
Improved and Oracle-Efficient Online ℓ1-Multicalibration

Rohan Ghuge 1 Vidya Muthukumar 2 Sahil Singla 3

Abstract
We study online multicalibration, a framework
for ensuring calibrated predictions across multi-
ple groups in adversarial settings, across T rounds.
Although online calibration is typically studied
in the ℓ1 norm, prior approaches to online mul-
ticalibration have taken the indirect approach of
obtaining rates in other norms (such as ℓ2 and
ℓ∞) and then transferred these guarantees to ℓ1
at additional loss. In contrast, we propose a di-
rect method that achieves improved and oracle-
efficient rates of Õ(T−1/3) and Õ(T−1/4) re-
spectively, for online ℓ1-multicalibration. Our
key insight is a novel reduction of online ℓ1-
multicalibration to an online learning problem
with product-based rewards, which we refer to as
online linear-product optimization (OLPO).

To obtain the improved rate of Õ(T−1/3), we
introduce a linearization of OLPO and design a
no-regret algorithm for this linearized problem.
Although this method guarantees the desired sub-
linear rate (nearly matching the best rate for online
calibration), it is computationally expensive when
the group family H is large or infinite, since it
enumerates all possible groups. To address scal-
ability, we propose a second approach to OLPO

that makes only a polynomial number of calls to
an offline optimization (multicalibration evalua-
tion) oracle, resulting in oracle-efficient online
ℓ1-multicalibration with a rate of Õ(T−1/4). Our
framework also extends to certain infinite families
of groups (e.g., all linear functions on the context
space) by exploiting a 1-Lipschitz property of the
ℓ1-multicalibration error with respect toH.
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1. Introduction
Machine learning algorithms, powered by advances in data
availability and model development, play a crucial role in
decision-making across domains such as healthcare diagnos-
tics, recidivism risk assessment, and loan approvals. This
work focuses on forecasting algorithms that predict, say, the
probability of binary outcomes y (such as patient’s sever-
ity or loan repayment) based on observable features x, in
online settings where predictions are made as data is col-
lected. A key metric used to evaluate the performance of
such probability forecasters is calibration (Dawid, 1982).
Roughly, it says that for any candidate prediction p ∈ [0, 1],
the fraction of forecasts with prediction p should converge
to p. In 1998, the seminal work of Foster & Vohra (1998)
showed a bound of O(T−1/3) for online calibration in the
ℓ1 metric. Since then, this O(T−1/3) bound has been re-
proved through insightful alternative approaches (Abernethy
et al., 2011; Hart, 2022). However, improving this bound
is a challenging open problem that has only recently seen
some progress (Dagan et al., 2025; Qiao & Valiant, 2021).

Despite its popularity, calibration has a major limitation:
calibrated predictions may perform poorly on specific sub-
populations in the data, identifiable through contextual fea-
tures such as gender, race, and age. To address this issue,
Hébert-Johnson et al. (2018) proposed multicalibration, a
framework designed to address discrimination arising from
data in the batch setting. Informally, multicalibration is a
requirement that the forecasts be statistically unbiased con-
ditional both on its own prediction and on membership in
any one of a large collection of intersecting subsets of the
data space H. Multicalibration and its variants have been
an active area of research (see, e.g., Globus-Harris et al.
(2023); Gupta et al. (2022); Jung et al. (2021); Kim et al.
(2019; 2022)). Multicalibration has also found applications
in omniprediction (Gopalan et al., 2022; 2023), a concept
that asks for a single prediction which can be simultaneously
used to optimize a large number of loss functions such that
it is competitive with some hypothesis class H. Approxi-
mately multicalibrated models in the ℓ1 metric turn out to
automatically be omnipredictors, in both the batch (Gopalan
et al., 2022) and online (Garg et al., 2024) settings.

We are especially focused on online multicalibration (Garg
et al., 2024; Gupta et al., 2022), which naturally generalizes
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the fundamental problem of sequential calibration. Existing
approaches first provide multicalibration guarantees in the
(weaker) ℓ∞ or ℓ2 metric, and then transfer these guarantees
to the ℓ1 metric at additional and possibly superfluous loss.
The resulting rates for online ℓ1-multicalibration are signifi-
cantly weaker than those for online calibration. A second
drawback is that the runtime of most existing algorithms
(with the exception of Garg et al. (2024), which we dis-
cuss later) for online multicalibration is typically linear in
|H| (Gupta et al., 2022; Lee et al., 2022) . These algorithms
are hence inefficient in even simple practical scenarios (e.g.
linear functions in d dimensions) where the hypothesis class
is usually exponential in relevant problem parameters.

In light of these considerations, the main motivating ques-
tion of our work is the following:

Is there an online ℓ1-multicalibration algorithm that guar-
antees O(T−1/3) error? Can we design “oracle-efficient”
algorithms for online ℓ1-multicalibration?

In this work, we make progress towards answering both
these questions. We propose a method that achieves
improved and oracle-efficient rates of Õ(T−1/3) and
Õ(T−1/4), respectively, for online ℓ1-multicalibration. Our
key insight is a novel reduction of online ℓ1-multicalibration
to an online learning problem with product-based rewards,
which we refer to as online linear-product optimization
(OLPO). To obtain the improved rate of Õ(T−1/3), we in-
troduce a linearization of OLPO and design a no-regret al-
gorithm for this linearized problem. Although this method
guarantees the desired Õ(T−1/3) rate, it becomes computa-
tionally expensive when the group familyH is large or infi-
nite, since it enumerates all possible groups. To address scal-
ability, we propose a second approach to OLPO that makes
only a single call per round to an offline optimization (mul-
ticalibration evaluation) oracle, resulting in oracle-efficient
online ℓ1-multicalibration with a rate of Õ(T−1/4). Our
framework also extends to certain infinite families of groups
(e.g., all linear functions on the context space) by exploiting
a 1-Lipschitz property of the ℓ1-multicalibration error with
respect toH. We discuss the basic setup of online multical-
ibration, our results and our techniques in the rest of this
section. Due to space limitations, we defer our treatment of
related work to Appendix A.

1.1. Online Multicalibration

We now formally define the problem of online ℓ1-
multicalibration (Garg et al., 2024; Gupta et al., 2022). Let
X denote the context space and Y = [0, 1] denote the label
domain, which we assume to be one-dimensional. Let H
denote a collection of real-valued functions h : X → R. We
useHB =

{
h : maxx∈X |h(x)| ≤ B

}
to denote the set of

functions with maximum absolute value on the context space
bounded by B, and make the mild assumption thatH ⊆ HB

throughout the paper. For n ∈ N, we use [n] to denote the
set of integers {1, . . . , n}. All of our algorithms will con-
sider a discretized set of forecasts P :=

{
0, 1

m , . . . , 1
}

for
some discretization parameter m ∈ N. We use M to denote
the size of P , i.e., M = |P| = m+ 1.

Online prediction proceeds in rounds indexed by t ∈ [T ], for
a given horizon of length T . In each round, the interaction
between a learner and an adversary proceeds as follows:

1. The adversary selects a context xt ∈ X and a corre-
sponding label yt ∈ Y .

2. The learner receives xt, but no information about yt is
revealed.

3. The learner selects a distribution wt and outputs pt ∈
P sampled according to wt.

4. The learner observes yt.

The learner’s interaction with the adversary results in a his-
tory πT = {xt, yt, pt}Tt=1. We make no assumptions about
the adversary; however, the learner is allowed to use ran-
domness in making predictions. This induces a probability
distribution over transcripts, and our goal is to design online
algorithms that have low online ℓ1-multicalibration error in
expectation, which is defined as follows:
Definition 1.1 (ℓ1-Multicalibration Error). Given a tran-
script πT , a function h ∈ H, we define the learner’s online
ℓ1-multicalibration error with respect to h as

K(πT , h) :=
∑

p∈P
1
T

∣∣∣∑t∈S(πT ,p) h(xt) · (yt − pt)
∣∣∣,

where we define S(πT , p) = {t ∈ [T ] : pt = p}. Finally,
we define ℓ1-multicalibration error with respect to the family
H as K(πT ,H) := maxh∈H K(πT , h).

