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ABSTRACT

Multicellular organisms rely on continuously changing cell–cell interactions that
govern critical biological processes as cells modify their internal states and tra-
jectories in space over time. Studying these interactions is critical to understand
development, homeostasis, and disease progression. Live-cell imaging provides
a unique opportunity to directly observe these dynamical events; however, cur-
rent computational approaches often fail to model complex, time-varying events
involving diverse populations and spatial contexts. Here, we present LICCHIE,
a model designed to infer time-changing, feature-based cell-cell interactions, ap-
plicable across systems and conditions. Our approach represents each cell with
a dynamic multi-feature vector, and interactions are modeled as spatially con-
strained, directed influences between cell pairs, evolving over time. We optimize
the model using an iterative scheme balancing data fidelity, interactions smooth-
ness, and low-rank sparse structure. We validated LICCHIE’s ability to capture
cellular interactions across populations in a controlled synthetic setting, and ap-
plied it to real-world 3D live-cell imaging of patient-derived tumor organoids to
(1) identify components with interpretable structures that capture interaction type
and directionality, and (2) suggest modulation strategies that may accelerate NK
polarization and tumor cell death.

1 INTRODUCTION

Figure 1: LICCHIE learns cell-cell
interactions from temporal trajectories.
Top, Cells from diverse populations can
adapt their morphology, internal state, and
location in response to cross-cell inter-
actions and environmental effects. Mid-
dle, Interaction matrices, {A(n,k)

t }, rep-
resenting the effect of cell k on cell
n at time t, capture pairwise time-
changing linear effects via cell fea-
tures, constrained on feature-space dis-
tance for smooth, interpretable changes.
Bottom, While the underlying matrices
A

(n,k)
t may vary in space, time, and cell

pairs, they emerge from a set of fixed
rank-1 processes representing source {cj}
and target {rj} effects. These compo-
nents are modulated via flexible weights
to shape the overall transition matrix
A

(n,k)
t =

∑J
j=1 W

(n,k)
j,t cjr

T
j , capturing

complexity while maintaining parsimony.
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Cell–cell interactions are central to the function and organization of multicellular systems (Su et al.,
2024). Disruption or mis-regulation of communication is implicated in cancer, autoimmune disease,
and developmental disorders (Armingol et al., 2021; Liu et al., 2024). Capturing how one cell’s
state and behavior influence another in real time is challenging since interactions span spatial and
temporal scales, and depend on cell type and state.

Studies based on static snapshots reveal a partial story. Single-cell sequencing technologies
have enabled systematic inference of putative ligand–receptor activity and co-variation patterns,
offering a powerful view of communication at scale (Wilk et al., 2024; Heumos et al., 2023). How-
ever, such data are typically dissociated and time-agnostic, and methods built on them suffer from
an inherent limitation: they recover statistical associations from static measurements rather than the
dynamics of how cells influence each other in real time (Armingol et al., 2024; 2021; Wagner et al.,
2016). As a result, they fail to reveal how cells change as a result of interactions and struggle to
expose directionality, temporal delays, or state-dependent effects that are essential to mechanistic
understanding (Weinreb et al., 2018).

Live-cell imaging: a closer observational proxy for cellular dynamics. Live-cell imaging pro-
vides a means to overcome many of the challenges in studying cell–cell interactions. By tracking
individual cells over time, such data allow observation of cell states before, during and after inter-
actions, and thus offer a window into the dynamic consequences of cellular communication (Cuny
et al., 2022). Such longitudinal data provides ground truth for understanding how cells respond to
given interactions and interventions, allowing for advanced therapeutic applications (Alieva et al.,
2023). Hence, there is a need for novel computational models that can: (1) detect interactions, (2)
quantify their strength, and (3) reveal how they promote changes in cell state.

Our contributions. We introduce LICCHIE—Low-rank, Interpretable Cell-Cell Hidden
Interactions from Embeddings—a data-driven method to infer time-varying, feature-based inter-
action rules from live-cell imaging. We represent each cell with a dynamic feature vector encom-
passing spatial and internal states. Direct interactions between source–target cell pairs are modeled
as temporally-evolving linear transitions over features, active only within a spatial radius between
cells and regularized to vary smoothly within the feature space. To balance expressivity with inter-
pretability, LICCHIE decomposes pairwise interaction matrices into a few rank-1 components, with
time- and cell-pair-varying weights capturing context, while keeping the components biologically
readable. We jointly estimate the interaction matrices, shared components, and sparse weights in an
iterative approach (Fig. 1). More precisely, we present:

• A modeling framework that detects direct, time- and cell-varying interactions at the feature
level (LICCHIE).

• A low-rank decomposition into shared, interpretable source/target motifs with sparse,
context-varying weights.

• Validation on synthetic data and 3D tumor–NK imaging, recovering time- and cell-varying
interactions with interpretable structure.

• Identification of interactions that can influence NK polarization and tumor death using
engineered observations, capturing unseen data points.

