behavioural Cloning (BC). We train the supervised learner imitation.algorithms.bc from the opens ource imitation library [Gleave et al., 2022], with batch size of 8 for 20 epochs on the same trajectory set.
- **PPO Expert.** The reference expert policy used to generate the deterministic demonstrations (trained for 50 k steps with PPO).

Metric. Because numerical rewards are absent during training, we evaluate policies by the probability that a rollout $\hat{\tau}$ exactly matches one of the demonstration trajectories:

$$P_{\text{match}}(\pi) = \Pr_{\hat{\tau} \sim \pi} [\hat{\tau} \in \mathcal{D}].$$

For each policy we execute 10 000 episodes with fixed seed and report the empirical match frequency. This empirical trajectory match probability metric directly measures the objective of direct trajectory alignment (DTA): replicate the expert trajectories, rather than maximizing a surrogate reward. Each episode can be viewed as a Bernoulli trial that either matches a demonstration trajectory or not, so the empirical match probability is a binomial proportion.

Error Bars. We report the 95% confidence intervals for each configuration using Wald intervals computed from the 10,000 trials. In the worst case p=0.5, the standard error is $\sqrt{(0.5(1-0.5)/10000}=0.005$, yielding a ≈ 0.01 wide 95% interval. In practice, we report the error bars based on the empirical \hat{p} from each cell.

Discussion. Across every demo composition, TGL-UCB consistently matches or exceeds the behavioural-cloning baseline and often surpasses the PPO expert, despite never observing rewards. The gains are the most pronounced when demonstrations are scarce or highly mixed, highlighting the benefit of directly learning from trajectories.

Limitations and Future Work. Our study was done using a single finite and discrete 4×4 Frozen Lake gridworld-like environment. The current theory and algorithmic guarantees target finite MDPs with a finite exppert set and do not extend to continuous MDPs. Scaling grid size increases the number of states but does not qualitatively change the conflict structure, so the results here primarily serve to validate the trajectory-alignment mechanism and TGL-UCB algorithm. TGL-UCB is also more computationally expensive than Behavioral Cloning due to solving MWIS over the conflict graph being the main bottleneck. we therefore capped the number of iterations at 50 (which is sufficient for the 4×4 Frozen Lake environment.

Future work includes improving the computational efficiency of our methods, extending the DTA framework to continuous MDPs, and extending the experiments to evaluate alignment without reward modeling in more complex or richer environments.

Also, we did not evaluate history-conditioned BC or recurrent sequence models because the environment is fully observed. A next step is to compare TGL to history-conditioned BC or recurrent models in controlled partially observed tasks and to develop a history-aware TGL that builds conflict graphs over history features or trajectory segments.

7 Conclusions and Future Work

This work introduces Trajectory Graph Learning (TGL), a novel framework for trajectorylevel policy alignment that bypasses reward modeling. By leveraging structural assumptions often met in practice, TGL enables efficient and theoretically grounded planning in both known and unknown environments. Our theoretical results highlight the inherent complexity of direct trajectory imitation, while our algorithms demonstrate strong empirical gains over conventional imitation learning methods. These findings underscore the promise of structureaware trajectory alignment for reliable long-horizon decision-making in reinforcement learning. A key direction going forward is extending the theory to continuous MDP settings and the development of trajectory-level RL benchmarks, specifically designed to evaluate alignment without reward modeling. This may involve adapting existing environments or designing new ones where trajectory sets can be meaningfully constructed, compared, and evaluated. Building such benchmarks is non-trivial and will likely require substantial engineering effort, especially in continuous or high-dimensional domains such as robotics, autonomous driving, or natural language generation. Additionally, improving the efficiency of TGL, through approximate solvers, amortized inference, or scalable graph-based methods, will be crucial for extending its applicability to larger and more complex settings.

Acknowledgements

YL is supported in part by NSF grant 2221871 and an Amazon AI Fellowship. LY is supported in part by NSF grant 2221871, and an Amazon Faculty Award.

References

- P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In *Proceedings of the twenty-first international conference on Machine learning*, page 1, 2004.
- Y. Abdelkareem, S. Shehata, and F. Karray. Advances in preference-based reinforcement learning: A review. In 2022 IEEE international conference on systems, man, and cybernetics (SMC), pages 2527–2532. IEEE, 2022.
- A. Agnihotri, R. Jain, D. Ramachandran, and Z. Wen. Best policy learning from trajectory preference feedback. arXiv preprint arXiv:2501.18873, 2025.
- R. Akrour, M. Schoenauer, and M. Sebag. Preference-based policy learning. In ECML-PKDD, 2011a.
- R. Akrour, M. Schoenauer, and M. Sebag. Preference-based policy learning. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011. Proceedings, Part I 11, pages 12–27. Springer, 2011b.
- D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.
- G. An, J. Lee, X. Zuo, N. Kosaka, K.-M. Kim, and H. O. Song. Direct preference-based policy optimization without reward modeling. *Advances in Neural Information Processing Systems*, 36:70247–70266, 2023.
- AssemblyAI. Decoding strategies: How llms choose the next word. https://assemblyai.com/blog/decoding-strategies-how-llms-choose-the-next-word, 2023. Accessed: 2025-05-02.

