Trajectory Graph Learning: Aligning with
Long Trajectories in Reinforcement Learning
Without Reward Design

Yunfan Li* Eric Liu
University of California, Los Angeles University of Southern California
yunfanli@g.ucla.edu eliu4913Q@usc.edu

Lin F. Yang *
University of California, Los Angeles
linyangQee.ucla.edu

Abstract

Reinforcement learning (RL) often relies on manually designed reward
functions, which are difficult to specify and can lead to issues such as
reward hacking and suboptimal behavior. Alternatives like inverse RL and
preference-based RL attempt to infer surrogate rewards from demonstrations
or preferences but suffer from ambiguity and distribution mismatch. A more
direct approach, inspired by imitation learning, avoids reward modeling
by leveraging expert demonstrations. However, most existing methods
align actions only at individual states, failing to capture the coherence of
long-horizon trajectories.

In this work, we study the problem of directly aligning policies with expert-
labeled trajectories to preserve long-horizon behavior without relying on
reward signals. Specifically, we aim to learn a policy that maximizes the
probability of generating the expert trajectories. Nevertheless, we prove that,
in its general form, this trajectory alignment problem is NP-complete. To
address this, we propose Trajectory Graph Learning (TGL), a framework that
leverages structural assumptions commonly satisfied in practice—such as
bounded realizability of expert trajectories or a tree-structured MDP. These
enable a graph-based policy planning algorithm that computes optimal
policies in polynomial time under known dynamics. For settings with
unknown dynamics, we develop a sample-efficient algorithm based on UCB-
style exploration and establish sub-linear regret. Experiments on grid-world
tasks demonstrate that TGL substantially outperforms standard imitation
learning methods for long-trajectory planning.

1 Introduction

Reinforcement learning (RL) has emerged as a powerful tool with numerous successful
applications, ranging from early advancements in robotics and control [Lee et al., 2020]
to more recent breakthroughs in self-driving technology [Dosovitskiy et al., 2017] and the
fine-tuning of Large Language Models (LLMs) [Ouyang et al., 2022]. However, the success of
RL in real-world applications often relies heavily on the design of the reward function, which
typically requires significant prior knowledge. We face challenges such as reward hacking

*Corresponding authors

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

[Amodei et al., 2016] where unintended behaviors maximize the given reward and reward
shaping [Ng et al., 1999] where improperly crafted rewards lead to suboptimal learning.

Since designing scalar, numeric rewards is often impractical for complex real-world tasks, some
alternative paradigms have been proposed. Inverse Reinforcement Learning (IRL) [Ng et al.,
2000] aims to recover a reward function that explains and justifies an expert’s demonstrated
behavior—so the agent can reproduce comparable policies without ever being given explicit
rewards. More recently, Preference-based Reinforcement Learning (PbRL) [Akrour et al.,
2011b, Christiano et al., 2017, Xu et al., 2020, Abdelkareem et al., 2022] replaces hand-
crafted numeric rewards with human preferences—typically pairwise or ordinal feedback
over trajectories or behaviors—and learns either a surrogate reward or a policy that aligns
with those preferences to guide decision-making. However, learning a surrogate reward from
demonstrations or preferences does not guarantee alignment with expert intent; ambiguity
[Waugh et al., 2013, Lambert and Calandra, 2023, Hu et al., 2023], overfitting [Brown et al.,
2019a, Szot et al., 2023] and distribution shift [Fu et al., 2017] all conspire to degrade final
policy quality. These empirical and theoretical findings motivate approaches—such as direct
trajectory alignment that bypass reward modelling altogether.

Imitation learning [Hussein et al., 2017] circumvents the need for handcrafted reward functions
by training policies to replicate expert behavior, typically by learning a mapping from observed
states to corresponding expert actions. However, its classical instantiation—behavior cloning
(BC) [Torabi et al., 2018]—focuses solely on state-action pair alignment, capturing the
expert action conditioned on individual states while neglecting the broader trajectory-level
structure. As a result, discrepancies between the trajectories generated by the learned
policy and the expert demonstrations can accumulate over time, ultimately undermining the
preservation of coherent long-horizon behaviors [Ross et al., 2011, Chang et al., 2021]. We
illustrate this limitation with a concrete example in Appendix A.2, where BC fails to reliably
reproduce entire expert trajectories with probability 1 even in a deterministic environment.
This shortcoming motivates our study of direct trajectory alignment, which seeks to directly
maximize the likelihood of reproducing complete expert trajectories. Such alignment is
particularly critical in applications like large language model (LLM) response generation
[Zeng et al., 2024] and autonomous driving [Huang et al., 2024], where even small local
deviations can propagate into significant degradations in overall quality or safety. To the best
of our knowledge, the theoretical foundations of directly aligning policies with expert-labeled
trajectories—without relying on reward modeling—remain largely unexplored.

In this paper, we systematically investigate the problem of direct trajectory alignment in
reinforcement learning and develop a theoretical framework that enables efficient policy
learning through whole-trajectory alignment. Our approach eliminates the need for explicit
reward modeling and leverages structural assumptions such as reachable expert trajectories
in terms of probability and tree-structured MDP to ensure computational tractability. We
summarize our key contributions below.

Our Contributions

e Hardness result for direct trajectory alignment. We prove that the general problem
of finding an optimal policy via direct trajectory alignment is NP-complete, by presenting
a novel reduction from a classical NP-complete problem. This result highlights the
fundamental computational challenge of directly aligning policies with expert trajectories.

e Theoretical framework: Trajectory Graph Learning (TGL). We introduce Tra-
jectory Graph Learning (TGL), a theoretical framework that casts the direct trajectory
alignment problem as a maximum weight independent set problem over a trajectory-
induced graph. Under structural assumptions—such as bounded realizability of expert
trajectories or a tree-structured MDP—we show that the optimal policy can be com-
puted in polynomial time. In the setting with unknown dynamics, we integrate an
upper-confidence bound (UCB) exploration strategy and design a learning algorithm with
provably sub-linear cumulative regret.

e Empirical validation. We empirically evaluate TGL on grid-world benchmarks. Our
results show that TGL consistently aligns with expert-labeled trajectories more faithfully
than standard behavior cloning across various trajectory sets.

Related work We review several classical RL approaches. The first line of work is inverse
reinforcement learning (IRL), which infers surrogate rewards from expert demonstrations;
the second is preference-based RL (PbRL), which learns from preferences over trajectories;
and the third is imitation learning, which directly maps expert demonstrations to policies
without reward modeling.

Inverse RL Early work framed IRL as reward reconstruction: Ng et al. [2000]’s linear
program formulation and Abbeel and Ng [2004]’s feature expectation matching seek a reward
under which the expert is optimal, a paradigm later disambiguated with maximum-entropy
regularization [Ziebart et al., 2008]. Deep variants such as Guided Cost Learning [Finn
et al., 2016], GAIL [Ho and Ermon, 2016], and AIRL [Fu et al., 2018] scale this two-stage
pipeline, yet their rewards remain trustworthy only near the demonstration distribution,
leading to policy mis-alignment after exploration. Recent extrapolation and theory papers
such as T-REX [Brown et al., 2019b], the finite-sample analysis [Komanduru and Honorio,
2019], and empirical audits of RLHF reward models [Kaplan and et al., 2023] confirm
that surrogate rewards do not guarantee alignment, motivating the need to analyze direct
trajectory alignment as an alternative.