2 BACKGROUND

Representation learning and static graphs. Deep learning architectures, such as autoencoders
have been used to discover interaction-relevant structures in single-cell omics but often yield em-
beddings that are hard to interpret mechanistically for interactions (Alessandri et al., 2021; Ternes
et al., 2022). Graph neural networks encode cells as nodes and potential interactions as edges, yet
typically presume a predefined (often symmetric) graph and still obscure direct, dynamic effects;
attention models can highlight dependencies but do not directly encode interaction signals (Lazaros
et al., 2024; Tang et al., 2023). Together, these tools are not tailored to direct, time-varying, feature-
level effects required for dynamic inferences.
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Latent dynamical systems. In neuroscience, switching linear dynamical systems capture abrupt
regime changes (Linderman et al., 2017; Nassar et al., 2018), and decomposed LDS variants capture
smoothly time-evolving interactions (Mudrik et al., 2024; Chen et al., 2024). However, these mod-
els do not directly address live-cell specifics: distance-modulated effects, transient visibility, strong
state changes (e.g., death/polarization), division/proliferation, and motility that reshapes neighbor-
hoods—motivating an imaging-first, interpretable model at per-cell feature resolution.

Requirements for an imaging-based interpretable model. We seek a framework that (i) models
direct, feature-level influences between individual cells; (ii) captures non-stationarities over time
and allows for other sources of interaction variability (e.g., distances, temporal resolutions), (iii) is
spatially constrained and smooth in feature space for robustness; (iv) uncovers the core interpretable
structures underlying the dynamics to support biological understanding of the interactions; and (v)
does not rely on persistent cell identities, by operating directly in feature space. LICCHIE is de-
signed around exactly these requirements, as summarized in Figure 1 and detailed in Section 4.

3 PROBLEM FORMULATION

Observations and notation. We observe a system of N interacting cells over T frames, where
each cell n = 1 . . . N is defined via a position vector (in 2D/3D space) {ψ(n)

t }Tt=1 ∈ Rs, and
a multi-feature, time-varying vector x(n)

t ∈ Rmp(n)

capturing cell-specific features, defined by the
biological system observed. A system can consist of one or more populations, such that p(n) indexes
the population type of cell n; therefore, mp(n)

represents the number of features for population p(n)

of cell n (complete notation provided in Table S1).

Feature space learning. Cellular features are transiently measurable; for example, certain cells may
only be visible in a subset of frames due to occlusion, movement, or other limitations. Hence, it is
desirable to avoid tracking individual cells but instead operate in cell feature space, learning how
features influence interaction dynamics regardless of specific cell identity.

Locality of interactions. Interactions are assumed to be local in space; hence we restrict attention
to a radius dn,n′(t) ≤ R (Fig. 1 top).

Learning objective. We seek to recover biologically meaningful, time-varying interaction rules
from transient multi-population observations, avoiding fixed cell identities, towards revealing the
mechanisms through which cellular networks govern biological functions and disease processes.

4 THE LICCHIE APPROACH

Feature-evolution model. Looking to identify how multi-cellular interactions drive changes in
cell-states, we capturing interactions via feature evolution–modeling the state vector x(n)

t of cell n
at time t as the weighted sum of learnable interaction matrices capturing influences from previous
time-point, namely,

x
(n)
t =

N∑
k=1

1dn,k(t)≤Rdn,k(t)A
(n,k)
t x

(k)
t−1. (1)

For clarity of presentation, we hereafter omit the distance-driven reweighting. Notably, in the above
formulation feature-level effects are captured by linear relations. This approach was deliberately
chosen, prioritizing direct interpretability of the results–deriving understandable interaction rules
over model complexity, and justified via empirical validations (App. A.1).

The interaction matrices. A matrix A(n,k)
t ∈ Rm×m represents the effect of source cell k on

target cell n at time t, conditioned on their previous states. An entry
[
A

(n,k)
t

]
i,j

captures the in-

fluence of feature j of cell k on feature i of cell n, from t − 1 to t (e.g., how much the size, i.e.,
feature i of cell n at time t, was impacted by the position, i.e., feature j, of cell k, at time t − 1,

3
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Fig. 1 middle). Here, we assume that all cells share the same feature set, yet the model naturally
extends to population-specific features (App. A.2).

Cross-interaction similarity. Naturally, pairs with similar stacked state vectors induce similar
interaction maps. With that, if the source vector x(k)

t lies in the null space of a matrix Ã, then
A

(n,k)
t + Ã is an equivalent solution to A(n,k)

t in terms of fit—thus applying regularization can
improve inference by enforcing consistency and smoothness across parameter changes (App. A.3).
We employ this by constraining distances between A(n,k)

t with the respective distance in feature
space,

∥A(n,k)
t −A(n′,k′)

t ∥22 ≤ ϵ
(
δ
A

(n,k)
t ,A

(n′,k′)
t

)
, (2)

where ε(·) decreases with the distance δ
A

(n,k)
t ,A

(n′,k′)
t

(t) between the stacked state vectors of the two
pairs at time t. In practice implemented as a soft, distance-weighted penalty on interaction matrices
distances.

