
Autoencoder-Inspired Identification of LTI Systems

Tobias Nagel1 and Marco F. Huber1,2

Abstract— Identifying the state space representation of a
dynamical system during usage enables a controller to adapt
quickly in a changing environment. We propose a new method
for identifying linear time-invariant (LTI) systems online based
on the measurement of input-output data. Therefore, we imple-
ment the calculation of a system response in a machine learning
framework and use an autoencoder-related approach to find a
neural network which performs a system identification by one
single forward pass. This is computationally efficient and can
be performed online during usage. We validate the approach
by identifying the wear of a robot leg.

I. INTRODUCTION
Identifying a state space representation of a system is

the first step in designing a controller for gaining a desired
system behavior. Setting up the corresponding differential
equations manually, usually needs a lot of insight in the
system. Besides identifying all energy storing components,
the engineer has to know the relevant physical dependencies
and terms, so a Lagrangian equation can be defined, which
is more difficult with a growing system complexity.

For linear state space representations, data-driven ap-
proaches allow a simplified identification. If input-output
data is given, so-called subspace identification methods are
well established. The Subspace-based State Space Identi-
fication (or 4SID) calculates a state space representation
by performing a singular value decomposition on measured
data in order to get an extended observability matrix [18].
Afterwards a leastsquares algorithm leads to the parame-
ters of a discrete-time differential equation system. If the
identified system has to be stable, the algorithm needs to
be extended by a constrained optimization [11]. However,
as stated in [10], the listed methods are not convenient
for identifying a system online, especially if the available
computing resources are limited. This for instance is neces-
sary if we want to implement a model-based reinforcement
learning algorithm, where a frequent update of the learned
dynamics model is required. More recently, Hardt et. al.
showed that a system identification is possible by using
gradient descent methods with polynomial complexity [7].
Additionally Sarkar et. al. proposed a solution that makes
an identification of a lower state space order possible, which
enables a decreasing computational effort [16].

Algorithms in machine learning tend to be easier adaptable
than regular control approaches. A popular method, called

1Tobias Nagel and Marco F. Huber are with the Fraunhofer Institute for
Manufacturing, Engineering and Automation IPA, Center for Cyber Cog-
nitive Intelligence (CCI), 70569 Stuttgart, Germany {tobias.nagel,
marco.huber}@ipa.fraunhofer.de

2Marco F. Huber is with the Institute of Industrial Manufacturing
and Management IFF, University of Stuttgart, 70569 Stuttgart, Germany
marco.huber@ieee.org

PILCO, is described in [5], where a Gaussian process is
trained for representing simple dynamics and is used after-
wards to obtain a policy that leads to the control target online.
Gaussian processes can be trained or updated efficiently, as
has been shown in [8], which makes them feasible for envi-
ronments with little computational resources. Systems with
a large dimension require models with increasing degrees
of freedom, such as neural networks [14, 21], which are
computationally expensive, since a change in the system’s
dynamics requires a new training iteration. However, the
usage of machine learning algorithms for modeling the dy-
namics of a system generally prevents a mathematical proof
of guaranteed stability the same way state space systems can.
Wang et. al. [19] avoid this issue by training a neural network
with a special architecture in such a way that the weights
are equivalent to a state space model of a defined order.
Nevertheless the problem of being computationally efficient,
while having insight in the state spaces, persists.

In this paper a new approach is introduced that makes
an online state space identification possible by limited com-
putational resources. We do so by creating a variant of an
autoencoder: The measurements are fed into an encoding
neural network which outputs an estimate of a suitable
state space representation. The decoder utilizes this esti-
mate to calculate the system’s response given the original
input. Like standard autoencoders, training is conducted in
an unsupervised fashion and requires significant computing
resources, depending on the application. During runtime, a
single forward pass through the encoder network is sufficient
for system identification, which is computationally cheap. As
opposed to the 4SID-methods, we identify a continuous-time
state space model directly. The approach, which is yet limited
to linear state spaces, can also be seen as a baseline for future
research towards nonlinear systems.