PbRL From the first simulator-free preference-based policy learning algorithms [Akrour
et al., 2011a, Wilson et al., 2012, Busa-Fekete et al., 2013] to the widely cited deep RL
from human preferences framework [Christiano et al., 2017], most PbRL methods fit a
surrogate reward to pairwise or K-wise feedback and then optimize it with standard RL.
Recent PbRL algorithms still fit émplicit reward surrogates whose quality hinges on pre-
chosen feature embeddings and Bradley—Terry—Luce (BTL) style preference models. For
instance, Saha et al. [2023] established finite-time regret bounds only after projecting
trajectories into a hand-crafted feature space, so alignment requires that this embedding
fully captures task-relevant differences. The finite-sample analysis of Xu et al. [2020] likewise
assumes an unobserved latent reward and proves guarantees under the oracle condition that
pairwise labels reflect that hidden function. Empirical pipelines such as Direct Preference
Optimisation (DPO) [Rafailov et al., 2023] and Direct PB-PO [An et al., 2023] optimize the
same BTL-based surrogate, while more recent theory—SeqRank’s principled comparison
loss [Zhu et al., 2023], the reward-agnostic RAPT optimiser [Zhan et al., 2023|, and best-
policy identification from preferences [Agnihotri et al., 2025]—all rely on accurate trajectory
embeddings and preference-likelihood calibration to recover near-optimal policies. These
dependencies indicate that PbRL, which relies on feature embeddings and preference models,
may fail to guarantee alignment with expert behavior—highlighting the need to study the
problem of direct trajectory alignment.

Imitation Learning Imitation learning (IL) dispenses with reward design by training a
policy to copy expert demonstrations [Hussein et al., 2017]. The dominant variant, behaviour
cloning, maps each observed state to the expert’s action [Torabi et al., 2018]; because it
matches actions state-by-state, it incurs covariate shift, so small errors push the learner into
unseen states and the mismatch compounds along a trajectory [Ross et al., 2011]. Recent
analyses confirm that even with offline fixes such as MILO trajectory-level fidelity remains
loosely bounded [Chang et al., 2021]. Thus, no existing IL framework directly optimizes
expected alignment with a set of expert-labelled trajectories.

2 Problem Formulation

In this section, we first introduce and define the direct trajectory alignment problem. We
consider a finite-horizon Markov Decision Process (MDP) M = (S, A, P, Tea1, H, 11), where S
is the state space, A is a finite action space, P : § x A — A(S) is the transition kernel, H is
the planning horizon (i.e., episode length), and p is the initial state distribution. The agent
interacts with the environment episodically. In each episode of length H, the agent follows a
policy m = {m,}}L,, where each 7, : S — A maps a state to an action at time step h € [H].
A policy 7 induces a trajectory 7 = (s1, a1, 82,0a2,...,85,an), where s1 ~ p, a; = m(s1),
s9 ~ P(- | s1,a1), ag = ma(s2), and so on. Let T denote the set of all possible H-length
trajectories in the environment. Instead of having a reward function as in traditional RL, we

are given a Expert-Labeled Trajectory Set, defined as a small subset Toq = {T:}M; C T 2,
where each 7; is a trajectory. Typically, the size of the expert-labeled trajectory set is small
relative to the entire trajectory space, i.e., M < |T|.

Each policy 7 induces a distribution d™ over the space of H-length trajectories 7, where
d™ (1) = u(s1) Hthlw(ah | sn) - P(spt1 | sh,an). The objective is to find a policy that
maximizes the visitation probability of the trajectories in the expert-labeled set.

* T
™" = argmax Z d™(r)
TETse1

Direct trajectory alignment replaces the cumulative reward used in standard RL with an
expert-labeled trajectory set as the criterion for policy evaluation. In standard RL, the
effectiveness of a learning algorithm is often measured by regret, defined as the difference
between the cumulative reward of the optimal policy and that of the agent’s learned policy
over time. Analogously, in our direct trajectory alignment setting, we can define a notion of
regret that captures the performance gap in aligning with the expert-labeled trajectories.
Specifically, for each round k € [K], suppose the agent starts from the same initial distribution

u and executes policy 7 to generate a trajectory. The cumulative regret after K rounds is
then defined as

K
Regret(K) = Z <I711€ar>[(d™(7) — Z drr (7')>) (1)

k=1 TETgel TETgel

where d™(7) denotes the probability of generating trajectory 7 under policy .

Notation We use [n] to represent index set {1,---n}. For € R, |z] represents the largest
integer not exceeding x and [z] represents the smallest integer exceeding z. We use O to

represent leading orders in asymptotic upper bounds and O to hide the polylog factors. For
a finite set A, we denote the cardinality of A by |.A].

3 Hardness of General Direct Trajectory Alignment Problem

In this section, we will show the hardness of solving a general direct trajectory alignment
problem. We will show that getting the optimal policy in a general direct trajectory alignment
problem is equivalent to solving a Maximum-Weight Independent Set (MWIS) problem
in a graph. First, we will introduce some concepts here.

Definition 1 (Conflict in State-Action Pair). Two state-action pairs (s,a) and (s',a’) are
in conflict if they share the same state but have different actions:

s=s and a#d.

Definition 2 (Conflict in Trajectories). Consider two trajectories of length H :
1 = (81,01,...,85,a), T2=(sy,a},...,8y, ay).
They are in conflict if there exists h € {1,..., H} such that

sp=s), and ap # aj,.

Remark. If 11 and 7o conflict, and 71 and 13 do not conflict, it does not imply that 7o and
73 are conflict-free.

Definition 3 (Trajectory-Induced Policy Set). For a trajectory T = (s1,a1,...,8u,an), its
trajectory-induced policy set ™ contains all policies m = {ﬂ'h}thl satisfying 7, (sp) = ap,
for each h, while w,(s") is arbitrary for s’ # sp:

77 ={r | mn(sp) =an YVh=1,...,H; m(s") arbitrary for s’ # sp}.

2Qur setting can be naturally extended to scenarios where the expert-labeled trajectory set
is accompanied by scalar feedback, such as scores provided by experts. In this case, we have
Tset = {(7, yz)}fil C T x Y, where each 7; denotes a trajectory and y; €) represents its associated
scalar label. Accordingly, the objective should incorporate the feedback by weighting each trajectory
with its corresponding label y;.

This set represents all policies that exactly reproduce 7 on its specific states. Since we focus
on deterministic policies, conflicts arise when a policy must choose a unique action at the
same state, unlike randomized policies which can mix actions.

Remark. If 7 and 15 conflict, then 7™ N 1™ = () because a deterministic policy cannot

choose conflicting actions at the same state. Conversely, if a set of trajectories {T1,...,Tm}
. . . m T

are pairwise conflict-free, then (),_, 7™ # 0.

For each trajectory = = (sgi), agi), el s%), a%)), let

pi = (s - Pulsy) |87 al”) - Proa (s | sy alil).

If a deterministic policy 7 belongs to ﬂle w7, then
k
P(Agent visits {r1,..., 7} | 7) = Zpi.
i=1

At the same time we can consider a Conflict Graph G = (V, E,W): where the vertex set
V' represents the trajectories 71, 7o, - -+, Tas in Teel, the edge set F is constructed if any pair
of trajectories are conflict. For the weight set W = {w;}, we let w; = p;, the probability
product of realizing that trajectory.

Thus, the original problem reduces to the following Maximum-Weight Independent Set
(MWIS) problem on graph G with weights p;:
k
mapri zi, ;+x; <1 V(vy,v)eE, z;€{0,1} Vi (2)
i=1

Let S = {v; : ©; = 1} be the optimal node set; the corresponding policy selects ’/Th(SS)) = aElz)
forallv; e Sand h=1,..., H.
It is well known that the Maximum Weight Independent Set (MWIS) problem in a
graph is NP-complete [Garey and Johnson, 1979]. We have demonstrated that our original
problem—finding the optimal policy in the binary-labeled setting—can be reduced to an
instance of the MWIS problem. This motivates us to explore whether these two problems
are equivalent in computational complexity. In fact, we establish the following result:

Theorem 1. The problem of finding the optimal policy in the direct trajectory alignment
setting is NP-complete.