Low-rank interaction-features regularization. To reflect a limited number of shared biological
processes, we impose a low-rank structure by expressing each A(n,k)

t via a restricted set of global
rank-1 components with pair-/time-specific weights,

A
(n,k)
t =

J∑
j=1

W
(n,k)
j,t cjr

⊤
j =

J∑
j=1

W
(n,k)
j,t Mj︸︷︷︸

cjr⊤
j

(3)

where {cj}Jj=1 and {rj}Jj=1 are the set of underlying components such that each cj ∈ Rm and

rj ∈ Rm, spans each {A(n,k)
t }t,n,k, and each term Mj := cjr

⊤
j is a rank-1 matrix constructed

via the outer product of two m-dimensional vectors. Each W (n,k) ∈ RJ×T is the corresponding
sparse per time-point weight matrix, such that W (n,k)

j,t is the contribution of components cj , rj to
the interaction from k to n at time t (Fig. 1 bottom).

The multi-feature vector. While the set of observed features is defined by the data in hand, the
induced multi-feature vector, x(n)

t ∈ Rmp(n) , can be defined based on the task in hand and vary from
engineered, pre-defined, interpretable features based on observed attributes (e.g. spatial, kinematic
and available phenotypic data, Stirling et al. (2021)) to a latent space embedding of the observation
(e.g. a deep learning representation, Moshkov et al. (2024)). In what follows, we focus on the former,
as it allows for direct interpretation of observed feature relations. Importantly, when considering the
latter, the setting can uncover dependencies and importance of different latent dimensions, desirable
for explainability of AI models (Saranya & Subhashini, 2023).

Learning low-rank interactions via optimization. Balancing fidelity with the assumptions
above, we solve:

L =

N∑
n=1

N∑
k=1

[
∥x(n)

t − (1dn,k(t)≤R)A
(n,k)
t x

(k)
t−1∥22 + λ1∥A(n,k)

t −
J∑

j=1

W
(n,k)
j,t cjr

T
j ∥2F (4)

+ λ2

∑
A′∈{A(n′,k′)

t′ }n′,k′,t′

A′ ̸=A
(n,k)
t

[
∥(1dn,k(t)≤R)e

−σδ(A
(n,k)
t ,A′)(A

(n,k)
t −A′)∥2F

]

+ λ3∥vec(A(n,k)
t )∥1 + λ4∥W (n,k)

:,t ∥1

]
,

where R is the interaction radius, σ is a parameter controlling the decay of similarity with distance
in feature space, λ1, λ2, λ3, λ4 are scalar regularization weights that balance the different terms.
A

(n,k)
t ,A′ denote interaction matrices corresponding to feature pairs such that δ(A(n.k)

t ,A′) is the
distance between these pairs in the feature space. The first term ensures fidelity to the observed
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dynamics by minimizing prediction error, the second term enforces a low-rank structure by approx-
imating each A as a weighted sum of shared components, the third term encourages smoothness
by penalizing differences between nearby interactions in feature space, and the two final terms im-
pose sparsity on the interactions and corresponding weights (see discussion on hyper-parameters in
App. A.4).

We fit the model using an iterative approach, iterating between estimating the interaction matri-
ces {A(n,k)

t } via LASSO Tibshirani (1996), the shared components {cj , rj}, and their weights
{W (n,k)

:t } using PARAFAC (Harshman et al., 1970), alternating between the following steps.

1. Update interaction matrices A: Given the current components and weights, infer each
interaction matrix by minimizing the reconstruction and smoothness losses (for notation
clarity, we denote in the equation Â(n,k)

t := A)

Â
(n,k)
t = argmin

A
∥x(n)

t −
N∑

k=1

(1dn,k(t)≤R)Ax
(k)
t−1∥22 + λ1

∥∥∥∥∥∥A−
∑
j

Wj,tcjr
⊤
j

∥∥∥∥∥∥
2

2

+ λ2

∑
A′ ̸=A

e−σδ(A,A′)∥A−A′∥22 + λ3∥vec(A)∥1 (5)

where λ1, λ2, and λ3 are hyper-parameters balancing low-rank fidelity, interaction smooth-
ness, and sparsity level.

2. Update shared components cj , rj: With fixed weights and {A(n,k)
t }, optimize the low-

rank factors to best approximate the interaction matrices across all pairs and times:

{ĉj , r̂j}Jj=1 = arg min
{cj ,rj}

∑
n,k,t

∥∥∥∥∥∥A(n,k)
t −

J∑
j=1

W
(n,k)
j,t cjr

⊤
j

∥∥∥∥∥∥
2

2

(6)

3. Update weights ∀t : {Ŵ (n,k)
:t }n,k: Given the current components and {A(n,k)

t }, update
the weights for each time step by minimizing the reconstruction error with sparsity con-
straints:

Ŵ
(n,k)
:,t = arg min

W
(n,k)
:t

∥∥∥∥∥∥A(n,k)
t −

J∑
j=1

W
(n,k)
j,t cjr

⊤
j

∥∥∥∥∥∥
2

2

+ λ4∥W (n,k)
:,t ∥1 (7)

where λ4 controls the sparsity of the number of active components in the k → n interaction
at time t.

LICCHIE can thus identify interactions between individual cells based on their features (i.e., with
good resolution and not mean-field) while considering all cells within the interaction radius, thus
providing a coherent and unified representation in the feature space. Notably, environmental effects
that are not caused by other cells, as well as the natural evolution of a cell, can be captured via the
self–self interaction matrix of a cell with itself and integrated into the summation of all interactions,
which enables disentangling these effects. The steps are summarized in Algorithm 1 and Fig. 1,
optimization details and complexity analysis are provided in App. A.5.