The rest of the paper is organized as follows: In Section
II we give an introduction in system theory and neural
networks. Afterwards the implementation and training of the
proposed method is shown in Section III. The results of a
simulation-based validation are discussed in Section IV. The
paper closes with conclusions and an outlook on future work.

II. PRELIMINARIES

The state space representation of a linear time-invariant
single input single output (SISO-) system is defined by means
of

ẋ(t) = A · x(t) + b · u(t)

y(t) = cT · x(t) + d · u(t) ,
(1)

where x denotes the state vector and u, y denote the input
and output, respectively. A, b, cT and d perform linear
transformations at inputs and states. The solution of this
differential equation is

x(t) = eAt · x(0) +

∫ t

0

eA(t−τ) · b · u(τ)dτ (2)

according to [13], where eAt is a matrix exponential. By
substituting (2) into (1), the output signal can be calculated
by means of

y(t) = cT
(
eAt · x(0) +

∫ t

0

eA(t−τ) · b · u(τ)dτ

)
+ du .

(3)
The stationary value y∞ of a system denotes its output when
stimulated by a step signal and waited for an infinite amount
of time. It can be calculated by transforming the continuous
state space equation to the Laplacian transfer function at the
frequency s = 0 which leads to

y∞ = d− cTA−1b . (4)

A. Canonical State Space Representations

The choice of a system’s state space representation is not
unique. There are multiple linearly dependent combinations
to build a suitable state space. To avoid redundancy, there ex-
ist several canonical forms. In the SISO case, the controllable
canonical form (CCF) uses only variables in the bottom row
of the system matrix A and in the output vector cT, leading
to

ẋ =

0 1 · · · 0
...

. . .
...

0 · · · 0 1
−a0 −a1 · · · −an−1

 · x +

0
...
0
1

u ,

y =
(
c0 c1 · · · cn

)
x + du ,

(5)

where a0, . . . , an−1 denote the coefficients of the corre-
sponding transfer function denominator. Another special state
space representation is the modal canonical form (MCF),
where the eigenvalues of the dynamic matrix A are listed
on the diagonal, thus the system states become decoupled. If
there are complex conjugate eigenvalues, the complex part
is listed on the adjacent diagonal. This leads to

ẋ =

λ1 0 0 0
0 δ2 ω2 0
0 −ω2 δ2 0
0 0 0 λ3

 · x + b̃u ,

y = c̃Tx + du

(6)

for the case of a 4th-order system, with eigenvalues λi =
δi + jωi and j being the imaginary unit. The input and
output vectors b and cT are transformed by the matrix of
eigenvectors V to b̃ = V−1b and c̃T = cTV.

B. Neural Networks

This paper utilizes feed-forward artificial neural networks
that consist of multiple neuron layers which transform an
input signal into an output signal, depending on a chosen
architecture in combination with a weighting matrix. The
input layer distributes the incoming signal to every neuron
of the first hidden layer. In all hidden layers and in the output
layer every neuron calculates an output o ∈ IR based on

o = σ

(
q∑

k=1

ikwk + w0

)
= σ

(
iT ·w

)
, (7)

where i = [i0, i1, . . . , iq]
T ∈ IRq+1 is the incoming signal

from the preceding layer with q neurons and a constant i0 =
1. w = [w0, w1, . . . , wq]

T ∈ IRq+1 is the weighting vector
of the considered neuron, with w0 being the bias. σ(·) is a
nonlinear transformation called activation function.

Besides the presented neuron, there are various more
types, such as the 1-dimensional convolutional neuron [6].
The weights in a convolutional neuron are packed in a vector
w ∈ IRr of fixed size with r < q. In a single layer each
neuron reacts only to a fraction of its input, which leads to
better adaptions of local patterns. Additionally the weights
are shared across a single layer, so the same transformation is
applied to different parts of the input vector. Mathematically
this corresponds to a convolution of the weight vector

(w ∗ i)(x) =
∑
k

w(k)i(x− k) (8)

with i ∈ IRq+1 being the input [1]. Afterwards a nonlinear
activation function is applied.

