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Abstract

Multi-modal foundational models are trained on millions of pairs of natural images1

and texts, frequently obtained through web-crawling approaches. Although their2

performance is excellent, these models do not generalize well to other domains,3

such as medical imaging, especially when these domains do not resemble the4

centric-like images that can be found on the web. In this study, we assess the ability5

of the stable diffusion model to generate domain-specific images in the particular6

case of medical imaging. Based on quantitative and qualitative evaluations of the7

main components of the stable diffusion pipeline (the variational autoencoder, the8

U-Net and the text-encoder), we explore several approaches to fine-tune stable9

diffusion to generate radiological images, which accurately represent the clinical10

content of conditional text prompts. Our best-performing model improves upon the11

stable diffusion baseline and can be correctly conditioned to insert an abnormality12

on a synthetic radiology image.13

A photo of a lung xray A photo of a lung xray with a visible pleural effusion
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Figure 1: Generated images by both the original stable diffusion model and our fine-tuned model
on radiology images. The prompts are designed to compare a standard radiology image with no
particular findings, and the insertion of a frequent abnormality "pleural effusion" (red arrows).

1 Introduction14

In recent months, latent diffusion models have gained immense popularity by enabling state-of-the-art15

image generation amenable to fine-grained control of the image generation process at inference time16

via conditioning of the denoising process (e.g., using text prompts) (Ramesh et al., 2022; Rombach17

et al., 2022; Saharia et al., 2022). Such models, termed foundation models (Bommasani, 2021), have18

been trained with large multi-modal curated datasets such as LAION-5B that consists of natural19

images and their captions (Schuhmann et al., 2022). The impressive generative capabilities of such20

models permits creation of high-fidelity synthetic datasets that may be used to augment traditional21

supervised machine learning pipelines in scenarios that lack training datasets.22
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One particular area that such an advance would be beneficial in is the domain of medical imaging,23

where there is a paucity of high-quality labeled datasets. Annotating such medical imaging datasets24

typically requires trained medical experts who are capable in interpreting subtle, but semantically25

meaningful, image features. Despite the lack of large curated medical imaging datasets, one benefit26

that such medical imaging examinations have is that there is typically a text-based radiology report that27

describes pertinent findings from the imaging study. Leveraging the vision-language understanding28

capabilities of latent diffusion models could potentially provide an intuitive mechanism to create29

synthetic medical imaging data by prompting with relevant medical keywords or concepts of interest.30

In this study, we explore the representational bounds of large vision-language foundation models31

and evaluate how to utilize pretrained foundational models to represent medical imaging studies and32

concepts, despite models never having been explicitly trained on these concepts. We utilize chest33

x-rays (CXRs) for this study as they are most common imaging modality globally. CXRs are fast to34

acquire, inexpensive, can provide important patient health insights, and can identify and monitor a35

variety of pathologies. We explore and quantify the representational capacity of the stable diffusion36

model (Rombach et al., 2022) to characterize the efficacy of both its language and vision encoders as37

applied to CXRs. We further explore different strategies for improving the representational capacity38

of non-domain-specific foundational models for representing medical concepts specific to CXRs.39

These experiments help provide novel decision making insights regarding whether such foundational40

models can accurately represent complex biomedical concepts for clinically-relevant downstream41

tasks, without explicit training on such concepts. In this study, we specifically show the following:42

1. Training Stable Diffusion on LAION-2B learns a variational autoencoder (VAE) that can43

reconstruct CXR images out-of-the-box44

2. A frozen CLIP text encoder can generate powerful medical embeddings with enough clinical45

context to allow accurate generated images, in conjunction with the methods below46

3. Replacing the frozen CLIP encoder with a frozen in-domain text encoder with a projection47

head trained on LAION to map in-domain embeddings to CLIP embeddings, is not adequate48

to generate better images49

4. Textual inversion can be used to learn complex medical concepts like pleural effusion in a50

few-shot manner51

5. Fine-tuning the UNet component enables high-fidelity CXR image generation with the52

capability to insert custom pathologies (see examples in Figure 1).53

We verify all our findings using using quantitative metrics of image quality as well as qualitative and54

domain-specific radiological interpretation from an expert thoracic radiologist.55