5 EXPERIMENTS

5.1 LICCHIE RECOVERS TRUE COMPONENTS IN SYNTHETIC DATA

Setup. We simulated two populations (25 and 10 cells, 10 features each) evolving over T=50
frames (Fig. 2a). Eight (J = 8) rank-1 ground-truth motifs {M⋆j}8j=1 were generated to be or-
thogonal under the Frobenius inner product, with per-pair, per-time weights that are 20% sparse.
Initial features came from population-specific Gaussians; cell motion followed trigonometric tra-
jectories with population-specific amplitudes and frequencies; Gaussian noise was added each step.
Edges were constructed by kNN (k = 10) on t0 features and pruned per frame by a spatial radius
R. At each time, targets were updated by a weighted sum of sources within the radius. To prevent
divergence, we scaled updates to keep the spectral radius below 1.

5
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Algorithm 1 LICCHIE: Low-rank interpretable cell-cell hidden interactions via embedding model

Require: Observed cell features {x(n)
t }, interaction radius R, number of components J , regular-

ization weights λ1, λ2, λ3, feature-space decay σ

Ensure: Interaction matrices {A(n,k)
t }, shared components {cj , rj}, weightsW

1: InitializeA(n,k)
t , cj , rj , {W (n,k)

:t }n,k,t randomly from normal i.i.d distribution
2: repeat
3: Update interaction matrices {A(n,k)

t }:
4: for each cell pair (n, k) and time t do
5: InferA(n,k)

t ▷ equation 5, balances low-rank, smoothness, and sparsity
6: end for
7: Update shared components cj , rj ▷ equation 6
8: Update weights {W (n,k)

:t }n,k,t ▷ equation 7
9: until convergence or maximum iterations reached

10: Return {A(n,k)
t }n,k,t, {cj , rj}j , {W (n,k)

:t }n,k,t

Baselines. We consider two baseline approaches (a) a global time-fixed linear model, inferring
a constant matrix Ã via least squares on features from all cells and (b) per-cell linear dynamics,
fitting a per-cell linear dynamics model using all observed interactions, yielding Ã∗

n for each target
cell n = 1 . . . N . Of note, alternative deep learning methods do not produce directly interpretable,
comparable components of the underlying interactions and thus are not suitable for this comparison.

Results. We first validate LICCHIE’s inferred interactions via their predictive power; we observe
strong performance in prediction of cell-type identity of either source (0.86) or target (0.87) cells,
or both jointly (0.83, Fig. 2c). Next, in comparison to baselines, LICCHIE produced interaction
structures closer to the ground truth construction {M⋆j}8j=1 (Fig. 2d) and lower reconstruction
error, both per-pair (distribution in Fig. 2e) and on average across pairs (Fig. 2f).

Figure 2: Synthetic data overview and results. a, Examples of generated features illustrating popula-
tion differences (blue/green side bars). b, Ground-truth weights show sparse structure. c, Accuracy
results for LICCHIE’s cell type prediction using the inferred interactions (logistic regression with
5-fold cross-validation); predictions of source and target (0.83), or source (0.86) and target (0.87)
independently. d, Rank-1 motif inference (top row; left to right: linear, per-cell linear, LICCHIE)
vs. ground truth (bottom row). Red arrows highlight discrepancies between ground truth (dotted)
and baseline-identified networks (solid). e, Per-pair MSE distributions vs. ground truth for the per-
cell linear baseline (top) and LICCHIE (bottom). f, Average MSE for the global time-fixed linear
baseline, per-cell dynamics, and LICCHIE (additional metrics Fig. S2)
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5.2 LICCHIE UNCOVERS INTERPRETABLE TUMOR–NK INTERACTIONS

Data and features. We applied LICCHIE to 3D live-cell confocal co-cultures of patient-derived
gastric tumor organoids with primary human NK cells (Liu et al., 2024), presenting variability in cell
morphology and intensity distribution (Fig. 3a). Imaging spanned 8–12 h at 4-min cadence with 27–
30 z-slices per time point, and includes multiple conditions . Using a representative experiment we
extracted spatial, morphology, and intensity features. We normalize the features such that each fea-
ture, at population level (NK or tumor cells), is normally distributed, f (p)

i ∼ N (µ = 0, σ = 1), im-
plying that all features, although representing geometric properties, attain negative values (App. A.6,
Table S2). We fitted LICCHIE with J=10 components.

Components and structure. LICCHIE identified components that reveal diverse interaction pat-
terns, including localized targets (e.g., M2,M4), source-emerging (e.g., M1,M10), self feedback-
like interactions (e.g.,M3) and multi-step interactions, including direct and indirect influences (e.g.,
M6, Fig. S3).

Interaction motifs can capture indicators of cell state, such as NK cell polarization. Upon polar-
ization, NK cells undergo a characteristic morphological shift from round to elongated (Fig. 3a), a
process necessary for their cytotoxic activity. Analysis of motif 2 (M2) and the respective weights
(W2) suggests that it captures predominant interactions targeting NK cells, with opposing effects
depending on the source cell (Fig. 3b,c), specifically identifying that the length of the major axis
(light green) of a target NK cell–a measure of its longest dimension that reflects its polarization
status–is predicted by diverse source features. This suggests that in a complex co-culture system,
the NK cell length (indication of its polarization) is not a singular, homogeneous event but is instead
coupled to diverse source cell states.

