
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

WeInfer: Unleashing the Power of WebGPU
on LLM Inference in Web Browsers

Anonymous Author(s)
Submission Id: 1041

Abstract

Web-based large language model (LLM) has garnered significant
attention from both academia and industry due to its potential to
combine the benefits of on-device computation with the accessi-
bility and portability of Web applications. The advent of WebGPU,
a modern browser API that enables Web applications to access
and utilize a device’s GPU, has opened up new possibilities for
GPU-accelerated LLM inference within browsers. Several frame-
works have been developed to support Web-based LLM inference
with WebGPU. However, our experiment reveals that these frame-
works exhibit inefficiencies in GPU utilization, influencing the LLM
inference speed. These inefficiencies primarily arise from under-
utilizing the full capabilities of WebGPU, particularly in resource
management and execution synchronization. To address these limi-
tations, we present WeInfer, an efficient Web-based LLM inference
framework specifically designed to unleash the power of WebGPU.
WeInfer incorporates two key innovations: 1) buffer reuse strate-
gies that reduce the overhead associated with resource preparation,
optimizing the lifecycle management of WebGPU buffers, and 2) an
asynchronous pipeline that decouples resource preparation from
GPU execution, enabling parallelized computation and deferred
result fetching to improve overall efficiency. We conduct extensive
evaluations across 9 different LLMs and 5 heterogeneous devices,
covering a broad spectrum of model architectures and hardware
configurations. The experimental results demonstrate that WeIn-
fer delivers substantial improvements in decoding speed, achieving
up to a 3.76× performance boost compared withWebLLM, the state-
of-the-art Web-based LLM inference framework.

CCS Concepts

• Information systems→Web applications; • Computer sys-

tems organization→ Neural networks.

Keywords

Large Language Model, WebGPU, Inference Acceleration

1 Introduction

Large Language Models (LLMs) [7, 11, 34] have revolutionized both
academia and industry, with models like ChatGPT [47] demonstrat-
ing unprecedented capabilities in natural language generation. As
the scope of LLM applications continues to expand [10, 26], the
demand for reliable, efficient, and scalable deployment has become
increasingly urgent. One promising direction is to perform LLM
inference directly within Web browsers, commonly referred to as
Web-based LLM inference [30].

Web-based LLM inference effectively addresses several limita-
tions inherent to cloud-based deployment [3, 36, 46], particularly
by mitigating privacy concerns [37, 42, 43] and reducing network
latency [9]. Meanwhile, compared with deploying LLM directly

on the client’s native OS, Web-based LLMs benefit from the cross-
platform compatibility of modern Web browsers [35, 54], enabling
scalable and decentralized deployment across heterogeneous edge
devices, offering wide accessibility and portability.

Several inference frameworks, pioneered by MLC-AI, Google
and Hugging Face [12, 15, 30], have been developed to facilitate
Web-based LLM inference. These frameworks such as WebLLM
and MediaPipe LLM enable GPU acceleration through leveraging
WebGPU [44], a modern API that provides Web applications with
access to GPU hardware [6]. This approach represents a significant
advancement over JavaScript-based execution by harnessing the
parallel processing power of GPUs.

Despite these advancements, our measurement study reveals that
existing Web-based LLM inference frameworks exhibit suboptimal
GPU utilization, limiting the decoding speed of LLM inference. We
identify inefficient use of WebGPU as a major contributing factor
to this performance degradation. Specifically, existing frameworks
spend excessive time on preparingWebGPU resources. Additionally,
these frameworks rely on synchronous execution models that fail
to take advantage of WebGPU’s advanced features, which results
in unnecessary blocking and further performance loss.

To overcome these limitations, we propose WebGPU-centric In-
ference (WeInfer), a novel Web-based LLM inference framework
that introduces two key optimization strategies specifically aimed
at reducing inefficiencies associated with WebGPU. Our approach
focuses on: 1) minimizing the overhead related to resource prepara-
tion before GPU execution, and 2) reducing synchronous blocking
and the latency incurred when fetching results from the GPU.

For the first optimization, WeInfer introduces buffer reuse
strategies that optimize WebGPU’s buffer lifecycle management,
significantly reducing the overhead associated with preparing We-
bGPU resources. The second optimization is more challenging due
to the auto-regressive nature of LLMs, where each prediction re-
lies on the token generated in the previous step, complicating the
introduction of asynchronous computation. WeInfer tackles this
issue by leveraging WebGPU’s timeline model to decouple resource
preparation from GPU execution while postponing result fetching.
This approach allows WeInfer to implement a parallel asynchro-
nous pipeline, effectively eliminating unnecessary blocking during
inference and improving overall efficiency.

Unlike prior approaches that focus on accelerating Web-based
LLMs through operator- or model-level optimizations, such as au-
tomatic operator tuning [8], subgraph fusion [29], and subgroup
cooperation [17], WeInfer specifically targets inefficiencies related
to WebGPU. This WebGPU-centric approach addresses the unique
constraints imposed by Web browsers, where WebGPU operates
through a single, shared GPU process [18, 20]. WeInfer introduces
optimizations solely at the API level, without altering the underly-
ing model architectures, operators, or inference algorithms. This

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon. Submission Id: 1041

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

modular design allows WeInfer to integrate seamlessly with exist-
ing acceleration techniques.

We conduct comprehensive evaluations across 9 LLMs and 5
heterogeneous devices. These models span parameter sizes ranging
from 135 million to 7 billion, representing 3 mainstream architec-
tures. The selected devices include diverse GPUswith different oper-
ation systems, encompassing a broad range of computational capa-
bilities. The experimental results demonstrate that compared with
WebLLM, WeInfer achieves a minimum 1.34× improvement in
decoding speed on mid-range GPUs for models with fewer than 1.5
billion parameters, improving decoding speed from 24.18 ms/token
to 18.07 ms/token, with performance gains reaching up to 3.76×
on high-end GPUs like the RTX 4090, achieving decoding speed of
8.43 ms/token. Further ablation studies confirm that each of our
proposed optimization techniques contributes significantly to the
observed performance improvements.

In summary, this paper makes the following key contributions1:
• To our best known, we first identify the unique inefficiencies

in existing Web-based LLM inference frameworks, particularly
in the decoding stage, where GPU utilization is constrained by
suboptimal use of WebGPU.

• We propose WeInfer, a Web-based LLM inference framework
with novel optimizations that leverages advanced features of
WebGPU to reduce resource preparation overhead and elimi-
nate blocking, significantly accelerating the decoding stage.

• We conduct extensive evaluations across diverse LLMs and
hardware, demonstrating significant performance improve-
ments in heterogeneous environments. Additionally, ablation
studies and hyper-parameter sensitivity analysis validate the
effectiveness of each optimization and the robustness of WeIn-
fer across various scenarios.

2 Background

In this section, we present the background knowledge of LLM
inference and outline the workflow of inferring LLMs via WebGPU
in Web browsers.

2.1 Inference of Large Language Model

LLMs commonly adopt a multi-layer architecture containing Trans-
former layers, each comprising various operators parameterized by
model weights. A LLMwith𝑁 layers is represented as a nested func-
tion: LLM

𝚯
() = 𝑓 1

𝜃1

(
𝑓 2
𝜃2

(
. . . 𝑓 𝑁

𝜃𝑁
. . .

))
, where 𝚯 = {𝜃1, 𝜃2, . . . , 𝜃𝑁 }

represents the model parameters, while 𝑓 𝑖
𝜃𝑖

depicts the 𝑖-th layer
with corresponding parameters 𝜃𝑖 .

Upon receiving an input sequence of tokens x = [𝑥1, 𝑥2, . . . , 𝑥𝐿]
with a length of 𝐿, the LLM processes the input and predicts the
initial token 𝑦0 = LLM

𝚯
(x), referred to as the prefill stage. The

predicted token 𝑦0 then serves as input for the decoding stage,
where predictions are generated in an auto-regressive manner as
𝑦𝑖 = LLM

𝚯
(𝑦𝑖−1) .