From here on, online multicalibration error will, by default,
refer to online ℓ1-multicalibration error. When clear from
context, we will drop πT and use K(h) or K(H) to denote
the learner’s online multicalibration error.

1.2. Our Results

Our first main result establishes an Õ(T−1/3) rate for online
ℓ1-multicalibration when the hypothesis classH is finite.
Theorem 1.2. There is an algorithm that achieves online
ℓ1-multicalibration error with respect toH with

E[K(πT ,H)] ≤ O
(
BT−1/3

√
log(6T |H|)

)
.

The running time of this algorithm is linear in |H| and
polynomial in T .

This improves over an Õ(T−1/4) bound obtained in Gupta
et al. (2022) via online ℓ∞-multicalibration (without need-
ing to go through “bucketed” predictions), and nearly
matches the best known bound for online calibration (Dagan
et al., 2025).
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Comparison to Noarov et al. (2025). After the initial
submission of this work, it has been brought to our attention
that a similar bound for online ℓ1-multicalibration for finite
hypothesis classH could be derived from Theorem 3.4 of
Noarov et al. (2025). We note that their algorithmic frame-
work is quite different from ours, despite both works using
an expert routine. In particular, their framework requires a
small-loss regret bound to get the result, while a worst-case
regret bound suffices in ours. Additionally, our algorithm is
simpler (e.g. not requiring the solution of any min-max op-
timization problem) and proceeds through a novel reduction
to the OLPO problem (defined in Section 2.1). We believe
that this reduction is of independent interest as it facilitates
the oracle-efficient results in a more natural and modular
way.

Although Theorem 1.2 obtains an Õ(T−1/3) rate for online
ℓ1-multicalibration, it does not apply to infinite-sized hy-
pothesis class H. To address this, our next result obtains
bounds in terms of the “covering number” ofH.

Definition 1.3 (β-cover in L∞ metric, Bronshtein (1976)).
For any function classH, a finite subset of functionsHβ =
{h1, . . . , hN} ⊆ H is a β-cover with respect to the L∞
metric if for every h ∈ H, there exists some i ∈ [N ] such
that maxx∈X |h(x)− hi(x)| ≤ β.

LetHβ denote a smallest possible β-cover forH. We show
that the online multicalibration error for infinite-sized hy-
pothesis classH can be bounded in terms of |Hβ |.
Theorem 1.4. There is an algorithm that achieves online
ℓ1-multicalibration error with respect toH with

E[K(πT ,H)] ≤ O
(
BT−1/3

√
log(6T |Hβ |)

)
+ β.

The running time of this algorithm is linear in |Hβ | and
polynomial in T .

As a consequence of this result, we obtain immediate ap-
plications to polynomial regression and bounded, Lipschitz
convex functions (see Section 3.2 for details). We state one
corollary here for the class of bounded linear functions.

Corollary 1.5. Suppose X = [0, 1]d and H = {h ∈
Rd : ∥h∥1 ≤ B} is the class of bounded linear functions.
Then, there is an algorithm with runtime O((B

√
T )d) that

achieves online ℓ1-multicalibration error with respect toH
with

E[K(πT ,H)] = O
(
Bd1/2T−1/3 log(BT )

)
.

Next, we give an “oracle-efficient” algorithm for online ℓ1-
multicalibration for large hypothesis class H. Our earlier
algorithms need to enumerate overH or its β-cover, both of
which are often exponentially large. We show how this can
be avoided using the following offline oracle.

Definition 1.6 (Offline Oracle). We receive a sequence
of contexts {xs}ts=1 with corresponding reward vectors
{fs}ts=1, coefficients {κs}ts=1, and an error parameter ϵ >
0. The offline oracle returns a solution (h∗,θ∗) ∈ H × Θ
that approximately solves, up to an additive error ϵ,

maxh∈H,θ∈{±1}M

{∑t
s=1 κs ⟨θ, h(xs) · fs⟩

}
.

Given such an oracle, our main result is the following.

Theorem 1.7. There is an algorithm that achieves oracle-
efficient online ℓ1-multicalibration with respect to a binary-
valuedH : X → {0, 1} with

E[K(πT ,H)] ≤ Õ
(
T−1/4

√
log(T )

)
,

under the assumptions of either transductive or sufficiently
separated contexts (Syrgkanis et al., 2016) (see Section 4.2
for formal definitions). Moreover, this algorithm requires
only a single call to the offline oracle per round.

This result improves over the Õ(T−1/8) bound obtained
in Garg et al. (2024), who also provide an oracle-efficient
multicalibration algorithm but require access to an online
regression oracle. Our oracle is equivalent to evaluating the
online ℓ1-multicalibration error for a sequence of prediction
in a one-shot manner — essentially, an offline oracle. Of-
fline oracles are considered to be easier than online oracles.
The assumptions in Theorem 1.7 on contexts and of binary-
valued H are required to make the oracle implementable
while maintaining the “stability” of the online algorithm,
and are also commonly used in oracle-efficient online learn-
ing (Dudı́k et al., 2020; Syrgkanis et al., 2016). We also
provide a generic “black-box” bound in Theorem 4.4.

1.3. Our Techniques

At the heart of our approach is a novel reduction of on-
line ℓ1-multicalibration to an online learning problem with
product-based rewards, which we refer to as online linear-
product optimization (OLPO). In particular, we show that
any learning algorithm for OLPO with regret RT (L;H) can
be efficiently transformed into an algorithm with online ℓ1-
multicalibration error RT (L;H), up to a small error (see
Theorem 2.1). This reduction is crucial in both our improved
and oracle-efficient rates for online ℓ1-multicalibration.

Improved Rates. Our first set of results establish
the best-known information-theoretic rates for online ℓ1-
multicalibration, beginning with the case of a finite-sized
hypothesis class. We achieve this by designing a no-regret
algorithm for OLPO. The main challenge in solving OLPO is
that it is unclear apriori how to perform online optimization
on a reward function that involves a product of variables.
To address this, we define an online linear optimization
problem in a higher-dimensional space and show that OLPO
reduces to this problem, thereby effectively linearizing the
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reward structure—at the cost of enumerating over all h ∈ H.
We denote this new problem as Lin-OLPO (or linearized
online linear-product optimization problem). The reduction
from OLPO to Lin-OLPO introduces two issues. The first
issue is that we need to ensure that the best fixed actions
in OLPO and Lin-OLPO remain consistent. To address this,
we introduce a specific mixed norm and restrict the set of
actions of Lin-OLPO to a unit ball in this mixed norm. The
second issue is that the expanded decision space may in-
troduce better actions for Lin-OLPO that are not valid in
OLPO. To resolve this, we appropriately scale decisions as
we translate them from Lin-OLPO to OLPO, ensuring consis-
tency between the action spaces of OLPO and Lin-OLPO (see
Lemma 3.2).

Next, we design a no-regret algorithm for Lin-OLPO with
the mixed-norm constraint that carefully combines two com-
ponents: (i) a reward-maximizing no-regret online linear
optimization (OLO) algorithm (e.g., online gradient de-
scent), and (ii) a reward-maximizing no-regret algorithm
for the experts setting (e.g., multiplicative weights update).
Our approach runs |H| instances of the OLO algorithm
in parallel. Each OLO instance executes the action opti-
mal for calibration with respect to a specific hypothesis
h ∈ H. Meanwhile, the experts algorithm identifies hy-
potheses that appear “more difficult” with respect to cali-
bration error—where difficulty is measured using the cu-
mulative reward of the corresponding OLO algorithm. We
obtain the final guarantee by analyzing the regret of this
algorithm (see Lemma 3.3) and combining it with the two
earlier reductions.

To transfer these bounds to an infinite-sized hypothesis class
H (Theorem 1.4), we first show that online multicalibration
error is 1-Lipschitz with respect toH. Then, we construct an
appropriate covering of the hypothesis classH, and appeal
to online ℓ1-multicalibration rates for finiteH.