- P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine learning*, 47(2-3):235–256, 2002.
- G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.
- D. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating beyond suboptimal demonstrations via inverse reinforcement learning from observations. In *International conference on machine learning*, pages 783–792. PMLR, 2019a.
- D. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating beyond suboptimal demonstrations via inverse reinforcement learning from rankings. In *ICLR*, 2019b.
- R. Busa-Fekete, B. Szörényi, P. Weng, W. Cheng, and E. Hüllermeier. Preference-based evolutionary direct policy search. In *ICRA Workshop on autonomous learning*, volume 2, 2013.
- J. Chang, M. Uehara, D. Sreenivas, R. Kidambi, and W. Sun. Mitigating covariate shift in imitation learning via offline data with partial coverage. Advances in Neural Information Processing Systems, 34:965–979, 2021.
- W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General framework and applications. In *International conference on machine learning*, pages 151–159. PMLR, 2013.
- P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement learning from human preferences. Advances in neural information processing systems, 30, 2017.
- A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban driving simulator. In *Conference on robot learning*, pages 1–16. PMLR, 2017.
- C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via policy optimization. In ICML, 2016.
- J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.
- J. Fu, K. Luo, and S. Ermon. Learning robust rewards with adversarial inverse reinforcement learning. In *ICML*, 2018.
- M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
- A. Gleave, M. Taufeeque, J. Rocamonde, E. Jenner, S. H. Wang, S. Toyer, M. Ernestus, N. Belrose, S. Emmons, and S. Russell. imitation: Clean imitation learning implementations. arXiv preprint arXiv:2211.11972, 2022. doi: 10.48550/arXiv.2211.11972. URL https://arxiv.org/abs/2211.11972.
- J. Ho and S. Ermon. Generative adversarial imitation learning. In NeurIPS, 2016.
- X. Hu, J. Li, X. Zhan, Q.-S. Jia, and Y.-Q. Zhang. Query-policy misalignment in preference-based reinforcement learning. arXiv preprint arXiv:2305.17400, 2023.
- W. Huang, H. Liu, Z. Huang, and C. Lv. Safety-aware human-in-the-loop reinforcement learning with shared control for autonomous driving. *IEEE Transactions on Intelligent Transportation Systems*, 2024.
- A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.
- H. Johan. astad. clique is hard to approximate within n1. *Acta Mathematica*, 182:105–142, 1999.

- J. Kaplan and et al. A baseline analysis of reward models' ability to generalise. arXiv preprint arXiv:2305.01681, 2023.
- A. Komanduru and J. Honorio. On the correctness and sample complexity of inverse reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.
- N. Lambert and R. Calandra. The alignment ceiling: Objective mismatch in reinforcement learning from human feedback. arXiv preprint arXiv:2311.00168, 2023.
- J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomotion over challenging terrain. *Science robotics*, 5(47):eabc5986, 2020.
- A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In *Icml*, volume 99, pages 278–287. Citeseer, 1999.
- A. Y. Ng, S. Russell, et al. Algorithms for inverse reinforcement learning. In *Icml*, volume 1, page 2, 2000.
- L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.
- R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference optimization: Your language model is secretly a reward model. Advances in Neural Information Processing Systems, 36:53728–53741, 2023.
- S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning. In *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pages 627–635. JMLR Workshop and Conference Proceedings, 2011.
- A. Saha, A. Pacchiano, and J. Lee. Dueling rl: Reinforcement learning with trajectory preferences. In *International Conference on Artificial Intelligence and Statistics*, pages 6263–6289. PMLR, 2023.
- A. Szot, A. Zhang, D. Batra, Z. Kira, and F. Meier. Bc-irl: Learning generalizable reward functions from demonstrations. arXiv preprint arXiv:2303.16194, 2023.
- F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. arXiv preprint arXiv:1805.01954, 2018.
- K. Waugh, B. D. Ziebart, and J. A. Bagnell. Computational rationalization: The inverse equilibrium problem. arXiv preprint arXiv:1308.3506, 2013.
- A. Wilson, A. Fern, and P. Tadepalli. A bayesian approach for policy learning from trajectory preference queries. *Advances in neural information processing systems*, 25, 2012.
- Y. Xu, R. Wang, L. Yang, A. Singh, and A. Dubrawski. Preference-based reinforcement learning with finite-time guarantees. Advances in Neural Information Processing Systems, 33:18784–18794, 2020.
- Y. Zeng, G. Liu, W. Ma, N. Yang, H. Zhang, and J. Wang. Token-level direct preference optimization. arXiv preprint arXiv:2404.11999, 2024.
- W. Zhan, Y. Chen, and D. Sadigh. Reward-agnostic preference-based policy optimization. In ICML, 2023.
- Y. Zhao, M. Wang, and J. Doe. A survey of decision-making and planning methods for self-driving. Frontiers in Neurorobotics, 19:1451923, 2025. URL https://www.frontiersin.org/articles/10.3389/fnbot.2025.1451923/full.
- B. Zhu, M. Jordan, and J. Jiao. Principled reinforcement learning with human feedback from pairwise or k-wise comparisons. In *International Conference on Machine Learning*, pages 43037–43067. PMLR, 2023.
- B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement learning. In AAAI, 2008.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- Keep the checklist subsection headings, questions/answers and guidelines below
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The paper is organized based on the abstract and the introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these
 goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations of our theory and experiments