Remark. We prove this by showing reduction from a known NP-complete problem —the
MWIS problem. We show that any weighted graph can be represented as a subset of
trajectories with corresponding probabilities. We achieve this by using a novel BFS-Based
trajectory construction to transfer any weighted graph to a subset of trajectories in one MDP.
Then we show that good policy implies high weight independent set, which concludes the proof.
The details is provided in the Appendiz A.3.

4 Trajectory Graph Learning with Known Model

When we face the hardness of finding the exact optimal solution of the general problem in
polynomial time implied by Theorem 1, one may think of the path to find approximation
solution with polynomial time. Unfortunately, prior work by Johan [1999] shows that the
MWIS problem is extremely hard to approximate, establishing that unless P = NP, there
is no nll—,g—approximation algorithm for MWIS for any fixed € > 0, where n denotes the
number of nodes in the graph. However, we establish the Trajectory Graph Learning (TGL)
framework with positive results when certain assumptions is added on the MDP or the
expert-labeled trajectory set.

Case 1: Bounded realizability of expert trajectory set In the first case, we assume
that all trajectories in 7Tge are reachable, meaning they have non-negligible probability under
the environment. This is a standard and practical assumption, as trajectories with vanishingly
small probability are often ignored or excluded during data collection or preprocessing. As a
result, the selected set Tge contains only trajectories that the agent has a reasonable chance
of encountering.

Algorithm 1 TGL-CP
Require: Finite-horizon MDP (S, A, P,H); Expert-Labeled Trajectory Set T =

{m1,...,7m}; MWIS oracle MWIS(G,w)—S
Ensure: Chosen trajectory subset S and derived policy 7
/* Conflict graph */
V<_{Ui‘7'i€7;el}7 F+— o
for all (7, 7;) with i < j do

if Ih:), = s, Aal, # a), then

E+ EFU {(’Ui, Uj)}
/* Weights */
5: for all 7; € 75 do
H-1 i i
6: pi < [Thzy P(Sipa | 850 a3)
/*MWIS Oracle */

78+ MWIS(G, (p1y---,0M))

8: for all v; € S with 7; = (s%,al,...,s%,a%) do
9: for h =1 to H do
10: mh(s}) < aj,

11: For states not covered by |J 7, set mp, via a default rule

v, €S
12: return S, 7

Definition 4 (¢ - Realizable). We say a trajectory T = (s1,a1,82,02,...,85,aH) 18
e-Realizable if the probability product Py(sa|s1,a1) - Pa(ss|se,a2) - Pr_1(sm|sg—1,am—1) >
€.

Example. In a nearly deterministic environment, where transitions are deterministic or have
high probability (e.g., P (Sht1 | Shyan > 0 9 for all steps) many trajectories are e-realizable
with relatively large € (e.g., € = 0.9 In contrast, in highly stochastic environments,
some trajectories may have exponentlally small realization probabilities (e.g., ~ p~! for
small p), making them effectively unreachable in practice unless ¢ is extremely small.

Then we provide a generic framework TGL-CP (Trajectory Graph Learning-Conflict
Planner), which is also shown in Algorithm 1. Basically, the algorithm will first construct a
conflict graph, where the edges can be determined by checking the conflicts in the expert-
labeled trajectory set and the weights can be calculated by the probability product of each
trajectory. Then, a MWIS oracle is applied to select a subset of trajectories S that forms a
solution to the problem. The desired policy is subsequently obtained by following the actions
specified in the trajectories contained in S, ensuring the policy aligns with the selected subset
of trajectories. To implement this step explicitly, we introduce a simple enumeration-based
oracle for MWIS, detailed in Algorithm 3 in Appendix A.1. Then we have the following
theorem.

Theorem 2. Assume that any trajectory in the expert-labeled trajectory set T is €g-
Realizable, then after applying Algorithm 1 and 3, it can return the optimal policy © with
time complexity O(M?H + M/ 1/<ol),

Remark. The enumeration-based oracle exploits the lower bound w(v) > €q implied by the
gg-realizable assumption to deduce that any feasible independent set can contain at most
K = |1/eo] wvertices. Leveraging this, the oracle exhaustively enumerates all subsets of
vertices of size at most K, checks each for independence, and calculates their total weight.
By keeping track of the heaviest feasible subset encountered, the oracle returns the eract
mazimum-weight independent set in time polynomial in the graph size, assuming K is treated
as a constant.

Case 2: Tree-Structured MDP In the second case, instead of focusing on a general
MDP, we instead look for some special structured but very useful MDP setting. The one we
will display here is a so-called Tree MDP.

Definition 5 (Tree MDP). A Tree MDP is defined as follows:
1. No subsequent crossover for different states: For any step h € [H], for any two different

states sg) and 551), the subsequent states after these two states should be different, i.e. if

the possible visited states after sg) and sf) are a(s,(ll)) and 0(5511)) respectively, then we

have o(sg)) N U(sg)) =0.

2. No subsequent crossover for different actions: For any step h € [H], each state sp
has possible actions leading to possible successor states with no merges; i.e. if action
a1 leads to possible states oV (sy) and a different action ay leads to o'®(sy,), then

oW (sp) Na@ (sp) = 0.
3. No revisits: once the MDP leaves sy, it never returns to it in future steps.

Consequently, the transition graph is a forward-branching tree. A trajectory is any path
from the initial state s1 to a layer-H leaf. Two trajectories conflict if at some time h they
coincide in the same state but choose different actions, forming an edge in the conflict graph.
Tree MDPs arise naturally in applications where future decisions unfold independently and
paths do not merge. In LLMs, decoding strategies like beam search or top-k sampling
generate diverse continuations from a prompt, forming a forward tree where each branch
represents a distinct sequence [AssemblyAl, 2023]. In self-driving, planning algorithms
simulate future actions (e.g., turn, accelerate) under constraints that avoid revisiting past
states, resulting in a branching structure of possible trajectories [Zhao et al., 2025].

Under the Tree MDP structure, we provide a novel algorithm TGL-PrunedTree, which
is detailed in Algorithm 4 in Appendix A.1. It is a backward trajectory selection and
pruning algorithm tailored for solving the policy optimization problem in a finite-horizon
Tree MDP. Given a set of M trajectories Toe1 = {7;}},, each of fixed length H, the algorithm
first computes a weight for each trajectory based on the product of transition probabilities
along its path. It then proceeds in a backward fashion, from the final timestep H to the
root, performing aggregation and pruning at each level. For each state s;, at timestep h, it
aggregates the weights of trajectories sharing the same action aj and keeps only the action
with the highest total weight. This approach prunes conflicting or suboptimal paths and
merges consistent ones, yielding a compatible, high-weights subset of the original trajectories.

Theorem 3. Under the Tree MDP assumption (Definition 5), Algorithm j computes an
optimal policy ™ with time complezity O(H - M - |AJ).

Remark. The full proof is provided in Appendix A.5. The key insight here is that, under
the Tree MDP structure, the optimal policy can be computed efficiently using a linear-time
dynamic programming approach—rather than solving an NP-hard problem as in the general
graph case. This result paves the way for analyzing more efficient algorithms, both in terms
of time and sample complexity, within learning settings that exhibit tree-like structure.