Oracle Efficiency. A plethora of oracle-efficient online
learning algorithms have been developed in the last decade,
with the aim of efficient online regret minimization given an
offline optimization oracle (Daskalakis & Syrgkanis, 2016;
Dudı́k et al., 2020; Syrgkanis et al., 2016). We cannot easily
adapt these frameworks to Lin-OLPO, primarily because the
algorithm needs to maintain and access |H| parallel copies
of OLO algorithms, even if Step (ii) above is made efficient.
Fundamentally, Lin-OLPO operates in an augmented space
that is linear in |H| and therefore intractable.

We instead adapt the oracle-efficient framework directly to
the OLPO problem, circumventing the need to access the aug-
mented Lin-OLPO structure. We leverage the generalized
Follow-the-Perturbed-Leader family of algorithms (Dudı́k
et al., 2020) and show that, remarkably, a regret bound for
OLPO can be derived using similar techniques as in Dudı́k
et al. (2020) using certain special properties of the OLPO

structure. Specifically, it suffices to restrict decisions for
OLPO to the Boolean hypercube; i.e., {±1}M . This allows
us to ultimately prove Theorem 1.7.

2. Reducing Multicalibration to OLPO
In this section, we show how to efficiently reduce online
multicalibration to an online learning problem with product-
based rewards, which we refer to as online linear-product
optimization (OLPO), and define next. This reduction will
be crucial to our improved rates for online multicalibration.
We note that there is precedent for connections between
calibration and regret; in particular, (Abernethy et al., 2011)
provided a simpler reduction between calibration and online
linear optimization.

2.1. Online Linear-Product Optimization

We formally define the online linear-product optimization
problem (OLPO). Let X denote the context space and let
hypothesis class H ⊆ HB be a collection of B-bounded
real-valued functions h : X → R. Let B∞ ⊆ RM denote
the unit cube, i.e., B∞ = {θ ∈ RM : ∥θ∥∞ ≤ 1}. The set
H× B∞ will denote an action set. In each round t ∈ [T ]:

1. Learner plays a function ht ∈ H and vector θt ∈ B∞.
2. Adversary then reveals a context xt and a reward vector

ft ∈ RM .
3. Learner then receives reward ⟨θt, ht(x) · ft⟩.

Note that this is not a standard online linear optimiza-
tion problem since it involves a product of variables.
We will use L to denote a generic algorithm for OLPO.
This algorithm takes as input a sequence of vectors
(x1,f1), . . . , (xt−1,ft−1) and returns a pair (ht,θt) ∈
H × B∞. We denote by RT (L; (x1,f1) . . . , (xT ,fT );H)
the regret of L when compared to the best fixed ac-
tion (h∗,θ∗). Formally, RT (L; (x1,f1) . . . , (xT ,fT );H)
equals: maxh∗∈H,θ∗∈B∞

{∑T
t=1 h

∗(xt) · ⟨θ∗,ft⟩
}
−∑T

t=1 ht(xt)·⟨θt,ft⟩. When the input sequence is clear, we
will omit it from the definition and simply write RT (L;H).

Recall that in online multicalibration, the learner receives
a context xt in each round t ∈ [T ] and makes a prediction
pt ∈ P = [1/m] according to some distribution wt. Then,
wt is a M -dimensional probability vector (recall that M =
|P|), where wt(i) represents the probability that pt equals
i/m. The main result of this section shows that an algorithm
for OLPO can be efficiently converted into an algorithm for
online ℓ1-multicalibration.

Theorem 2.1. Let L be an algorithm for OLPO for some col-
lectionH ⊆ HB with expected regret denoted by RT (L;H).
Then, there is a sequential prediction algorithm with online
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ℓ1-multicalibration error with respect toH bounded by

B
m + RT (L;H)

T + 4B
√

m log(6T |H|)
T + 4mB

T . (1)

Moreover, this algorithm is efficient; its running time is
polynomial in the running time of L, the discretization pa-
rameter m, and T .

We will instantiate Theorem 2.1 with different online learn-
ing algorithms for OLPO in Section 3 and Section 4. In the
remainder of this section, we outline the reduction and proof
sketch of Theorem 2.1. In this reduction, the context space
X and the collection of functions H remain unchanged.
The key steps will involve utilizing the fact that the actions
are in H × B∞ and carefully setting the reward vectors
f1,f2, . . . ,fT ∈ RM .

2.2. The Reduction

In order to convert an algorithm for OLPO into an online
multicalibration algorithm, we need a “halfspace oracle”.
One such oracle was used to reduce calibration to Blackwell
approachability (and subsequently to no-regret learning) in
(Abernethy et al., 2011).

Definition 2.2 (Halfspace Oracle). We assume access to an
efficient halfspace oracle O that can, given x ∈ X , h ∈ H
and θ ∈ B∞, select a probability distribution w ∈ RM with
∥w∥1 = 1 such that for all y ∈ Y , we have∑m

i=0 θ(i) · h(x) ·w(i) ·
(
y − i

m

)
≤ B

m .

A surprising result of (Abernethy et al., 2011) shows that
an efficient halfspace oracle always exists in the context of
calibration for Y = [0, 1]. We show that this result extends
to our setting, i.e., given h and x, the oracle construction
remains unchanged. See Appendix B.3 for details.

Lemma 2.3 (Algorithm 4). Given any x ∈ X , h ∈ H, and
θ ∈ B∞, there exists an efficient halfspace oracle.

We are now ready to describe our multicalibration algorithm.

Multicalibration Algorithm. At each round t ∈ [T ], the al-
gorithm randomly predicts pt according to some distribution
wt ∈ RM . The distribution wt is obtained using a combina-
tion of the output of the learning algorithm L for OLPO and
the halfspace oracle O. In particular, given previous con-
texts x1, . . . ,xt−1 and previous vectors f1, . . . ,ft−1, let
(ht,θt) denote the action selected by L in round t. The pre-
diction distribution for current context xt is now obtained
using the halfspace oracle: wt = O(xt, ht,θt). Finally,
after observing yt, define ft := ft(wt, yt) where

ft(wt, yt)i = wt(i) ·
(
yt − i

m

)
. (2)

We formally describe the reduction in Algorithm 1.

Algorithm 1 ONLINE ℓ1-MULTICALIBRATION

1: for t = 1, . . . T do
2: observe xt.
3: query the OLPO algorithm:

(ht,θt)← L((x1,f1), . . . , (xt−1,ft−1)).
4: query the halfspace oracle: wt ← O(xt, ht,θt).
5: predict pt ∼ wt and observe yt.
6: ft ← ft(wt, yt) as per (2)
7: end for

Proof Sketch of Theorem 2.1. We first relate the expected
multicalibration error for any group h to ∥ 1

T

∑T
t=1 h(xt) ·

ft∥1 through a martingale argument (see (8)). Then, using
the definition of the dual norm,∥∥∥∥∥ 1T

T∑
t=1

h(xt) · ft

∥∥∥∥∥
1

=
1

T
sup

∥θ∥∞≤1

〈
θ,

T∑
t=1

h(xt) · ft

〉
.

Thus, the overall multicalibration error can be (roughly)
related to the reward of the corresponding instance of OLPO.
We include the complete proof of Theorem 2.1 in Ap-
pendix B.1.

3. Improved Online Multicalibration
In this section, we give upper bounds for online multicali-
bration foregoing computational complexity considerations.
In Section 3.1, we consider the case of a finite hypothesis
classH and provide upper bounds through the design of an
appropriate no-regret algorithm for OLPO. Combined with
Theorem 2.1 and Lemma 3.2, this yields sublinear bounds
for online multicalibration when the hypothesis classH is
finite, proving Theorem 1.2. In Section 3.2, we describe
the changes necessary to handle an infinite-sized hypothesis
classH and prove Theorem 1.4.