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides rigorous assumptions and complete proof in the appendix. Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented
 by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all hyperparameters used in our experiments in our appendix section.

Guidelines:

• The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We believe we have provided detailed instructions to faithfully reproduce our experiment results.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have provided all of the settings used in our experiments and described them in our experiments section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We found our experimental results over multiple tries remain consistent, and we reported 95% confidence intervals in our experiment.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We have described the compute resources we used in the appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research do not have problems with ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: There is no society impact of our work.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: It is cited properly.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The research has nothing to do with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Technical Appendices and Supplementary Material

A.1 Remaining Algorithm pseudocodes

We provide the remaining algorithms in this section.

```
Algorithm 3 ENUMMWIS(G, w, \epsilon_0)
```

```
 \begin{array}{lll} \textbf{Require:} & \textbf{Conflict graph } G = (V,E) \text{ with } |V| = M; \text{ weights } w:V \rightarrow (0,1] \text{ satisfying } \\ w(v) \geq \epsilon_0 \\ \textbf{Ensure:} & \textbf{Maximum-weight independent set } S^* \\ 1: & K \leftarrow \left\lfloor 1/\epsilon_0 \right\rfloor & \rhd \text{ any independent set has size } \leq K \\ 2: & W_{\text{best}} \leftarrow 0, \; S^* \leftarrow \emptyset \\ 3: & \textbf{for all subsets } X \subseteq V \text{ with } |X| \leq K \textbf{ do} \\ 4: & \textbf{if } X \text{ is independent in } G \textbf{ then} \\ 5: & W \leftarrow \sum_{v \in X} w(v) \\ 6: & \textbf{if } W > W_{\text{best}} \textbf{ then} \\ 7: & W_{\text{best}} \leftarrow W, \; S^* \leftarrow X \\ 8: & \textbf{return } S^* \\ \end{array}
```

Algorithm 4 TGL-PRUNEDTREE

```
Require: Finite-horizon Tree MDP (S, A, P, H); Expert-Labeled Trajectory Set \mathcal{T}_{sel} =
      \{\tau_i\}_{i=1}^M \text{ where } \tau_i = (s_1^i, a_1^i, \dots, s_H^i, a_H^i).
Ensure: Pruned set \mathcal{M} with final weights
 1: for all \tau_i \in \mathcal{T}_{\text{sel}} do
2: w_i \leftarrow \prod_{h=1}^{H-1} P(s_{h+1}^i \mid s_h^i, a_h^i)
 3: \mathcal{M} \leftarrow \mathcal{T} = \{(\tau_i, w_i)\}_{i=1}^M, \{(\tau_{\text{com}}, w_{\text{com}})\} \leftarrow \{(\tau_i, w_i)\}
4: for h = H, H - 1, \dots, 1 do

▷ active trajectories

                                                                                                                                        \triangleright \text{leaf} \rightarrow \text{root}
            \begin{array}{l} \mathtt{Agg}[(s,a)] \leftarrow 0, \forall (s,a) \\ \mathtt{Com}[(s,a)] \leftarrow \varnothing, \forall (s,a) \end{array}
                                                                                                         \triangleright map (s, a) \mapsto summed weight
 6:
                                                                                     ▶ Combine the non-conflicting trajectories
 7:
            for each (\tau_{\text{com}}, w_{\text{com}}) \in \mathcal{M} do
                  Pick any trajectory \tau \in \tau_{com}
                                                                                                           8:
                  (s,a) \leftarrow (s_h(\tau), a_h(\tau))
 9:
                  Agg[(s, a)] \leftarrow Agg[(s, a)] + w_{com}
                                                                                \triangleright Aggregate the weights for the same (s_h, a_h)
10:
                  Com[(s, a)] \leftarrow \tau_{com} \cup Com[(s, a)]
11:
12:
            \mathcal{M} \leftarrow \{(\mathtt{Com}[(s,a)], \mathtt{Agg}[(s,a)]) | \mathtt{Com}[(s,a)] \neq \emptyset\}
            for each s \in \{s | \text{Com}[(s, a)] \neq \emptyset\} do
13:
14:
                  a^* \leftarrow \max_{a \in \mathcal{A}} \mathsf{Agg}[(s, a)]
                  Delete Com[(s, a)], a \neq a^* from \mathcal{M}
15:
16: w^* \leftarrow \text{Agg}[(s, a)]
17: for all \tau_i \in \mathcal{M} with \tau_i = (s_1^i, a_1^i, \dots, s_H^i, a_H^i) do
            for h = 1 to H do
19:
                  \pi_h(s_h^i) \leftarrow a_h^i
20: For states not covered by \bigcup_{v_i \in \mathcal{M}} \tau_i, set \pi_h via a default rule
21: return \mathcal{M}, \pi
```