5 Trajectory Graph Learning with Unknown Model

In real-world scenarios, even when expert trajectories or human-labeled datasets are available,
the underlying environment dynamics are typically unknown—that is, the transition matrix
P must still be learned. In this section, we investigate methods for jointly learning the
environment and identifying a good policy, a setting commonly referred to as online learning.
Specifically, we introduce a UCB-based exploration algorithm and provide its corresponding
regret analysis.

In the online learning setting, we propose TGL-UCB (Algorithm 2), which learns an optimal
subset of expert-labeled trajectories by combining Monte Carlo sampling with an Upper
Confidence Bound (UCB) exploration strategy [Auer et al., 2002] over a conflict graph. Each
node in the graph represents a trajectory, and edges connect conflicting pairs that cannot be
realized simultaneously. For each trajectory node v; € V', we track: T; (the total number of
times a matching policy has been played), N; (the number of times trajectory v; has been
realized), and [1; = N;/T; (the empirical realization probability). Initially, for each v;, we
generate a policy 7; by selecting an arbitrary maximal independent set containing v; and
play each once to initialize estimates. In each round, TGL-UCB computes optimistic upper
confidence bounds for all trajectories, invokes an MWIS oracle to select an independent
set maximizing the total UCB values, executes the corresponding policy, and updates
estimates. This iterative process balances exploration and exploitation, enabling TGL-UCB
to progressively refine its trajectory selection and align with expert-labeled demonstrations.
Before presenting the main theoretical result, we introduce some essential definitions.

Algorithm 2 TGL-UCB

Require: Expert-Labeled Trajectory Set Tg1 = {71,...,7ar}; Total number of rounds n;
MWIS oracle MWIS(G,w)— S
Ensure: Chosen trajectory subset S and derived policy 7
/* Conflict graph */
1: V<_{Ui‘7'i€7;el}7 E+go
2: for all (7;,7;) with i < j do

3 if Ih:), = s, Aal, # a), then

4: E(—EU{(Ui,Uj)}

5: Initialization:

6: For each node (trajectory) v; € V, use variable T; as the total number of policies

played that matches trajectory v;, variable N; as the times that v; is sampled so far,
and variable]\pi as the current estimated empirical probability of realizing trajectory 7,
where [1; = T

7: For each node v; € V, select an arbitrary maximum independent S; C V such that
v; € S;, and get the corresponding policy m; from S;.

8: For each i € [M], play m; once and update variables T; and ;.

9: fort=M+1,M+2,--- ,ndo

10: for i € [M] do

3logt

11: Set U; = ﬁz + 2T,

12: Compute St + MWIS(G, {uy }vev)
13: Play the corresponding policy 7 from ST and update all T/s, N;’s and [i;’s.

For any independent set S C V, define ps =) _gp, and the optimal value p* =
mMaxs indep. Ps- Lhe set of sub-optimal solutions is

Ssub ={SCV|ps<p*}.
For each node v € V| define the sub-optimal gaps:
AV =p" —max{ps| S € Ssu,v €S}, Al =p" —min{ps|S € Ssup,v € S}.
The global gap bounds are:

v
min»

Apin = min A A =max A’ .
min 'UEV max UEV max

Theorem 4. The expected regret of Algorithm 2 over K rounds is at most O (%)
Remark. This theorem establishes a gap-dependent regret bound and guarantees sub-linear
regret, indicating that efficient learning is achievable in our setting given access to a good
MWIS oracle. The detailed proof is provided in Appendiz A.6. The key idea is to reduce our
UCB-based graph learning problem to a classical combinatorial multi-armed bandit (CMAB)

problem, enabling the application of standard analysis techniques.

6 Experiments

To further demonstrate the effectiveness of our method, we conduct experiments comparing
our TGL-UCB approach with the classical imitation learning baseline, behavior cloning.
This experiment is deliberately designed to stress trajectory-level alignment.

Environment. All experiments use a 4 x 4 FROZEN LAKE environment [Brockman et al.,
2016] modified to make holes non-terminating and yield a —1 reward. The goal square returns
+1 and ends the episode; otherwise the horizon is H = 10. On every step the intended
action is replaced by a uniformly-random valid action with probability 0.10. Observations
are one-hot state vectors and actions are the four cardinal moves.

Demonstrations. For each condition in Table 1, we build a set D = {7;} of “expert”
trajectories that serve as offline data: these trajectories are produced by a deterministic
expert or by its stochastic variant. By our definition of trajectory conflicts, the trajectories
produced by any deterministic agent are not conflicting, which is why we sample some
trajectories from a stochastic agent to induce more conflicts. We then tested various

Table 1: Trajectory match probability (1 better) over 10,000 episodes with 95% ClIs (£).

Each row shows how many deterministic and stochastic demos are in D.

Expert-Labeled Set TGL-UCB (Ours) BC PPO Expert

15 det. & 5 stoch. 0.794 + 0.008 0.775 £ 0.008 0.778 £ 0.008
10 det. & 10 stoch. 0.801 £ 0.008 0.778 £ 0.008 0.800 £ 0.008
5 det. & 15 stoch. 0.801 + 0.008 0.771 £ 0.008 0.793 £ 0.008
10 det. & 5 stoch. 0.814 + 0.008 0.793 £ 0.008 0.803 £ 0.008
8 det. & 7 stoch. 0.810 + 0.008 0.774 £ 0.008 0.801 £ 0.008
5 det. & 10 stoch. 0.779 £+ 0.008 0.758 &£ 0.009 0.780 £ 0.008
10 det. only 0.778 + 0.008 0.753 £ 0.009 0.775 £ 0.009
5 det. & 5 stoch. 0.740 + 0.009 0.713 £ 0.009 0.735 £ 0.009
10 stoch. only 0.738 £+ 0.009 0.714 £ 0.009 0.739 + 0.009
5 det. only 0.730 + 0.009 0.703 £ 0.009 0.713 £ 0.009
5 stoch. only 0.675 + 0.009 0.673 £ 0.009 0.661 £ 0.009
3 det. only 0.672 + 0.009 0.672 £+ 0.009 0.670 £ 0.009
3 stoch. only 0.657 + 0.009 0.653 £ 0.010 0.648 £ 0.010
1 det. only 0.634 + 0.010 0.627 £ 0.010 0.621 £ 0.010

trajectory set sizes (from 1 to 20) and various deterministic/stochastic compositions. No
further interaction with the environment is allowed during training.

Methods compared.

o TGL (ours). Algorithm 2 (TGL-UCB) is run on D with initial number of samples
mg = 10, and successful probability 6 = 0.9. We solve for the exact MWIS solution in the
algorithm (since our environment is small). The resulting maximum-weight independent
set ST is turned into a time-indexed lookup policy as described in Section 5 of the paper.

+ Behavioural Cloning (BC). We train the supervised learner
imitation.algorithms.bc from the opens ource imitation library [Gleave et al.,
2022], with batch size of 8 for 20 epochs on the same trajectory set.

e PPO Expert. The reference expert policy used to generate the deterministic demonstra-
tions (trained for 50k steps with PPO).

Metric. Because numerical rewards are absent during training, we evaluate policies by the
probability that a rollout 7 ezxactly matches one of the demonstration trajectories:

Praten(m) = Pr [7 € D].

For each policy we execute 10000 episodes with fixed seed and report the empirical match
frequency. This empirical trajectory match probability metric directly measures the objective
of direct trajectory alignment (DTA): replicate the expert trajectories, rather than maximizing
a surrogate reward. Each episode can be viewed as a Bernoulli trial that either matches a
demonstration trajectory or not, so the empirical match probability is a binomial proportion.

Error Bars. We report the 95% confidence intervals for each configuration using Wald
intervals computed from the 10,000 trials. In the worst case p = 0.5, the standard error is
/(0.5(1 — 0.5)/10000 = 0.005, yielding a = 0.01 wide 95% interval. In practice, we report
the error bars based on the empirical p from each cell.