2 Materials and Methods56

2.1 Datasets57

A large, publicly available chest x-ray (CXR) dataset (MIMIC-CXR, version 2.0.0) was used in this58

work, under institutional review board approval (Johnson et al., 2019). MIMIC-CXR contains a total59

of 377,110 images from studies performed at the Beth Israel Deaconess Medical Center in Boston,60

MA, USA, of which 700 frontal (i.e., anterior-posterior or posterior-anterior projection) radiographs61

were sampled randomly for this study. These images and their associated reports were used for62

experiments and study of the variational autoencoder and of text encoders.63

In addition, we manually select 5 images with no findings, as well as 5 images that have visible pleural64

effusion, discarding any improperly cropped or colorized images (verified by a thoracic radiologist).65

Along a set of simple prompts generated synthetically, these form pairs of images and texts that are66

used for fine-tuning the stable diffusion model with various approaches. Finally, a sample of one67

million text prompts from the LAION-400M dataset (Schuhmann et al., 2021) is used for textual68

projection training and experiments.69

2.2 Stable Diffusion70

The stable diffusion model (depicted in Figure 2) is composed of a CLIP text encoder that parses text71

prompts to create a 768-dimensional latent representation (Radford et al., 2021a). This latent text72
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Figure 2: Stable diffusion architecture, run in the radiology setting to generate synthetic radiology
images.

representation is used to condition a generative U-Net to generate images in the latent image space73

using random noise as an additional conditioning. Finally, the decoder component of a variational74

autoencoder is used to map this latent image projection to the output image space. While the original75

generative model has been trained with image and text captions arising from natural imaging domains,76

the extent of its capabilities for representing medical concepts and images remains unclear. To77

adapt the stable diffusion model for in-domain image generation, especially for radiology images78

and prompts, we can leverage each component and train it, or not, depending on its capabilities to79

represent in-domain data. More particularly, we can assess:80

• Whether the variational autoencoder (VAE) alone is capable of reconstructing radiology81

images without losing general visual aspect as well as clinically important features.82

• Whether the text encoder alone is capable of projecting clinical prompts to the text latent83

space while preserving clinically important features.84

Section 2.3 presents the methods used to assess the reconstruction quality of the VAE, assessing85

whether it requires in-domain fine-tuning; Section 2.4 describes the experiments researching the86

quality of the CLIP text encoder and other in-domain text encoders; and Sections 2.5, 2.5, 2.7 present87

methods to fine-tune various components of the stable diffusion model for the radiology domain.88

2.3 Variational Autoencoder89

As latent diffusion model, stable diffusion translates image inputs into a latent space before performing90

the denoising process, using an encoder trained to remove perceptually negligible features (“perceptual91

compression”)(Rombach et al., 2022). To analyze how well medical imaging information is preserved92

while passing through the VAE, CXR images sampled from MIMIC (“originals”) were encoded to93

latent representations and reconstructed into images (“reconstructions”).94

Reconstruction quality was quantitatively assessed by calculating the root mean square error (RMSE),95

the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) for each96

image-reconstruction pair. Additionally, the Fréchet inception distance (FID, underlying model:97

Inception V3, 2048 features) was calculated on minibatches (batch size = 32) to compare the98

distribution of reconstructions to the distribution of original images(Szegedy et al., 2015; Heusel99

et al., 2017).100

Qualitatively, the reconstruction quality compared to the original image input was assessed by a101

radiologist with 7 years of experience in reading CXR studies, using a scoring system ranging102

from 1 to 5 (5: Very good reconstruction with essentially non-inferior diagnostic quality to the103

original, 4: Good reconstruction with noticeable errors not negatively influencing diagnostic quality,104

3: Moderate reconstruction errors with possible negative effects to diagnostic performance, 2: Severe105

reconstruction errors or errors of any level leading to hallucinated lesions, 1: Severe reconstruction106

errors yielding the image undiagnostic) on 100 randomly sampled original-reconstruction pairs.107