The data dependency between predictions across multiple de-
coding steps can be expressed as:

𝑦𝑖 = LLM
𝚯
(𝑦𝑖−1)

finish−−−−→ 𝑦𝑖+1 = LLM
𝚯
(𝑦𝑖) , (1)

1WeInfer will be open-source once this paper is accepted.

GPU
Process

GPU

JS Program
Compute Shader

Creation

Relevant Buffers
Creation

Compute Pipelines
Creation

Validation

Commands Execution

Compilation
Staging

Memory

Staging Buffer
Creation

Buffer
Mapping

Preparation Execution Fetching

①

②

③

Figure 1: Workflow of conducting computational tasks for

LLM inference using WebGPU

where the symbol A finish−−−−→ B represents that operation A en-
ables operation B to commence. Similarly, the dependencies for
each predicted token throughout multiple decoding steps can be
represented as:

𝑧1𝑖 = 𝑓 1
𝜃1

(
𝑡1𝑖

) finish−−−−→ 𝑧2𝑖 = 𝑓 2
𝜃2

(
𝑧1𝑖

)
−→ . . . −→ 𝑧𝑁𝑖 = 𝑓 𝑁

𝜃𝑁

(
𝑧𝑁−1𝑖

)
, (2)

where 𝑧 𝑗
𝑖
signifies the output of the 𝑗-th neural network layer

during the prediction of the 𝑖-th token, culminating in the predicted
token ID 𝑦𝑖+1 = 𝑧𝑁

𝑖
= 𝑓 𝑁

𝜃𝑁

(
𝑧𝑁−1
𝑖

)
.

2.2 Workflow of Inferring LLM Using WebGPU

Web-based LLM inference frameworks, implemented as JavaScript
programs, enable LLM inference directly within browsers, leverag-
ing GPU acceleration via WebGPU. The workflow for performing
computational tasks in LLM inference using WebGPU is illustrated
in Figure 1 and consists of three main stages:

The inference framework collaborates with the GPU process
to set up crucial resources. Necessary resources include compute
shaders which define LLM operators, data buffers storing weights
and input, and uniform buffers for shader interpretation metadata.
Validation and compilation of these resources are managed by the
GPU process, a kernel process shared by all Web applications.
• Preparation (Figure 1 1○): The inference framework collabo-

rates with the GPU process to set up crucial resources such as
compute shaders defining LLM operators, data buffers storing
weights and input, and uniform buffers for shader interpreta-
tion metadata. These resources undergo validation and compi-
lation by the GPU process, a kernel process shared by all Web
applications.

• Execution (Figure 1 2○): Computation begins on the GPU once
all necessary resources are in place.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

WeInfer WWW ’25, April 28–May 02, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Time cost (ms) of different stages andGPUutilization

(abbreviated as GPU Util.) during a decoding step of existing

Web-based LLM inference frameworks

Framework 𝑇 𝑇
C,D
Prep 𝑇

Q
Exec 𝑇

C,D
Fetch GPU Util.

MediaPipe LLM 33.16 5.41 10.17 20.53 30.67%
WebLLM 61.83 11.01 43.33 4.45 70.08%

• Fetching (Figure 1 3○): Upon the completion of computation,
the fetching stage retrieves results by mapping GPU memory
to the CPU through a staging buffer, facilitating the transfer of
output data back to the application.

These stages operate across different processes and hardware.
WebGPU utilizes a timeline model [45] to delineate operations flow
under the single GPU process architecture of the browser, which
involve three distinct timelines:
• Content timeline, executing Web application code.
• Device timeline, handling resources processed by the GPU

process.
• Queue timeline, representing computation on GPU hardware.
The preparation and fetching align with the content and device

timelines, whereas the execution stage is confined to the queue
timeline. The time overhead for each stage per decoding step is rep-
resented by𝑇C,D

Prep,𝑇
Q
Exec, and𝑇

C,D
Fetch, where the superscripts indicate

the associated timelines (C: content timeline, D: device timeline, Q:
queue timeline). As execution depends on the associated resources
to start, we denote the time delay due to waiting for preparation as
𝛿𝑇

C,D
Prep, where 𝛿 > 0 indicates extended validation and data transfer

leading to delays. These stages are sequenced by Web-based LLM
inference frameworks as shown in Figure 3(a). In this sequential
workflow, the time spent per decoding step can be approximated as

𝑇 = 𝛿𝑇
C, D
prep +𝑇

Q
exec +𝑇C, D

fetch . (3)

3 Measurement Study

We delve into a measurement study to investigate how the charac-
teristics of the Web environment impact the inference performance
of Web-based LLMs.
Setup. Our experiments center on twowidely-usedWeb-based LLM
inference frameworks: MediaPipe LLM [15] and WebLLM [30]. We
exclude Transformer.js as it has not officially introduced WebGPU
support. We perform inference on their demonstration pages [16,
31] using Chrome on a Windows system equipped with a GTX
1660 Ti GPU. Specifically, WebLLM employs the Qwen2-0.5B-q4f16
model, while MediaPipe LLM utilizes the Gemma 2B model. By
tracing the inference processes via Chrome DevTools, we gauge the
decoding cost 𝑇 and the time overhead for key stages of inference,
namely 𝑇C,D

Prep, 𝑇
Q
Exec and 𝑇

C,D
Fetch to assess the efficiency of WebGPU

utilization in these frameworks. Table 1 presents our results.
Result Analysis. Our observations demonstrate shortcomings in
the overall GPU efficiencies of existing inference frameworks. Medi-
aPipe LLM exhibits a mere 30% GPU utilization, whereas WebLLM
showcases a relatively superior 70% GPU utilization. Notably, Me-
diaPipe LLM spends 20.53ms on synchronous fetching during a

decoding step, significantly impairing GPU efficiency. In contrast,
WebLLM curtails the fetching overhead to around 4.45ms but still
encounters synchronous blocks. Furthermore, MediaPipe LLM and
WebLLM spend 5.41ms and 11.01ms, respectively, on preparation
for each prediction, delaying the initiation of GPU computation,
which depends on these resources. We also identify that conducting
post-processing (i.e. token biasing and sampling) on CPU which is
adopted by WebLLM further impedes GPU efficiency and inflates
the total time 𝑇 , an issue addressed by MediaPipe LLM by shifting
post-processing to the GPU.

Through analyzing performance traces from Chrome DevTools,
we identify that inefficiencies primarily occur during the prepa-
ration and fetching stages. These inefficiencies arise due to the
suboptimal computational pattern that follows a sequential work-
flow when leveraging WebGPU. The preparatory burden, involving
WebGPU validation and compilation, leads to increased 𝛿𝑇C,D

Prep. Sim-
ilarly, frequent blocking during the fetching stage further reduces
GPU efficiency.

To unleash the full potential of WebGPU, we propose optimiza-
tion strategies targeting the acceleration of the costly preparation
and fetching stages. Our strategy revolves around 1) expediting the
start of the execution stage by reducing the amount of resources to
be prepared and 2) mitigating the fetching stage overhead by post-
poning fetching while asynchronously parallelizing the preparation
with execution to harness different timelines concurrently.

4 WeInfer

We first introduce the overview of WeInfer (Section 4.1). Then we
detail our optimizations addressing the unique challenges of the
Web environment (Section 4.2, 4.3). Further details of the browser
constraints on leveraging GPU are presented in Appendix A.

4.1 Overview

WeInfer is designed to enhance the workflow of existing Web-
based LLM inference frameworks by introducing two key optimiza-
tions: 1) WebGPU uniform buffer reuse, and 2) an asynchronous
pipeline to parallelize preparation and execution. Figure 2 provides
an overview of WeInfer with these optimizations. Algorithm 1
demonstrates the workflow of WeInfer.