3.1. Online Multicalibration for Finite Groups

We describe a no-regret algorithm for OLPO in the case
where the hypothesis class H is finite. The key idea is to
introduce an online linear optimization problem in a higher-
dimensional space, and to subsequently reinterpret OLPO in
terms of this problem. We denote this problem as Lin-OLPO
(or linearized online linear-product optimization problem).
We set up some preliminaries to define Lin-OLPO. We index
the elements of H by h(1), h(2), . . . h|H|. Given a vector
z ∈ R|H|×M , let z(h) denote the M -dimensional sub-vector
of z indexed by h ∈ H. Then, we define the mixed norms:

∥z∥1,∞ :=
∑
h∈H

∥z(h)∥∞ and ∥z∥∞,1 := max
h∈H
∥z(h)∥1

and use B1,∞ = {θ̃ : ∥θ̃∥1,∞ ≤ 1} and B∞,1 = {f̃ :

∥f̃∥∞,1 ≤ 1} to denote a unit in the respective norms.

We now define Lin-OLPO, which is an online linear opti-
mization problem over B1,∞.
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Definition 3.1 (Lin-OLPO). In round t ∈ [T ] of Lin-OLPO,
the learner plays (a possibly random) action θ̃t ∈ B1,∞. The
adversary reveals a reward vector f̃t ∈ B∞,1, which leads

to a linear reward
〈
θ̃t, f̃t

〉
. The goal of an online learning

algorithm for Lin-OLPO, denoted henceforth by L̃, is to min-
imize the regret. The regret, denoted by RLin-OLPO

T (L̃;B1,∞),
equals:

maxθ̃∈B1,∞

〈
θ̃,
∑T

t=1 f̃t

〉
−
∑T

t=1 E
[〈

θ̃t, f̃t

〉]
,

where the expectation is taken over possible randomness in
θ̃t.

We now present a reduction from OLPO to Lin-OLPO. Re-
call that the primary challenge with OLPO is that the reward
function involves a product of variables. However, by ap-
propriately “expanding” the reward vectors f1,f2, . . . , and
the decision space to cover all possible h ∈ H, we can
effectively linearize the reward function, aligning it with the
structure of Lin-OLPO. This linearization introduces two
key challenges: (1) the need to ensure that the best fixed
actions in OLPO and Lin-OLPO remain consistent, and (2)
preventing the expanded decision space in Lin-OLPO from
introducing “better” actions that cannot be captured by OLPO
(see Section 1.3 for a more detailed discussion).

Lemma 3.2. Let L̃ be an online learning algo-
rithm for Lin-OLPO with corresponding expected regret
RLin-OLPO

T (L̃;B1,∞). Then, there exists a randomized learn-
ing algorithm L for OLPO with the decision set HB × B∞
such that its expected regret RT (L;HB) = B · L ·
RLin-OLPO

T (L̃; B̃1,∞), where L = maxt∈[T ]{∥ft∥1} is the
maximum ℓ1-norm of the reward vectors in the OLPO in-
stance.

We defer the proof of this lemma to Appendix C.1.

We now present a no-regret algorithm for Lin-OLPO whose
runtime per round is linear in |H|.

Algorithm. Our algorithm for Lin-OLPO relies on two com-
ponents: (i) a reward-maximizing no-regret online linear
optimization algorithm, denoted by A (e.g., online gradi-
ent descent), and (ii) a reward-maximizing no-regret algo-
rithm for the experts setting, denoted E (e.g., multiplicative
weights update). Our algorithm will execute |H| copies of
A, one for each h ∈ H; that is, we treat each function h as
an expert who runs their own copy of A, denoted Ah, each
measuring regret against the action set B∞. Subsequently,
the predictions made by Ah are aggregated using E . At a
high level, each of the OLO algorithms Ah executes the ac-
tion we would want to take if we were only concerned about
calibration with respect to the specific hypothesis h, and the
experts algorithm E selects for hypotheses that seem “more
difficult” with respect to calibration error (where our proxy

for calibration error is precisely the cumulative reward of
the corresponding OLO algorithm). See Algorithm 2 for a
formal description.

Algorithm 2 LINEARIZED ONLINE LINEAR-PRODUCT
OPTIMIZATION

1: Input: OLO algorithm A, experts algorithm E
2: start instances A1, . . . ,A|H|, one for each h ∈ H
3: for t = 1, . . . T do
4: obtain prediction θh

t from Ah, for h ∈ H
5: query E to obtain distribution γt

6: let ht = h with probability γt(h); predict θt = θht
t

7: observe reward vector f̃t

8: for h ∈ H, pass reward f̃t(h) to Ah

9: for h ∈ H, pass reward ⟨θh
t , f̃t(h)⟩ to E

10: end for

In Algorithm 2, we will use the popular online gradient de-
scent algorithm as our reward-maximizing no-regret online
linear optimization algorithm, which is known to have regret
O(DG/

√
T ) where D denotes the ℓ2 diameter of the action

set and G denotes the ℓ2-norm of the largest reward vec-
tor (Hazan et al., 2016). For the experts algorithm E , we use
the familiar multiplicative weights update algorithm which
provides regret O(ρ

√
Tn) when rewards are bounded in

[−ρ, ρ] and n denotes the number of experts. Consequently,
we obtain the following guarantee.

Lemma 3.3. The regret RLin-OLPO
T (L̃;B1,∞) of Algorithm 2

can be bounded as follows.

RLin-OLPO
T (L̃;B1,∞) ≤

√
T log |H|+

√
TM.

Proof Sketch. At a high level, the regret bound proceeds
by first applying the regret bound for the multiplicative
weights update algorithm, and then subsequently applying
the no-regret property given by each instantiation, i.e., for
each h ∈ H, of the online gradient descent algorithm. We
provide the detailed proof in Appendix C.2.

We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Using Theorem 2.1, Lemma 3.2 and
Lemma 3.3, E[K(πT ,H)] ≤ 7BT−1/3

√
log(6T |H|) +

5BT−1/2
√

log |H| = O
(
BT−1/3

√
log(6T |H|)

)
, where

the penultimate inequality uses M ≤ 2m, and the final in-
equality uses L ≤ 1 as per the reduction in Theorem 2.1
and m = T 1/3.

3.2. Extending to Infinitely Many Groups
We now describe the necessary changes to obtain improved
bounds for online multicalibration for infinite-sized hypoth-
esis class H. At a high-level, our approach reduces to the
finite setting by constructing an appropriate covering of the
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hypothesis class H. Then, it uses the simple fact that the
online multicalibration error is 1-Lipschitz w.r.t. H.

Recall our definition of covering with respect to the L∞
metric (Definition 1.3). We say that a subset Hβ =
{h1, . . . , hN} ⊆ H is a β-cover with respect to the L∞
metric if for every h ∈ H, there exists some i ∈ [N ] such
that ∥h − hi∥L∞ = maxx∈X |h(x) − hi(x)| ≤ β. Hence-
forth, we denoteHβ and |Hβ | as the minimal β-cover and
the corresponding β-covering number respectively of H,
referring to the ℓ∞ metric by default. With this definition
in hand, the key steps for our extension to an infinite-sized
hypothesis classH are as follows:

1. We begin by replacingH withHβ for some β > 0 and
subsequently appealing to Theorem 1.2 to bound the
online multicalibration error with respect toHβ .

2. Then, by showing that the online multicalibration error
is 1-Lipschitz with respect toH in the L∞ metric, we
can conclude that the prediction is indeed multicali-
brated with respect toH up to the additional error term
β (see Lemma 3.4).

3. Finally, we appropriately set β = o(T )
T (in a manner

that optimally balances the terms
√
log |Hβ | and β

in the multicalibration error). We instantiate the last
step with various examples of linear, polynomial, and
uniformly Lipschitz convex function classes.

The main result of this section shows that any algorithm that
is multicalibrated with respect toHβ is also multicalibrated
with respect toH ⊆ HB up to an additional error of β.

Lemma 3.4. LetH denote a collection of real-valued func-
tions h : X → R and let Hβ denote a β-cover of H with
respect to the L∞ metric. If a sequence of predictions is
multicalibrated with respect toHβ , then it is also multicali-
brated with respect toH, up to an additive β. Formally, if
K(πT ,Hβ) ≤ α, then K(πT ,H) ≤ α+ β.