A.2 Example: BC Fails to Capture Expert Trajectories

MDP Setup

- States: $S = \{s_1, s_2\}$
- Actions: $A = \{a_1, a_2\}$
- Transitions: Deterministic transitions from s_1 to s_2 with any action

Expert Trajectories

- $\tau_1 = (s_1, a_1, s_2, a_2)$
- $\tau_2 = (s_1, a_2, s_2, a_1)$

Behavior Cloning (BC) Limitation Behavior cloning only observes state-action pairs:

$$(s_1, a_1), (s_1, a_2), (s_2, a_1), (s_2, a_2)$$

resulting in:

• At s_1 , both a_1 and a_2 appear equally good.

• At s_2 , both a_1 and a_2 appear equally good.

Thus, BC will learn:

$$\pi(a_1|s_1) = \pi(a_2|s_1) = 0.5, \quad \pi(a_1|s_2) = \pi(a_2|s_2) = 0.5$$

Consequence Due to this ambiguity, the probability of correctly reproducing either expert trajectory is:

$$P(\tau_1) = \pi(a_1|s_1) \cdot \pi(a_2|s_2) = 0.5 \times 0.5 = 0.25$$

$$P(\tau_2) = \pi(a_2|s_1) \cdot \pi(a_1|s_2) = 0.5 \times 0.5 = 0.25$$

Total expert trajectory probability = 0.5

Direct Trajectory Alignment Advantage Direct trajectory alignment explicitly optimizes for the sequence:

$$\max_{\pi} \sum_{\tau \in \{\tau_1, \tau_2\}} P_{\pi}(\tau)$$

ensuring the policy preserves the correct sequence with probability 1, with either $\pi(a_1|s_1) = 1$, $\pi(a_2|s_2) = 1$; or $\pi(a_2|s_1) = 1$, $\pi(a_1|s_2) = 1$, since it learns to produce both trajectories as whole entities, rather than decomposing them into ambiguous state-action pairs.

A.3 Proof of Theorem 1

In this section, we want to prove that finding the optimal policy in the binary-labeled expert-labeled trajectory set setting is NP-complete. Before providing the main content of proof. We first define the following variant of MWIS problem. **Definition 6** (MWIS $_{<1}$).

Input

- A graph G = (V, E);
- A weight function $w: V \to (0,1]$;
- A rational threshold $K \in (0,1)$.

 $\textbf{\textit{Condition For every independent set } I \subseteq V \textit{ it holds } \sum_{v \in I} w(v) < 1.}$

Question Does there exist an independent set $I \subseteq V$ with $\sum_{v \in I} w(v) \ge K$?

Theorem 5 (MWIS $_{<1}$ is NP-complete). The decision problem in Definition 6 is NP-complete.

Proof. Membership in NP. A certificate is an independent set $I \subseteq V$. We can verify independence in O(|E|) time and compute $\sum_{v \in I} w(v)$ in O(|I|) time, so the problem lies in NP.

We reduce from the classical MAXIMUM INDEPENDENT SET (MIS) problem, known to be NP-complete. The problem is: A graph G = (V, E) and an integer $t \ge 1$, and the question is: does G contain an independent set of size at least t?