The training of a neural network corresponds to adapting
the weights in such a way that a specific loss function is
minimized. Usually, this training is performed by means of
a gradient descent-based optimization in a supervised fashion
with labeled data.

III. AUTOENCODER-RELATED IDENTIFICATION

We want to train a neural network which calculates the
inverse way of Equation (3) in order to estimate the continu-
ous SISO state space representation. Therefore, we measure
the output of the unknown system, stimulated by an arbitrary
input u = [u1, . . . , um] at m discrete time steps, leading to
a time series y = [y1, . . . , ym]. The neural network maps y
to a state space representation by a projection f(·) according
to

f(y) =

(
Â b̂

ĉT d̂

)
. (9)

The hat symbol denotes estimated parameters.
Neural networks are usually trained by a supervised

approach which means that both, input and output data
are necessary to acquire the correct projection. The system
matrices, which are supposed to be the output of the neural
network, are unknown a priori, so we use an approach
based on the principle of an autoencoder. Autoencoders are
often used to encode and compress data. They consist of

Original Input Encoder

A b

cT d

State Space

System Response
as in Equation (3)

Decoder Predicted Output

!
=

Fig. 1: Sketch of the approach: Measured system data is fed into the neural network (encoder), which transforms it to a state
space representation. The system response function generates an output signal, based on the estimated parameters (decoder).
The network’s weights are adapted, so the output signal of the system response is as similar as possible to the input signal.

a symmetric, sandglas-like neural network architecture with
a smaller layer in its center, which is an embedding of a
lower dimension compared to the input. The first half of the
network, named encoder, reduces the dimension of the input,
until it meets the dimension of the embedding. Afterwards
the second half, named decoder, processes the encoder-output
and increases its dimension in order to find a representation
that is as close as possible to the original input.

Instead of implementing a full autoencoder, we propose
a variant: The encoder is a common neural network with
decreasing layer-size. Subsequently, the decoder is repre-
sented by Equation (3) that can be implemented in a machine
learning framework. We feed the measured data into the
neural network which outputs an estimate of a corresponding
state space. Afterwards, we calculate an output signal from
this system and compare it to the original input. Hence, we
train the neural network in such a way that its input and the
“decoder’s” output are equal. The full principle is shown in
Fig. 1.

Once the neural network is trained, it only needs to
perform a single forward pass for identifying a system, which
is computationally efficient. This is especially useful when
performing system identification online without having huge
computational resources. We want to point out two more
features of our approach. Firstly, we can identify continuous-
time state space representations directly. If we use a 4SID-
method, we need to transform the identified discrete state
space to a continuous one separately, which increases the
execution time. Secondly, we can handle partly identified
systems, since we can always specify elements that we want
to estimate. If, for example, single elements of the system
matrix A are already known, we can exclude them from the
estimation.

A. Neural Network Architecture

Since we want to create an encoder neural network, the
input dimension is much larger than the output dimension.
This issue is related to a time series classification problem,
where neural networks are trained to classify different time
series. Residual neural networks prove to be successful in
this domain [9]. They feature a special architecture where
certain connections skip a subsequent layer. Our network
for system identification is built by three sequential 1-D-
convolution layers. Additionally, we implement another 1-D-
convolution layer which shortcuts the three sequential ones.

The resulting outputs are concatenated and fed to a standard
dense layer. The numbers of the different neurons can be
adapted according to the complexity of the problem and the
available computing resources. By having neurons that pro-
cess time series as input layers and standard dense neurons
as output layers, we obtain the sandglas-like architecture,
which is needed for an autoencoder.