Discussion. Across every demo composition, TGL-UCB consistently matches or exceeds the
behavioural-cloning baseline and often surpasses the PPO expert, despite never observing
rewards. The gains are the most pronounced when demonstrations are scarce or highly
mixed, highlighting the benefit of directly learning from trajectories.

Limitations and Future Work. Our study was done using a single finite and discrete 4 x 4
FRrOZEN LAKE gridworld-like environment. The current theory and algorithmic guarantees
target finite MDPs with a finite exppert set and do not extend to continuous MDPs. Scaling
grid size increases the number of states but does not qualitatively change the conflict structure,
so the results here primarily serve to validate the trajectory-alignment mechanism and TGL-
UCB algorithm. TGL-UCB is also more computationally expensive than Behavioral Cloning
due to solving MWIS over the conflict graph being the main bottleneck. we therefore capped
the number of iterations at 50 (which is sufficient for the 4 x 4 FROZEN LAKE environment.

Future work includes improving the computational efficiency of our methods, extending the
DTA framework to continuous MDPs, and extending the experiments to evaluate alignment
without reward modeling in more complex or richer environments.

Also, we did not evaluate history-conditioned BC or recurrent sequence models because the
environment is fully observed. A next step is to compare TGL to history-conditioned BC or
recurrent models in controlled partially observed tasks and to develop a history-aware TGL
that builds conflict graphs over history features or trajectory segments.

7 Conclusions and Future Work

This work introduces Trajectory Graph Learning (TGL), a novel framework for trajectory-
level policy alignment that bypasses reward modeling. By leveraging structural assumptions
often met in practice, TGL enables efficient and theoretically grounded planning in both
known and unknown environments. Our theoretical results highlight the inherent complexity
of direct trajectory imitation, while our algorithms demonstrate strong empirical gains over
conventional imitation learning methods. These findings underscore the promise of structure-
aware trajectory alignment for reliable long-horizon decision-making in reinforcement learning.
A key direction going forward is extending the theory to continuous MDP settings and the
development of trajectory-level RL benchmarks, specifically designed to evaluate alignment
without reward modeling. This may involve adapting existing environments or designing
new ones where trajectory sets can be meaningfully constructed, compared, and evaluated.
Building such benchmarks is non-trivial and will likely require substantial engineering effort,
especially in continuous or high-dimensional domains such as robotics, autonomous driving,
or natural language generation. Additionally, improving the efficiency of TGL, through
approximate solvers, amortized inference, or scalable graph-based methods, will be crucial
for extending its applicability to larger and more complex settings.

Acknowledgements

YL is supported in part by NSF grant 2221871 and an Amazon Al Fellowship. LY is
supported in part by NSF grant 2221871, and an Amazon Faculty Award.

References

P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

Y. Abdelkareem, S. Shehata, and F. Karray. Advances in preference-based reinforcement
learning: A review. In 2022 IEEE international conference on systems, man, and cyber-
netics (SMC), pages 2527-2532. IEEE, 2022.

A. Agnihotri, R. Jain, D. Ramachandran, and Z. Wen. Best policy learning from trajectory
preference feedback. arXiv preprint arXiv:2501.18873, 2025.

R. Akrour, M. Schoenauer, and M. Sebag. Preference-based policy learning. In ECML-PKDD,
2011a.

R. Akrour, M. Schoenauer, and M. Sebag. Preference-based policy learning. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD
2011, Athens, Greece, September 5-9, 2011. Proceedings, Part I 11, pages 12-27. Springer,
2011b.

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete
problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

G. An, J. Lee, X. Zuo, N. Kosaka, K.-M. Kim, and H. O. Song. Direct preference-based
policy optimization without reward modeling. Advances in Neural Information Processing
Systems, 36:70247-70266, 2023.

AssemblyAl. Decoding strategies: How llms choose the next word. https://assemblyai.
com/blog/decoding-strategies-how-1lms-choose-the-next-word, 2023. Accessed:
2025-05-02.

10

https://assemblyai.com/blog/decoding-strategies-how-llms-choose-the-next-word
https://assemblyai.com/blog/decoding-strategies-how-llms-choose-the-next-word

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235-256, 2002.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

D. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating beyond suboptimal
demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pages 783—-792. PMLR, 2019a.

D. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating beyond suboptimal
demonstrations via inverse reinforcement learning from rankings. In ICLR, 2019b.

R. Busa-Fekete, B. Szorényi, P. Weng, W. Cheng, and E. Hiillermeier. Preference-based
evolutionary direct policy search. In ICRA Workshop on autonomous learning, volume 2,
2013.

J. Chang, M. Uehara, D. Sreenivas, R. Kidambi, and W. Sun. Mitigating covariate shift in
imitation learning via offline data with partial coverage. Advances in Neural Information
Processing Systems, 34:965-979, 2021.

W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General framework
and applications. In International conference on machine learning, pages 151-159. PMLR,
2013.

P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. Advances in neural information processing systems, 30,
2017.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban
driving simulator. In Conference on robot learning, pages 1-16. PMLR, 2017.

C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via
policy optimization. In ICML, 2016.

J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement
learning. arXiv preprint arXiv:1710.11248, 2017.

J. Fu, K. Luo, and S. Ermon. Learning robust rewards with adversarial inverse reinforcement
learning. In ICML, 2018.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

A. Gleave, M. Taufeeque, J. Rocamonde, E. Jenner, S. H. Wang, S. Toyer, M. Ernestus,
N. Belrose, S. Emmons, and S. Russell. imitation: Clean imitation learning implementations.
arXiv preprint arXiv:2211.11972, 2022. doi: 10.48550/arXiv.2211.11972. URL https:
//arxiv.org/abs/2211.11972.

J. Ho and S. Ermon. Generative adversarial imitation learning. In NeurIPS, 2016.

X. Hu, J. Li, X. Zhan, Q.-S. Jia, and Y.-Q. Zhang. Query-policy misalignment in preference-
based reinforcement learning. arXiv preprint arXiv:2305.17400, 2023.

W. Huang, H. Liu, Z. Huang, and C. Lv. Safety-aware human-in-the-loop reinforcement
learning with shared control for autonomous driving. IEEFE Transactions on Intelligent
Transportation Systems, 2024.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1-35, 2017.

H. Johan. astad. clique is hard to approximate within nl. Acta Mathematica, 182:105-142,
1999.

11

https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/2211.11972

J. Kaplan and et al. A baseline analysis of reward models’ ability to generalise. arXiv
preprint arXiv:2305.01681, 2023.

A. Komanduru and J. Honorio. On the correctness and sample complexity of inverse
reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

N. Lambert and R. Calandra. The alignment ceiling: Objective mismatch in reinforcement
learning from human feedback. arXiv preprint arXiv:2311.00168, 2023.

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal
locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

A.Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In Icml, volume 99, pages 278-287. Citeseer, 1999.

A.Y. Ng, S. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
page 2, 2000.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human
feedback. Advances in Neural Information Processing Systems, 35:27730-27744, 2022.

R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct
preference optimization: Your language model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728-53741, 2023.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages 627—-635. JMLR Workshop and
Conference Proceedings, 2011.

A. Saha, A. Pacchiano, and J. Lee. Dueling rl: Reinforcement learning with trajectory

preferences. In International Conference on Artificial Intelligence and Statistics, pages
6263-6289. PMLR, 2023.

A. Szot, A. Zhang, D. Batra, Z. Kira, and F. Meier. Bc-irl: Learning generalizable reward
functions from demonstrations. arXiv preprint arXiv:2303.16194, 2023.