Motif 5 (M5) has a sparse interaction matrix (Fig. 3b) and predominantly captures NK-to-tumor
interactions (W5, Fig. 3c). This motif indicates that source cell mean intensity and sphericity, are
the main predictive features of two primary target features: cell aspect ratio and a tumor cell iden-
tity indicator. Therefore, M5 suggests that interaction with a subset of NK cells distinguished by
their brightness and sphericity is indicative for tumor-cell elongation. Interestingly, motif 6 (M6)
also centers on cell aspect ratio through different means, including direct and indirect influences of
several features. For example, cell sphericity (light green) directly and indirectly through cell height
(gray) influences cell aspect ratio. This underscores LICCHIE’s ability to disentangle multiple
processes with overlapping actors while distinguishing the underlying mechanisms.

Lastly, motif 7 (M7) highlights the centrality of source cell size in shaping multiple target features,
and the respective weights (W7) indicate thatM7 mostly negatively regulates tumor-to-NK interac-
tions. A particularly notable target feature is cell surface area. In NK cells, an increased surface area
could indicate the formation of a lytic immunological synapse (Orange, 2008). This may indicate
an impact of interactions between tumor cells of specific size and the process of NK-cell spreading
prior to synapse formation.

Interaction-type specificity. Component activations differ across interaction classes. As shown
in Fig. 3c, components display class-specific activation patterns across tumor→tumor, NK→NK,
NK→tumor, and tumor→NK pairs. Interesting relations observed include:

• Opposing weights between cell classes. Component 6 (weighted by W6) presents positive
weights for same-cell interactions and negative weights for opposing cell classes. Mech-
anistically, similar shapes may promote symmetric contact geometry or aligned polarity,
resulting in higher positive w6 values for same-cell pairs, whereas mismatched shapes re-
duce contact or produce asymmetry, leading to negativeW6 values for different-cell pairs.

• Single interaction dominance. Components 1 and 6 (W1,W6), show clear dominance of a
single interaction type (e.g., NK → NK), which may reflect specialized functional role.

• Source disentangling. Components 1 and 2 (W1, W2) capture predominant interactions
targeting tumor and NK cells respectively, with opposing weight signs given the source.

• Cell-specific regulation. Component 3 (W3) is mainly associated with interactions between
tumor and NK cells (rather than homogeneous cell-type interactions.

7
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Figure 3: LICCHIE identifies meaningful cellular interactions in real-world data. a, Representative
images illustrate morphology/intensity differences between phenotypes (Liu et al., 2024). b, Exam-
ples of LICCHIE’s rank-1 motifs (J=10; full set in Fig. S3). c, Component weights by interaction
class (tumor→tumor, NK→NK, NK→tumor, tumor→NK) show class-specific activation patterns.

5.3 FROM MOTIFS TO PHENOTYPES: USING ENGINEERED CELLS FOR PREDICTION

Weight sweeps on unseen data. A unique property of LICCHIE is the globality of the rank-1
components, {Mj}Jj=1 that enables generalization to unseen data that can drive critical biological
downstream processes. We assessed whether individual components are associated with increased
NK polarization or tumor-cell death by modulating each component’s weight while keeping source
features within the observed feature space.

Procedure. For each Mj , j = 1 . . . J component, we gradually increased its weight from 0 to
2 in 20 steps and applied it to various combinations of source features. We then assigned each
inferred target a polarization score (for NK cells) or a death score (for tumor cells) using a distance-
weighted k-nearest neighbor classifier (k=150, total # samples from all time points = 20, 437) based
on Euclidean distance in feature space and normalized by phenotype frequency (Fig. 4a).

Components and cell-state relations. Different components yielded distinct death/polarization
score trajectories with non-linear changes as weights increased (Fig. 4a). For tumor-cell death, some
components (e.g., M1,M5,M6, Fig. S3) showed increasing scores with weight, whereas others
(e.g.,M2,M3,M8) showed decreases, often most prominently around weight ≈ 1. Overall, tumor
death scores exhibited phase-transition-like effects (non-smooth changes), consistent with the acute
nature of cell death. NK-cell polarization trends were more variable; for example, M7 increased
polarization at higher weights, while M5 decreased it. In some cases (e.g., M5), tumor-death and
NK-polarization scores moved in opposite directions as weight increased.

Prediction from inferred weights. Using weights inferred on unseen frames, we trained a cross-
validation logistic regression to predict target phenotypes. Although phenotypes are not used during
training, weight-only features predicted phenotypes on held-out data (Fig. 4b), indicating that com-
ponent activations capture phenotype-relevant interaction signals.