Reduction. Given an instance (G, t) of MIS with n := |V(G)|, construct (G, w, K) for MWIS_{<1} as follows

$$w(v) := \frac{1}{n+1} \quad \forall v \in V(G), \qquad K := \frac{t}{n+1} \ (<1).$$

The construction uses only $O(\log n)$ -bit rationals, hence is polynomial in n. For any independent set I we have

$$\sum_{v \in I} w(v) = \frac{|I|}{n+1} \le \frac{n}{n+1} < 1,$$

so the promise in Definition 6 is satisfied.

Because every vertex has the same weight,

$$|I| \ge t \iff \sum_{v \in I} w(v) = \frac{|I|}{n+1} \ge \frac{t}{n+1} = K.$$

Thus $(G, t) \in MIS \text{ iff } (G, w, K) \in MWIS_{<1}$.

The reduction is polynomial, establishing NP–hardness. Since MWIS $_{<1}$ is in NP and NP–hard, it is NP–complete.

Now we can establish the proof of Theorem 1.

Proof. First, let us restate the original problem.

Original Problem: Find the optimal deterministic policy

Input: A MDP and the binary expert-labeled trajectory set $\mathcal{T}_{sel} = \{\tau_i\}_{i=1}^M$ (or called level-1 trajectory)

Question: Is there any deterministic policy that can visit the level-1 trajectories with probability at least p?

We will do this in two steps:

Step 1: Show the original problem is in NP

To show that the original problem is in NP, we must demonstrate that a given solution can be verified in polynomial time.

Given a deterministic policy $\pi = {\{\pi_h\}_{h \in [H]}}$, we can:

- 1. Check whether the good trajectory does not have conflict with policy π :. To be specific, for a good trajectory $\tau = (s_1, a_1, s_2, a_2, \dots, s_H, a_H)$, check whether $\pi_1(s_1) = a_1, \pi_2(s_2) = a_2, \dots, \pi_H(s_H) = a_H$. If yes, add up the weight (the probability product) of this trajectory (We denote this set as Q). The complexity is at most $O(M \times H)$.
- 2. Sum the weights: Calculate $\sum_{w \in Q} w$ and check if it is at least p. This takes at most O(M) time.

Since both checks can be performed in polynomial time, the original problem is in NP.

Step 2: Reduction from $MWIS_{<1}$

We will reduce from the $MWIS_{<1}$ problem (Definition 6), which is known to be NP-complete from Theorem 2.

Reduction from $MWIS_{<1}$ to original problem

- 1. Any weighted graph can be represented as a subset of trajectories with corresponding probability The basic idea is because we can always find a MDP with sufficient trajectories to represent the relation between these M vertexes, i.e. $M << O(|S|^H|A|^H)$. The construction process is detailed in Algorithm 5 and 6. To be specific, for an arbitrary graph, we can enumerate every vertex in a Breadth-First Search (BFS). Each time we process one vertex and use conflict trajectory pairs to record all the edges it connects to. Then we get a set of trajectories that encoded the information of this graph. The second step is to assign the probability of the MDP given the weights of the graph, which is explained in Algorithm 6. The basic idea is to assign the probability kernel with the given weights $w(v) \in (0,1]$, and make sure the summation of all probability odds is still 1
- 2. Good policy implies high weight independent set. First, for any deterministic policy π , it will produce a set of non-conflicting trajectories (any two of these trajectories are non-conflicting), we denote this set as $\Sigma(\pi)$, and now if a deterministic policy π that can visit the level-1 trajectories with probability at least p, then $\sum_{w \in \Sigma(\pi)} w > p$, which

implies there exists an independent set that the summation of weights is larger than p.

Notice that the reduction process in Algorithm 5 and 6 is polynomial in M, therefore, we can conclude the original problem is also NP-complete.

```
Algorithm 5 BFS-Based Trajectory Construction
```

```
Require: Graph G = (V, E), horizon H
Ensure: Trajectories \{\tau(v)\}_{v\in V}, each of length H
 1: Pick an arbitrary root vertex v_1 \in V
 2: Fix \tau(v_1) \leftarrow (s_1, a_1, \dots, s_H, a_H)
 3: Visited \leftarrow \{v_1\}; enqueue v_1 in queue Q
 4: for all v \in V \setminus \{v_1\} do
        \tau(v) \leftarrow (s_1, a_1, s_U, a_U, \dots, s_U, a_U)
                                                                                    ▷ undecided after step 1
 6: while Q not empty do
        u \leftarrow \text{Dequeue}(Q)
 7:
        for all neighbor v of u with v \notin Visited do
 8:
             Fix remaining undecided steps in \tau(u) so it is unique
 9:
             Construct \tau(v) so that there exists a time t with s_t^{\tau(v)} = s_t^{\tau(u)} and a_t^{\tau(v)} \neq a_t^{\tau(u)}
10:
             Visited \leftarrow Visited \cup \{v\}; enqueue v
12: return \{\tau(v)\}_{v\in V}
```