F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

K. Waugh, B. D. Ziebart, and J. A. Bagnell. Computational rationalization: The inverse
equilibrium problem. arXiv preprint arXiv:1308.3506, 2013.

A. Wilson, A. Fern, and P. Tadepalli. A bayesian approach for policy learning from trajectory
preference queries. Advances in neural information processing systems, 25, 2012.

Y. Xu, R. Wang, L. Yang, A. Singh, and A. Dubrawski. Preference-based reinforcement
learning with finite-time guarantees. Advances in Neural Information Processing Systems,
33:18784-18794, 2020.

Y. Zeng, G. Liu, W. Ma, N. Yang, H. Zhang, and J. Wang. Token-level direct preference
optimization. arXiv preprint arXiv:2404.11999, 2024.

W. Zhan, Y. Chen, and D. Sadigh. Reward-agnostic preference-based policy optimization.
In ICML, 2023.

Y. Zhao, M. Wang, and J. Doe. A survey of decision-making and planning methods for self-
driving. Frontiers in Neurorobotics, 19:1451923, 2025. URL https://www.frontiersin.
org/articles/10.3389/fnbot.2025.1451923/full.

B. Zhu, M. Jordan, and J. Jiao. Principled reinforcement learning with human feedback
from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pages 43037-43067. PMLR, 2023.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse
reinforcement learning. In AAAI 2008.

12

https://www.frontiersin.org/articles/10.3389/fnbot.2025.1451923/full
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1451923/full

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not
remove the checklist: The papers not including the checklist will be desk rejected.
The checklist should follow the references and follow the (optional) supplemental material.
The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions.
For each question in the checklist:
» You should answer [Yes| , ,or [NA] .

e [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

o Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are
visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be
asked to also include it (after eventual revisions) with the final version of your paper, and its
final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their
evaluation. While "[Yes] " is generally preferable to " " it is perfectly acceptable to

answer " " provided a proper justification is given (e.g., "error bars are not reported
because it would be too computationally expensive" or "we were unable to find the license for
the dataset we used"). In general, answering " "or "[NA] " is not grounds for rejection.

While the questions are phrased in a binary way, we acknowledge that the true answer
is often more nuanced, so please just use your best judgment and write a justification to
elaborate. All supporting evidence can appear either in the main paper or the supplemental
material, provided in appendix. If you answer [Yes] to a question, in the justification please
point to the section(s) where related material for the question can be found.

IMPORTANT, please:

e Delete this instruction block, but keep the section heading “NeurIPS Paper
Checklist",

o Keep the checklist subsection headings, questions/answers and guidelines
below.

¢ Do not modify the questions and only use the provided macros for your
answers.
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope?

Answer: [Yes]
Justification: The paper is organized based on the abstract and the introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

e The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

o It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our theory and experiments

13

Guidelines:

e The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their paper.

e The paper should point out any strong assumptions and how robust the results are
to violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

o If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their
best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions
and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides rigorous assumptions and complete proof in the appendix.
Guidelines:

e The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

o All assumptions should be clearly stated or referenced in the statement of any theorems.

e The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

o Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all hyperparameters used in our experiments in our appendix
section.

Guidelines:
¢ The answer NA means that the paper does not include experiments.

14

o If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c¢) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results or a way
to reproduce the model (e.g., with an open-source dataset or instructions for how
to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We believe we have provided detailed instructions to faithfully reproduce
our experiment results.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

o Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes|

Justification: We have provided all of the settings used in our experiments and described
them in our experiments section.

Guidelines:
e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We found our experimental results over multiple tries remain consistent,
and we reported 95% confidence intervals in our experiment.

Guidelines:
¢ The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

o The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, random drawing of some parameter, or
overall run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

o The assumptions made should be given (e.g., Normally distributed errors).

o It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables
or figures symmetric error bars that would yield results that are out of range (e.g.
negative error rates).

e If error bars are reported in tables or plots, The authors should explain in the text
how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: We have described the compute resources we used in the appendix.
Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

16

9.

10.

11.

e The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research do not have problems with ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

e The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no society impact of our work.

Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

o Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

e The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to
point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point
out that a generic algorithm for optimizing neural networks could enable people to
train models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language
models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

e The answer NA means that the paper poses no such risks.

17

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

¢ Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

o Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned
and properly respected?

Answer: [Yes]

Justification: It is cited properly.

Guidelines:

e The answer NA means that the paper does not use existing assets.

e The authors should cite the original paper that produced the code package or dataset.

e The authors should state which version of the asset is used and, if possible, include a
URL.

o The name of the license (e.g., CC-BY 4.0) should be included for each asset.

o For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

o For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

e The answer NA means that the paper does not release new assets.

o Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

e The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the
paper include the full text of instructions given to participants and screenshots, if
applicable, as well as details about compensation (if any)?

Answer: [NA]
Justification: The research has nothing to do with human subjects.
Guidelines:

18

paperswithcode.com/datasets

15.

16.

e The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

e Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with
human subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

e Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and
the guidelines for their institution.

« For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM
is used only for writing, editing, or formatting purposes and does not impact the core
methodology, scientific rigorousness, or originality of the research, declaration is not
required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as
any important, original, or non-standard components.

Guidelines:
e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

A Technical Appendices and Supplementary Material

A.1 Remaining Algorithm pseudocodes

We provide the remaining algorithms in this section.

19

https://neurips.cc/Conferences/2025/LLM

Algorithm 3 ENUMMWIS(G, w, €p)

Require: Conflict graph G = (V, E) with |V| = M; weights w : V — (0, 1] satisfying
w(v) > €
Ensure: Maximum-weight independent set S*
K + Ll / eoJ > any independent set has size < K
Whest < 0, S* 0
for all subsets X C V with |X| < K do
if X is independent in G then
W3 cxw(v)
if W > Wyt then
Whest < W, §* + X
return S*

Algorithm 4 TGL-PRUNEDTREE

Requn‘e Finite-horizon Tree MDP (S, A, P, H); Expert-Labeled Trajectory Set Tl =
{r:}M, where 7; = (s, al,...,s%,ay).
Ensure: Pruned set M with ﬁnal weights
1: for all 7; € Tgo do

20w [I P(shy | sh.al)
32 M+ T = {(ri,0) }M 1, {(Teom, Weom) } < { (15, w;)} > active trajectories
4: forh=H,H—-1,---,1do > leaf — root
5: Aggl(s,a)] < 0,V(s,a) > map (s, a) — summed weight
6: Com[(s, a)] «+ @,V(s,a) > Combine the non-conflicting trajectories
7 for each (Tcom, Weom) € M do
8: Pick any trajectory 7 € Teom > Just choose a representative
9 (s.) « (su(r), an(n)
10: Agg[(s, a)] < Aggl[(s,a)] + weom > Aggregate the weights for the same (sp,ap)
11: Com[(s, a)] ¢ Tcom U Com|[(s,a)]
12 M« {(Con[(s, a)], Agg](s, a)ch m|(s, a)] # 0}

13: for each s € {s\Com[(s a)] # 0} do

14: a* < max,e 4 Aggl(s, a)]

15: Delete Con|(s,a)],a # a* from M

16: w* < Aggl(s,a)] o _

17: for all 7; € M with 7; = (si,al,...,s%,al;) do
18: for h=1to H do

19: mh(sh) < al)

20: For states not covered by Uvi em Ti> set mp, via a default rule
21: return M, 7

A.2 Example: BC Fails to Capture Expert Trajectories

MDP Setup

o States: S = {s1,52}

o Actions: A ={aj,as}

o Transitions: Deterministic transitions from s; to s with any action

Expert Trajectories

o 71 = (81,01, 82,02)

o T2 = (s1,0a2,82,01)

Behavior Cloning (BC) Limitation Behavior cloning only observes state-action pairs:
(s1,a1), (s1,a2), (s2,a1), (s2,a2)

resulting in:

e At sq, both a; and as appear equally good.

