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Abstract

The impact of AI models on marginalized com-
munities has traditionally been measured by
identifying performance differences between
specified demographic subgroups. Though this
approach aims to center vulnerable groups, it
risks obscuring patterns of harm faced by inter-
sectional subgroups or shared across multiple
groups. To address this, we draw on theories
of marginalization from disability studies and
related disciplines, which state that people far-
ther from the norm face greater adversity, to
consider the “margins” in the domain of toxic-
ity detection. We operationalize the “margins”
of a dataset by employing outlier detection to
identify text about people with demographic
attributes distant from the “norm”. We find that
model performance is consistently worse for
demographic outliers, with mean squared error
(MSE) between outliers and non-outliers up to
70.4% worse across toxicity types. It is also
worse for text outliers, with a MSE up to 68.4%
higher for outliers than non-outliers. We also
find text and demographic outliers to be partic-
ularly susceptible to errors in the classification
of severe toxicity and identity attacks. Com-
pared to analysis of disparities using traditional
demographic breakdowns, we find that our out-
lier analysis frequently surfaces greater harms
faced by a larger, more intersectional group,
which suggests that outlier analysis is partic-
ularly beneficial for identifying harms against
those groups.

1 Introduction

Society often erects barriers that hinder marginal-
ized individuals from receiving essential social
and infrastructural access. Disability studies of-
fers valuable insights into their experiences, illumi-
nating the oppressive and restrictive nature of the
construction of “normalcy” within society. This
rich body of literature highlights how prevailing
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Figure 1: Outliers on the basis of demographic identity
face harms resulting from high model error compared
to non-outliers. Further analysis of the attributes of
demographic outliers can reveal the specific subgroups
experiencing harm.

social structures marginalize certain groups and
further perpetuate their exclusion from mainstream
societal participation (Davis, 1995, 2014). Such
arguments are also made in gender studies (Butler,
1990) and related disciplines (Goffman, 1963). Ex-
tending the scope of these critiques to the realm of
artificial intelligence, we recognize that AI models
also encode prevailing notions of normalcy. When
models optimize for an aggregate metric, they pri-
oritize patterns and distributions for data points
with more common characteristics; that is, the
“norm” of the dataset. As such, individuals who
fall outside the normative boundaries of the train-
ing data are more likely to be subject to model error
and consequent harm. The lack of representation
and tailored accommodation for these marginal-
ized groups within the training data contributes to
biased and exclusionary AI models.

In the evolving landscape of powerful tools that
use machine learning, it is crucial to critically eval-
uate their application to avoid reinforcing systemic
biases and instead promote equitable outcomes. Al-
gorithmic auditing plays a vital role in assessing the



real-world impact of AI, especially in identifying
and scrutinizing potential harms to specific demo-
graphic subgroups and their intersections (Mehrabi
et al., 2021; Raji et al., 2020). However, the current
subgroup-based analysis used in algorithmic fair-
ness evaluations is fraught with challenges. Two
notable concerns emerge: First, identifying the rel-
evant subgroups of concern is not always straight-
forward (Kallus et al., 2022), as there may be hid-
den or overlooked patterns in how populations are
affected by algorithmic harms. For example, divid-
ing into individual racial subgroups may conceal
shared harms experienced by multiracial individu-
als or people with different races. Second, when
considering intersectional subgroups across mul-
tiple demographic categories, including race, gen-
der, sexual orientation, disability, religion, and age,
the sheer number of potential subgroups becomes
overwhelming while the size of each subgroup de-
creases; thus, particularly severe or unique harms
faced by many smaller, intersectional subgroups
may be overlooked (Kong, 2022). These limita-
tions make it challenging to conduct thorough and
accurate audits.

Inspired by the argument in disability studies
that those who fall outside the norm experience
greater adversity, we propose using outlier detec-
tion to statistically quantify who is assumed to be
“normal” and analyze algorithmic harms with re-
spect to this boundary in the domain of algorithmic
content moderation. We find that disaggregating
harm by outlier group membership reveals high
model error disparities compared to other schemes
for breaking down the data. Additionally, we iden-
tify discrepancies in toxicity detection model per-
formance between outliers and non-outliers and
analyze these groups to determine the demographic
makeup of those experiencing the most harm. This
approach allows for the identification of subgroups
and intersections thereof that are particularly vul-
nerable to harm in the model’s behavior.

This paper presents three primary contributions
to advance the understanding of algorithmic harm
towards marginalized groups in toxicity detection:

1. We uniquely apply existing outlier detection
techniques to propose and implement a new
approach for identifying marginalized groups
at risk of AI-induced harm, translating the
“other” examined extensively in social science
literature into statistical terms.

2. We evaluate the degree of harm revealed by

our outlier-based analysis compared to tradi-
tional demographic group-based analyses, and
find that demographic and text outliers have a
consistently high information yield on model
performance disparities.

