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ABSTRACT

Feature fusion is a powerful technique that enables predictors to access a seman-
tically rich representation of an image. Feature Pyramid Networks (FPNs) are the
most widely used models for fusing features. However, the context within the
FPN layers is inconsistent, leading to false predictions. This article addresses the
context inconsistency in FPN and proposes CMFPN, a new design that improves
feature fusion by decoupling feature aggregation from context modeling. Experi-
mental results, based on the COCO dataset, show that CMFPN effectively resolves
the context issues and enhances the Average Precision (AP) results for both object
detection and instance segmentation by 2.30% and 1.7%, respectively.

1 INTRODUCTION AND RELATED WORK

In computer vision, a backbone network is used to extract multi-scale feature maps from an image
He et al. (2016); Liu et al. (2021), which can be fused using a Feature Pyramid Network (FPN) Lin
et al. (2017) to build a rich representation of the image. Besides feature fusion, FPN enhances the
gradient flow Jin et al. (2022) and simplifies the prediction task Chen et al. (2021). However, it has
some weaknesses. FPN brings limited benefits to large objects prediction Jin et al. (2022), and the
long path from the higher to the lower layers in FPN can affect dense predictions Liu et al. (2018).
Other limitations are also addressed in Guo et al. (2020); Zhao et al. (2017); Xie et al. (2023).

FPN performs Feature Aggregation (FA) and Context Modeling (CM) simultaneously through lat-
eral connections (from the backbone) and top-down path (Figure 1). Therefore, the context at the
top layers of the pyramid is inconsistent with the context at the lower ones. Causing out-of-context
predictions in many cases (more details in Appendix A.1). To resolve the context inconsistency,
this work presents CMFPN. A new design that decouples FA from CM by introducing a new global
context path (depicted in green in Figure 1).
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Figure 1: Feature pyramid networks of three layers. Left: FPN and right: CMFPN.

2 METHOD

2.1 REVISING FPN

Given an input image I ∈ RC×N2

, where C and N are the channel and spatial dimensions of I ,
respectively. A set of feature maps F = {f1, · · · , fK},∀fk ∈ RCk×N2

k can be extracted from I

using a backbone and used to build a pyramid of feature maps P = {p1, · · · , pK},∀pk ∈ RCP×N2
k .

Assume F and P are ordered by size such that pk+i is 2i times larger than pk. Then, pk can be
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obtained as:

pk =

{
Vk(Wkfk) if k = 1,
Vk (Wkfk + pk−1) otherwise, (1)

where Wk is a mapping matrix (a Conv1×1 layer) to compress fk to a lateral feature map with a
predefined number of channels CP , and Vk is a transformation matrix (a Conv3×3 layer). In (1),
pk−1 is assumed to be properly scaled before adding it to Wkfk.

2.2 CMFPN

To integrate the global context in the FPN design, the formulation in (1) can be rewritten as:

pk =

{
Vk (Wkfk + gk) if k = 1,
Vk (Wkfk + gk + pk−1) otherwise, (2)

where gk is the global context obtained initially from F and updated at every level k. To calculate g,
two main steps are applied: backbone feature maps re-calibration and context updating, which are
described in details in Appendix A.2.

3 MAIN RESULTS

The object detection and instance segmentation results are listed in Tables 1 and 2, respectively.
They clearly show that, CMFPN has consistently boosted the prediction results regardless of object
size, backbone, and task . Further details and an ablation study are presented in Appendix A.3.

Model Backbone AP AP50 AP75 APS APM APL

Faster R-CNN R-50 + FPN 36.90 58.40 39.70 21.70 40.50 48.10
Faster R-CNN R-50 + CFPN Xie et al. (2023) 37.20 - - 21.70 41.40 48.60
YOLOF R-50 Chen et al. (2021) 37.70 56.90 40.60 19.10 42.5 53.20
Faster R-CNN R-50 + CMFPN 39.00(+2.1) 60.50 42.30 22.90 42.20 51.60
Mask R-CNN R-50 + FPN 37.40 58.50 40.10 21.70 40.70 48.60
Mask R-CNN R-50 + CMFPN 39.60(+2.2) 60.90 42.90 23.80 43.00 52.40
Cascade Mask R-CNN R-50 + FPN 40.70 59.10 44.30 22.50 44.30 54.00
Cascade Mask R-CNN R-50 + CFPN Xie et al. (2023) 41.50 - - 24.10 45.70 54.00
Cascade Mask R-CNN R-50 + CMFPN 42.90(+2.2) 62.00 46.40 25.40 46.60 57.10
Mask R-CNN Swin-T + FPN 42.40 65.10 46.10 25.80 45.60 56.10
Mask R-CNN Swin-T + CMFPN 45.10(+2.7) 67.00 48.90 27.30 48.80 60.40

Table 1: The object detection results on the coco val 2017.