3



The effect of the reconstruction process on classification performance was analyzed using a model pre-108

trained to detect 18 different pathologies commonly encountered in CXR (DenseNet-121, torchxrayvi-109

sion library, version 0.0.37)(Cohen et al., 2022)(Cohen et al., 2020). Classification accuracy and F1110

score were calculated for 12 of the labels included in both MIMIC-CXR and the pretrained model.111

For this step, uncertain findings (=’-1’) were considered positive findings, while missing values were112

treated as absence of the corresponding finding. Additionally, latent representations of original and113

reconstructed images were compared by calculating their pairwise cosine similarity.114

2.4 Text Encoder115

In the domain-specific setting of radiology reports and images, the goal is to be able to condition the116

generation of images on associated medical conditions, that can be represented through a text prompt117

or report. Therefore, the capability of the text encoder to correctly represent medical features in the118

latent space is critical for the rest of the stable diffusion process, in particular the U-Net operating119

in the latent space, to be able to generate images that are anatomically correct and representing the120

correct set of abnormalities.121

A set of potential text encoders that could be interesting to accurately represent medical features122

was found through study of the previously published pre-trained language models in the field:123

PubMedBERT (Gu et al., 2022), ClinicalBERT (Huang et al., 2019), SapBERT-from-PubMedBERT-124

full text (Liu et al., 2021), RadBERT (huggingface.co/StanfordAIMI/RadBERT), CXR-BERT-general125

(Boecking et al., 2022), CXR-BERT-specialized (Boecking et al., 2022) and finally the Clip text126

encoder (Radford et al., 2021b).127

As described in section 2.1, we can gather radiology report data from CXR, and the corresponding128

abnormality labels as output by the CheXpert model (Irvin et al., 2019). Then, for each particular129

text_encoder model and the corresponding report_list of elements report, one can run the report130

through the model and get a representation text_encoder(report). Nevertheless, there exist several131

ways to extract embeddings from these text encoders, all based on a transformer architecture:132

extracting the last layer hidden state of the associated CLS token, "CLS hidden state"; extracting the133

last layer hidden states of each tokens and averaging these representations, "mean hidden states";134

using the pooler output, "pooler output"; Using a model specific extraction method, if available,135

"model specific".136

The combination of a text_encoder model and the associated extraction method extraction gives137

a function extraction ◦ text_encoder that takes an input report and outputs a document-level138

representation. This way, for a defined text_encoder model and extraction method, one can obtain139

the document-level embeddings of radiology reports and then assess the quality of these embeddings140

and therefore the capability of a text-encoder to encode medical content.141

For the evaluation, we first obtain the document-level embeddings on the impression section of each
radiology report, obtained through regex parsing. This gives:

impression_embeddings = extraction ◦ text_encoder(impressionsections)

For all the text-encoders that we study, the latent representations are of dimension 768. Therefore for142

700 impression sections, impression_embeddings is a 700× 768 matrix.143

Then, we can compute the impression-impression similarities in the latent space
similarities = impression_embeddings× impression_embeddingsT

We then compute a metric, that we denote the CheXpert@k metric, that for each report i find the k
most similar reports, and then measure the proportion of reports that share the same CheXpert label.
If chexpert_labels is a list of the chexpert labels corresponding to the reports, we have:

CheXpert@ki =
sum(chexpert_labels[argsort(similarities[i])[−k :]] == chexpert_labels[i])

k

And then over all reports we get CheXpert@k =
∑n

i=1 CheXpert@ki

n144

Notice that in the implementation of this metric, a filter is added to CheXpert@ki so that among145

the k most similar reports, the report being compared to is not retrieved. In addition, the metric146

CheXpert@k can be computed over each class instead: so for each abnormality class, we can147

average the CheXpert@ki scores, where the similarities are still computed over the reports of all148

classes. A macro-averaged score can then be retained for comparison purposes.149
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2.5 Textual Projection150