3. We examine model performance disparities
between outliers and their complements to
highlight the detection of severe toxicity and
identity attacks as areas of concern and iden-
tify demographic subgroups that are particu-
larly susceptible to harm from disparities in
toxicity predictions.

Our work underscores the importance of incor-
porating critical theory into auditing practices in
machine learning models to ensure they do not
exacerbate societal biases or inadvertently harm
marginalized communities. The methodologies
and tools we present serve as resources for those
seeking to create more equitable and inclusive AI
systems.

2 Prior Work

We ground our work on prior research on algorith-
mic content moderation and its potential harms, the
measurement and evaluation of these harms, and
the relationship between outlier detection and the
social construction of the “other.”

2.1 Harms in Content Moderation

Allocative harms in algorithmic toxicity detection
occur when content moderation decisions dispro-
portionately amplify or suppress content by or
about specific groups. These can also veer into
representational harms, which involve the system-
atic silencing or misrepresentation of marginalized
groups (Crawford, 2017; Butler, 1997). For ex-
ample, toxicity detection algorithms have dispro-
portionately flagged content from minority com-
munities (Hutchinson et al., 2020) and failed to
adequately address hate speech targeted at these
groups (Binns et al., 2017).

In toxicity detection settings, classifiers are
prone to label dialects like African American En-
glish as abusive more often, creating a discrimi-
natory effect in content moderation (Halevy et al.,
2021; Davidson et al., 2019; Sap et al., 2019). A
contrasting challenge lies in correctly identifying
implicit hate speech, which frequently manifests
through coded or indirect language (ElSherief et al.,
2021; Waseem et al., 2017). In response to these



issues, researchers have taken approaches that in-
clude proposing conceptual formalisms to capture
the subtle ways social biases and stereotypes are
projected in language (Sap et al., 2020) and design-
ing benchmark datasets to test the performance of
algorithmic systems in fair and explainable toxicity
detection (Mathew et al., 2021).

2.2 Measuring Algorithmic Harms
The measurement of harms caused by content mod-
eration AI has been approached from ethical, legal,
and computational perspectives (Mittelstadt et al.,
2016; Barocas and Selbst, 2016; Sandvig et al.,
2014). On the computational side, fairness metrics
that seek to capture different aspects of algorithmic
performance often employ demographic disaggre-
gation to highlight potential disparities and biases
that may not be evident in aggregate performance
measures (Dwork et al., 2012; Hardt et al., 2016).
While these metrics have been critiqued for over-
looking underlying differences between groups or
confounding intersectional harms (Corbett-Davies
and Goel, 2018; Kearns et al., 2018), the overall em-
phasis on protected groups has remained popular.
A focus on disaggregated analysis has enabled a
more nuanced understanding of algorithmic harms
and informed the development of fairer and more
inclusive AI systems (Barocas et al., 2021; Buo-
lamwini and Gebru, 2018).

2.3 Qualitative and Quantitative
Representations of the “Other”

Disability studies provides a valuable perspective
on understanding the social construction of the
“other.” Some scholars have argued that disabil-
ity is a social phenomenon as well as a biological
category (Shakespeare, 2006). They contend that
all bodies and minds are part of a spectrum of natu-
ral human diversity and that the distinction between
disabled and nondisabled arbitrarily divides “nor-
mal” and “abnormal” embodiment and behavior
in a harmful way (Davis, 2014). Social categories
thus distinguish an in-group (“us”) from an out-
group (“them”), favoring the dominant group and
marginalizing the “other” (Said, 1988). These prin-
ciples apply to groups marginalized along axes like
race, ethnicity, gender, and sexual orientation, in
addition to ability (Goffman, 1963; Butler, 1990).

The concept of “normalcy” emerged alongside
these social constructs, heavily influenced by the
rise of statistical methodologies that reified the
distinction between normal and abnormal (Davis,

1995). This was seen in early applications like IQ
tests (Fass, 1980) and phrenology (Twine, 2002),
which attempted to justify racism and ableism us-
ing pseudoscience. Scholars have argued that all
systems discard matter and and reinforce certain
structures (Lepawsky, 2019; Thylstrup and Talat,
2020). Modern statistics has further advanced
methods of “othering” through the notion of out-
liers, observations in a dataset that deviate signif-
icantly from the norm. Outlier detection involves
statistical methods to identify deviations from the
norm and understand the situatedness of knowl-
edge, which can be used to approximate the di-
chotomy between the “norm” and the “other” for
research purposes (Haraway, 1988).

By applying outlier detection to data, it is pos-
sible to identify minoritized points that represent
marginalized people. Groups that are further from
the social “norm” face greater social harms, and
those with lower representation in datasets may
similarly face greater allocative harms since a
model will perform worse on data points it had
less exposure to during training.