20

e At so, both a1 and ay appear equally good.
Thus, BC will learn:
m(ay]s1) = m(azls1) = 0.5, 7(ai|s2) = w(az|s2) = 0.5
Consequence Due to this ambiguity, the probability of correctly reproducing either expert
trajectory is:
P(my) =m(ai|s1) - m(az|s2) = 0.5 x 0.5 = 0.25

P(13) = w(azls1) - w(ay]s2) = 0.5 x 0.5 = 0.25
Total expert trajectory probability = 0.5

Direct Trajectory Alignment Advantage Direct trajectory alignment explicitly optimizes
for the sequence:

max Z Pr(7)
Te{T1,T2}

ensuring the policy preserves the correct sequence with probability 1, with either 7(a1|s1) =
1,7(ag|s2) = 1; or w(az|s1) = 1,7(a1|s2) = 1, since it learns to produce both trajectories as
whole entities, rather than decomposing them into ambiguous state-action pairs.

A.3 Proof of Theorem 1

In this section, we want to prove that finding the optimal policy in the binary-labeled
expert-labeled trajectory set setting is NP-complete. Before providing the main content of
proof. We first define the following variant of MWIS problem.

Definition 6 (MWIS_4).

Input
o A graph G = (V, E);
o A weight function w:V — (0,1] ;
o A rational threshold K € (0,1) .
Condition For every independent set I C V it holds Zw(v) < 1.
vel
Question Does there exist an independent set I C 'V with Zw(v) >K?

vel
Theorem 5 (MWIS.; is NP—complete). The decision problem in Definition 6 is NP—
complete.

Proof. Membership in NP. A certificate is an independent set I C V. We can verify
independence in O(|E|) time and compute) _; w(v) in O(|I]) time, so the problem lies
in NP.

We reduce from the classical MAXIMUM INDEPENDENT SET (MIS) problem, known to be
NP—complete. The problem is: A graph G = (V, E) and an integer ¢t > 1, and the question
is: does G contain an independent set of size at least ¢7

Reduction. Given an instance (G,t) of MIS with n := |V(G)|, construct (G, w, K) for

Li[vV IS<1 as f0110 S
= v ‘/ K = .
U)(U) = n v e (G)’ = n (<)

The construction uses only O(logn)-bit rationals, hence is polynomial in n.
For any independent set I we have

Zw(v): 1 < n <1,

=y n+1

so the promise in Definition 6 is satisfied.

t

21

Because every vertex has the same weight,

I >t — Zw(u) =
vel
Thus (G,t) € MIS iff (G,w, K) eMWIS.;.
The reduction is polynomial, establishing NP—hardness. Since MWIS.; is in NP and
NP-hard, it is NP—complete. O

1] t
> p—
n+1 =~ n+1

Now we can establish the proof of Theorem 1.

Proof. First, let us restate the original problem.
Original Problem: Find the optimal deterministic policy

Input: A MDP and the binary expert-labeled trajectory set Teel = {7;}}£, (or called level-1
trajectory)

Question: Is there any deterministic policy that can visit the level-1 trajectories with
probability at least p?

We will do this in two steps:

Step 1: Show the original problem is in NP

To show that the original problem is in NP, we must demonstrate that a given solution can
be verified in polynomial time.

Given a deterministic policy m = {mp }ne(z) , We can:

1. Check whether the good trajectory does not have conflict with policy w:.
To be specific, for a good trajectory T = (s1,a1,582,a2, - ,8H,an), check whether
m(s1) = a1,m2(s2) = ag, -+ ,wy(sg) = ay. If yes, add up the weight (the probability
product) of this trajectory (We denote this set as Q). The complexity is at most O(M x H).

2. Sum the weights: Calculate)., w and check if it is at least p. This takes at most
O(M) time.

Since both checks can be performed in polynomial time, the original problem is in NP.

Step 2: Reduction from MWIS_;

We will reduce from the MWIS_; problem (Definition 6), which is known to be NP-complete
from Theorem 2.

Reduction from MWIS_; to original problem

1. Any weighted graph can be represented as a subset of trajectories with
corresponding probability The basic idea is because we can always find a MDP with
sufficient trajectories to represent the relation between these M vertexes, i.e. M <<
O(|S|*|AJf). The construction process is detailed in Algorithm 5 and 6. To be specific,
for an arbitrary graph, we can enumerate every vertex in a Breadth-First Search (BFS).
Each time we process one vertex and use conflict trajectory pairs to record all the edges it
connects to. Then we get a set of trajectories that encoded the information of this graph.
The second step is to assign the probability of the MDP given the weights of the graph,
which is explained in Algorithm 6. The basic idea is to assign the probability kernel with
the given weights w(v) € (0,1], and make sure the summation of all probability odds is
still 1.

2. Good policy implies high weight independent set. First, for any deterministic
policy 7, it will produce a set of non-conflicting trajectories (any two of these trajectories
are non-conflicting), we denote this set as X(7), and now if a deterministic policy 7 that
can visit the level-1 trajectories with probability at least p, then > w > p, which

we(m)
implies there exists an independent set that the summation of weights is larger than p.

Notice that the reduction process in Algorithm 5 and 6 is polynomial in M, therefore, we
can conclude the original problem is also NP-complete.

22

Algorithm 5 BFS-Based Trajectory Construction

Require: Graph G = (V, E), horizon H
Ensure: Trajectories {7(v)},ev, each of length H

Pick an arbitrary root vertex v; € V
Fix 7(v1) < (s1,a1,...,8H,aH)
Visited < {v1}; enqueue v; in queue Q
for allv e V' \ {v;} do
T(v) < (81,01, 80, au,-..,SU,av) > undecided after step 1
while) not empty do
u + Dequeue(Q)
for all neighbor v of v with v ¢ Visited do
Fix remaining undecided steps in 7(u) so it is unique
Construct 7(v) so that there exists a time ¢ with sz(v) = sz(u) and az(v) # a:(u)
Visited < Visited U {v}; enqueue v

: return {7(v)}yev

Algorithm 6 Transition-Probability Assignment Using Vertex Weights

Require: Graph G = (V,E) with weights w : V. — (0,1], > .qw(v) < 1, S is an

independent set.

Require: Trajectories {7(v)}yey from Alg. 5
Ensure: Transition kernel P(- | -,)

1:
2:

w

=

o

/* Preparation */
for all v € V do
Write 7(v) = (s1,a1,...,85,05H)
/* First state—action pair (s1,a;) */
for all edge {vi,v2} € E do
P(sg | s1,a1) + max{w(vy),w(vs)}
Distribute remaining mass over other successors of (s, a1)
/* Finalize each adjacent pair */
for all edge (u,v) € E do
if w(u) > w(v) then
Make the remainder of 7(u) deterministic
In 7(v) add one stochastic step ¢ with prob. w(v)/w(u) where s:(v) = sz(u) and
az(v) + a:(“)
else
(Symmetric update with u <> v)

: for all (s,a) with stochastic successors do

Normalize P(- | s,a) so >, P(z|s,a) =1

: return P(- |-, ")

23

A.4 Proof of Theorem 2

Time complexity of Algorithm 1 with oracle Algorithm 3. Let M = |7a| and H the
horizon length, and set

Then

M
1. **Conflict-graph construction** (lines 3-7): O((

2) H) = O(M*H) time.
2. **Weight computation™* (lines 9-11): O(M H).