Initially, WeInfer follows the same procedure as the base frame-
work, loading the LLM and user input and conducting the prefill
stage. Once WeInfer enters the decoding stage, a scheduler re-
structures the preparation and fetching processes. First, the task
issuer is scheduled to continuously prepare resources and issue
computational tasks (1○), leveraging a resource cache to avoid re-
dundant creation of static buffers that remain constant throughout
inference (2○). WeInfer eliminates blocking by letting task issuer
continuously work on preparation without waiting for GPU. While
the CPU handles preparation, the GPU executes computation in
parallel (3○). Once sufficient predictions have accumulated, WeIn-
fer schedules the fetcher to retrieve results through buffer mapping
(4○), reducing the number of costly fetch operations.

4.2 WebGPU Uniform Buffer Reuse

To accommodate the sandbox mechanism of browsers [18, 19],
WebGPU enforces strict validation within the GPU process when

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon. Submission Id: 1041

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

GPU

Inference Framework

Task Issuer

JavaScript Program Running LLM

GPU
Process

LLM Models

User Input

Model Output

Content Timeline Queue Timeline

Cache

Compute Pipeline

Dynamic
Buffers

Bind
Groups

Shaders

Static
Buffers

Fetcher

Predicted
Tokens

Scheduler

Computation

Validation

Compilation

Staging
Buffer

①

④

②

③

Device Timeline

Figure 2: Overview of WeInfer . Preparation (1○) and exe-

cution (3○) are scheduled in parallel, while fetching (4○) is

postponed until multiple predictions are in place. Caching is

introduced to accelerate preparation process (2○)

Table 2: Required uniform values of a Transformer layer in

the decoding stage

Operator Required Uniform Values
Layer Normalization 1, 𝑒𝑚𝑏𝑒𝑑𝐷𝑖𝑚

Self-Attention

Projection of Q, K, V and Output 1, 𝑒𝑚𝑏𝑒𝑑𝐷𝑖𝑚

Attention 𝑛𝑢𝑚𝐻𝑒𝑎𝑑, 𝑠𝑒𝑞𝐿𝑒𝑛, ℎ𝑒𝑎𝑑𝐷𝑖𝑚

Feed Forward Network 1, 𝑒𝑚𝑏𝑒𝑑𝐷𝑖𝑚, 𝑖𝑛𝑡𝑒𝑟𝐷𝑖𝑚

Residual 1, 𝑒𝑚𝑏𝑒𝑑𝐷𝑖𝑚

preparing resources including data buffers [20]. Therefore, we try
to reduce the amount of buffers that are needed to be prepared to
reduce the preparation overhead 𝛿𝑇C, D

prep . To assess how WebGPU
buffer creations impact the preparation and devise reuse strategies,
we analyze the lifecycles of buffers involved in the inference and
categorize buffers into four distinct types:
• Weight Buffers: These buffers store the LLM’s parameters and

are integral to the execution of the compute shaders. Weight
buffers are loaded and transferred to the GPU once when
the model initiates, and remain constant during the inference.
Therefore, their creation does not impact the preparation time
in the decoding steps.

• Temporary Buffers: These buffers hold intermediate results
for the compute shaders with fixed sizes across decoding steps.
Therefore, temporary buffers can be created once during the
prefill stage and reused throughout the decoding process, im-
pacting less to the preparation cost.

• Staging Buffers: These buffers are required to fetch results
(such as logits or token IDs) from the GPU to the CPU. Staging
buffers do not influence the preparation cost since they are
created after the execution stage, allowing their associated
costs to be covered.

Algorithm 1 WeInfer: Accelerated LLM inference utilizing We-
bGPU features
Input: User input text 𝑖𝑛𝑝𝑢𝑡 , weights 𝑊 = {𝑤1, . . . ,𝑤𝑁 } and

shader codes 𝑆 = {𝑠1, . . . 𝑠𝑁 } of operators in the selected LLM
Output: Predicted output text 𝑜𝑢𝑡𝑝𝑢𝑡 = {𝑦0, 𝑦1, 𝑦2, ..., 𝑦𝑀 }
1: 𝑤𝑒𝑖𝑔ℎ𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠 ← createWeightBuffers(𝑊)
2: 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑆ℎ𝑎𝑑𝑒𝑟𝑠 ← compileShaderModules(𝑆)
3: 𝑦0, 𝑖𝑛𝑝𝑢𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟, 𝑡𝑒𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠 ←

prefill(𝑖𝑛𝑝𝑢𝑡 ,𝑤𝑒𝑖𝑔ℎ𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠)
4: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑎𝑐ℎ𝑒 ← ∅
5: 𝑜𝑢𝑡𝑝𝑢𝑡 ← {𝑦0}
6: for 𝑖 = 1→ 𝑀 do

7: for 𝑗 = 1→ 𝑁 do ⊲ Task issuer is scheduled
8: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ← {𝑤𝑒𝑖𝑔ℎ𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠 [𝑗], 𝑡𝑒𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠 [𝑗]}
9: if 𝑗 = 1 then
10: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠.addResources(𝑖𝑛𝑝𝑢𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟)
11: end if

12: if 𝑗 = 𝑁 − 1 then
13: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠.addResources(𝑟𝑒𝑠𝑢𝑙𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟)
14: end if

15: 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑉𝑎𝑙𝑢𝑒𝑠 = getRequiredUniform(𝑗)
16: if 𝑖 = 1 then ⊲ Cache in the first decoding step
17: 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠 ← createUniformBuffers(𝑠 𝑗)
18: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑎𝑐ℎ𝑒.update(𝑗 , 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠)
19: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠.add(𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠,𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑉𝑎𝑙𝑢𝑒𝑠)
20: else

21: 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠 ←
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑎𝑐ℎ𝑒.get(𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑉𝑎𝑙𝑢𝑒𝑠)

22: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠.addResources(𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠)
23: end if

24: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠.addResources(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑆ℎ𝑎𝑑𝑒𝑟𝑠.get(𝑗))
25: end for

26: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑃𝑎𝑠𝑠 ← createWebGPUComputePass(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠)
27: submitComputePass(𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑃𝑎𝑠𝑠) ⊲ Eliminate blocking
28: if 𝑖 % 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0 or 𝑖 =𝑀 then ⊲ Postpone fetching
29: 𝑝𝑟𝑒𝑑𝑇𝑜𝑘𝑒𝑛𝐼𝑑𝑠 ← waitForFetching(𝑟𝑒𝑠𝑢𝑙𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟)
30: 𝑜𝑢𝑡𝑝𝑢𝑡 .append(𝑝𝑟𝑒𝑑𝑇𝑜𝑘𝑒𝑛𝐼𝑑𝑠)
31: end if

32: end for

• Uniform Buffers: These buffers describe metadata for the
compute shaders, such as the shapes of input/output data and
other control parameters necessary for GPU execution. Each
operator in an LLM requires its own uniform buffer, leading
that the frequent creation of these buffers in every decoding
step imposes significant overhead.

WeInfer implements a caching mechanism to mitigate the over-
head caused by frequent uniform buffer creation. This mechanism
leverages the fact that tensor shapes are consistent across different
operators and decoding steps. As shown in Table 2, many opera-
tors, such as layer normalization and residual operators, require
uniform buffers with the same values (e.g. 1, 𝑒𝑚𝑏𝑒𝑑𝐷𝑖𝑚), making
recreating these uniform buffers for different operators redundant.
Additionally, since 𝑒𝑚𝑏𝑒𝑑𝐷𝑖𝑚 remains consistent throughout de-
coding, these buffers can be shared across operators and decoding
iterations. We call these buffers static buffers and reuse them as

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

WeInfer WWW ’25, April 28–May 02, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Preparation Fetching

Content,
Device
Timeline

Queue
Timeline

Transmission

Execution

Transmission

Preparation Fetching

Transmission

Execution

Transmission

(a) Sequential workflow of inferring Web-based LLM

Preparation

Content,
Device
Timeline

Queue
Timeline

Transmission

Execution

Preparation Fetching

Transmission

Execution

Transmission

(b) Asynchronous pipeline that parallelizes preparation and executing

Figure 3: Comparison of the sequential workflow and our

asynchronous pipeline. Perform decoding synchronously

limits the GPU utilization, while our approach increases effi-

ciency by parallelizing operations across different timelines

shown in Figure 2 2○, reducing the preparation cost 𝛿𝑇C, D
prep by elim-

inating redundant buffer creation.