3 Methods

Current quantitative methods for determining the
impact of content moderation systems on vulner-
able populations rely on identifying demographic
subgroups represented in the dataset and examining
the model behavior toward these groups. However,
this approach faces two primary barriers. First, di-
viding data by demographic group membership al-
lows focus on model harm toward that group, but it
can obscure insight into cross-group harm patterns.
Second, intersectional harms can be particularly
acute and are crucial to measure. This has typically
involved a disaggregated analysis of individuals
along different demographic categories like race
and gender (Buolamwini and Gebru, 2018). How-
ever, as more and more demographic categories are
considered, the number of subgroups increases ex-
ponentially and their size decreases exponentially,
making it challenging to identify and address spe-
cific problem areas. To mitigate the risk of missing
significant harms, we propose a model harm identi-
fication framework to address these limitations and
determine which groups and subgroups experience
poorer model performance.



3.1 Model and Data

In this study, we examined the impact of algorith-
mic content moderation on various demographic
groups by conducting our analyses on three free
and publicly available toxicity and hate speech clas-
sifiers: the Perspective API, a toxicity detection
tool developed by Jigsaw (Zhang et al., 2018), an
ELECTRA model fine-tuned at the University of
Tehran on HateXplain (Modarressi et al., 2022;
Mathew et al., 2021), and a RoBERTa model fine-
tuned at Meta on dynamically generated datasets
(Vidgen et al., 2021). Both of the latter are released
on HuggingFace. The Perspective models predict
several toxicity-related attributes, including toxic-
ity, severe toxicity, identity attack, insult, obscenity,
and threat, each associated with specific definitions
provided by Jigsaw (Appendix A). The other two
models simply predict hate speech.

We selected the Jigsaw Unintended Bias dataset,
available publicly on Kaggle and HuggingFace,
due to its detailed demographic annotations
(Adams et al., 2019). Its toxicity annotations are
also calibrated with with the Perspective models,
but not the other ones. The dataset contains com-
ments that were collected by Civil Comments, a
plugin for improving online discourse on indepen-
dent news sites, and released when Civil Comments
shut down in 2017. Jigsaw applied a framework
from the Online Hate Index Research Project to
annotate these comments based on the Perspective
API’s attributes and 24 demographic groups within
race, gender, sexual orientation, religion, and dis-
ability (onl, 2018). This was done by collecting
4-10 binary annotations for the presence of each
topic for each comment in the dataset and averag-
ing them to come up with a decimal score.

The full dataset with demographics annotations
consists of 445,294 comments. Due to computa-
tional resource constraints, we applied stratified
sampling to select 10% of the rows with each de-
mographic group and removed duplicate rows. We
obtained model predictions from each toxicity cat-
egory from Perspective and for the general toxicity
category from the other two models. Each row in
our dataset contains information about one com-
ment, including the comment text and binary and
decimal representations of the toxicity attribute,
demographic groups mentioned in the text, and
annotator disagreement. We converted decimal rep-
resentations to binary ones using a threshold of 0.5.
We computed the annotator disagreement binary

values by identifying whether the averaged value
was 0 or 1 (indicating that all the annotators had
the same opinion) or whether it was somewhere
in between (indicating different labels). We com-
puted the annotator disagreement decimal values
by taking the variance of the score of the averaged
score from annotators. The final dataset comprised
20,589 rows and 180 columns.

3.2 Outlier Detection and Analysis

We used the Local Outlier Factor (LOF) method
for outlier detection. LOF measures the deviation
in local density of a point from its neighbors. This
involves computing the inverse of the average dis-
tance from a point to its nearest neighbors and us-
ing a threshold to determine whether the point is an
outlier (Breunig et al., 2000). To have standardized
volumes of different outlier types for comparison
purposes, we set the contamination parameter to
0.05.1 This automatically selects the threshold such
that 5% of points are outliers. LOF’s calculation
of data point density serves as a quantitative repre-
sentation of the “norm,” with the selected outliers
becoming the “other.”

We implemented LOF on multiple vector sets
to examine different types of outliers: text-based,
disagreement-based, and demographic-based. We
use a contamination value of 0.05, selecting 5%
of the points as outliers. We specified a consistent
contamination value instead of an explicit threshold
when running LOF to have consistent proportions
of outliers (5%) across the three outlier types. The
resulting thresholds were -0.981 for demographic
outliers, -0.989 for text outliers, and -0.982 for
disagreement outliers.

1. Text outliers are determined using Doc2Vec
embeddings of the text of each comment. In
this context, outliers are comments with un-
usual words, phrases, topics, syntax, or other
textual patterns.

2. Disagreement outliers are determined from a
vector of annotator disagreement values, com-
puted by taking the variance of the score of
the averaged score from annotators. These in-
dicate comments for which annotators clashed
in unusual ways.