Building up upon the stable diffusion work, we propose as a first method to generate domain-specific151

images to replace the CLIP text encoder, kept as frozen during the stable diffusion original training,152

with a domain-specific text encoder, typically pre-trained on biomedical or radiology data. The goal153

behind this architecture change is to hopefully rely on the better understanding the new text encoder154

has of radiology inputs and therefore provide better latent representations, that the U-Net will then be155

conditioned upon to generate synthetic images.156

Nevertheless, simply replacing the CLIP text encoder with a new one should lead to catastrophic157

performance, given that latent spaces can be structured in a very different manner. There are no158

guarantee that any latent feature is redundant between the two text encoders. We therefore propose to159

train a projection capable of translating, in parts, the latent representations of one text encoder to the160

other. So that running radiology prompt through the in-domain text encoder, and then projecting these161

latent representations through this trained projection, should allow embeddings to be well-enough162

aligned for the U-Net conditioning to work, but still provide enhanced clinical representations through163

the in-domain text encoder added knowledge.164

To train this projection, we use the LAION-400M dataset and define a projection as a MLP model,165

taking a 768-dimensional input and mapping it to a 768-dimensional translated output. As a first166

approach, we take projection = Linear ◦ReLU ◦ LayerNorm ◦ Linear and train it using MLE167

loss. At inference time, images can be generated by using the in-domain text encoder along the168

projection, and hopefully having enough clinical features passing through while keeping most of the169

CLIP latent space structure so that the U-Net conditioning allows for clinically correct generated170

images.171

Notice that the prompts the model is trained on can have an impact on the performance, that we try to172

measure: we explore object-oriented prompts of the form "a photo of a ..." and style-oriented prompts173

of the form "a photo in the style of a ...", with lexical variants of these two base prompts.174

2.6 Textual Embeddings Fine-tuning175

Following the approach of Gal et al. (2022), the stable diffusion model can be further trained to176

generate better looking images for the radiology setting by focusing on the embeddings of the text177

encoder. In this case, during training, the variational autoencoder, the U-Net, as well as all the other178

layers of the text encoder are frozen. In addition, a new token gets introduced, that can either describe:179

patient-level features, such as gender, age and body weight; procedure-level features, such as body180

part and modality; abnormality-level features, such as "no findings" or "pleural effusion".181

As an example, we could introduce the token < lung − xray > that is supposed to describe both a182

body part, lungs, and a modality, X-ray. This learning approach, denoted Textual Inversion, zero out183

all the gradients associated with the embeddings of the already existing tokens, and in the end only184

learn the embedding of this newly introduced token.185

Then, during training, input prompts with these new tokens are introduced, along associated radiology186

images. The rest is very similar to original training of the stable diffusion model, in that the model187

gets used to generate a synthetic image, and the noise at several timesteps in both the forward and188

backward process of the U-Net are passed through a MSE loss. Gradients are then used to only189

update the embeddings of the newly introduced tokens.190

2.7 U-Net fine-tuning191

Finally, in a similar approach to Ruiz et al. (2022), one can improve the baseline stable diffusion192

model to generate better domain-specific images by relying on a U-Net fine-tuning. Instead of193

switching text encoders and using a projection (see Section 2.5) or training the embeddings of new194

tokens (see Section 2.6), one could keep all components frozen and the original CLIP text encoder, to195

only further train the U-Net part. In this sense, the setting is very similar to the approach of Section196

2.5, except that no new token gets added, and the freezing is over the set of parameters of the U-Net.197

Then, the training is similar to the training of the original stable diffusion model, relying on MSE198

loss at several time steps of the denoising process to progressively converge to better generation of199

in-domain images.200
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3 Results201

3.1 Training details202

Experiments were conducted on several devices, depending on their compute hungriness. VAE and203

text encoder experiments were run in local, with M1 Pro and M1 Max GPUs. Textual projection204

relied on 3 NVIDIA Quadro P5000 GPUs, with a single run taking 3 hours for 10k training steps205

in the case of document-level training, and 8 hours for 10k training steps in the case of token-level206

training, when using only one of these GPUs. Textual embedding fine-tuning and U-net fine-tuning207

used a NVIDIA V100 GPU and took respectively 1 hour for 3k training steps and 15 minutes for 400208

training steps.209

To conduct our experiments and in particular access model weights, we relied heavily on the Hugging210