Source-feature extremes. We also examined the impact of source features on NK polarization
under maximal activation (W=2). For each source feature, we compared scores at its empirical
minimum vs. maximum (others fixed at their means). We found that source properties give rise to
both diversity and correlations in the potential effect of each component. For example, when com-
ponent M1 is applied to a source feature vector with a minimized cell aspect ratio, it increases the
polarization score of the target. In contrast, when applied to the maximum cell aspect ratio, the
target cell’s polarization score remains near zero. Other components, such as M4 or M9, show
similar target polarization scores under both minimized and maximized cell aspect ratio values, sug-
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Figure 4: Probing phenotype effects via weight modulation. a, Gradually modulating the weights
on unseen data points reveals diverse encoding mechanisms for NK polarization (magenta) and tu-
mor cell death (green). b, Accuracy and balanced-accuracy for phenotype prediction using inferred
component weights on held-out data. c, Effect of extreme source-feature values on target NK polar-
ization.

gesting that this feature may not be critical in these circuits for driving changes in target polarization
(Fig. 4c). Altogether, these results highlight the potential of LICCHIE to guide the design of future
interventions when applied to additional datasets.

6 DISCUSSION AND FUTURE WORK

We presented LICCHIE, an interpretable method to study cell-cell interactions capturing modular,
feature-specific cell–cell interactions. The cell state feature representations are user defined; allow-
ing for problem specific optimization. Over these, LICCHIE reveals interpretable motifs showing
how features act as targets or sources within modular cell–cell interactions through coordinated,
overlapping, and co-modulatory effects. Applied to live-cell imaging data of tumor–NK co-cultures,
LICCHIE revealed key patterns of cellular communication–identified components with distinct fea-
ture relations–revealing the modular biological regulation that integrates diverse features into phe-
notypic outcomes. An important advantage of LICCHIE is that it can address the challenge of
modeling interactions from separate, asynchronous measurements while preserving data-specific de-
tails. In particular, its global vectors cj and rj allow new data to be analyzed quickly by reusing the
components and adjusting only the weights, avoiding full-model retraining. Notably, LICCHIE nat-
urally handles data imbalance by its ability to re-weight interactions based on the prevalence of each
population and interaction type, ensuring adequate representation for all interactions.

Limitations and future directions. The model assumes linear or additive effects, which may not
fully capture certain non-linear dynamics; this design choice promotes interpretability, and found
valid in practice through reconstruction accuracy (see discussion in App. A.1). Future work can
incorporate non-linear activation functions f(·) to each interaction pair to improve flexibility. Here,
interactions beyond the defined radius are not captured; this limitation can be easily addressed by
applying a kernel and sampling from an appropriate probability distribution that varies with distance.
Further biological interpretation of components requires additional supervision via experimental
data that can be obtained by applying LICCHIE to additional systems with dedicated measurements.
Lastly, using temporal mapping tools (e.g., optimal transport, Klein et al. (2025)), LICCHIE can
be applied to spatio-temporal single-cell datasets, providing insight into interactions in gene feature
space.

9
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A APPENDIX

A.1 THE VALIDITY OF THE LINEARITY ASSUMPTION

Linear approximations are widely used in dynamics because they simplify analysis and control.
Around an equilibrium point or operating region, many nonlinear systems can be locally approxi-
mated with linear models (i.e., via Taylor expansion). Accordingly, locally linear models, including
linear state-space models, auto-regressive models, GLMs, and linearized ODEs, are standard for
modeling, e.g., movement Patterson et al. (2008), population dynamics Boling Jr (1973), and di-
verse biological interactions Yezerets et al. (2025); Brauer & Kribs (2016); Andersson et al. (2005).

A unique advantage of maintaining a linear transition matrixA in biological systems is interpretabil-
ity: in our framework each entry Aij directly reflects the effect of feature i on feature j, and can
be linked to the observation space. LICCHIE extends typical linear systems model to be flexi-
ble distance-varying time-changing cell-specific locally changing dynamics, and thus is expressive
enough to capture the complexity of temporally evolving cell–cell interactions, while preserving this
interpretability: each entry in a rank-1 component corresponds to a source–target effect between
cells.

To account for non-linear dynamics one can consider non-linear activations, e.g. xt = σ(At)xt−1.
However, including these prevents direct interpretation of the results, necessary for biological dis-
covery.

A.2 POPULATION-SPECIFIC FEATURE SPACE

The LICCHIE framework can naturally extend to account for multiple cell populations exhibit-
ing distinct feature subsets. To do so, the fixed component sets {cj} and {rj} are replaced by
population-specific sets {c(p)j }Jj=1 and {r(p)j }Jj=1, where p indexes the population. Within each set,
the vector dimensions are consistent, but they may differ between populations.

For within-population interactions (e.g., population p), the A matrices are modeled using the com-
ponents of the corresponding p set. For cross-population interactions, the sets are chosen according
to the participating populations: for an interaction from a cell in population p to a cell in population
p′, we use {rj} from p and {cj} from p′, and vice versa. The resulting interaction matrix may not
be square if the number of features differs between populations.

Notably, the above extension preserves the interpretability afforded by the component structure
while allowing flexibility across nuanced population dynamics.

A.3 AVOIDING EQUIVALENT SOLUTIONS THROUGH DISTANCE CONSTRAINTS

Learning interactions for all feature and spatial combinations is intractable and highly non-
interpretable for scientific purposes. Hence, we leverage our assumption of cross-interaction simi-
larity inA matrices that represent similar source-target feature distributions.