Algorithm 6 Transition-Probability Assignment Using Vertex Weights

```
Require: Graph G = (V, E) with weights w : V \to (0, 1], \sum_{v \in S} w(v) \leq 1, S is an
    independent set.
Require: Trajectories \{\tau(v)\}_{v\in V} from Alg. 5
Ensure: Transition kernel P(\cdot \mid \cdot, \cdot)
    /* Preparation */
 1: for all v \in V do
        Write \tau(v) = (s_1, a_1, ..., s_H, a_H)
    /* First state-action pair (s_1, a_1) */
 3: for all edge \{v_1, v_2\} \in E do
        P(s_2 \mid s_1, a_1) \leftarrow \max\{w(v_1), w(v_2)\}\
        Distribute remaining mass over other successors of (s_1, a_1)
    /* Finalize each adjacent pair */
 6: for all edge (u, v) \in E do
        if w(u) > w(v) then
            Make the remainder of \tau(u) deterministic
 8:
            In \tau(v) add one stochastic step t with prob. w(v)/w(u) where s_t^{\tau(v)} = s_t^{\tau(u)} and
    a_t^{\tau(v)} \neq a_t^{\tau(u)}
       _{
m else}
10:
11:
            (Symmetric update with u \leftrightarrow v)
12: for all (s, a) with stochastic successors do
        Normalize P(\cdot \mid s, a) so \sum_{x} P(x \mid s, a) = 1
14: return P(\cdot \mid \cdot, \cdot)
```

A.4 Proof of Theorem 2

Time complexity of Algorithm 1 with oracle Algorithm 3. Let $M = |\mathcal{T}_{sel}|$ and H the horizon length, and set

$$K = \left\lfloor \frac{1}{\epsilon_0} \right\rfloor.$$

Then

- 1. **Conflict-graph construction** (lines 3–7): $O(\binom{M}{2} \cdot H) = O(M^2 H)$ time.
- 2. **Weight computation** (lines 9–11): O(MH).
- 3. **Oracle call** ENUMMWIS (G, w, ϵ_0) (Alg. 3):

$$\sum_{i=0}^K \binom{M}{i} \cdot O(i^2) = O\left(\sum_{i=0}^K \binom{M}{i}\right) = O(M^K) \quad \text{(since K is a constant)}.$$

4. **Policy extraction** (lines 15–18): O(|S|H) = O(KH).

Putting these together gives

$$T(M,H) = O(M^2H + MH + M^K + KH) = O(M^2H + M^K).$$

In particular, if ϵ_0 (hence K) is a fixed constant, this is polynomial time $O(M^2H + M^{1/\epsilon_0})$.

A.5 Proof of Theorem 3

Proof of Time Complexity. Let:

- M be the number of trajectories,
- *H* be the trajectory horizon,
- $|\mathcal{A}|$ be the number of discrete actions,
- |S| be the number of possible states per timestep.
- 1. Weight Computation: Each trajectory τ_i is assigned a weight via the product of H-1 transition probabilities. Across M trajectories, this requires:

$$\mathcal{O}(M \cdot H)$$

- **2.** Backward Pruning Loop: For each timestep $h = H, H 1, \dots, 1$ (total H iterations):
- Aggregating weights across identical (s_h, a_h) pairs requires scanning all active trajectories: $\mathcal{O}(M)$,
- Merging trajectories that share the same (s_h, a_h) pair: $\mathcal{O}(M)$,
- For each state s_h , selecting the action a_h with the maximum total weight among at most $|\mathcal{A}|$ options leads to: $\mathcal{O}(M \cdot |\mathcal{A}|)$ in the worst case (since there are at most M unique state-action pairs).

Therefore, the total cost per timestep is:

$$\mathcal{O}(M \cdot |\mathcal{A}|)$$

and over H timesteps:

$$\mathcal{O}(H \cdot M \cdot |\mathcal{A}|)$$

3. Final Output: The pruned result is returned by traversing at most M remaining elements:

$$\mathcal{O}(M)$$

Total Time Complexity: Summing all terms, the dominating component is from the backward pruning loop, yielding the final result:

$$\mathcal{O}(H \cdot M \cdot |\mathcal{A}|)$$

A.6 Proof of Theorem 4

Proof. The proof of Theorem 4 is based on the Theorem 1 in [Chen et al., 2013]. For the convenience of the readers, we show the complete process here.