1All data manipulation and analysis were performed using
the Pandas, Scikit-Learn, and Gensim libraries (McKinney,
2010; Pedregosa et al., 2011; Rehurek and Sojka, 2011).



3. Demographic outliers are computed using vec-
tors of demographic labels annotated on the
dataset, and they represent comments that dis-
cuss an unusual demographic group or set of
groups.

We expected model performance for all these
types of outliers to be poorer than for non-outliers:
text-based outliers may contain unusual linguis-
tic harm patterns that are not recognized by the
model or reclaim offensive language in positive
ways; disagreement-based outliers may simply be
more ambiguous in their toxicity than non-outliers;
and demographics-based outlier comments may in-
clude mentions of groups or include demeaning
content that the model has less exposure to.

For each outlier type, we examined significant
differences in average toxicity between outliers and
non-outliers to identify any disparities in the experi-
ences of these groups. To determine if this pattern
is pervasive throughout the dataset, we repeated
the analysis on each demographic subgroup. This
approach allowed us to gain a deeper understand-
ing of the impact of toxicity both generally and on
various demographic groups within the context of
outliers and non-outliers.

In Section 4.4, we also analyzed associations
between general and intersectional demographic
characteristics. We inspected the proportion of
members of demographic subgroups considered
outliers and non-outliers to determine the distribu-
tion of outliers within each demographic subgroup.
We also examined the average number of demo-
graphic identities in outlier and non-outlier points.
These analyses helped us to understand trends in
the association of individual identities or intersec-
tions of demographic characteristics with outlier
classification, which can help to further assess the
potential impact of AI models on these populations.

3.3 Model Performance Disparity Scoring

Comparing model performance between outliers
and non-outliers allowed us to assess the impact
of the model on various groups, considering both
overestimation and underestimation of toxicity. We
stratified the results by demographic subgroups to
determine the pervasiveness of different issues.

When determining what harms particular sub-
groups face, a critical step is breaking the dataset
down into subgroups to identify the ones facing
increased harms. To experimentally test our hy-
pothesis that outlier-focused analysis spotlights the

subpopulation of marginalized individuals facing
greater model harms, we compare model perfor-
mance across in-groups and out-groups for several
subpopulations in the dataset.

For a binary demographic attribute i and a full
set of data points D, the set gi is a subset of D
whose elements have attribute i:

gi = {x ∈ D : xi == True}

When splitting the dataset by group membership,
we measure the disparity in model performance
toward a group gi as the relative difference in the
model’s mean squared error between gi and its com-
plement for each toxicity type, weighted by how
often the group experiences that form of toxicity
(abbreviated WMSEgi for convenience):

WMSEgi=
∑
t∈T

freq(gi,t)
MSE(gi,t)−MSE(¬gi,t)

MSE(¬gi,t)

A positive WMSEgi indicates that model perfor-
mance is generally worse for members of the group
than for non-members, while a negative score in-
dicates that it is better. Since we are investigating
model harm toward a particular group, we focus on
positive WMSEgi .

We are interested in understanding whether our
outlier analysis reveals patterns of harm not vis-
ible in analyses based solely on membership in
a marginalized demographic, so we compare the
outlier analysis to several alternatives:

1. Marginalized group membership: Whether
the combined set of all marginalized groups
along a demographic axis faces higher harms.
We consider people of color (Black, Latine,
Asian, or “other race”), gender minorities
(women and “other gender identity”), sexual
minorities (gay, lesbian, bisexual, or “other
sexual orientation”), U.S. religious minorities
(atheist, Buddhist, Hindu, Jewish, Muslim,
and “other religion”), and disabled people (in-
tellectual, physical, psychiatric, and “other
disability”).2

2. Binary demographic group membership:
Whether groups face higher harms on the basis
of single binary demographic attributes (e.g.,
“female” or “Black”).

2We note as a limitation that these categories are certainly
not exhaustive of all identities that are marginalized along
these axes, due to the restricted options for identity categories
in the Jigsaw dataset.



3. Intersectional demographic group member-
ship (2 groups): Whether groups face higher
harms on the basis of two binary demographic
attributes (e.g., “Black women” or “bisexual
men”).

By comparing the WMSEgis of various group
breakdowns, we can assess the value of considering
outlier status in the analysis of model performance.
Compared to these analyses, we expected that out-
liers would be among the largest groups facing the
most severe harms.

4 Results

We used outlier detection to identify outliers on the
basis of text, demographics, and annotator disagree-
ment. Approximately 1,000 samples were labeled
as outliers for each outlier type since we set the con-
tamination parameter in the Local Outlier Factor
(LOF) algorithm to 0.05. We set the n_neighbors
parameter to 4,000 based on the size of the dataset.
We compared outliers and non-outliers by employ-
ing statistical testing to determine the significance
of metric differences. We used the χ2 test of homo-
geneity to compare group average scores, comple-
mented with a Bonferroni correction.