B. Usage of a Canonical State Space Representation

As already stated in Section II-A, state space representa-
tions are not unique. A different dynamic matrix A can lead
to an identical behavior. Because of this fact and to prevent
the necessity of predicting all values of A, we use canonical
state space representations. We evaluate our observations
regarding the different system representations.

The CCF leads to fewer estimated parameters. The dy-
namic matrix A is built from the coefficients of the asso-
ciated Laplacian transfer function. Additionally, the input
vector b is constant, so only the output vector cT and the
last row of A have to be estimated. For a system of order n,
this leads to 2n values that have to be estimated. However
it is not possible to determine the system’s stability just
by looking at the values of A, in general. This leads to
the possibility of estimating a system with exponentially
growing outputs. After performing some tests, we observed
an unstable learning behavior as well, which is reflected
by exploding gradients during training. Nevertheless it is
possible to avoid systems with real positive eigenvalues by
using Descarte’s rule:

“An algebraic equation f(s) = a0+a1s+. . .+ans
n

with real coefficients cannot have more positive
real roots than the sequence a0, . . . , an has vari-
ations of sign.” [3]

The coefficients of A’s characteristic polynomial are equal
to the negative last row of the CCF. It can be shown that if
the last row of A includes no sign changes, then there are
no real positive eigenvalues. It is still possible that complex
conjugate eigenvalues will have a positive real part leading
to unstable systems, but excluding an unstable subspace from
scratch simplifies the optimization problem significantly.

In the case of the MCF, the eigenvalues of A as well
as the input and output vectors b and cT, respectively,
have to be estimated. Since the dynamic behavior of the
system depends mostly on the eigenvalues, there is a direct

correlation between the measured behavior and the estimated
eigenvalues. Preventing the estimation of unstable systems
is easily achieved by constraining the space of the predicted
eigenvalue’s real parts to the negative half. A drawback of
this choice is the large number of parameters which have to
be estimated. For a system of rank n, we have to estimate
n eigenvalues, as well as n values of the input and output
vectors b and cT, respectively, leading to 3n values.

C. Implementation

We aim at directly identifying continuous-time state space
representations. However, measurements are discrete in time.
The forced response of a continuous-time system can be
calculated by performing a step-wise discretization in order
to get the state x(dt), with dt being the constant time elapsed
between two subsequent measurements, by means of x̂(dt)

u(dt)
∆u(dt)

 = expm

Â · dt b̂ · dt 0
0 0 I
0 0 0

 x̂(0)
u(0)

∆u(dt)

 ,

(10)
according to [4, 15]. 0 and I denote the zero and the identity
matrix, respectively, of appropiate dimension and expm (·)
represents a matrix exponential. Additionally

∆u(dt) = u(k · dt)− u((k − 1) · dt) (11)

is the difference between the input signals of two subsequent
time steps with k ∈ N. This is performed m times, so an
estimated state matrix is obtained according to

X̂ =
[
x̂(0) x̂(dt) · · · x̂(m · dt)

]
. (12)

The output signal ŷ can then be calculated by means of

ŷ = ĉT · X̂ + d̂u . (13)

We implement Equations (10)-(13) in the well-known ma-
chine learning framework TensorFlow.

Besides an identical output sequence, we also want to
enforce that the identified system has the same stationary
value as the original one. For this purpose, we define the
training loss function

J =
1

m+ 1

(
m∑
i=1

(yi − ŷi)
2

+ γ (y∞ − ŷ∞)
2

)
(14)

that comprises the mean squared error of the predicted
system output and an additional penalty term quantifying the
squared deviation between the true stationary value and the
predicted one. Here, γ ∈ IR+ denotes a hyper-parameter for
weighting the influence of the stationary value’s deviation.