The proof of this lemma can be found in Appendix C.3. We
can now complete the proof of Theorem 1.4 using Theo-
rem 1.2 and Lemma 3.4.

Proof of Theorem 1.4. Fix an h ∈ H, and let h′ ∈
Hβ such that maxx∈X |h(x) − h′(x)| ≤ β. Then,
E[K(πT , h)] = E[K(πT , h

′)] +E[K(πT , h)−K(πT , h
′)]

≤ O(BT−1/3
√

log(6T |Hβ |)) + β, where the first term is
bounded by Theorem 1.2 on the class Hβ and the second
term follows from Lemma 3.4 sinceHβ is a β-cover.

We apply this result to specific function classes that are
known to have bounded covering numbers, namely, to poly-
nomial regression and to bounded, uniformly Lipschitz,
convex functions. The class of bounded linear functions is
subsumed by the polynomial regression class (when k = 1),

for which we obtain Corollary 1.5. See Appendix C.4 for
details.

4. Oracle Efficient Online Multicalibration
In this section, we explore approaches to computationally
efficient online multicalibration and ultimately prove Theo-
rem 1.7. We do this by adopting the framework of oracle
efficiency (Daskalakis & Syrgkanis, 2016; Hazan & Koren,
2016; Syrgkanis et al., 2016) for the online linear-product
optimization problem (OLPO) arising from the reduction in
Theorem 2.1. In particular, we design an online learning al-
gorithm for OLPO that makes a single call to an optimization
oracle per round1 and does not need to access the augmented
Lin-OLPO structure. We recall the definition of our oracle.

Definition 4.1 (Offline Oracle). The offline oracle receives
a sequence of contexts {xs}ts=1 with corresponding reward
vectors {fs}ts=1, coefficients {κs}ts=1, and an error param-
eter ϵ > 0. The oracle returns a solution (h∗,θ∗) ∈ H ×Θ
that approximately solves, up to an additive error ϵ,

maxh∈H,θ∈Θ

{∑t
s=1 κs ⟨θ, h(xs) · fs⟩

}
. (3)

Note that the oracle can handle input of variable length,
i.e., the number of rounds t itself is an implicit input to the
optimization oracle.

In the introduction, we claimed that solving (3) essentially
amounts to evaluating approximate multicalibration error.
To see this, suppose we call the oracle with input length
equal to T and set κt = 1 for all t ≤ T . Then, for a
fixed h ∈ H, we have maxθ∈Θ

∑T
t=1 ⟨θ, h(xt) · ft⟩ =

maxθ∈Θ

〈
θ,
∑T

t=1 h(xt) · ft

〉
=

∥∥∥∑T
t=1 h(xt) · ft

∥∥∥
1
,

and the argument θ that maximizes the above is expressible
in closed form. Maximizing this quantity over h ∈ H yields
the approximation to the multicalibration error with respect
to the family H that is defined in Equation (8) (where the
approximation error is upper bounded in Lemma B.1).

In the remainder of this section, we design an oracle-
efficient online learning algorithm for OLPO that relies on
the oracle defined in (3). In Section 4.2, we provide explicit
efficient constructions of the oracle under the assumption
that the contexts {xt}Tt=1 satisfy either the transductive or
small-separator conditions, both of which are commonly
made assumptions in oracle-efficient online learning (Dudı́k
et al., 2020; Syrgkanis et al., 2016). We restate these as-
sumptions for completeness in Section 4.2.

We first make an observation tailored to the decision set
B∞: recall that in round t ∈ [T ], the learner in OLPO plays

1Note that we can think of oracle calls requiring O(1) time,
as we have dispatched computational effort to the optimization
oracle.
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(ht,θt) ∈ H ×B∞. For any h ∈ H, we have

argmaxθ∈B∞

{∑T
t=1 h(xt) · ⟨ft,θ⟩

}
∈ {±1}M .

Based on this observation, we restrict our decisions to the
Boolean hypercube; i.e., θt ∈ {±1}M , and note that for
any learning algorithm L for OLPO, the regret remains un-
changed. We also allow actions θt to be randomized; as
a result, E[θt] can and will lie in the interior of {±1}M .
Accordingly, we will assume the optimization oracle returns
a solution (h∗,θ∗) ∈ H × {±1}M satisfying (3).

4.1. Online Multicalibration via Admissibility and
Implementability

We now give an algorithm for OLPO that is situated in the
generalized Follow-the-Perturbed-Leader (GFTPL) frame-
work (Dudı́k et al., 2020), and describe the conditions under
which it can be made efficient with respect to the oracle in
Definition 4.1. In particular, our algorithm will ultimately
require only a single oracle call per round. The algorithm is
roughly constructed in two steps.

The first step is to design an algorithm in the GFTPL frame-
work that obtains sublinear regret. The main idea is to draw
a lower-dimensional random vector α ∈ RN where each
αj is drawn independently from an appropriate distribu-
tion, and N ≪ |H|—essentially, we will think of runtime
that is linear in N to be acceptable. The payoff of each of
the algorithm’s actions is perturbed by some linear combi-
nation of α as given by a perturbation translation matrix
Γ ∈ [−B,B](|H|×2M )×N (note that |H| × 2M denotes the
size of the action space of the algorithm). In each round
t ∈ [T ], the algorithm selects (ht,θt) ∈ H × {±1}M to
approximately maximize:

max
h∈H,θ∈{±1}M

{
t−1∑
s=1

⟨θ, h(xs) · fs⟩+α · Γ(h,θ)

}
(4)

up to an additive error ϵ > 0. We will show that is equiv-
alent to the oracle (3) in Definition 4.1 (refer to the “im-
plementability condition in Definition 4.3). This algorithm
is described in Algorithm 3, and is no-regret up to the er-
ror of the oracle ϵ as long as Γ satisfies the following δ-
admissibility condition.

Definition 4.2 (δ-admissibility (Dudı́k et al., 2020)). A
translation matrix Γ is δ-admissible if its rows are distinct,
and distinct elements within each column differ by at least δ.
Formally, in our framework, for every pair (h,θ) ̸= (h′,θ′)
we need Γ(h,θ) ̸= Γ(h′,θ′) and for every j ∈ [N ] we either
have Γ(h,θ),j = Γ(h′,θ′),j or |Γ(h,θ),j − Γ(h′,θ′),j | ≥ δ.

It turns out that the aforementioned δ-admissibility condi-
tion suffices to design an algorithm that obtains an over-
all regret guarantee of O(N

√
T/δ + ϵT ). However, this

Algorithm 3 Generalized FTPL for OLPO

1: Input: perturbation matrix Γ ∈ [0, 1](|H|×2M )×N , and
accuracy ϵ > 0

2: randomness α = (α1, · · · , αN ): αi ∼ Unif[0,
√
T ]

3: for t = 1, . . . , T do
4: select (ht,θt) ∈ H × {±1}M per (4)
5: observe context xt and reward vector ft,
6: receive payoff ⟨θt, ht(xt) · ft⟩
7: end for

does not yet guarantee oracle-efficiency since a naive con-
struction of Γ would require space that is linear in |H| and
exponential in M . Thus, we need the property that the per-
turbations to each action (h,θ) can be simulated efficiently
through the optimization oracle (3); that is, without needing
to actually access Γ. This requirement is captured by the
implementability condition, stated next.

Definition 4.3 (Implementability). A translation matrix Γ
is implementable with complexity D if for any realization
of the random vector α, there exists a set of coefficients
{κj}Dj=1 and vectors {f̂j}Dj=1 (both of which will depend on
α) such that we can express, for all (h,θ) ∈ H × {±1}M ,

α · Γ(h,θ) =
∑D

j=1 κj ·
〈
θ, h(xj) · f̂j

〉
. (5)

Crucially, this allows us to simulate (4) by (5) (which is the
oracle in Definition 4.1). We note that the definition differs
slightly from the definition in Dudı́k et al. (2020) but they
can be shown to be equivalent, and this definition turns out
to be slightly more convenient to work with in the proof.