4.1 Relative Difference in Mean Squared
Error

Before analyzing model performance between out-
lier groups and their complements, we sought to un-
derstand how much disparity in model performance
is revealed by different types of group breakdowns
of the dataset. To do this, we examined the relative
difference in mean squared error, as described in
Section 3.3, across different types of disaggrega-
tion.

Percentile
Group

Demographic
Outliers

Text
Outliers

Disagreement
Outliers

Marginalized 100% 44.4% 33.3%
Binary 92.6% 81.5% 63%
Intersectional 88.5% 83.2% 78.9%

Table 1: Demographic outliers have a consistently high
WMSEgi in the Perspective models.

Tables 1, 2, and 3 describe the WMSEgis for
each group across the three models for three
schemas for demographic breakdowns: marginal-
ized group membership, binary group member-
ship, and intersectional group membership. No-
tably, demographic outliers have among the high-

Percentile
Group

Demographic
Outliers

Text
Outliers

Disagreement
Outliers

Marginalized 33.3% 77.8% 44.4%
Binary 51.9% 92.6% 66.7%
Intersectional 21.1% 95.0% 83.9%

Table 2: Text outliers have a consistently high WMSEgi

in the RoBERTa model.

Percentile
Group

Demographic
Outliers

Text
Outliers

Disagreement
Outliers

Marginalized 44.4% 88.9% 33.3%
Binary 74.1% 81.5% 59.3%
Intersectional 83.2% 85.7% 79.6%

Table 3: Text outliers have a consistently high WMSEgi

in the ELECTRA model.

est percentile of WMSEgi for all three breakdowns
for the Perspective models. Figure 2 depicts the
WMSEgi for the Perspective models’ marginalized
group membership breakdown and Figure 3 does
so for the binary demographics. On the other hand,
text outliers have among the highest percentile of
WMSEgi across the breakdowns for the ELECTRA
and RoBERTa models. These collectively illustrate
that outlier-based disaggregations have the highest
information yield, with different types of outliers
being more influential in discovering disparities
in WMSEgi for different models. These results
demonstrate the importance of varied and strate-
gic data breakdowns in uncovering potential model
harms.

4.2 Toxicity Analysis

Our dataset reveals a pervasive trend where general
toxicity (12.2% frequency), identity attack (4.89%),
and insult (5.62%) emerge as the most common
forms of toxic speech. This is consistent across
demographic subgroups.

We uncovered noticeable differences in how out-
liers and non-outliers experience various forms of
toxicity. Figure 4 illustrates how identity attack
(86%, 58.4%), severe toxicity (64.1% and 40.7%),
and general toxicity (40.2% and 24.8%) are sig-
nificantly more severe for demographic and text
outliers.

In contrast, we observed that toxicity, identity
attack, and insult disparities are negative between
disagreement outliers and non-outliers, indicating
less toxicity in disagreement outliers. In examin-
ing potential reasons for this trend, we found that
disagreement outliers have higher agreement than



Figure 2: For the Perspective models, demographic
outliers, when compared with nine different subgroups,
demonstrated the highest WMSEgi , suggesting that it
is most effective at uncovering which groups face the
greatest disparities.

Figure 3: A comparative analysis reveals that demo-
graphic outliers have among the highest WMSEgi of 27
different subgroups (17 with positive values pictured)
for the Perspective models.

non-outliers (32.8-49% more) for these toxicity
types compared to other types (17.9-20.7% more).
This suggests that disagreement outliers contain
comments that are widely viewed as harmless.

Moreover, when verifying our results, we found
differences in scores of points in and out of each
outlier group. To understand the pervasiveness
of these differences, we counted the number of
demographic groups where differences in toxic-
ity scores between outliers and non-outlier points
within those groups were significant (Table 8). Con-
sistent with the trend across demographics, the
most subgroups experience significant disparities
between outliers and non-outliers for identity at-

Toxicity
Type

Demographic
Outliers

Text
Outliers

Disagreement
Outliers

Identity
Attack

8 6 11

Toxicity 7 7 15
Insult 7 5 13
Severe
Toxicity

4 3 1

Obscenity 5 2 1
Threat 1 1 1

Table 4: Number of demographic groups with a statis-
tically significant difference in scores for a particular
toxicity type for each definition of outliers.