4.3 Asynchronous Pipeline for Parallelization

of Preparation and Execution

Unlike native environments, modern browsers like Chrome utilize
a process-based isolation architecture, restricting Web applications
to access GPU through a single, shared GPU process [5, 13, 32].
The unique GPU process holds the GPU driver, resulting in that
WebGPU requires an additional staging step for fetching results as
GPU buffers are mapped only to the GPU process’s memory space,
necessitating further steps to transfer data to the application [20].
Therefore, to reduce the burden of frequently fetching GPU buffers,
WeInfer implements an asynchronous pipeline (Figure 3(b)) where
GPU and CPU continuously work in parallel to postpone fetching.

However, the inherent data dependencies (Equation (1)) in LLM
inference pose challenges to parallelizing preparation and execution
as each prediction depends on the result of the previous prediction.
To address this challenge, we beginwith analyzing the dependencies
of WebGPU operations on different timelines. Through decoupling
independent operations across different timelines by leveraging the
features of WebGPU, WeInfer enables an asynchronous pipeline
(Figure 3(b)) that mitigates blocking and enables GPU to keep on
execution without retrieving the actual value of the last prediction.

The data dependency (2) during a decoding step dictates the
order of tasks being computed for different layers, leading to the
operation dependency occurring on the WebGPU queue timeline,
represented as:

compute(𝑟 𝑗)Q
finish−−−−→ compute(𝑟 𝑗+1)Q, (4)

where the superscript Q indicates operations occur on the queue
timeline and 𝑟 𝑗 denotes the computational resources needed for
layer 𝑓𝜃 𝑗

. Meanwhile, the preparation of 𝑟 𝑗 is required to be ac-
complished before execution, leading to the operation dependency
expressed as:

𝑟 𝑗 = issue
(
𝑓𝜃 𝑗

)C finish−−−−→ 𝑟 𝑗 = process
(
𝑟 𝑗
)D (5)

𝑟 𝑗 = process
(
𝑟 𝑗
)D finish−−−−→ compute(𝑟 𝑗)Q (6)

where 𝑟 𝑗 represents original computational resources submit-
ted by the inference framework which is expected to be processed
by the GPU process. At the end of computation, there exists de-
pendency that fetching is only available when all computations
relevant to the target buffer get accomplished:

{
compute

(
𝑟 𝑗
)
| ∀ issued 𝑟 𝑗

}Q finish−−−−→ 𝑦𝑖+1 = fetch
(
𝑧𝑁𝑖

)C, D
(7)

Our key insight is that the logical data dependency throughout
decoding steps (1) does not impose restrictions to either preparation
on the content timeline and device timeline or execution on the
queue timeline, as these operations are only confined by depen-
dencies (4)(5)(6). Existing approaches overlook the asynchronism
among different WebGPU timelines, invoking an await statement
after each decoding step to synchronously wait for the retrieval of
the token ID before proceeding to the next iteration. This unneces-
sarily pose operation dependencies represented as:

𝑦𝑖+1 = fetch
(
𝑧𝑁𝑖

)C finish−−−−→ 𝑟 𝑗 = issue
(
𝑓𝜃 𝑗

)C, D
(8){

compute
(
𝑟 𝑗
)
| ∀ issued 𝑟 𝑗

}Q finish−−−−→ 𝑟 𝑗+1 = issue
(
𝑓𝜃 𝑗+1

)C, D
(9)

These dependencies (8)(9) occur across timelines, leading to
blocking as CPU needs to wait for lengthy computations on the
GPU. The overall operation dependencies can be represented as:

LLM
𝚯
(𝑦𝑖)C

finish−−−−→ LLM
𝚯
(𝑦𝑖)D

finish−−−−→ LLM
𝚯
(𝑦𝑖)Q (10)

LLM
𝚯
(𝑦𝑖)Q

finish−−−−→ 𝑦𝑖+1 = fetch
(
𝑧𝑁𝑖

)C finish−−−−→ LLM
𝚯
(𝑦𝑖+1)C

(11)

These dependencies (10)(11) imposes a sequential workflow that
increases decoding costs (Equation (3)). To implement a asynchro-
nous pipeline, we argue that the operation issue(𝑓𝜃 𝑗

)C does not
inherently depend on prior computations, as input buffers only re-
quire GPU buffer handlers instead of the actual value. Output buffers
can also reuse handlers from previous predictions, with dependency
(4) ensuring the prior computation is complete. Additionally, creat-
ing shaders and uniform buffers is unrestricted since their values are
known, making preparation operation issue(𝑓𝜃 𝑗

)C, D independent
of previous computations.

Based on our insights, we parallelize content timeline, device
timeline and queue timeline by decoupling the preparation and
the execution. This asynchronous pipeline allows the CPU to con-
tinuously prepare resources (Figure 2 1○) while the GPU keeps
executing (Figure 2 3○), eliminating unnecessary blocking. This
pipeline could be further improved by delaying fetching stages
(Figure 2 4○) to reduce the cost of fetching results. To appropriately
feedback predictions in time, we issue fetch requests every time
a threshold 𝐼 of token are predicted. Fetching dependency of our
pipeline is converted from (7) to:

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon. Submission Id: 1041

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

𝑦𝑛𝐼 = fetch
(
𝑧𝑁(𝑛−1)𝐼 ,(𝑛−1)𝐼+1,...,𝑛𝐼

)C finish−−−−→ 𝑟 𝑗 = issue
(
𝑓𝜃 𝑗

)C
,

(12)
where 𝑛 = 1, 2, The overall dependencies of our pipeline can

be expressed as:

LLM
𝚯
(𝑦𝑖)C

finish−−−−→ LLM
𝚯
(𝑦𝑖+1)C , (13)

LLM
𝚯
(𝑦𝑖)Q

finish−−−−→ LLM
𝚯
(𝑦𝑖+1)Q . (14)

Through applying this optimization, the time overhead of each
decoding step decreases from (3) to:

𝑇 =
1
𝐼

(
𝛿𝑇

C, D
prep + 𝐼 ·𝑇

Q
exec +𝑇C, D

fetch

)
. (15)

5 Evaluation

We first describe the experimental setup (Section 5.1). Then we
conduct a performance analysis across heterogeneous models and
devices (Section 5.2), followed by the results of ablation study (Sec-
tion 5.3) and hyper-parameter sensitivity study (Section 5.4).

5.1 Setup

Implementation. Since MediaPipe LLM is not fully open-source 2

and Transformer.js has not officially released WebGPU support, we
modify WebLLM (version 0.2.46) to implement WeInfer.

For the WebGPU uniform buffer reuse optimization, we store
uniform buffers in a map using their values as keys in the first
decoding step, allowing reuse in subsequent steps when the values
remain unchanged. WebLLM suffers from synchronous blocking
due to await statements when fetching results through WebGPU,
forcing sequential processing.Wemodify these operations to handle
them asynchronously and shift post-processing from the CPU to the
GPU, enabling parallel preparation and execution. Additionally, we
introduce a scheduler to manage preparation and fetching, allowing
timely feedback while minimizing the overhead of fetching.