Normalizing the data is crucial when we want to train a
machine learning algorithm [12]. In the case of the initial
state being x0 = 0, we choose

ỹ =
2

y
y − 1 (15)

as a normalization scheme, where y = max |y|. Doubling
and shifting the whole measurement signals leads to the
creation of both, positive and negative values. It is important

l

m

θ

Fig. 2: Spring-loaded, damped inverted pendulum as a sim-
plification of a robot leg [2].

to apply this normalization not only to the data, but also
to the output of the implemented TensorFlow function in
Equation (13). Common normalization techniques include a
varying vertical shift instead of the selected fixed one. We
chose to not follow this approach, since the denormalization
of the identified state space representation would become
nontrivial. This is also the reason behind the restriction of
x0 = 0, since a non-zero initial state leads to the necessity
of a varying shift over the training batch.

IV. ONLINE SYSTEM IDENTIFICATION OF A ROBOT LEG

For validating our approach, we present an example use
case by identifying the wear of a robot leg online. It consists
of an inverted, damped spring-mass pendulum, with the
control target of keeping it stable in the upright position.
The system is depicted in Figure 2. While the system has
already been identified and controlled in various publications
[2], it is not clear whether the constructed controllers will still
work after a long time, when the parameters of the system
might change due to wear. This applies especially to the
stiffness parameter kl of the spring as well as to the damping
coefficient dl. A third important parameter that might vary, is
the mass ml of the robot, e.g., if it carries a load. Measuring
these values during usage of the system is not practical. Thus
we use our system identification method for identifying a
change in the state space online.

We implement the system in Python and simulate the step
response for different parameters dl, kl and ml. If the system
dynamics are unknown in general, the proposed method also
works by measuring one input-output-relation and training
the neural network only on this data instance. Another way
could be to perform a standard subspace-based state space
identification (command n4sid in MATLAB). Both require
the estimation of the system rank.

In the present case we already know the system dynamics,
so we can use them to generate training data for an online
identification. They are described by a system of differential
equations, linearised at l = l0, l̇ = 0, θ = π

2 and θ̇ = 0:
l̇

l̈

θ̇

θ̈

 =

0 1 0 0

− kl
ml

− dl
ml

0 0

0 0 0 1
0 0 g

L 0

l

l̇
θ

θ̇

+

0 0
1
ml

0

0 0
0 1

mlL2

u

(16)

TABLE I: Error values of the performed validations for the
stable and unstable system. The step signal errors are calcu-
lated by the mean absolute difference after a normalization
between [0, 1], while magnitude and phase are mean absolute
differences without a normalization. Parameter errors are
given in percentage.

Stable Unstable
Signal Type Scenario Overall Scenario Overall
Step Signal (·10−3) 9.01 14.82 15.70 31.50

Magnitude (dB) 0.73 0.89 4.03 3.37

Phase (·10−3 rad) 39.72 28.46 0 0

∆kl (in %) 1.97 11.68 24.19 26.36

∆dl (in %) 3.49 8.67 - -
∆ml (in %) 3.89 14.77 50.13 48.32

according to [17], with L = l0 − mlg
kl

and g being the grav-
itational constant. This linearisation is reasonable, since the
control target is to keep the inverted pendulum upright. We
can see, that we have to identify two decoupled SISO systems
which comprise the two degrees of freedom: the translatory
forces, located in the damped spring-mass-pendulum and the
rotatory forces, located in the rotating inverted pendulum.
The latter one is unstable, since stimulating it in its idle
state will make it fall down (with a cap at π, since it cannot
fall further). The damped spring-mass-pendulum on the other
hand is a stable, oscillating system.

For the online identification we build two neural networks,
which correspond to the CCF for both systems. We simulate
104 different step responses by varying the parameters be-
tween kl ∈ [20, 25], dl ∈ [2, 5], ml ∈ [0.5, 1.5] and setting
the length of the uncompressed spring to l0 = 0.8 m. We
choose a residual neural network architecture with three 1-
D-convolutional layers of eight neurons, followed by two
dense layers of ten neurons and train the neural networks
by keeping 20 % of the data for testing the found weight
combination online which prevents overfitting.