For variable T_i , let $T_{i,t}$ be the value of T_i at the end of round t, that is, $T_{i,t}$ is the number of times policy played that matches trajectory v_i in the first t rounds. For variable $\hat{\mu}_i$, let $\hat{\mu}_{i,s}$ be the value of $\hat{\mu}_i$ after the policy which matched trajectory v_i is played s times. Then, the value of variable $\hat{\mu}_i$ at the end of round t is $\hat{\mu}_{i,T_{i,t}}$. For variable u_i , let $u_{i,t}$ be the value of u_i at the end of round t. Let $\overline{u}_t = (u_{1,t}, \dots, u_{M,t})$ be the random vector fed to the MWIS oracle as the input in line 12 of Algorithm 2 at round t.

We also maintain counter Q_i for each trajectory v_i after the M initialization rounds. Let $Q_{i,t}$ be the value of Q_i after the t-th round and $Q_{i,M} = 1$. Note that $\sum_i Q_{i,M} = M$. Counters $\{Q_i\}_{i=1}^M$ are updated as follows.

For a round t > M, let S_t be the independent set selected in round t by the MWIS oracle (line 12 of Algorithm 2). Round t is bad if the oracle selects a bad set $S_t \in \mathcal{S}_{\text{sub}}$. If round t is bad, let $i = \operatorname{argmin}_{j \in S_t} Q_{j,t-1}$. We increment Q_i by one, i.e., $Q_{i,t} = Q_{i,t-1} + 1$. That is, we find the trajectory v_i with the smallest counter in S_t and increment its counter. If i is not unique, we pick an arbitrary arm with the smallest counter in S_t . On the other hand, if $S_t \notin \mathcal{S}_B$, no counter will be incremented.

By definition $Q_{i,t} \leq T_{i,t}$. Notice that in every bad round, exactly one counter in $\{Q_i\}_{i=1}^M$ is incremented, so the total number of bad rounds in the first n rounds is less than or equal to $\sum_i Q_{i,n}$.

Define $\ell_t = \frac{6M^2 \ln t}{\Delta_{\min}^2}$. Consider a bad round $t, S_t \in \mathcal{S}_{\text{sub}}$ is selected and counter Q_i of some arm $i \in S_t$ is updated. We have

$$\sum_{i=1}^{m} Q_{i,n} - m \cdot (\ell_n + 1) = \sum_{t=m+1}^{n} \mathbb{I} \left\{ S_t \in \mathcal{S}_{\text{sub}} \right\} - m\ell_n$$

$$\leq \sum_{t=m+1}^{n} \sum_{i \in [m]} \mathbb{I} \left\{ S_t \in \mathcal{S}_{\text{sub}}, Q_{i,t} > Q_{i,t-1}, Q_{i,t-1} > \ell_n \right\}$$

$$\leq \sum_{t=m+1}^{n} \sum_{i \in [m]} \mathbb{I} \left\{ S_t \in \mathcal{S}_{\text{sub}}, Q_{i,t} > Q_{i,t-1}, Q_{i,t-1} > \ell_t \right\}$$

$$= \sum_{t=m+1}^{n} \mathbb{I} \left\{ S_t \in \mathcal{S}_{\text{sub}}, \forall i \in S_t, Q_{i,t-1} > \ell_t \right\}$$

$$\leq \sum_{t=m+1}^{n} \mathbb{I} \left\{ S_t \in \mathcal{S}_{\text{sub}}, \forall i \in S_t, T_{i,t-1} > \ell_t \right\}$$

We first claim that $\Pr(\{S_t \in \mathcal{S}_{\text{sub}}, \forall i \in S_t, T_{i,t-1} > \ell_t\}) \leq 2 \cdot M \cdot t^{-2}$. In fact, for any $i \in [M]$,

$$\Pr\left[\left|\hat{\mu}_{i,T_{i,t-1}} - \mu_{i}\right| \ge \sqrt{3 \ln t / (2T_{i,t-1})}\right]$$

$$= \sum_{s=1}^{t-1} \Pr\left[\left\{\left|\hat{\mu}_{i,s} - \mu_{i}\right| \ge \sqrt{3 \ln t / (2s)}, T_{i,t-1} = s\right\}\right]$$

$$\le \sum_{s=1}^{t-1} \Pr\left[\left|\hat{\mu}_{i,s} - \mu_{i}\right| \ge \sqrt{3 \ln t / (2s)}\right]$$

$$< t \cdot 2e^{-3 \ln t} = 2t^{-2}$$

where the last inequality is due to the Chernoff Hoeffding bound. Define $\Lambda_{i,t} = \sqrt{\frac{3 \ln t}{2T_{i,t-1}}}$ (a random variable since $T_{i,t-1}$ is a random variable), and event $E_t = \{\forall i \in [m], |\hat{\mu}_{i,T_{i,t-1}} - \mu_i| \leq \Lambda_{i,t}\}$. By union bound, $\Pr[\neg E_t] \leq 2 \cdot M \cdot t^{-2}$. According

to line 11 of Algorithm 2, we have $u_{i,t} - \hat{\mu}_{i,T_{i,t-1}} = \Lambda_{i,t}$. Thus $|\hat{\mu}_{i,T_{i,t-1}} - \mu_i| \leq \Lambda_{i,t}$ implies that $u_{i,t} \geq \mu_i$.