WeInfer seamlessly inherits the existing operator-level opti-
mizations of WebLLM and extends the framework’s capabilities.
The modularity of our approach allows easy adaptation to other
Web-based LLM inference frameworks facing similar issues.
Baseline. We compare WeInfer with WebLLM (version 0.2.46). To
ensure fairness, we modify WebLLM to perform post-processing
on the GPU and use greedy sampling with identical input prompts
for both frameworks.
Environment. We measure the decoding speed of WeInfer and
WebLLM in two scenarios: model heterogeneity (i.e., across different
LLM architectures and parameter sizes) and device heterogeneity
(i.e., across different GPU hardware).

To assess the impact ofmodel heterogeneity, we evaluate Qwen2 [50],
Llama3 [11], and SmolLM [2] with parameter sizes ranging from
135M to 8B on an RTX 3060 GPU running Windows OS.

To assess the impact of device heterogeneity, we evaluate perfor-
mance on GPUs with different computational capabilities, including
Intel UHD Graphics 630, Apple M2, GTX 1660 Ti, RTX 3060, and
2MediaPipe LLM leverages a GraphRunner to infer LLM, whose detailed implementa-
tion of the underlying WebAssembly module is hidden, posing difficulties to modify
the inference procedure.

Table 3: Average per-token decoding speed (ms/token) com-

parison across heterogeneous LLMs

Model WebLLM WeInfer Boost

SmolLM-135M-q4f16 27.72 10.17 2.73×
SmolLM-135M-q4f32 27.72 11.68 2.37×
Qwen2-0.5B-q4f16 22.49 9.67 2.33×
Qwen2-0.5B-q0f32 21.28 12.10 1.76×
TinyLlama-1.1B-q4f16 21.09 9.76 2.16×
Qwen2-1.5B-q4f16 24.57 14.88 1.65×
Qwen2-1.5B-q4f32 24.18 18.07 1.34×
Qwen2-7B-q4f16 32.75 29.19 1.12×
Llama3-8B-q4f16 71.51 64.35 1.11×

SmolLM-135M-q4f16

SmolLM-135M-q4f32

Qwen2-0.5B-q4f16

Qwen2-0.5B-q0f32

TinyLlama-1.1B-q4f16

Qwen2-1.5B-q4f16

Qwen2-1.5B-q4f32

Qwen2-7B-q4f16

Llama3-8B-q4f16
0

10

20

30

40

50

60

70

De
co

di
ng

 S
pe

ed
 (m

s/
to

ke
n)

Baseline
Optimized

Figure 4: Performance comparison of inferring heteroge-

neous models

RTX 4090. To explore performance across different operating sys-
tems and GPU drivers, we run experiments on Linux (with RTX
4090), macOS (with Apple M2), and Windows (with other GPUs).
Models are restricted due to the memory constraints of lower-end
GPUs. We are unable to perform inference with half-precision float
(f16) models on Linux, as the device does not support WebGPU’s
shader-f16 feature. These results are indicated as N/A.

We use Google Chrome (version 131.0) as the browser, which cur-
rently offers the best WebGPU support. Firefox Nightly is excluded
due to its resource limitations that are incompatible with the require-
ments of WebLLM (e.g., maxComputeWorkgroupStorageSize).

5.2 Result Analysis

5.2.1 Impact of Model Heterogeneity. Table 3 and Figure 4 present
the performance comparisons across different LLMs.WeInfer demon-
strates a significant speedup across all evaluated models, with
boosts ranging from 1.11× to 2.73×.

For the smallest model, SmolLM-135M with half-precision float
(f16), WeInfer achieves a decoding speed of 10.17 ms/token, while
WebLLM slows to 27.72 ms/token, resulting in a 2.73× speedup. For
larger models like Llama3-8B and Qwen2-7B, WeInfer achieves
decoding speeds of 64.35 ms/token and 29.19 ms/token, respectively,
while WebLLM performs decoding at speeds of 71.51 ms/token and
32.75 ms/token. The boost is less pronounced for larger models

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

WeInfer WWW ’25, April 28–May 02, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Average per-token decoding speed (ms/token) comparison across heterogeneous devices

GPU Hardware

SmolLM-135M-q4f16 SmolLM-135M-q4f32 Qwen2-0.5B-q0f32 Qwen2-1.5B-q4f32

WebLLM WeInfer Boost WebLLM WeInfer Boost WebLLM WeInfer Boost WebLLM WeInfer Boost

RTX 4090 N/A N/A N/A 28.27 8.89 3.18× 26.85 8.12 3.31× 31.72 8.43 3.76×
RTX 3060 27.72 10.17 2.73× 27.72 11.68 2.37× 22.49 9.67 2.33× 24.18 18.07 1.34×
GTX 1660 Ti 54.02 31.98 1.69× 56.07 32.08 1.75× 47.05 23.68 2.01× 63.29 35.14 1.80×
Apple M2 17.51 8.75 2.01× 17.32 8.93 1.94× 32.79 29.38 1.12× 33.05 29.21 1.13×
Graphics 630 60.94 42.92 1.42× 75.82 62.45 1.21× 252.95 238.03 1.06× 403.99 394.84 1.02×

135M q4f32
0.5B q0f32

1.5B q4f32
0

10

20

30

De
co

di
ng

 S
pe

ed
 (m

s/
to

ke
n)

RTX 4090

135M q4f16

135M q4f32
0.5B q0f32

1.5B q4f32
0

10

20

30

De
co

di
ng

 S
pe

ed
 (m

s/
to

ke
n)

RTX 3060

135M q4f16

135M q4f32
0.5B q0f32

1.5B q4f32
0

20

40

60

De
co

di
ng

 S
pe

ed
 (m

s/
to

ke
n)

GTX 1660 Ti

135M q4f16

135M q4f32
0.5B q0f32

1.5B q4f32
0

10

20

30

De
co

di
ng

 S
pe

ed
 (m

s/
to

ke
n)

Apple M2

135M q4f16

135M q4f32
0.5B q0f32

1.5B q4f32
0

100

200

300

400

De
co

di
ng

 S
pe

ed
 (m

s/
to

ke
n)

UHD Graphics 630

Baseline Optimized

Figure 5: Performance comparison of inference on heterogeneous devices

due to the increasing computational demands, which shifts the
bottleneck to GPU execution time𝑇Q

Exec. WeInfer primarily reduces
latency in preparation and fetching, benefiting less from scenarios
where GPU execution dominates the decoding speed.

5.2.2 Impact of Device Heterogeneity. Table 4 and Figure 5 summa-
rize the performance across different GPU hardware. The results
indicate that WeInfer consistently improves decoding speed across
all devices, with the most significant speedup observed on high-end
GPUs, reaching a 3.76× boost.

On the RTX 4090, WeInfer achieves a decoding speed of 8.43
ms/token for Qwen2-1.5B, compared to WebLLM’s 31.72 ms/token,
resulting in a 3.76× speedup. On mid-range devices like the RTX
3060, WeInfer achieves a 1.34× improvement, reducing the de-
coding speed of Qwen2-1.5B from 24.18 ms/token (WebLLM) to
18.07 ms/token. On low-end GPUs like Intel UHD Graphics 630,
the speedup is less pronounced (up to 1.21×), as GPU execution
time dominates the overall decoding time. Additionally, we ob-
serve performance instability on the Apple M2 chip: while WeIn-
fer achieves a 2.01× boost for SmolLM-135M, the boost drops to
1.12× for Qwen2-0.5B. Traces recorded by Chrome DevTool reveal
that WeInfer suffers from increased execution time when infer-
ring Qwen2, counteracting gains from reduced WebGPU-specific
overhead. This may be due to the unique characteristics of Metal
APIs [4] or Apple’s GPU hardware.