Toxicity Type Overall
MSE

Outlier
MSE

Non-
Outlier
MSE

MSE %
Increase
on Outliers

Identity Attack 0.030 0.049 0.029 70.4%
Severe Toxic-
ity

0.002 0.003 0.002 59.1%

Threat 0.006 0.008 0.005 41.0%
Toxicity (Per-
spective)

0.032 0.043 0.032 35.6%

Obscenity 0.009 0.012 0.009 33.7%
Insult 0.022 0.028 0.022 29.5%
Toxicity
(ELECTRA)

0.06 0.067 0.059 14.0%

Toxicity
(RoBERTa)

0.127 0.125 0.127 -2.06%

Table 5: Model performance overall and divided by
demographic outlier status across all types of toxicity.

tack, general toxicity, severe toxicity, and insulting
harms. Identity attacks are experienced most in-
tensely (86% worse) and pervasively (significant
differences in 32% of subgroups) by demographic
outliers as well as by text outliers. This suggests
that demographic outliers may be particularly in-
sightful for understanding the harms toward differ-
ent subgroups of people in the dataset.

4.3 Model Performance Analysis

For the remaining results, we focus on demo-
graphic outliers for the Perspective models and
text outliers for the ELECTRA and RoBERTa mod-
els, since they have consistently high WMSEgi per-
centiles. These scores for different outlier types un-
derscore the high degree to which the identification
of outliers can expose model harm. Additionally,
their heightened degree of identity attacks makes
them a particularly valuable group to study with
respect to their unusual identity characteristics.

In our analysis, we examined the model perfor-



Figure 4: Average differences in ground truth toxicity between three different types of outliers and their complements.
Identity attack and severe toxicity have the greatest significant differences. Demographic outliers consistently face
the highest toxicity; disagreement outliers show the opposite trend.

Toxicity Type Overall
MSE

Outlier
MSE

Non-
Outlier
MSE

MSE %
Increase
for Outliers

Severe Toxicity 0.002 0.003 0.002 68.4%
Identity Attack 0.030 0.040 0.029 37.2%
Toxicity
(RoBERTa)

0.127 0.169 0.125 35.2%

Toxicity
(ELECTRA)

0.06 0.072 0.058 22.9%

Obscenity 0.009 0.010 0.008 15.1%
Threat 0.006 0.006 0.005 14.3%
Insult 0.022 0.024 0.022 8.34%
Toxicity (Per-
spective)

0.032 0.034 0.032 5.03%

Table 6: Model performance overall and divided by text
outlier status across all types of toxicity.

mance across different toxicity types for demo-
graphic outliers (Table 5) and text outliers (Table
6). The MSE for different toxicity detection scores
ranges from 0.002 to 0.032. The steep error for
multiple toxicity types shown here is concerning
because, depending on the thresholds used for con-
tent filtration, it could lead to either the preservation
of toxic content or the erasure of benign discourse.
With respect to outlier status, we examined the per-
cent difference in MSE between outliers and non-
outliers. This ranges from -2.06% to 70.4% for
demographic outliers and 5.03% to 68.4% for text
outliers. As such, the differences in MSE between
outliers and non-outliers for all types of toxicity
were positive and significant.

Since the percent differences in MSE are gener-
ally positive, the models have more error in the out-
lier group than in the non-outlier groups, splitting
by text outliers and demographic outliers. Notably,
disaggregating by both of these outlier types identi-

fies a significant disparity in MSE for the models
predicting severe toxicity and identity attacks. This
suggests that the models are not performing as well
for these subgroups of individuals and implicates
them in harming outlier demographic subgroups.
This in itself is unsurprising; model performance
is likely worse on outliers because, by definition,
the model has learned from less data similar to the
outliers. However, by identifying which groups are
affected by this data constraint, we can determine
how to focus efforts to improve models.

4.4 Demographic Analysis

Our analysis found that demographic outliers ex-
hibited significant differences in the proportion of
each demographic subgroup that is classified as an
outlier (Figure 5). More than half of the points
of a quarter (6/24) of demographic groups were
outliers, including Hinduism, bisexuality, and phys-
ical disability. In contrast, a quarter of the groups
had any outliers. We also found a significantly
higher average number of identities mentioned for
demographic outliers compared to non-outliers: 3.7
compared to 1.53. This suggests that individuals
belonging to multiple intersectional groups may
experience compounded harm from the model.

Our results were slightly different for text out-
liers. Only a quarter of demographic groups were
over 5% outliers, with just the Asian group in more
outlier points than non-outlier points. A third (8/24)
had no text outliers at all. We also found signifi-
cantly more identities mentioned for text outliers
than non-outliers, 1.75 compared to 1.63. While the
associations with demographic groups are milder
for text outliers than demographic outliers, they
still exist, and this is predictable based on the con-



Figure 5: Proportions of each demographic subgroup that are considered outliers or non-outliers. The red line
indicates the overall proportion of outliers. Four subgroups are >50% outliers, and four have no outliers.

struction of the outlier group.
By focusing on the demographic makeup of out-

lier groups with disparities in MSE, we can identify
where to apply fairness efforts. Given that mentions
of race are overrepresented in text outliers and men-
tions of minor religions (among other categories)
are overrepresented in demographic outliers, harm
mitigation for the ELECTRA and RoBERTa mod-
els should focus on the former and mitigation for
the Perspective models should focus on the latter.