3. **Oracle call** ENUMMWIS(G, w, eg) (Alg. 3):

ZKf (Af) 0(%) = O(XK: (Af>) = O(MX) (since K is a constant).

i=0 i=0
4. **Policy extraction** (lines 15-18): O(|S|H) = O(KH).
Putting these together gives
T(M,H) = O(M’H+ MH +M" + KH) = O(M*H + M*).
In particular, if €y (hence K) is a fixed constant, this is polynomial time O(M?2?H + M*/<0).

A.5 Proof of Theorem 3

Proof of Time Complexity. Let:

e M be the number of trajectories,

e H be the trajectory horizon,

o |A| be the number of discrete actions,

 |S| be the number of possible states per timestep.

1. Weight Computation: Each trajectory 7; is assigned a weight via the product of H — 1
transition probabilities. Across M trajectories, this requires:

O(M - H)
2. Backward Pruning Loop: For each timestep h = H,H — 1,...,1 (total H iterations):

o Aggregating weights across identical (sp, ap) pairs requires scanning all active trajectories:
o),

o Merging trajectories that share the same (sp,,ap) pair: O(M),

e For each state s, selecting the action a; with the maximum total weight among at most
|A| options leads to: O(M - |A]) in the worst case (since there are at most M unique
state-action pairs).

Therefore, the total cost per timestep is:
O(M - |Al)
and over H timesteps:
O(H - M -|A])

3. Final Output: The pruned result is returned by traversing at most M remaining
elements:

O(M)

Total Time Complexity: Summing all terms, the dominating component is from the
backward pruning loop, yielding the final result:

O(H - M -|A])

24

A.6 Proof of Theorem 4

Proof. The proof of Theorem 4 is based on the Theorem 1 in [Chen et al., 2013]. For the
convenience of the readers, we show the complete process here.

For variable Tj, let T; ; be the value of T} at the end of round ¢, that is, T; ; is the number of
times policy played that matches trajectory v; in the first ¢ rounds. For variable fi;, let fi; s
be the value of fi; after the policy which matched trajectory v; is played s times. Then, the
value of variable fi; at the end of round ¢ is fi; 1, ,. For variable u;, let u;; be the value of
u; at the end of round ¢. Let @, = (u14,...,un,) be the random vector fed to the MWIS
oracle as the input in line 12 of Algorithm 2 at round ¢.

We also maintain counter @); for each trajectory v; after the M initialization rounds. Let Q; ;
be the value of @; after the t-th round and @; as = 1. Note that Zz Qi v = M. Counters

{Qi}?il are updated as follows.

For a round ¢ > M, let Sy be the independent set selected in round ¢ by the MWIS oracle
(line 12 of Algorithm 2). Round ¢ is bad if the oracle selects a bad set S; € Sgyp. If round ¢
is bad, let ¢+ = argmin,cg, @;¢—1. We increment @Q; by one, i.e., Q;+ = Q;t—1 + 1. That is,
we find the trajectory v; with the smallest counter in S; and increment its counter. If 7 is
not unique, we pick an arbitrary arm with the smallest counter in S;. On the other hand, if
St ¢ Sp, no counter will be incremented.

By definition Q;; < T;;. Notice that in every bad round, exactly one counter in {Qi}?il is
incremented, so the total number of bad rounds in the first n rounds is less than or equal to
Zi Qi,n'

Define /; = %. Consider a bad round t, S; € Sgup, is selected and counter @; of some
arm ¢ € Sy is u}r)ngated. We have

n

> Qim—m-(ly+1)= > I{S € Soup} —mly
i=1

t=m-+1

< Z Z I{S;: € Seub, Qit > Qit—1,Qit—1 > ln}

t=m+1ic[m]

< Z Z I{S; € Seun, Qirt > Qiri—1,Qit—1 > li}

t=m+1ic[m]

=) I{S; € Saw, Vi € Sp, Q-1 > li}

t=m+1
< > T{Si € S, Vi€ 8, Tip 1 > 04}
t=m+1

We first claim that Pr ({S; € Seub, Vi € S, Tip—1 > 4}) <2- M -2
In fact, for any i € [M],

Pr Dﬂi,Ti‘t_l — i > /3nt/ (2Tz‘,t—1)]

S [{ Vs = il 2 V3] @9), To = s}
s=1

t—1

<Y pr [mi,s — i > 31nt/(2s)]

s=1
<t.2e 3t — gp2

where the last inequality is due to the Chernoff Hoeffding bound. Define A;;

,/2%17‘;‘: (a random variable since T;, ; is a random variable), and event E; =

{vi 61 [m], |fii,,_, — pi] < Aig}. By union bound, Pr[=E] < 2-M - t=2. According

25

to line 11 of Algorithm 2, we have u; ¢ — fi; 1, ,_, = Ai¢. Thus |ﬂi,Ti’t71 — ,ui| < A;; implies
that Us,t > -
Let A = /321—;:, which is not a random variable. Define random variable A, =
max {A; ¢ | i € S;}. Then
E, = Vie S, |ui,t - ,Ui| < 2A4
{St S Ssub,Vi € St,n,t—l > Et} = A> At

Let w; = (u14, - .., unre) be the vector representing the adjusted expectation vector at round
t. Then,

Etéﬂtzu

If{E,,S: € Squp, Vi € Sy, T; 4—1 > £} holds at time ¢, we have the following important deriva-
tion:

> pe+2MA> Y py+2MA > > uy > pt

vES: vES, vES,
Since ¢; = %, we have 2M A = Api,. Therefore,
Pr[{E:, S; € Ssub, Vi € Sy, Ti -1 > 4} =0=
Pr[{S; € Ssub, Vi € Si, Tip—1 > 41 }]
<Pr[-E] <2 -M-t2
The claim thus holds. We have, E {Zﬁl an} < M, +1)+ 3> 2 < GMA?;& +
(% +1) -

Notice that each time we select a bad independent set at time ¢, we incur a regret at most
Apax - Then we obtain the regret bound as follows.

Regret(n)

M

Z Qi,n
i=1

1 _M2 2
S(GOgn +7T+1).M'A2

S E : Amax

A, o
M3log K - Ay
—o (o)

A.7 Experimental Details and Hyperparameters

All hyper-parameters, stopping criteria and environment settings are listed in Table 2.

A.8 Compute Resources

All runs use a single Google Colab instance with an NVIDIA T4 (16 GB GPU RAM) kernel.
Training the PPO expert for 50 000 steps takes around 1 min 20 s; one TGL-UCB run
(50 iterations, 20 nodes) takes around 45 s. The evaluation of the three methods that we
compare (TGL, BC, and PPO expert) takes around 1 min 30 s. Most of the code are not
GPU accelerated, so using a CPU kernel is also feasible.

26

Table 2: Hyper-parameters used in every experiment.

Component Hyper-parameter Value
FEnvironment
Grid size 4 x4
Episode horizon H 10
Random-action noise 0.10
PPO expert
Learning rate 1x1073
n_steps 128
Batch size 64
Epochs per update 4
Discount v 0.99
GAE) 0.95
Clip range 0.2
Total steps 50 000
TGL-UCB
1 0.9
Initial samples my 10
€ 0.01
Max iterations 50
Behavioural Cloning
Batch size 8
Training epochs 20

27

	Introduction
	Problem Formulation
	Hardness of General Direct Trajectory Alignment Problem
	Trajectory Graph Learning with Known Model
	Trajectory Graph Learning with Unknown Model
	Experiments
	Conclusions and Future Work
	Technical Appendices and Supplementary Material
	Remaining Algorithm pseudocodes
	Example: BC Fails to Capture Expert Trajectories
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Experimental Details and Hyperparameters
	Compute Resources