Model Backbone APSeg APSeg
50 APSeg

75 APSeg
S APSeg

M APSeg
L

Mask R-CNN R-50 + FPN 33.90 55.10 36.00 16.00 36.50 49.80
Mask R-CNN R-50 + CMFPN 35.60(+1.7) 57.50 37.70 17.50 38.20 51.90
Cascade Mask R-CNN R-50 + FPN 35.30 56.00 37.80 16.20 38.00 51.80
Cascade Mask R-CNN R-50 + CMFPN 37.10(+1.8) 58.50 39.70 18.40 39.80 54.30
Mask R-CNN Swin-T + FPN 39.10 62.10 42.10 19.60 41.80 57.50
Mask R-CNN Swin-T + CMFPN 40.70(+1.6) 64.20 43.70 21.00 43.80 60.00

Table 2: The instance segmentation results on the coco val 2017.

4 CONCLUSION

This work presents CMFPN, a new design to fix the context issues in FPN by decoupling feature
aggregation from context modeling. CMFPN provides consistent context for all feature pyramid
maps. This is reflected in a significant improvement in both object detection and instance segmen-
tation regardless of object size, task, or feature extractor. In the future, CMFPN will be evaluated
under different datasets and tasks. New context modeling layers will also be explored.
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A APPENDIX

A.1 CONTEXT ISSUES IN FPN

FPN suffers from inconsistent context among the pyramid feature maps. As shown in Figure 1, each
feature map in the top-down path (p path) is mainly constructed from a single lateral feature map
and the context is accumulated from top to bottom which cause two main issues: i) the context is
added to the pyramid feature maps without proper calibration; ii) the objects are evaluated under
inconsistent context at each level.

All types of wrong predictions can be caused by these limitations, but false positives are the most
common issues. Taking Figure 2 as an example, it is clear that a robust FPN-based model (Cascade
Masked RCNN + ResNet + FPN in this case) fails to correctly predict objects due to several reasons.
However, they can be related to context issues. In the first example, weak features cause a wrong
prediction of tree leaves. In the second example, the resemblance between the car-door handle and
the toilette was not validated by the context. The same issue appears in the third example. In the
last example, the similarity between snow and the white ground causes false snowboard prediction.
On the other hand, when the context was modeled properly by the proposed approach, all false
predictions were avoided.

A.2 CALCULATING THE GLOBAL CONTEXT

The calculation and update of the global context is shown in Figure 3 and is detailed in the next
steps.

A.2.1 TRANSFORMING BACKBONE FEATURE MAPS

In this step, the feature maps in F are recalibrated using a squeeze-and-excitation (SE) layer Hu
et al. (2018) and scaled to the same size. Let k̄ = ⌈K

2 ⌉ be the position of the mid-sized feature map
in F , then fk can be transformed as:

f̃k = Scale2(k̄−k)(SE(fk)), k = 1, · · · ,K, (3)

where Scale2(k̄−k) is the scaling operator with the subscript being the scale ratio. The transformed
set of backbone feature maps is denoted by F̃ .

A.2.2 UPDATING THE CONTEXT

To maintain a global context g for use during the generation of P , g is updated at each level of the
pyramid as follows:

gk =

{
V g
k ConcatCP (F̃) if k = 1,

V g
k

(
Wkf̃k−1 + CCM(gk−1, pk−1) + gk−1

)
otherwise,

(4)

where ConcatCP is the concatenation operator applied on the channel dimension CP . The Cross-
Context Modeling (CCM) layer calculates a simplified cross attention between the latest global
context gk−1 and the feature map pk−1.
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Figure 2: Context issues in FPN predictions. Left: FPN, and right: the proposed CMFPN. The
model being used is the Cascade Masked RCNN with ResNet-50.