The main theorem of this section shows that the GFTPL
framework achieves sublinear regret for OLPO.

Theorem 4.4. Consider the instance of OLPO with the de-
cision set H × {±1}M . Suppose that the perturbation
translation matrix Γ ∈ [−B,B](|H|×2M )×N satisfies δ-
admissibility and satisfies implementability with complexity
D. Then, Algorithm 3 executed with ϵ = 1/

√
T satisfies the

expected regret RT (L;H) guarantee

RT (L;H) ≤ O
(

B2N
√
T

δ

)
. (6)

Furthermore, this algorithm requires a single oracle call
per round, and the per-round complexity is O(T +ND).

The proof of Theorem 4.4 is provided in Appendix D.1. The
key steps are similar to the analysis of the GFTPL algorithm
in (Dudı́k et al., 2020), i.e., the analysis includes characteriz-
ing an approximation error term and stability error term. We
note that combining (6) with Theorem 2.1 gives a “black-
box” algorithm for obtaining online ℓ1-multicalibration
given a δ-admissible and implementable Γ.

8



Improved and Oracle-Efficient Online ℓ1-Multicalibration

4.2. Our Admissible and Implementable Constructions

In this section, we give settings in which one can explicitly
construct a Γ matrix that is admissible and implementable.
Specifically, we will give efficient algorithms for the trans-
ductive setting and the small-separator setting, defined next.
We also assume in this section thatH is binary-valued, i.e.,
h : X → {0, 1} for all h ∈ H.

Transductive Setting. In the transductive setting, the
learner has access to the set X from which contexts will be
drawn. Formally, we will say that X = {x1, . . . ,xD} and
that at each round t, the context xt ∈ X .

Small-Separator Setting. In the small-separator setting,
we assume access to a small set of contexts X , called a
separator. Let X = {x1, . . . ,xD}, and we have that for
any two groups h, h′ ∈ H, there exists a feature x ∈ X
such that h(x) ̸= h′(x).

These settings are commonly used, even for the simpler
problem of oracle-efficient online prediction (Dudı́k et al.,
2020; Syrgkanis et al., 2016), and have since been built on
to ensure oracle-efficient online learning under smoothed
data or transductive learning with hints2 (Block et al., 2022;
Haghtalab et al., 2022). We are now ready to define our con-
struction of the translation matrix Γ for these two settings.
In particular, we prove the following (which proves Theo-
rem 1.7 by combining with Theorem 2.1 and Theorem 4.4).

Lemma 4.5. In the transductive and small-separator set-
tings, there exists a perturbation translation matrix Γ ∈
[−B,B](|H|×2M )×(DM) that is 1-admissible and imple-
mentable with complexity D.

The proof of Lemma 4.5 is deferred to Appendix D.2. We
now examine implications of Lemma 4.5 for oracle-efficient
multicalibration. Plugging in δ = 1 and N = DM into the
statement of Theorem 4.4, and appealing to the reduction in
Theorem 2.1 gives us

E[K(πT ,H)] ≤
B

m
+O

(
BDM

√
T
)

+ 4B

√
m log(6T |H|)

T
+

4mB

T
.

Finally, setting the allowable error in the optimization oracle
to ϵ = 1

M = 1
T 1/4 and using M = m+ 1 gives us

E[K(πT ,HB)] ≤ O
(
BDT−1/4

√
log(T |H|)

)
,

which is the bound stated in Section 1.2. In Section 4.2,
we give settings where one can construct a Γ matrix that

2While it is conceivable that our approach could be extended
to these more complex settings as well, we do not pursue this path
in this paper.

is admissible and implementable. Specifically, we give
efficient algorithms for the transductive and small-separator
settings whenH is binary-valued, i.e., h : X → {0, 1} for
all h ∈ H, and prove Theorem 1.7.

Potential improvements and extensions of analysis. It
is natural to ask about the extent to which the assumptions
we have made — access to the offline oracle, binary-valued
H and either transductive or sufficiently separated data —
can be weakened or improved. We begin by noting that our
proofs will directly work given a “C-approximate oracle”
(3) (to prove C-approximate regret, which would suffice
for our reduction in Theorem 2.1) since they rely on the
GFTPL framework of Dudı́k et al. (2020) in a black-box
manner. Two concurrent recent works (Block et al., 2022;
Haghtalab et al., 2022) showed that the generalized FTPL
framework can provide oracle-efficient regret bounds for on-
line supervised learning on infinite-sized hypothesis classes
with bounded VC dimension (in the case of binary labels)
or pseudodimension (in the case of real-valued labels) if
the contexts are smoothed with respect to some known base
probability measure. We believe that adapting their proof
technique, especially for the stability term, to the OLPO in-
stance is an interesting direction for future work.

At a more fundamental level, the discrepancy in rates be-
tween inefficient and oracle-efficient multicalibration arises
solely from the linear dependence on m (or M ) in the regret
bound of oracle-efficient OLPO, as compared to the O(m1/2)
dependence in the inefficient OLPO implementation. Improv-
ing the dependence on m in the oracle-efficient regret bound
would require improving the regret analysis of (Dudı́k et al.,
2020), which would be of independent interest.
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A. Further Related Work
Calibration. The notion of (sequential) calibration has been extensively studied in statistical learning and forecasting (Dawid,
1982; Foster & Vohra, 1998; Hart, 2022). Dawid (1982) introduced the notion of calibration, and Foster & Vohra (1998)
showed the existence of an algorithm capable of producing calibrated forecasts in an online adversarial setting. Subsequently,
numerous algorithms were discovered for calibration; see, for example, Foster & Kakade (2006); Fudenberg & Levine
(1999); Hart & Mas-Colell (2000); Perchet (2009); Sandroni (2003); Sandroni et al. (2003). Foster (1999) has given a
calibration algorithm based on Blackwell approachability, while Abernethy et al. (2011) showed a connection between
calibration and no-regret learning (via Blackwell approachability).

Multicalibration. The concept of multicalibration extends standard calibration by requiring calibrated predictions not just
overall, but across multiple subpopulations defined by a hypothesis class. This notion was first introduced by Hébert-Johnson
et al. (2018) in the batch setting. They showed that multicalibrated predictors could provide strong fairness guarantees
while maintaining predictive accuracy. Since then, multicalibration and some analogous notions have been studied; for
example, Kim et al. (2019) study multiaccuracy, Jung et al. (2021) give algorithms for moment multicalibration, and Gupta
et al. (2022) investigates quantile multicalibration. Another line of work explores the connection between multicalibration
and omniprediction (Garg et al., 2024; Gopalan et al., 2022; 2023). Omniprediction is a paradigm for loss minimization
that was introduced in Gopalan et al. (2022). Informally, an omnipredictor is a prediction algorithm that could be used
for minimizing a large class of loss functions such that its performance is comparable to some benchmark class of models
F . Gopalan et al. (2022) show that we can reduce omniprediction to a ℓ1-multicalibration. In particular, if a prediction
algorithm is multicalibrated (in the ℓ1 metric) with respect to some benchmark class of modelsH, then it is an omnipredictor
with respect to all Lipschitz convex losses and the classH. The problem of online omniprediction was introduced in Garg
et al. (2024), and they used similar ideas to that of Gopalan et al. (2022) and Globus-Harris et al. (2023) to show that online
omniprediction can be reduced to online ℓ1-multicalibration. Furthermore, they provided an efficient reduction from online
multicalibration to online squared error regression overH, yielding oracle-efficient algorithms for online ℓ1-multicalibration
and, consequently, for online omniprediction. Other works have also explored online multicalibration under different
settings; for example, Gupta et al. (2022) and Lee et al. (2022) provided algorithms that guarantee online multicalibration in
the ℓ∞ metric.