For a validation we construct another data set which
includes 500 new parameter combinations. To demonstrate
the results, we pick one parameter scenario out of this data
set and calculate the associated step responses. It has a setting
of kl,1 = 24.23 N

m , dl,1 = 2.24 kg
s and ml,1 = 1.01 kg.

Afterwards, we feed our neural networks with this simulated
data, which gives us an estimated state space representation
of

l̇

l̈

θ̇

θ̈

 =

0 1 0 0

−23.7 −2.2 0 0
0 0 0 1
0 0 18.4 0

l

l̇
θ

θ̇

+

0 0

1.0 0
0 0
0 7.0

u .

Figure 3 shows the step response and bode plots of the
identified systems, compared to the step responses of the
estimated ones.

We can see that identifying a stable and oscillating system
leads to a reasonable estimation, while the unstable system
is less precise. This is reasoned by slight changes in the

state space of an unstable system which lead to heavy
deviations in the step response. The bode plots show that
the identified stable system behaves very similar to the
corresponding original one, while the unstable system shows
a diverge, especially in the low frequency areas. The phase
of the unstable system is constant at π, since there is no
imaginary part in this subsystem’s transfer function. Table
I lists the corresponding error values, including the errors
over all 500 random validation systems which are in the
same region as the presented scenario. Additionally, the
table shows the parameter errors, based on the identified
system in a mean absolute percentage deviation. We can see
that our introduced identification method enables systems
that behave equally over all frequencies but deviate in the
identified parameters. This is caused by fractions in (16)
which compensate for false parameters. In general, neural
networks are especially useful for interpolation tasks like the
presented one. Extrapolation is only achieved under special
conditions [20] which is why the identification method will
fail as soon as the training data does not represent the area
of application anymore. Usually neural networks perform
better with more training data. Figure 4 shows a plot, where
we depict the step signal error of the same architecture but
with different data sizes (ranging from 100 to 105). Although
the error decreases with more training samples, we already
reach a reasonable estimation by using only 100 systems for
training.

We measured the execution time in Python on a weak
processor by limiting our device to 1 × 400 MHz. This
leads to an elapsed time of 1.194 s for a single system
identification. Since we want to compare the method to the
n4sid-function in MATLAB, we ran an equivalent network
in a MATLAB environment and reached roughly the same
execution time (1.329 s). The execution time of the n4sid-
function, including the transformation to a continuous state
space model, is 3.682 s. We want to point out though
that the presented identification method requires an offline
training session which is computationally expensive, while
the n4sid-function works online as a whole. Additionally
the latter technique is far more precise (the normalized mean
absolute error of the step responses is smaller than 10−15).

V. CONCLUSIONS

We introduced a new method to identify the state space
representation of a system online. While the training is
computationally expensive, only a single forward pass is
necessary to identify the system, which leads to a runtime
efficient code. Nevertheless, the main contribution of this
method can be seen as a base line for identifying nonlinear
systems with machine learning methods.

ACKNOWLEDGMENT

This work was partially supported by the State Min-
istry of Baden-Wuerttemberg for Economic Affairs, Labour
and Housing Construction (KI-Fortschrittszentrum “Ler-
nende Systeme”, Grant No. 036-170017).

0 1 2 3 4 5 6
0

2

4

6

8

10

Time in s

Sp
ri

ng
am

pl
itu

de
l

in
cm

Original System
Estimated System

0 0.2 0.4 0.6
0

1

2

3

4

Time in s

θ
in

ra
d

10−1 100 101

−60

−40

−20

Frequency in rad
s

M
ag

ni
tu

de
in

d
B

−3

−2

−1

0

Ph
as

e
in

ra
d

Estimated Sys., Mag
Original Sys, Mag
Estimated System, Phase
Original System, Phase

(a) Step response and bode plot of the stable system.

10−1 100 101

−40

−20

Frequency in rad
s

M
ag

ni
tu

de
in

d
B

3

3.5

Ph
as

e
in

ra
d

(b) Step response and bode plot of the unstable system.