When fitting dynamics, similarities in source and target vector pairs should ideally result in similar
transition matrices (i.e., if (n, k) is close to (n′, k′), then their interactions A(n,k)

t and A(n′,k′)
t

should be similar). Yet, when fitting dynamics in an unconstrained way, if the source vector xk
t lies

in the null space of any matrix Ã, then A(n,k)
t + Ã is an equivalent solution to A(n,k)

t in terms of
fit. This means that we must identify a solution that is consistent across pair, enforcing smoothness
across parameter changes.

Hence, we introduced the distance constraint; forcing distances between {A} matrices to follow
distances in the corresponding feature space, i.e.,

∥A(n,k)
t −A(n′,k′)

t ∥22 ≤ ϵ
(
δ(n,k),(n′,k′)(t)

)
where ϵ is some function that depends on δ(n,k),(n′,k′)(t) refers to the distance between stacked
feature vectors of interaction pairs (n, k) and (n′, k′) at time t.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.4 OBJECTIVE HYPER-PARAMETERS

The LICCHIE objective includes a minimal set of hyper-parameters introduced to balance repre-
sentation sparsity (λ3, λ4), smoothness (λ2), data fidelity, and low-rank approximation (λ1). In
addition, the framework provides the user with the flexibility to set the maximum rank of each in-
teraction, J , and the effective radius of interaction R; both are quantities that should be set with
respect to the characteristics of the biological system studied, i.e., accounting for the total number
of features and the representative length scale.

In practice, hyper-parameters can be tuned by running a parameter search (e.g., grid search) while
optimizing an information criterion that balances degrees of freedom and model complexity, such as
AIC (Akaike Information Criterion) or BIC (Bayesian Information Criterion, Chakrabarti & Ghosh
(2011)).We provide guidance and further intuition for tuning these,

• Low-rank constraint (J , λ1): These control how strongly the A’s follow the low-rank
approximation. When J is larger, or when A is naturally close to low-rank, this term
should converge to 0, and the sensitivity to λ1 will be minimal (since its multiplier is close
to zero). For highly complex, high-dimensional, and fast-varying dynamics, the low-rank
Frobenius norm may not be small. In such cases, we recommend monitoring the rank-1
reconstruction over iterations (calculated automatically within the model). If the low-rank
reconstruction remains low across iterations, users should increase both J and λ1.

• Interactions smoothness (λ2): The smoothness of interactions in feature space, mainly
preventing null-space solutions from causing abrupt switches (see App. A.3), is controlled
by λ2. In practice, a small value λ2 < 1 is usually sufficient. We recommend examining
the smoothness of interactions under gradually changing parameters to confirm that the
identified interactions align with biological or system-specific assumptions.

• Sparsity constraint (λ3, λ4): Sparsity is induced by these by modulating the number of
zero or near-zero entries. λ3 promotes sparsity in the interaction matrices, facilitating a
clearer understanding of the functionality of each interaction. λ4 encourages interactions
to be composed a limited number of {cj} and {rj} components, valuable for,

1. Understanding the modular role of each {cj , rj} pair in driving the overall interaction,
2. Identifying commonalities and differences between interaction types (if all compo-

nents are used in all interactions, distinguishing differences is harder), and
3. Reducing noise captured by other components, yielding a more robust solution.

• Effective interaction range (R): The radius, R, defines a disk around a cell i in which
interaction are considered, i.e., cells within this disk are considered interacting with it.
This shall be set with respect to the system’s length scales and desired scope of interactions
one wishes to study. e.g., one can choose to limit the analysis to first-order interactions,
accounting for cells in immediate neighborhood or larger value for long-range effects.

A.5 OPTIMIZATION AND COMPLEXITY

To fit the model’s components we use LASSO (Tibshirani, 1996), estimating the interaction ma-
trices, {A(n,k)

t }, and Parallel Factor Analysis (PARAFAC, Harshman et al. (1970)) for the shared
components {cj , rj}, and their weights {W (n,k)

:t }. PARAFAC is a method to decompose high-
dimensional tensor data (multi-way) into underlying, independent components, extending the Prin-
cipal Component Analysis (PCA) model to more than two dimensions. This provides a unique
solution that allows for the recovery of pure components.

The complexity of the optimization is as follows; let N denote the number of cells, T the number of
time points, d the number of features, k the average number of neighbors (within radius), S = k− 1
the number of sources, R the number of outer iterations, C the number of PARAFAC components,
I the number of PARAFAC ALS iterations, M the number of past A’s maintained for similarity
search, and E ≈ T ·N · k the total number of interactions.

Pre-processing (neighbors within radius).

• Naive all-pairs distances (per time): O(T ·N2) time, O(1) extra memory.

13
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• With a spatial index (grid/kd-tree): build + query costs O(T ·N logN + T · E) time. The
neighbor graph requires O(E) memory.

Per target per time (one cell as target).

• Build wideA ∈ Rd×(S·d): O(S · d2).
• Least-squares solve xtarget = Axsources: O(S2 · d3) time, O(S · d2) memory.
• Maintain M most similar past A’s: similarity search over history H ≈ R, costing O(H ·
S · d2) (naive).

• Decompose each A (reshaped as a tensor d×S×d) with PARAFAC/CP: ALS perA costs
O(I · C · S · d2) time, O(C · (d+ S + d)) memory.