Face library (Wolf et al., 2019) and the recently released diffusers (von Platen et al., 2022). The211

stable diffusion weights we used come from the CompVis/stable-diffusion-v1-4 repo. Weights of212

other in-domain text encoders are the ones associated with each corresponding publication.213

3.2 Variational autoencoder214

700 CXR images from MIMIC were encoded and decoded using the pretrained VAE from the215

Stable-Diffusion-v1.4 pipeline. Quantitative assessment showed a low reconstruction error (RMSE216

41.0±8; median, 41.4; range, 20.4 - 76.3; PSNR, 33.6±1.8; median 33.3; range, 28.1 - 39.5) and217

a high structual similarity of original and reconstructed images (SSIM, 0.92±0.02; median, 0.93;218

range, 0.8 - 0.96). See Figure 3 for details. Image quality metrics did not depend on the class labels219

of the images (data not shown).220

Figure 3: Image reconstruction analysis. a) Original (top) and reconstructed (bottom) image. The
small burnt-in annotations in the top right corner get scrambled (seen in almost all samples), while
the vast majority of other features (e.g., rib contours, devices) are well-preserved. b) Distribution of
image quality metrics assessed for each image-reconstruction pair. RMSE: Root mean square error.
SSIM: Structural similiarity index measure. PSNR: Peak signal-to-noise ratio.

Visual analysis yielded a generally good perceived reconstruction quality (Mean visual score221

4.51±0.54; median score, 5; range, 3 - 5). No reconstruction resulted in a completely non-diagnostic222

image (score 1) or altered the diagnostic information in a potentially problematic way (score 2).223

Almost all burnt-in text annotations were scrambled beyond recognition, however, diagnostic features224

were well preserved in almost all cases. Most of the score deductions were for blurred device225

components, cerclages and wires that couldn’t be traced reliably after reconstruction, or blurred rib226

contours.227
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Table 1: Classification results for original and reconstructed CXR images from the MIMIC-CXR
dataset

Prevalence Acc. (%) F1 (%)
Label original recon. %change original recon. %change

Atelectasis 33.3 40.1 40.7 1.4 52.0 52.4 0.7
Cardiomegaly 34.0 45.9 47.4 3.4 54.4 54.8 0.7
Consolidation 13.1 22.9 23.9 4.4 25.0 25.2 1.0
Edema 20.7 37.1 42.7 15.0 39.6 41.3 4.4
En. Mediastinum 13.1 23.4 23.6 0.6 23.4 22.8 -2.7
Fracture 2.4 15.7 19.0 20.9 4.5 4.7 3.9
Lung Lesion 4.6 21.3 25.1 18.1 5.8 5.8 -1.0
Lung Opacity 32.4 39.4 39.6 0.4 50.0 49.6 -0.8
Pleural Effusion 38.1 51.4 52.7 2.5 60.6 61.3 1.1
Pleural Other 2.1 55.4 50.3 -9.3 5.5 4.9 -9.8
Pneumonia 14.6 30.0 33.9 12.9 26.9 25.4 -5.3
Pneumothorax 9.1 24.3 24.7 1.8 18.0 18.0 0.5

The reconstruction process negatively impacted the classification performance for the "Pleural228

Other" label (accuracy 50.3% for reconstructed vs. 55.4% for reconstructed and original images,229

respectively). Interestingly, most other labels were predicted with similar (Atelectases, Cardiomegaly,230

Enlarged Cardiomediastinum, Lung Opacity, Pleural Effusion, Pneumothorax) or higher accuracy231

(Edema, Fracture, Lung Lesion, Pneumonia) from the reconstructed images. See Table 1 for details.232

The latent embeddings generated by the pretrained DenseNet-121 pairs were highly similar for233

image-reconstruction pairs (mean cosine similarity, 0.99±0.01; median, 0.99; range, 0.94 - 1.00).234