5 Conclusion

Our research leverages the insights of disability
studies to illuminate unintended harms inflicted
by AI systems, particularly those operating in tox-
icity detection. Societal constructions of “nor-
malcy”—often shaped and reinforced by statisti-
cal methodologies—can lead to biases and exclu-
sions in AI models, which in turn amplify societal
barriers and inequities. To address this challenge,
we have made three contributions. First, we pro-
posed and implemented a method for identifying
marginalized groups at risk of AI harm by using
outlier detection techniques to identify and exam-
ine three different types of outliers. Second, we
found that dividing the dataset by outlier status re-
sults in consistently high weighted differences in
MSE, indicating that our technique successfully
exposes serious disparities in model error. Finally,
we critically examined model performance dispar-
ities across six types of toxicity, finding identity
attacks and severe toxicity to be particularly acute

and pervasive for demographic and text outliers.
We also identified demographic groups as dispro-
portionately represented among outliers, making
them particularly vulnerable to harm from such
disparities.

There are two interesting side effects of these
results. First, by determining which type of outlier
causes the most difference, we can understand how
the model responds to differences in syntactic (text
features) and semantic (demographic mentions) in-
formation. Second, if text-based outliers are in-
sightful for uncovering model harm, model devel-
opers can allocate fewer resources to collecting
high-quality demographic labels for their dataset,
instead focusing on mitigating harms for groups
overrepresented in text outliers.

Our research findings and methodologies pave
the way for immediate application and future ex-
ploration in algorithmic auditing and harm miti-
gation. A promising direction for future research
lies in assessing the use of outlier detection to iden-
tify algorithmically harmed groups in scenarios
lacking explicit demographic data. This approach
could broaden fairness auditing’s scope and deepen
our understanding of statistical normalcy, social
marginalization, and their manifestations in AI sys-
tems.

Limitations

The research in this paper was conducted using
the Jigsaw Unintended Bias in Toxicity Classifica-
tion dataset. This covers English data only, and



information on the geographic, linguistic, and de-
mographic background of the comment writers and
annotators was not provided. As such, it is un-
clear what worldviews the dataset reflects and what
types of demographic groups are familiar to the
annotators as potential targets of harmful speech.

We selected this dataset for its detailed demo-
graphic labels. This helped us probe the demo-
graphic identities represented among outliers to
determine which subgroups are minoritized and
in need of focused harm mitigation efforts. How-
ever, such granular labeling may not be present in
datasets for other applications. Researchers who
do not have additional resources to conduct such
labeling and seek to apply these methods in other
contexts may thus be limited in the construction
and interpretation of demographic outlier groups.

We acknowledge that using a commercial model
may hinder reproducibility. We use API version
v1alpha1 for this analysis. According to the Per-
spective API’s changelog, the English-language
models have not been updated since September 17,
2020, and we completed our analysis in June 2023.

Moreover, the scope of this study was con-
strained to a single dataset and three models. While
we demonstrate the information yield of outliers
with respect to model performance disparities in
this context, further research is needed to extend
our findings to other datasets and tasks. This is
further compounded by the sensitivity of outlier de-
tection to the size and schema of a dataset, making
our methods contingent on the quality and depth of
collection processes.

Ethics Statement

Our research relies on demographic labels applied
to text in the Jigsaw dataset. These labels are an
aggregate floating point value representing the pro-
portion of annotators who believed a given identity
was represented in a piece of text. The lack of trans-
parency on the backgrounds of the annotators or
the data collection process makes it challenging to
verify the validity of the labels. We also acknowl-
edge that our method of giving points with a value
greater than 0.5 a positive label may obscure the
opinions of minority annotators.

Our work proposes using outlier detection as a
means of identifying groups potentially harmed by
algorithmic bias. This approach has the potential
to minimize the need for demographic label infer-
ence in future AI fairness evaluations, thus avoiding

potential pitfalls and biases associated with such
inferences. However, this method needs further
exploration and rigorous testing to confirm its ef-
ficacy and examine tradeoffs before being used in
high-stakes domains.

Furthermore, outlier detection is frequently used
to prune noisy data to improve model performance.
This has the inadvertent effect of exacerbating mi-
noritization and othering in the model. Assigning
communities to be outside the “norm” can thus
cause great harm. While our work seeks to provide
a beneficial dual use of outlier detection to support
marginalized groups, we acknowledge that this tool
can do great harm as well.
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Toxicity
Type

Definition

Toxicity A rude, disrespectful, or unreasonable
comment that is likely to make people
leave a discussion.