5.3 Ablation Study

We perform ablation experiments on the RTX 3060 to evaluate the
contribution of each optimization. We evaluate decoding speeds of
various models under three conditions: using only uniform buffer

reuse, using only asynchronous pipeline, and using both optimiza-
tions. The results are summarized in Table 5.

The results demonstrate that both optimizations contribute sig-
nificantly to the improvement of decoding speed. For instance, with
the Qwen2-1.5B model, uniform buffer reuse reduces decoding time
by approximately 8 ms, while the asynchronous pipeline reduces
it by 4 ms on average. The smaller SmolLM model sees a 12 ms
improvement from buffer reuse and 4 ms from the asynchronous
pipeline. Uniform buffer reuse exhibits more variability depending
on model size and architecture, as its effectiveness is linked to the
preparation time 𝑇C,D

prep. In contrast, pipeline parallelization consis-
tently reduces the synchronous blocking time 𝑇C,D

fetch, which is less
dependent on model size.

5.4 Hyper-parameter Sensitivity Study

WeInfer introduces a hyper-parameter 𝐼 in the asynchronous
pipeline, controlling the number of tokens generated before the
CPU fetches predictions from the result buffer. This fetch interval
enables WeInfer to balance real-time feedback with task batch-
ing, enabling the GPU to perform multiple operations before syn-
chronously waiting for results.

We conduct experiments on the RTX 3060 to evaluate the effect
of different fetch intervals 𝐼 on decoding speed. The results are
presented in Table 6.

The results show that performance fluctuates slightly with dif-
ferent fetch intervals, but the results improve across all intervals,
demonstrating that our optimizations deliver significant improve-
ments even when prioritizing real-time feedback (e.g., with 𝐼 = 4).
We identify that for smaller models like SmolLM-135M and Qwen2-
0.5B, optimal performance is generally observed with 𝐼 ≥ 16, where

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon. Submission Id: 1041

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Ablation experiments on average per-token decoding

speed (ms/token) using different optimizations

Model WebLLM Reuse Pipeline WeInfer

SmolLM-135M-q4f16 27.72 15.46 23.31 10.17

SmolLM-135M-q4f32 27.72 15.42 23.42 11.68

Qwen2-0.5B-q4f16 22.49 15.02 19.97 9.67

Qwen2-0.5B-q0f32 21.28 14.58 18.82 12.10

Qwen2-1.5B-q4f16 24.57 16.61 19.92 14.88

Qwen2-1.5B-q4f32 24.18 19.80 22.52 18.07

Qwen2-7B-q4f16 32.75 31.60 31.43 29.19

Llama3-8B-q4f16 71.57 67.69 66.40 64.35

Table 6: Sensitive analysis of the impact of fetch interval on

average per-token decoding speed (ms/token)

Model 𝑰 = 2 𝑰 = 4 𝑰 = 8 𝑰 = 16 𝑰 = 32

SmolLM-135M-q4f16 12.48 13.11 11.56 10.17 12.30
SmolLM-135M-q4f32 13.30 13.02 11.68 11.70 11.70
Qwen2-0.5B-q4f16 12.71 14.07 10.73 10.35 9.67

Qwen2-0.5B-q0f32 13.25 12.10 12.85 12.35 12.62
Qwen2-1.5B-q4f16 16.31 14.88 15.96 15.97 16.30
Qwen2-1.5B-q4f32 19.50 18.07 19.45 19.85 20.47
Qwen2-7B-q4f16 30.94 29.19 30.28 30.80 30.96
Llama3-8B-q4f16 66.30 64.35 64.99 65.61 65.48

fetching overhead is sufficiently amortized. However, for larger
models like Llama3-8B, increasing 𝐼 offers diminishing returns as
execution time becomes the primary bottleneck.

6 Related Work

This section surveys existing work on LLM inference and optimiza-
tions for both browser and native environments, highlighting the
limitations of existing methods in accelerating Web-based LLM
inference.

6.1 Web-based LLM Inference Frameworks and

Optimizations

Early efforts to run deep neural network inference in browsers [28],
such as TensorFlow.js [14], WebDNN.js [23] and ONNX Runtime
Web [29], laid the foundation for browser-based model execution.
However, as LLMs present greater computational demands, spe-
cialized frameworks have emerged. Transformer.js [12] offers a
high-level LLM inference API fully within browsers, similar to
its Python counterpart. WebLLM [30], the first to support billion-
parameter LLMs in browsers, and MediaPipe LLM [15], which was
introduced by Google in 2024, both use WebGPU to enable GPU
acceleration. Transformer.js is expected to adopt WebGPU in its
upcoming version.

Efforts to accelerate in-browser inference tackle challenges re-
lated to heterogeneous devices and constrained environments. Com-
pilation frameworks like TVM, Ansor, and FlexTensor [8, 56, 57] em-
ploy automatic operator tuning for hardware-specific optimizations,

while NNJIT [25] enables just-in-time tuning for real-time improve-
ments. Dynamic adaptation frameworks such as DeepAdapter [24]
adjust inference processes based on device capabilities and network
conditions. Additional approaches like PipeEngine [41] improve
inference by partitioning models for parallel execution across Web
Workers and WebGL, while WPIA [40] reduces initialization delays
by distributing precompiled WebGL programs.

Many of these optimizations are integrated into current Web-
based LLM inference frameworks. WebLLM leverages TVM for op-
erator tuning, Transformer.js benefits from ONNX Runtime Web’s
subgraph fusion. MediaPipe LLM incorporates advanced GPU ac-
celeration techniques like SIMD-level parallelism and optimized
matrix multiplication via cooperative thread groups [17].

In contrast, WeInfer introduces a WebGPU-centric approach
specifically designed to address the challenges posed by WebGPU
and LLMs, differentiating itself from optimizations that primarily
focus on operators or model architecture.

6.2 On-device LLM Inference Optimizations

Edge devices face memory and computational constraints that limit
LLM inference. Techniques such as quantization and knowledge
distillation [21, 33, 51] reduce model size and complexity, while
frameworks like FlexGen and LLM-in-a-Flash [1, 38] tackle pa-
rameter offloading when memory is insufficient. Further advance-
ments [39, 53] optimize offloading while integrating techniques
such as mixture of experts and speculative execution.

For acceleration, distributed computing approaches, such as
LinguaLinked, Galaxy, and PipeLLM [27, 52, 55], leverage nearby
trusted computing resources to achieve collaborative LLM infer-
ence. PowerInfer-2 [49] optimizes matrix operations for mobile
devices, while mllm-NPU [48] and NeuPIMs [22] explore NPUs to
accelerate LLM.

These methods focus on refining operators or inference algo-
rithms for specific edge devices, or leveraging distributed resources.
WeInfer complements them by concentrating on in-browser infer-
ence, offering a novel solution that handles the unique challenges
of Web environments.

7 Conclusion

In this paper, we analyzed the GPU efficiency of existingWeb-based
LLM inference frameworks and identified the underlying perfor-
mance bottlenecks introduced by the suboptimal utilization of We-
bGPU. We proposed WeInfer, a novel framework to address these
limitations. Compared to previous efforts that primarily focused on
optimizing neural network operators or model architectures, our
approach targets reducing the overhead associated with the pro-
cess isolation mechanism of browsers by leveraging the advanced
features of WebGPU.

The experimental results demonstrated significant and consis-
tent improvements in decoding speed across a wide range of models
and devices, confirming the effectiveness of WeInfer in diverse
scenarios. Ablation studies and hyper-parameter analysis demon-
strated the effectiveness of each optimization and the robustness
of WeInfer. Moving forward, we aim to develop adaptive accel-
eration strategies tailored to specific hardware configurations to
better harness the computational capabilities of edge devices.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

WeInfer WWW ’25, April 28–May 02, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik
Cho, Carlo C. Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. 2024.
LLM in a Flash: Efficient Large Language Model Inference with Limited Memory.