3.3 Text Encoder235

Various text encoders and associated embedding methods are assessed on radiology reports in order236

to evaluate which method can retain optimum clinical knowledge in the latent representations.237

Following the definitions in section 2.4 of the text_encoder models, the extraction methods and238

the metric CheXpert@k, we compute in Table 2 for each model and each method the macro-average239

of the CheXpert@k score aggregated per abnormality class, with k = 10. As seen in the table,240

the method "CLS hidden state" is in general the one that works best to maximize the quality of241

the document-level representations of the impression sections. In addition, the model CXR-BERT-242

specialized is the one that reaches highest performance, taking for each model the corresponding243

extraction method that worked best.244

Then, using the extraction method that works best for each model, we can compute class-wise245

CheXpert@k scores as well as the macro-averaged ones. These results are aggregated in Table 3.246

As a baseline, we use a bag-of-words approach that outputs a similarity measure between two reports247

using an intersection over union measure. This baseline does not create any embeddings, but provide248

a token-based similarity measure: we observe that the latent representations of the best models, on249

top of contracting the text space, better encode document-level content and result in higher scores.250

We remark that PubMedBERT, ClinicalBERT and CXR-BERT-general are three models that perform251

significantly less well than the other models, and should therefore, if possible, not be preferred for252

tasks that involve radiology reports. On the contrary, the two best performing models are CXR-253

BERT-specialized and the CLIP text encoder. As CLIP text encoder was not specifically trained254

on radiology reports, this underlines the quality of the training and the associated model. Using255

CXR-BERT-specialized instead would only improve performance by +15%.256

For these reasons, we explore the textual projection with CXR-BERT-specialized, but also assess257

CLIP performance to be high enough to not justify replacing the text encoder in the various textual258

inversion and U-Net fine-tuning experiments.259
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Table 2: Macro-average of CheXpert@k scores computed per abnormality class, over the impression
sections of a set of radiology reports. Models that are better are retaining medical features get a
higher score.

Model CLS hidden state Mean hidden states Pooler output Model specific

PubMedBERT 30.8 23.6 20.6 None
ClinicalBERT 26.3 35.1 14.3 None
SapBERT 49.1 48.7 41 None
RadBERT 54.2 32.8 34.7 None
CXRBERTgeneral 32.4 25.4 31.6 None
CXRBERTspecialized 61.1 34.5 None 50.3
ClipTextEncoder 7.0 42.8 52.9 None

Table 3: For each text encoder and the associated best extraction method as computed in Table
2, class-wise and macro-averaged CheXpert@k scores are computed. Higher scores denote better
capability at retaining important clinical features in the structure of the latent space.

Abnormality Base Pub. Clin. Sap. Rad. gen. spe. Clip.
Atelectasis 33.4 21.8 19.2 54.2 53 23.4 64.2 52.8
Cardiomegaly 21.6 20.8 10.2 51 53 21.6 67.2 47.6
Consolidation 36 13.4 35.8 39.6 38 35.4 27 38.4
Edema 62.8 54 62.6 64.6 67.2 47.4 85.4 72
Enlarged Cardiomediastinum 38 21.2 30.2 41.8 44.8 35.2 37.6 42.6
Fracture 49 36.2 35.6 73.2 72.6 50.8 83.2 74.2
Lung Lesion 30.2 24 21.2 32 37.8 24.8 56.2 33.8
Lung Opacity 20.4 16.2 20.6 20.4 34.2 20.4 23.2 25.6
No Finding 78.4 82.2 75.4 74.8 79.8 75.4 76.8 80.6
Pleural Effusion 46.4 25 39.4 42.6 65.8 24.2 72.2 68
Pleural Other 21.6 13.6 17.8 36 43.4 16.8 54 34.6
Pneumonia 53.8 33.8 40.4 42.6 44.4 24 45 54
Pneumothorax 56.4 39.6 60.6 65.2 73.6 28.6 92.8 72
Support Devices 32.6 29.2 23 49.6 50.8 25.8 70.4 44.8
Macro 41.5 30.8 35.1 49.1 54.2 32.4 61.1 52.9