Totals per outer iteration (across all targets and times; ∼ T ·N problems).

• LS solves: O(T ·N · S2 · d3).
• Similarity searches: O(T ·N ·R · S · d2) (if H ≈ R).
• PARAFAC: O(T ·N · I · C · S · d2).

Overall complexity.

O
(
T ·N ·

(
S2d3 + (R+ I · C)Sd2 + logN + k

))
.

A.6 THE TUMOR-NK DATASET

We used publicly available data from (Liu et al., 2024), accessed via Zenodo. The complete dataset
includes 3D live-cell imaging datasets of gastric tumor organoids co-cultured with primary human
Natural Killer (NK) cells. The dataset includes multiple sessions recorded asynchronously under
varying experimental conditions (see (Liu et al., 2024) for more details). We selected a representative
random session, ‘GX048-TO + NK cell (IL-15)’, in which NK cells were stimulated with IL-15.

A.7 TABLES

Table S1: Summary of defined notations.
Notation Meaning
N Number of interacting cells
T Total duration of observation (number of time points)
s Dimensionality of the space R ⊂ Rs

ψ
(n)
t Position of cell n at time t in Rs (spatial coordinates)

x
(n)
t State (feature) vector of cell n at time t in Rmp(n)

p(n) Population label/type of cell n
P = {p(n)}Nn=1 Set of population identifiers for all cells
mp(n)

Number of features for population p(n); if constant across all cells, denote as m
mp(n)

spatial Number of spatial features for population p(n)

mp(n)

internal Number of internal features for population p(n)

dn,n′(t) Spatial distance between cells n and n′ at time t, e.g., ∥r(n)t − r(n
′)

t ∥
δn,n′(t) Feature distance between cells n and n′ at time t, e.g., ∥x(n)

t − x(n′)
t ∥

δ(n,k),(n′,k′)(t) Feature distance between stacked state vectors of cell pairs (n, k) and (n′, k′) at time t.
δA,A′(t) Feature distance between As
R Interaction radius (hyperparameter)
1dn,n′ (t)≤R Indicator: 1 if distance between n and n′ at time t is ≤ R, else 0

14

https://zenodo.org/records/8401378


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table S2: Summary of cell features.
Feature Description
Cell Aspect Ratio (2D) Ratio of major to minor axis lengths in 2D projection.
Cell Aspect Ratio (3D) Ratio of principal axis lengths in 3D reconstruction.
Cell Major-Axis Length (2D) Length of the longest axis in 2D projection.
Cell Major-Axis Length (3D) Length of the longest axis in 3D reconstruction.
Cell Minor-Axis Length (2D) Length of the shortest axis in 2D projection.
Cell Minor-Axis Length (3D) Length of the shortest axis in 3D reconstruction.
Cell Height Extent of the cell along the z-axis.
Cell Size (2D) Area of the cell in 2D projection.
Cell Size (3D) Approximate size based on 3D reconstruction.
Cell Surface Area (3D) Total exposed surface area of the 3D cell.
Cell Volume (3D) Computed volume of the cell in 3D.
Cell Volume (3D; estimate) Estimated cell volume when full reconstruction is not available.
Cell Sphericity (3D) Measure of how closely the shape approaches a sphere.
Cell Mean Intensity (2D) Average intensity of the cell in 2D projection.
Cell Mean Intensity (3D) Average intensity of the cell in 3D reconstruction.
Cell Intensity Std. Dev. (2D) Standard deviation of pixel intensities in 2D.
Cell Intensity Std. Dev. (3D) Standard deviation of voxel intensities in 3D.
NK Cell Score Quantitative score indicating NK cell features.
Tumor Cell Score Quantitative score indicating tumor cell features.

Table S3: Synthetic parameters table.
synthetic parameters
num components 8
interaction radius 10.0
num features each cell 10
distribution low comps normal
sparsity low comps False
T 50
n distances to calculate 100
sparsity percent 0.2
noise low rank reco 0
noise linear reco 0
normalize rows columns True
distribution features normal
update of features if no effect keep
fixed A False
scaling features method standard
n cell type rows 2
sigma diff graph 0.3
n cells 35
building w thres 69
closest As to consider 10
decor components True
include plotting True
n unique cells 2
with timescales False
with gradient False
interactions style tumor nk
correlated features control False
include self effect True
distance thres 0.168793
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A.8 SUPPLEMENTARY FIGURES

Figure S1: Overview of the generated synthetic data. Each subplot presents values of a given feature
over all cells across time.
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Figure S2: Additional evaluations over synthetic data using linear dynamics. (left) Evaluation of
linear dynamics dynamics models using (1) correlation of identified interactions with the ground
truth as well as (2) SSIM (Nilsson & Akenine-Möller, 2020) score. (right) comparison to LICCHIE.
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Figure S3: Identified components by LICCHIE reveal variability in interaction structures. Struc-
tures include localized targets (e.g.,M2,M4), source-emerging (e.g.,M1,M10), self feedback-like
interactions (e.g., M3) and multi-step interactions, including direct and indirect influences (e.g.,
M6).

Figure S4: Tumor-NK data overview. a, Total number of observations for tumor cells (across all
time points). b, Total number of observations for NK cells (across all time points). c, Number of
unique NK vs tumor cells.
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