Oracle Efficient Algorithms and Online Multigroup Learning. No-regret algorithms based on injecting random
perturbations, such as Follow-the-Perturbed-Leader, have an early history in lending themselves to computational efficiency
on specially structured combinatorial problems, such as the shortest path problem and prediction with decision trees (Kalai
& Vempala, 2005). In these problems, the “oracle” constitutes solving a shortest path problem or learning an optimal decison
tree from offline data. Motivated by this, Hazan & Koren (2016) posed the more general problem of achieving computational
efficiency in online learning with respect to an offline optimization oracle and showed that this goal is not achievable in the
worst case. Subsequently, Block et al. (2022); Daskalakis & Syrgkanis (2016); Dudı́k et al. (2020); Haghtalab et al. (2022);
Syrgkanis et al. (2016); Wang et al. (2022) showed that oracle-efficient learning is possible under further assumptions—both
for a variety of combinatorial settings involving market design, and for online supervised learning involving contexts
{xt}Tt=1 and labels {yt}Tt=1. For the learning settings the results make assumptions on the contexts {xt}Tt=1, but not on
the labels. The setting of online ℓ1-multicalibration is more reminiscent of (but not exactly the same as) the latter case of
online supervised learning. Accordingly, we adopt the assumptions of transductive or sufficiently separated data made
in (Dudı́k et al., 2020) (which subsume those made in (Daskalakis & Syrgkanis, 2016; Syrgkanis et al., 2016)) and believe
our results could be adapted to the weaker assumption of smoothed data or K-hint data (Block et al., 2022; Haghtalab et al.,
2022) in future work. Recently, the oracle-efficient framework was also adopted for online multigroup learning with the
aim of minimizing group-regret (Acharya et al., 2024; Deng et al., 2024). While group-regret could be closely related to
multicalibration and the associated OLPO instance that we set up, it is unclear how to adapt the techniques in (Deng et al.,
2024), which are tailored to binary labels and loss functions, to the OLPO problem.

There also exists a rich body of work on oracle efficiency with respect to either online regression oracles or cost-sensitive
classification oracles in the contextual bandits literature (see, e.g. (Agarwal et al., 2014; Foster & Rakhlin, 2020)). Indeed,
an online regression oracle was assumed by (Garg et al., 2024) but in a completely different manner from the contextual
bandit application. We do not adopt these frameworks for oracles because the contextual bandit problem is different in scope
and unnecessary to solve for multicalibration. It is also arguably more difficult than full-information contextual learning: the
strongest of the aforementioned results assume stochasticity in the labels {yt}Tt=1 and that they are realized by a function in
the hypothesis class, and still require an online regression oracle, which is stronger than an offline oracle and is only known
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to be solvable in the special case of linear models (Azoury & Warmuth, 2001).

B. Missing Proofs from Section 2
B.1. Proof of Theorem 2.1

Proof of Theorem 2.1. We first reduce online ℓ1-calibration error for any group h to the ℓ1-norm of the vector 1
T

∑T
t=1 h(xt)·

ft plus a small additive “error” term. Recall, the expected online ℓ1-multicalibration for group h ∈ H:

E [K(πT , h)] =
1

T
E

∑
p∈P

∣∣∣∣∣
(

T∑
t=1

I{pt = p} · h(xt) · (yt − p)

)∣∣∣∣∣
 . (7)

We use the following lemma to relate the indicator random variables {I{pt = p}}p∈P to their corresponding expectations
{wt(p)}p∈P , where wt(p) denotes the probability that pt equals p.

Lemma B.1. We have

E

max
h∈H

∑
p∈P

∣∣∣∣∣
T∑

t=1

(
I{pt = p} −wt(p)

)
· h(xt) · (yt − p)

∣∣∣∣∣

 ≤ 4B

√
Tm log(6T |H|) + 4mB.

The proof of this lemma relies on a vector version of Azuma–Hoeffding inequality and is deferred to Appendix B.2. We will
next use it to complete the proof of Theorem 2.1.

We now proceed to upper bound the online multicalibration error forH. Using (7) along with the triangle inequality, we get

E [K(πT ,H)] =
1

T
E

max
h∈H

∑
p∈P

∣∣∣∣∣
T∑

t=1

I{pt = p} · h(xt) · (yt − p)

∣∣∣∣∣



≤ 1

T
max
h∈H

∑
p∈P

∣∣∣∣∣
T∑

t=1

wt(p) · h(xt) · (yt − p)

∣∣∣∣∣
+

1

T
E

max
h∈H

∑
p∈P

∣∣∣∣∣
T∑

t=1

(I{pt = p} −wt(p)) · h(xt) · (yt − p)

∣∣∣∣∣



≤ 1

T
max
h∈H

{∥∥∥∥∥
T∑

t=1

h(xt) · ft

∥∥∥∥∥
1

}
+ 4B

√
m log(6T |H|)

T
+

4mB

T
, (8)

where the last inequality follows from Lemma B.1 together with the definition of ft in (2). Now using the definition of the
dual norm, we can write

1

T
max
h∈H

∥∥∥∥∥
T∑

t=1

h(xt) · ft

∥∥∥∥∥
1

=
1

T
max

h∈H,θ∈B∞

〈
θ,

T∑
t=1

h(xt) · ft

〉

≤ 1

T

T∑
t=1

⟨θt, ht(xt) · ft⟩+
RT (L;H)

T
≤ B

m
+

RT (L;H)
T

, (9)

where the first inequality follows by applying the regret bound for OLPO obtained by L and the second inequality follows
from the definition of the halfspace oracle (see Definition 2.2). We note that we can replace the “sup” operator with a “max”
operator in the equality above by the compactness of B∞ = {θ : ∥θ∥∞ ≤ 1} and the continuity of the linear function.
Combining (8) and (9) completes the proof of Theorem 2.1.

B.2. Proof of Lemma B.1

The proof relies on a “vector” form of the Azuma-Hoeffding inequality (see Theorem 1.8 in (Hayes, 2005)).
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Theorem B.2 (Vector Azuma–Hoeffding’s inequality). Let Sn =
∑n

t=1 Xt be a martingale relative to the sequence
X1, . . . ,Xn where each Xt takes values in Rd and satisfies (i) E[Xt] = 0 and (ii) ∥Xt∥2 ≤ c. Then, for any η > 0 and
n ≥ 1, we have

P(∥Sn∥2 ≥ η) ≤ 2e2 exp

(
−η2

2nc2

)
.

Given this inequality, we can now complete the proof of Lemma B.1.

Proof of Lemma B.1. For each h ∈ H and t ∈ [T ], we define the vector Yh
t ∈ RM such that

Yh
t (p) =

(
I{pt = p} −wt(p)

)
· h(xt) · (yt − p) .

We now verify that the conditions on the sequence {Yh
t (p) for the Vector Azuma-Hoeffding inequality (Theorem B.2) hold.

We note that

∥Yh
t ∥2 =

√∑
p∈P

Yh
t (p)

2 =

√∑
p∈P

h(xt)2 · (yt − p)2 · (I{pt = p} −wt(p))
2

≤ max
x∈X
|h(x)| ·

√∑
p∈P

(I{pt = p} −wt(p))
2 ≤

√
2B,

where the final inequality follows from the fact that h ∈ H ⊆ HB ,
∑

p∈P I{pt = p} = 1, and that wt is a distribution. This
verifies condition (ii). Next, observe that

E[Yh
t (p) | Yh

1 , . . . ,Y
h
t−1] = E[h(xt) · (yt − p) · (I{pt = p} −wt(p)) | Yh

1 , . . . ,Y
h
t−1]

= h(xt) · (yt − p) · E[(I{pt = p} −wt(p)) | Yh
1 , . . . ,Y

h
t−1] = 0

since wt only depends on information from rounds 1, . . . , t−1, and E[(I{pt = p}) | Yh
1 , . . . ,Y

h
t−1] = wt(p). This verifies

condition (i). Thus, Sh
n =

∑n
t=1 Y

h
t is a martingale with respect to Yh

1 ,Y
h
2 , . . ., and

∥Sh
T ∥1 =

∑
p∈P

∣∣∣∣∣
(

T∑
t=1

I{pt = p} · h(xt) · (yt − p)

)
−

(
T∑

t=1

wt(p) · h(xt) · (yt − p)

)∣∣∣∣∣ .
Furthermore, since Sh

T ∈ RM , we have ∥Sh
T ∥1 ≤

√
M · ∥Sh

T ∥2, and applying Theorem B.2 implies that

P
(
∥Sh

T ∥2 ≥ 2
√
2B
√

T log(6T |H|)
)
≤ 2e2 exp

(
−8B2T log(6T |H|)

4B2T

)
=

2e2

36(T )2|H|2
≤ 1

T |H|
.