A.2.3 CROSS CONTEXT MODELING (CCM)

Building on the concepts in Wang et al. (2018) and Cao et al. (2019), a single context can be calcu-
lated for any query, leading to a substantial reduction in the computation of the attention mechanism.
Therefore, the CCM layer can be calculated as:

CCM(gk, pk) = V CM
k CM

(
ConcatCP (gk,Scale2(k̄−k)(pk))

)
, (5)

where CM is the Context Modeling block Cao et al. (2019):

A.3 EXPERIMENTAL RESULTS

A.3.1 DATASET

The MS-COCO 2017 dateset Lin et al. (2014) was used to evaluate the proposed model. All models
used in this work are trained on the training set train-2017, which contains 118k samples, and
evaluated on the the validation set, which contains 5k samples.
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Figure 3: CMFPN

A.3.2 IMPLEMENTATION DETAILS

The new module, CMFPN, has been implemented in PyTorch in MMDetection Chen et al. (2019)
framework and evaluated with the same configurations widely adopted in the literature. The back-
bones used are initialized with pre-trained weights on ImageNet while the new components are
initialized randomly. The input images are resized to 800× 1333. The loss functions being adopted
is the cross-entropy for both class and masks predictions, and L1 (smoothed L1 for the Swin models)
for bounding boxes regression. The optimizer used to train the models is the SGD (AdamW with
betas={0.9, 0.999} for the Swin models), with the adopted hyper-parameters as shown in Table 3.

During training, RandomFlip was the only augmentation applied. During inference, the input is re-
sized to the same scale as in the training and no test-time augmentation was applied. A filtering score
of 0.05 was used to suppress background bounding boxes where 1000 predictions were reported at
each pyramid level. NMS with IoU threshold of 0.5 per class was used to keep only 100 confident
predictions per image.

A.3.3 RESULTS ANALYSIS

For object detection (Table 1), CMFPN brings ≈ 2.30% improvement in average with minimum and
maximum of 2.10% and 2.7%, respectively. CMFPN has consistent performance when tested with
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Parameter Value
momentum 0.9
weight decay 1e-4
initial RL 0.02
schedules 1x schedule (12 epochs)
scheduler decay of 0.1 at at the 9th and 11th epochs.
CMFPN layers 2
CP 256
GPU 4 × A100
batchsize 32 (8 per GPU)

Table 3: The parameters being adopted for training.

different heads and backbones. Moreover, all objects benefit from CMFPN regardless of their sizes.
However, large objects are the most beneficial, where it outweighs FPN by ≈ 4.30%, when using
the Mask R-CNN-Swin-T model, and ≈ 3.67% in average for all models. This large improvement
is aligned with the recent research regarding FPN inefficiency for large objects prediction Jin et al.
(2022). Moreover, CMFPN is ≈ −1.6% lower than YOLOF when using Faster R-CNN + CMFPN.
However, CMFPN is more consistent and is better than YOLOX in small objects detection with
≈ 3.8% and in average CMFPN outweighs YOLOX by ≈ 1.3%. This demonstrates the effectiveness
of the proposed context path in the CMFPN design in boosting the performance and resolving the
context limitation in FPN.

Regarding the instance segmentation results (Table 2), CMFPN improves the results by ≈ 1.7% in
average with minimum of 1.6% and maximum of 1.8%. CMFPN has improved the results of all ob-
jects regardless of their sizes, and it has performed consistently when used in different architectures.
For small objects, the results have improved by 1.7% in average with maximum and minimum of
2.2% (for Cascade Mask R-CNN + ResNet-50) and 1.4% (for Mask R-CNN + Swin-T), respec-
tively. Large objects masks have also improved by 2.36% in average with maximum of 2.5%( for
Cascade Mask R-CNN + ResNet-50 and Mask R-CNN + Swin-T) and minimum of 2.1% (Mask
R-CNN + ResNet-50).

A.3.4 ABLATION STUDY

To perform ablation, the Mask R-CNN + Swin-T + CMFPN model is selected since it is the most
powerful model among the evaluated choices. The first component is the complexity of the context g
(CP in Section 2.1), which can be small (128 channels) or large (256 channels). Another component
is the residual connections from the lateral maps to the context path (dashed line in Figure 3).

The results for object detection and instance segmentation are shown in Tables 4 and 5, respectively.
Increasing CP from 128 to 256 channels improves the object detection by ≈ 0.8% and instance
segmentation by ≈ 1.4%, while adding the residual connections improves the detection results by
≈ 0.3% and instance segmentation by ≈ 0.1%.

Model AP AP50 AP75 APS APM APL

Mask R-CNN + Swin-T + CMFPN (CP = 128) 44.00 66.00 47.90 26.40 47.80 58.90
+ CP = 256 44.80 66.90 48.60 27.00 48.70 59.60
+ Residual Connections 45.10 67.00 48.90 27.30 48.80 60.40

Table 4: Ablation study results of the object detection on the coco val 2017.

Mask R-CNN + Swin-T + CMFPN (CP = 128) 39.20 62.30 41.90 19.50 42.30 57.50
+ CP = 256 40.60 63.80 43.50 20.60 43.80 59.30
+ Residual Connections 40.70 64.20 43.70 21.00 43.80 60.00

Table 5: Ablation study results of the instance segmentation on the coco val 2017.
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