[2] Loubna BenAllal, Anton Lozhkov, Elie Bakouch, Leandro vonWerra, and Thomas
Wolf. 2024. SmolLM - blazingly fast and remarkably powerful.

[3] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li,
Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley,
et al. 2022. DeepSpeed-Inference: Enabling Efficient Inference of Transformer
Models at Unprecedented Scale. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2022). 1–15.

[4] Apple. 2023. Metal. https://developer.apple.com/metal/
[5] Adam Barth, Charles Reis, and Collin Jackson. 2008. The Security Architecture

of the Chromium Browser. Technical report (2008).
[6] Weichen Bi, Yun Ma, Yudong Han, Yifan Chen, Deyu Tian, and Jiaqi Du. 2024. Fu-

sionRender: Harnessing WebGPU’s Power for Enhanced Graphics Performance
on Web Browsers. In Proceedings of the ACM on Web Conference 2024 (WWW
2024). 2890–2901.

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models Are Few-Shot Learners.

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM:
An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2018). 578–594.

[9] Zheyi Chen, Junqin Hu, Xing Chen, Jia Hu, Xianghan Zheng, and Geyong Min.
2020. Computation Offloading and Task Scheduling for DNN-Based Applications
in Cloud-Edge Computing. IEEE Access 8 (2020), 115537–115547.

[10] Jan Clusmann, Fiona R. Kolbinger, Hannah Sophie Muti, Zunamys I. Carrero,
Jan-Niklas Eckardt, Narmin Ghaffari Laleh, Chiara Maria Lavinia Löffler, Sophie-
Caroline Schwarzkopf, Michaela Unger, Gregory P. Veldhuizen, et al. 2023. The
future landscape of large language models in medicine. Communications Medicine
3 (2023), 141.

[11] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[12] Hugging face. 2023. Transformers.js. https://huggingface.co/docs/transformers.
js/index

[13] Google. 2018. Process model of chrome. https://developer.chrome.com/blog/inside-
browser-part1

[14] Google. 2023. TensorFlow.js. https://www.tensorflow.org/js
[15] Google. 2024. MediaPipe LLM. https://ai.google.dev/edge/mediapipe/solutions/

genai/llm_inference
[16] Google. 2024. Offcial Demo of MediaPipe LLM. https://mediapipe-studio.webapps.

google.com/demo/llm_inference
[17] Google. 2024. WebAssembly and WebGPU enhancements for faster Web AI. https:

//io.google/2024/explore/4148a1ac-c3a5-43a9-8a3d-f9c2358282e9
[18] Chris Greamo and Anup Ghosh. 2011. Sandboxing and Virtualization: Modern

Tools for Combating Malware. IEEE Security & Privacy 9 (2011), 79–82.
[19] Chris Grier, Shuo Tang, and Samuel T King. 2008. Secure web browsing with the

OP web browser. In IEEE Symposium on Security and Privacy (SP 2008). 402–416.
[20] W3C Community Group. 2024. WebGPU Explainer. https://gpuweb.github.io/

gpuweb/explainer/#background
[21] Hui Guan, Shaoshan Liu, Xiaolong Ma, Wei Niu, Bin Ren, Xipeng Shen, Yanzhi

Wang, and Pu Zhao. 2021. CoCoPIE: Enabling real-time AI on off-the-shelf
mobile devices via compression-compilation co-design. Communications of the
ACM (2021) 64 (2021), 62–68.

[22] Guseul Heo, Sangyeop Lee, Jaehong Cho, Hyunmin Choi, Sanghyeon Lee,
Hyungkyu Ham, Gwangsun Kim, Divya Mahajan, and Jongse Park. 2024. Ne-
uPIMs: NPU-PIM Heterogeneous Acceleration for Batched LLM Inferencing. In
Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2024). 722–737.

[23] Masatoshi Hidaka, Yuichiro Kikura, Yoshitaka Ushiku, and Tatsuya Harada. 2017.
WebDNN: Fastest DNN Execution Framework on Web Browser. In Proceedings of
the 25th ACM International Conference onMultimedia (ACMMM2017). 1213–1216.

[24] YakunHuang, XiuquanQiao, Jian Tang, Pei Ren, Ling Liu, Calton Pu, and Junliang
Chen. 2020. DeepAdapter: A Collaborative Deep Learning Framework for the
Mobile Web Using Context-Aware Network Pruning. In IEEE Conference on
Computer Communications (IEEE INFOCOM 2020). 834–843.

[25] Fucheng Jia, Shiqi Jiang, Ting Cao, Wei Cui, Tianrui Xia, Xu Cao, Yuanchun Li,
Qipeng Wang, Deyu Zhang, Ju Ren, Yunxin Liu, Lili Qiu, and Mao Yang. 2024.
Empowering In-Browser Deep Learning Inference on Edge Through Just-In-Time
Kernel Optimization. In Proceedings of the 22nd Annual International Conference
on Mobile Systems, Applications and Services. 438–450.

[26] Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. 2023. Large Language
Models in Finance: A Survey. In Proceedings of the Fourth ACM International

Conference on AI in Finance (2023). 374–382.
[27] Ruilong Ma, Jingyu Wang, Qi Qi, Xiang Yang, Haifeng Sun, Zirui Zhuang, and

Jianxin Liao. 2023. Poster: PipeLLM: Pipeline LLM Inference on Heterogeneous
Devices with Sequence Slicing. In Proceedings of the ACM SIGCOMM 2023 Con-
ference (SIGCOMM 2023). 1126–1128.

[28] Yun Ma, Dongwei Xiang, Shuyu Zheng, Deyu Tian, and Xuanzhe Liu. 2019.
Moving Deep Learning into Web Browser: How Far Can We Go?. In The World
Wide Web Conference (WWW 2019). 1234–1244.

[29] Microsoft. 2023. ONNX RuntimeWeb. https://onnxruntime.ai/docs/tutorials/web/
[30] mlc ai. 2023. WebLLM. https://webllm.mlc.ai
[31] mlc ai. 2024. Offcial Demo of WebLLM. https://chat.webllm.ai/
[32] Mozilla. 2019. Process model of firefox. https://wiki.mozilla.org/Security/Sandbox/

Process_model
[33] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi

Wang, and Bin Ren. 2020. PatDNN: Achieving Real-Time DNN Execution on
Mobile Devices with Pattern-based Weight Pruning. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 2020). 907–922.

[34] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, et al. 2024. GPT-4 Technical Report.

[35] Carlos Manso Pinto and Carlos Coutinho. 2018. From Native to Cross-Platform
Hybrid Development. In 2018 International Conference on Intelligent Systems (IS).
669–676.

[36] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Brad-
bury, JonathanHeek, Kefan Xiao, Shivani Agrawal, and JeffDean. 2023. Efficiently
Scaling Transformer Inference. In Proceedings of Machine Learning and Systems
(2023), Vol. 5. 606–624.

[37] Mohamed Ragab, Yury Savateev, Helen Oliver, Thanassis Tiropanis, Alexandra
Poulovassilis, Adriane Chapman, and George Roussos. 2024. Unlocking the
Potential of Health Data with Decentralised Search in Personal Health Datas-
tores. In Companion Proceedings of the ACM Web Conference 2024 (WWW 24).
1154–1157.

[38] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi
Chen, Percy Liang, Christopher Re, Ion Stoica, and Ce Zhang. 2023. FlexGen:
High-Throughput Generative Inference of Large Language Models with a Single
GPU. In Proceedings of the 40th International Conference on Machine Learning
(ICML 2023), Vol. 202. 31094–31116.

[39] Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and
Max Ryabinin. 2024. SpecExec: Massively Parallel Speculative Decoding for
Interactive LLM Inference on Consumer Devices.