Let $\Lambda = \sqrt{\frac{3 \ln t}{2\ell_t}}$, which is not a random variable. Define random variable $\Lambda_t = \max \{\Lambda_{i,t} \mid i \in S_t\}$. Then

$$E_t \Rightarrow \forall i \in S_t, |u_{i,t} - \mu_i| \le 2\Lambda_t$$
$$\{S_t \in \mathcal{S}_{\text{sub}}, \forall i \in S_t, T_{i,t-1} > \ell_t\} \Rightarrow \Lambda > \Lambda_t$$

Let $\overline{u}_t = (u_{1,t}, \dots, u_{M,t})$ be the vector representing the adjusted expectation vector at round t. Then,

$$E_t \Rightarrow \overline{\boldsymbol{u}}_t \geq \boldsymbol{\mu}$$

If $\{E_t, S_t \in \mathcal{S}_{\text{sub}}, \forall i \in S_t, T_{i,t-1} > \ell_t\}$ holds at time t, we have the following important derivation:

$$\sum_{v \in S_t} p_v + 2M\Lambda > \sum_{v \in S_t} p_v + 2M\Lambda_t \ge \sum_{v \in S_t} u_v \ge p^*$$

Since $\ell_t = \frac{6M^2 \ln t}{\Delta_{\min}^2}$, we have $2M\Lambda = \Delta_{\min}$. Therefore,

$$\Pr\left[\left\{E_{t}, S_{t} \in \mathcal{S}_{\text{sub}}, \forall i \in S_{t}, T_{i, t-1} > \ell_{t}\right\}\right] = 0 \Rightarrow$$

$$\Pr\left[\left\{S_{t} \in \mathcal{S}_{\text{sub}}, \forall i \in S_{t}, T_{i, t-1} > \ell_{t}\right\}\right]$$

$$\leq \Pr\left[\neg E_{t}\right] \leq 2 \cdot M \cdot t^{-2}.$$

The claim thus holds. We have, $\mathbb{E}\left[\sum_{i=1}^{M}Q_{i,n}\right] \leq M\left(\ell_{n}+1\right) + \sum_{t=1}^{n}\frac{2M}{t^{2}} \leq \frac{6M^{3}\cdot\ln n}{\Delta_{\min}^{2}} + \left(\frac{\pi^{2}}{3}+1\right)\cdot M$.

Notice that each time we select a bad independent set at time t, we incur a regret at most Δ_{max} . Then we obtain the regret bound as follows.

$$\begin{split} & \operatorname{Regret}(n) \\ & \leq \mathbb{E}\left[\sum_{i=1}^{M} Q_{i,n}\right] \cdot \Delta_{\max} \\ & \leq \left(\frac{6 \log n \cdot M^2}{\Delta_{\min}^2} + \frac{\pi^2}{3} + 1\right) \cdot M \cdot \Delta_{\max}^2 \\ & = O\left(\frac{M^3 \log K \cdot \Delta_{\max}}{\Delta_{\min}^2}\right) \end{split}$$

A.7 Experimental Details and Hyperparameters

All hyper-parameters, stopping criteria and environment settings are listed in Table 2.

A.8 Compute Resources

All runs use a single Google Colab instance with an NVIDIA T4 (16 GB GPU RAM) kernel. Training the PPO expert for 50 000 steps takes around 1 min 20 s; one TGL-UCB run (50 iterations, 20 nodes) takes around 45 s. The evaluation of the three methods that we compare (TGL, BC, and PPO expert) takes around 1 min 30 s. Most of the code are not GPU accelerated, so using a CPU kernel is also feasible.

Table 2: Hyper-parameters used in every experiment.

Component	Hyper-parameter	er Value	
$\overline{Environment}$			
	Grid size	4×4	
	Episode horizon H	10	
	Random-action noise	0.10	
PPO expert			
	Learning rate	1×10^{-3}	
	n_steps	128	
	Batch size	64	
	Epochs per update	4	
	Discount γ	0.99	
	GAE λ	0.95	
	Clip range	0.2	
	Total steps	$50\ 000$	
TGL- UCB			
	δ	0.9	
	Initial samples m_0	10	
	ϵ	0.01	
	Max iterations	50	
Behavioural C	loning		
	Batch size	8	
	Training epochs	20	