3.4 Radiology Image Generation260

Comparing the various methods introduced in Section 2, we use the Fréchet inception distance as261

introduced in Section 2.3 to measure the quality of the reconstructed images. The results are compiled262

in Table 4, along an empirical sample of images as produced by each method in Figure 4.263

For the most simple prompt "A photo of a lung xray", progress is done only with the last method264

that consists in training the U-Net. In particular, no progress is observed with the token embedding265

training (also known as textual inversion). For more complex prompts such as "A photo of a lung xray266

with a visible pleural effusion", the stable diffusion baseline shows limitations, being outperformed267

by both textual inversion and U-Net fine-tuning.268

The textual projection does not seem to converge well enough: samples from Figure 4 shows the269

generated images to be out-of-domain. Nevertheless, we estimate that a more complex architecture,270

instead of our simple 1-hidden-layer projection, could be worth exploring: if projection-based271

domain-adaptation turns out to produce interesting examples, this could open the door to very quick272

domain-adaptation for the large amount of pre-trained text encoders that are now available.273

Out of all the methods, the U-Net fine-tuning seems by far the most promising: it gets the lowest274

FID-scores and obviously the most realistic outputs. Nevertheless, we notice that this underlines the275

limitations of our non-medical-based metric: samples clearly show that U-Net fine-tuning with prior276

leads the model to learn the difference between "no findings" and "pleural effusion", something a277

model trained without a prior can not do. As seen in Table 4, FID fails to capture this improvement.278

We assess that further progress in the domain-specific generation of images for radiology would279
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Table 4: Evaluation of the quality of generated images with different methods for adapting stable
diffusion to the radiology domain. Scores represent the Fréchet inception distance (FID), and lower
scores mean better generated images.

Training Strategy A photo of
a lung xray

A photo of a lung xray
with a visible pleural effusion

A photo in the style of
a lung xray

Original model
Stable Diffusion 0.097 0.151

Textual Projection
CXR-BERT-specialized

No Projection 0.124 0.144
Document-level projection 0.266 0.104
Token-level projection 0.201 0.257

Token embedding training
Object, radiology 0.108 0.058 0.092
Object, lung 0.135 0.135
Style, radiology 0.101 0.057 0.084
Style, lung 0.130 0.083

U-Net training
Trained on no findings 0.057 0.043
Trained on no findings and abnormality 0.034 0.041
Trained on no findings and abnormality with prior 0.170 0.086

Figure 4: Images generated by various methods conditioned on radiology text prompts.

require the design/use of domain-specific metrics, that would be able to capture the ability of the280

model to correctly insert abnormalities that are coherent with the conditioning text prompt.281

4 Conclusion282

In this paper, we assessed the recently released stable diffusion model, including its variational autoen-283

coder, the U-Net and the associated CLIP text encoder, and its capacity to produce clinically relevant284

images based on prompts that describe observable abnormalities. We conducted quantitative and285

qualitative evaluations, showing that: the variational autoencoder is powerful enough to reconstruct286

radiological images, including abnormalities and clinically relevant features; the CLIP text encoder287

accurately represents simple radiology-specific text prompts, outperforming 4 out of the 6 reviewed288

domain-specific text encoders. We explored textual projection, a domain-adaptation method that we289

designed, textual inversion and U-Net fine-tuning, and, with the latter, obtained a model capable of290

generating synthetic radiology images that are visually and quantitatively exceeding the baseline, and291

that can correctly represent abnormalities.292

Building upon this work, we would like to further explore the potential of diffusion-based model to293

learn a wide-range of abnormalities, being able to combine them, as well as extending the research294

to other modalities and body parts. A limitation of our approach is that the employed metrics have295

limited capacity to assess the clinical correctness of the generated images. In addition, our fine-tuned296

stable diffusion model lacks diversity in the images it generates, probably due to the small range of297

samples they were trained on. Finally, the text prompts the models are conditioned on are synthetic298

and do not fully correspond to the wording used in the clinical setting, so that models capable of299

being conditioned on entire or partial radiology reports are an area of future research.300
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