Severe
Toxicity

A very hateful, aggressive, disrespect-
ful comment or otherwise very likely
to make a user leave a discussion or
give up on sharing their perspective.
This attribute is much less sensitive to
more mild forms of toxicity, such as
comments that include positive uses
of curse words.

Identity
Attack

Negative or hateful comments target-
ing someone because of their identity.

Insult Insulting, inflammatory, or negative
comment towards a person or a group
of people.

Obscenity Swear words, curse words, or other
obscene or profane language.

Threat Describes an intention to inflict pain,
injury, or violence against an individ-
ual or group.

Table 7: Definitions of each toxicity type for the Per-
spective API.

A Jigsaw Unintended Bias in Toxicity
Detection Dataset

The full dataset of 445,294 rows contains English
data only. To reduce the computational cost of this
dataset, we selected a sample (random state=1) of
20,589 rows stratified by demographic labels for
our analysis. Additional processing included com-
puting binary versions of demographic floats and
ground truth toxicity scores using a 50% threshhold
and adding model scores and binary labels from
the Perspective API.

B Outlier Detection Specifications

Outlier detection was conducted using Scikit-
Learn’s implementation of Local Outlier Factor.
The number of neighbors parameter was set to
4,000, selected based on the size of our dataset.
Outliers were computed with 5% contamination,
which is standard for outlier detection. This re-
sulted in thresholds of -0.981 for demographic out-
liers, -0.989 for text outliers, and -0.982 for dis-
agreement outliers.

C WMSEgi by Group Size

We investigated whether outlier groups were better
at revealing model harms than demographic groups
of a similar size. This was done by computing
outliers with varying levels of contamination (0.1,
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Figure 6: Three of five demographic groups have
WMSEgis below the curve.

Figure 7: Four of 24 demographic groups have
WMSEgis below the curve.

0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10, 15, 20, 25, 30,
35, 40) up to the size of the largest demographic
group in our dataset. We then plotted a curve of
outlier WMSEgis alongside points for demographic
groups to observe how many groups were below
the curve.

These figures illustrate how the WMSEgis of out-
lier groups compares to that of other demographic
groups. In Figures 6 (marginalized group member-
ship) and 7 (binary group membership), a minority
of demographic groups are above the curve. This
changes in Figure 8 (intersectional group member-
ship), which illustrates an even divide of demo-
graphic groups above and below the outlier curve,
an unsurprising finding given the heightened com-
plexity of the problem. It also suggests that the
utility of outlier detection for harm measurement
varies with the relative size of the outlier popula-
tion, and that a relative outlier population of 5%
(which is typically recommended) may be best.

Figure 8: Several of 300 demographic groups have
WMSEgis below the curve.

D Example Text

Content Warning: This table contains text that may
be offensive to members of different demographic
groups.



Outlier
Type

Outlier
Comment

Non-Outlier Com-
ment

Text There are some
interesting num-
bers coming out
of the NY Times
post election exit
polling. All those
who want to claim
it was racist white
people who elected
trump need to look
again! Trump only
carried 1% more
of the White vote
than did Romney
in 2012 however
he received 7%
more of the Black
vote, 8% more of
the Latino vote,
and 11% more of
the Asian vote.
So in reality it
was non-White
Americans who
gave Trump the
edge over Crooked
Hillary. Uh oh, that
doesn’t play into
the left’s narrative
though....

It’s a bunch of
mostly white guys
feigning anger
with the NFL and
its players because
Donald Trump told
them to. Trump
twisted and con-
torted the reason
the players are
protesting, and his
followers ate it up.
If people want to
be forced to stand
for the national
anthem, North Ko-
rea is calling their
name. You either
support peaceful
free speech, or
you support the
"very fine people"
in Charlottesville
carrying swastikas
and torches. It’s
that simple.

Demographic So sad that these
men were taught
they would go to
heaven by hurting
so many. May
need to realize
that Islam HAS
an internal issue.
I don’t hear this
coming out of
Christian, Hindu,
Buddhist churches.
Maybe with some
extremist Jews, but
they have also been
targeted forever.
Hope we learned
to be selective on
who comes to our
country.

"..a moral com-
pass"... lol! I’m
sure it was great in
the ’50s as long as
you where white,
male, heterosexual
and Protestant.

Disagreement Can we have a
Pride sort of Fest
for straight peo-
ple? I’m defi-
nitely proud of be-
ing straight. But is
pride and parades
only for lgbt? Ex-
plain that to the kid-
dies...

Police are doing
their job. This man
was in to the store
to steal. He is a
robbery a criminal.
No matter if He
was black or white.
This man will al-
ways steal from ev-
ery store He goes.
Criminal will al-
ways a criminal if
you are black or
white.

Table 8: Examples of comments relevant to each outlier
group and its complement.