[40] Deyu Tian, Yun Ma, Yudong Han, Qi Yang, Haochen Yang, and Gang Huang.
2024. WPIA: accelerating DNN warm-up in Web browsers by precompiling
WebGL programs. Frontiers of Computer Science (FCS 2024) 18 (2024), 186–211.

[41] Deyu Tian, Haiyang Shen, and Yun Ma. 2022. Parallelizing DNN inference in
mobile web browsers on heterogeneous hardware. In Proceedings of the 20th
Annual International Conference on Mobile Systems, Applications and Services.
519–520.

[42] European Union. 2021. General data protection regulation. https://gdpr-info.eu/
[43] Vidminas Vizgirda, Rui Zhao, and Naman Goel. 2024. SocialGenPod: Privacy-

Friendly Generative AI Social Web Applications with Decentralised Personal
Data Stores. In Companion Proceedings of the ACM on Web Conference 2024
(WWW 2024). 1067–1070.

[44] W3C. 2023. WebGPU. https://www.w3.org/TR/webgpu/
[45] W3C. 2024. Timeline model of WebGPU. https://gpuweb.github.io/gpuweb/

#programming-model-timelines
[46] Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo. 2023. Tabi: An Efficient

Multi-Level Inference System for Large Language Models. In Proceedings of the
Eighteenth European Conference on Computer Systems (EuroSys 2023). 233–248.

[47] Yuntao Wang, Yanghe Pan, Miao Yan, Zhou Su, and Tom H. Luan. 2023. A Survey
on ChatGPT: AI–Generated Contents, Challenges, and Solutions. IEEE Open
Journal of the Computer Society 4 (2023), 280–302.

[48] Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Mengwei Xu, and
Xuanzhe Liu. 2024. Empowering 1000 Tokens/Second on-Device LLM Prefilling
with Mllm-NPU.

[49] Zhenliang Xue, Yixin Song, Zeyu Mi, Le Chen, Yubin Xia, and Haibo Chen. 2024.
PowerInfer-2: Fast Large Language Model Inference on a Smartphone.

[50] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Cheng-
peng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 Technical
Report.

[51] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong
Li, and Yuxiong He. 2022. ZeroQuant: Efficient and Affordable Post-Training
Quantization for Large-Scale Transformers. In Advances in Neural Information
Processing Systems, Vol. 35. 27168–27183.

[52] Shengyuan Ye, Jiangsu Du, Liekang Zeng, Wenzhong Ou, Xiaowen Chu, Yutong
Lu, and Xu Chen. 2024. Galaxy: A Resource-Efficient Collaborative Edge AI
System for In-situ Transformer Inference. arXiv:2405.17245

9

https://developer.apple.com/metal/
https://huggingface.co/docs/transformers.js/index
https://huggingface.co/docs/transformers.js/index
https://developer.chrome.com/blog/inside-browser-part1
https://developer.chrome.com/blog/inside-browser-part1
https://www.tensorflow.org/js
https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference
https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference
https://mediapipe-studio.webapps.google.com/demo/llm_inference
https://mediapipe-studio.webapps.google.com/demo/llm_inference
https://io.google/2024/explore/4148a1ac-c3a5-43a9-8a3d-f9c2358282e9
https://io.google/2024/explore/4148a1ac-c3a5-43a9-8a3d-f9c2358282e9
https://gpuweb.github.io/gpuweb/explainer/#background
https://gpuweb.github.io/gpuweb/explainer/#background
https://onnxruntime.ai/docs/tutorials/web/
https://webllm.mlc.ai
https://chat.webllm.ai/
https://wiki.mozilla.org/Security/Sandbox/Process_model
https://wiki.mozilla.org/Security/Sandbox/Process_model
https://gdpr-info.eu/
https://www.w3.org/TR/webgpu/
https://gpuweb.github.io/gpuweb/#programming-model-timelines
https://gpuweb.github.io/gpuweb/#programming-model-timelines
https://arxiv.org/abs/2405.17245

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon. Submission Id: 1041

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[53] Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shangguang Wang, and Mengwei
Xu. 2023. EdgeMoE: Fast On-Device Inference of MoE-Based Large Language
Models.

[54] Zhongyi Zhai, Bo Cheng, Zhaoning Wang, Xuan Liu, Meng Liu, and Junliang
Chen. 2016. Design and Implementation: the End User Development Ecosystem
for Cross-platform Mobile Applications. In Proceedings of the 25th International
Conference on World Wide Web (WWW 2016). 143–144.

[55] Junchen Zhao, Yurun Song, Simenl3@uci.edu Simenl3@uci.edu, Ian Harris, and
Sangeetha Abdu Jyothi. 2024. LinguaLinked: Distributed Large Language Model
Inference on Mobile Devices. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (ACL 2024). 160–171.

[56] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,
and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs
for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2020). 863–879.

[57] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020. Flex-
Tensor: An Automatic Schedule Exploration and Optimization Framework for
Tensor Computation onHeterogeneous System. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2020). 859–873.

A BROWSER CONSTRAINTS ON

LEVERAGING GPU

Modern browsers utilize a process-based isolation architecture, seg-
regating kernel processes from content processes where Web appli-
cations run. This architecture ensures a clear separation between
the Web domain and the local environment, protecting against
security threats by confining potentially malicious applications
within the browser sandbox. Additionally, this model ensures that
failures in individual applications do not compromise the entire
browser. This architecture has been adopted by most browsers such
as Chrome, Internet Explorer, Firefox, and Microsoft Edge.

In browsers with such architecture, multiple content processes
are created for individual Web applications. These untrusted pro-
cesses are restricted in their access to system resources, including
the device’s GPU. Any GPU access requested by a Web application
must be mediated via inter-process communication (IPC) with a
kernel-level GPU process. This GPU process operates under re-
duced sandboxing constraints compared to content processes and
is typically shared by multiple applications. To maintain security
and integrity, the GPU process validates every message it receives,
preventing unauthorized access to GPU memory or exploitation
of the shared GPU process. Additionally, the GPU driver is loaded
directly into the GPU process, as the GPU process is responsible
for all direct communication with the GPU hardware. This means
that GPU buffers are mapped only to the virtual memory space of
the GPU process, making them inaccessible to content processes
and limiting the efficiency of buffer reads.

As a result, the design ofWebGPU focus on ensuring security and
maintaining sandbox abstraction to be implementable and efficient
in modern browsers with this single GPU process architecture.

• WebGPU enforces strict validation within the GPU process
when preparing computational resources. The GPU process
must validate all messages according to WebGPU standards
to restrain compromised content processes from malicious
memory access or commands execution.

• Unlike native GPU APIs that are able to map GPU buffers
directly into the memory space of applications, WebGPU
requires an additional staging step to read GPU buffers as
only the GPU process holds GPU drivers. Specifically, when

a Web application issues a map request, shared memory
is required to be allocated within the GPU process. This
shared memory acts as both the destination of mapping
from the GPU memory and the source of mapping to the
memory of application, facilitating the transfer of GPU
buffer data to a space accessible by the content process. This
2-stage approach ensures safely transferring ownership
of the buffer from the GPU to the CPU while increasing
overheads on fetching results from the GPU.

10

	Abstract
	1 Introduction
	2 Background
	2.1 Inference of Large Language Model
	2.2 Workflow of Inferring LLM Using WebGPU

	3 Measurement Study
	4 WeInfer
	4.1 Overview
	4.2 WebGPU Uniform Buffer Reuse
	4.3 Asynchronous Pipeline for Parallelization of Preparation and Execution

	5 Evaluation
	5.1 Setup
	5.2 Result Analysis
	5.3 Ablation Study
	5.4 Hyper-parameter Sensitivity Study

	6 Related Work
	6.1 Web-based LLM Inference Frameworks and Optimizations
	6.2 On-device LLM Inference Optimizations

	7 Conclusion
	References
	A BROWSER CONSTRAINTS ON LEVERAGING GPU