Fig. 3: Step response and bode plots of the a parameter scenario with kl,1 = 24.23 N
m , dl,1 = 2.24 kg

s and ml,1 = 1.01 kg.

102 103 104 105

2

3

4

·10−2

Training data samples

St
ep

si
gn

al
er

ro
r Stable system

Unstable system

Fig. 4: Step signal error over different training data sizes.

REFERENCES

[1] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Un-
derstanding of a convolutional neural network”. In: 2017 Interna-
tional Conference on Engineering and Technology (ICET). IEEE,
21.08.2017 - 23.08.2017, pp. 1–6.

[2] Hua Chen, Patrick M. Wensing, and Wei Zhang. Optimal Control of
a Differentially Flat 2D Spring-Loaded Inverted Pendulum Model.
2019. arXiv: 1911.07168.

[3] D. R. Curtiss. “Recent Extentions of Descartes’ Rule of Signs”. In:
The Annals of Mathematics 19.4 (1918), p. 251.

[4] R. A. DeCarlo. Linear Systems: A State Variable Approach with
Numerical Implementation. USA: Prentice-Hall, Inc., 1989.

[5] MP. Deisenroth and CE. Rasmussen. “PILCO: A Model-Based and
Data-Efficient Approach to Policy Search”. In: Proceedings of the
28th International Conference on Machine Learning, ICML 2011.
Omnipress, 2011, pp. 465–472.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. MIT Press, 2016.

[7] Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient Descent
Learns Linear Dynamical Systems. 2019. arXiv: 1609.05191.

[8] Marco F. Huber. “Recursive Gaussian process: Online regression
and learning”. In: Pattern Recognition Letters 45 (2014), pp. 85–91.

[9] Hassan Ismail Fawaz et al. “Deep learning for time series classifi-
cation: a review”. In: Data Mining and Knowledge Discovery 33.4
(2019), pp. 917–963.

[10] I. W. Jamaludin et al. “N4SID and MOESP subspace identification
methods”. In: 2013 IEEE 9th International Colloquium on Signal
Processing and its Applications. IEEE.

[11] S. L. Lacy and D. S. Bernstein. “Subspace identification with
guaranteed stability using constrained optimization”. In: IEEE
Transactions on Automatic Control 48.7 (2003).

[12] Yann A. LeCun et al. “Efficient BackProp”. In: Neural Networks:
Tricks of the Trade. Ed. by Grégoire Montavon, Geneviève B. Orr,
and Klaus-Robert Müller. Vol. 7700. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[13] Concepción A. Monje et al. Fractional-order Systems and Controls:
Fundamentals and Applications. Advances in Industrial Control.
London: Springer-Verlag London, 2010.

[14] A. Nagabandi et al. Neural Network Dynamics for Model-Based
Deep Reinforcement Learning with Model-Free Fine-Tuning. 2018.

[15] Python Control Systems Library. 2020. URL: https://github.
com / python - control / python - control / blob /
master/control/timeresp.py.

[16] Tuhin Sarkar et al. Nonparametric Finite Time LTI System Identifi-
cation. arXiv: 1902.01848.

[17] T. Turner Topping et al. “Towards bipedal behavior on a
quadrupedal platform using optimal control”. In: Unmanned Sys-
tems Technology XVIII. 2016.

[18] Peter van Overschee and Bart de Moor. Subspace Identification for
Linear Systems. Boston, MA: Springer US, 1996.

[19] Jeen-Shing Wang and Yen-Ping Chen. “A fully automated recurrent
neural network for unknown dynamic system identification and
control”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 53.6 (2006), pp. 1363–1372.

[20] Keyulu Xu et al. How Neural Networks Extrapolate: From Feed-
forward to Graph Neural Networks. 2021. arXiv: 2009.11848.

[21] Wenhao Yu et al. Preparing for the Unknown: Learning a Universal
Policy with Online System Identification. 2017. arXiv: 1702 .
02453.