Thus, with probability at least 1− 1/(T |H|), we have

∥Sh
T ∥1 ≤

√
M · ∥Sh

T ∥2 ≤
√
2m · 2

√
2B
√
T log(6T |H|) ≤ 4B

√
Tm log(6T |H|), (10)

since M = m + 1 ≤ 2m. We are now ready to complete the proof. Let Gh denote the event that ∥Sh
T ∥1 ≤

4B
√
Tm log(6T |H|) for h ∈ H. Let G denote the event that Gh holds simultaneously for all h ∈ H; i.e. G = ∩h∈HGh.

By the union bound over all h ∈ H, we can conclude that P(G) ≥ 1− 1/T . Then, we have

E
[
max
h∈H

{
∥Sh

T ∥1]
}]

= E
[
max
h∈H

{
∥Sh

T ∥1
}
| G
]
·P(G) + E

[
max
h∈H

{
∥Sh

T ∥1
}
| G
]
·P(G)

≤ 4B
√
Tm log(6T |H|) ·

(
1− 1

T

)
+ E

[
max
h∈H

{
∥Sh

T ∥1
}
| G
]
·P(G)

≤ 4B
√

Tm log(6T |H|) + 2MBT · 1
T
≤ 4B

√
Tm log(6T |H|) + 4mB.

where the first inequality uses (10) for all h ∈ H and the second inequality bounds ∥Sh
T ∥1 ≤ 2MTB for all h ∈ H. The

final inequality uses M = m+ 1 ≤ 2m. This completes the proof of the lemma.
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B.3. Constructing the Halfspace Oracle

Here we repeat the construction of an efficient halfspace oracle from (Abernethy et al., 2011) for our setting. In particular,
we will design an efficient oracle O that can, given x ∈ X , h ∈ H and θ ∈ B∞, select a distribution w ∈ RM such that for
all y ∈ [0, 1], we have

m∑
i=0

θ(i) · h(x) ·w(i) ·
(
y − i

m

)
≤ B

m
.

We describe this oracle in Algorithm 4.

Algorithm 4 O(x, h,θ)
1: Input: x ∈ X , h ∈ H ⊆ HB and θ : ||θ||∞ ≤ 1

2: define θ̂ : θ̂(i) = θ(i) · h(x)
3: if θ̂(0) ≤ 0 then
4: w← δ0
5: else if θ̂(m) ≥ 0 then
6: w← δm
7: else
8: find coordinate i such that θ̂(i) > 0 and θ̂(i+ 1) ≤ 0

9: w← θ̂(i+1)

θ̂(i+1)−θ̂(i)
· δi + θ̂(i)

θ̂(i)−θ̂(i+1)
· δi+1

10: end if
11: return w

It immediately follows from the description that w is a valid distribution. Furthermore, note that this oracle can be
implemented efficiently. If θ̂(0) > 0 and θ̂(m) < 0, then there must exist i such that θ̂(i) > 0 and θ̂(i+ 1) ≤ 0, and such
an index can be found using binary search. Thus, this algorithm requires at most O(log(m)) computations. The following
lemma proves the main property of the halfspace oracle.

Lemma B.3. Given any x ∈ X , h ∈ H and θ ∈ B∞, let w = O(x, h,θ) be the output of Algorithm 4. Then, for any
y ∈ [0, 1], we have

∑m
i=0 θ(i) · h(x) ·

(
y − i

m

)
·w(i) ≤ B

m .

Proof. We first note that we can write

m∑
i=0

θ(i) · h(x) ·
(
y − i

m

)
·w(i) =

m∑
i=0

θ̂(i) ·
(
y − i

m

)
·w(i),

where we have used θ̂(i) = θ(i) ·h(x) for all i = 0, 1, . . . ,m. Observe that if θ̂(0) ≤ 0 or θ̂(m) ≥ 0, the lemma is trivially
true. Otherwise, we have

m∑
i=0

θ̂(i) ·
(
y − i

m

)
·w(i) =

(
y − i

m

)
·w(i) · θ̂(i) +

(
y − i+ 1

m

)
·w(i+ 1) · θ̂(i+ 1)

=

(
y − i

m

)
· θ̂(i+ 1)

θ̂(i+ 1)− θ̂(i)
· θ̂(i) +

(
y − i+ 1

m

)
· θ̂(i)

θ̂(i)− θ̂(i+ 1)
· θ̂(i+ 1)

= − 1

m
· θ̂(i) · θ̂(i+ 1)

θ̂(i)− θ̂(i+ 1)
≤ 1

m
· max{|θ̂(i)|, |θ̂(i+ 1)|}

2
≤ B

m
,

where the penultimate inequality uses the AM-HM inequality, and the final inequality follows from the fact that θ ∈ B∞
and maxx∈X |h(x)| ≤ B for all h ∈ H.
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C. Missing Proofs from Section 3
C.1. Proof of Lemma 3.2.

Proof. We begin by describing how to obtain a learning algorithm L for OLPO using a learning algorithm L̃ for Lin-OLPO.
To achieve this, two components are required: (1) translating decisions from L̃ to L, and (2) generating reward vectors
for the Lin-OLPO instance using rewards from the OLPO instance. For each round t ∈ [T ], given decision θ̃t from L̃,
set ht = h with probability γt(h) = ∥θ̃t(h)∥∞, and θt = (1/γt(h)) · θ̃t(ht) ∈ B∞. Then, (ht,θt) corresponds to
the decision taken by L for the OLPO instance. Next, given context xt and reward vector ft from the OLPO instance, let
f̃t =

1
B·L · (h

(1)(xt) ·ft, . . . , h
(|H|) ·ft) be the reward vector used to simulate the Lin-OLPO instance. Note that f̃t ∈ B∞,1

since h ∈ HB and ∥ft∥1 ≤ L. This completes the reduction from OLPO to Lin-OLPO. Next, we analyze the corresponding
regret.

First, we observe that

max
θ̃∈B1,∞

〈
θ̃,

T∑
t=1

f̃t

〉
= max

h∈H
∥

T∑
t=1

f̃t(h)∥1 = max
h∈H

∥∥∥∥∥
T∑

t=1

h(xt)

B · L
· ft

∥∥∥∥∥
1

=
1

B · L

(
max

h∈H , θ∈B∞

〈
θ,

T∑
t=1

h(xt) · ft

〉)
. (11)

where in the final equality we used the definition of the dual norm. Furthermore, observe that for any θ̃t ∈ B1,∞ and
f̃t =

1
B·L (h

(1)(xt) · ft, · · · , h(|H|)(xt) · ft), we have

E[⟨θt, ht(xt) · ft⟩] = B · L
∑
h∈H

γt(h) ·

〈
θ̃t(h)

γt(h)
,
h(xt)

B · L
· ft

〉
= B · L

∑
h∈H

〈
θ̃t(h), f̃t(h)

〉
= B · L

〈
θ̃t, f̃t

〉
. (12)

where γt(h) = ∥θ̃t(h)∥∞ denotes the probability of selecting group h in round t and θt = (1/γt(h)) · θ̃t(ht). On combining
(11) and (12), and taking expectations, we can conclude that:

RT (L;H,Θ) = max
h∈H, θ∈B∞

〈
θ,

T∑
t=1

h(xt) · ft

〉
−

T∑
t=1

E[⟨θt, ht(xt) · ft⟩]

= B · L

(
max

θ̃∈B1,∞

〈
θ̃,

T∑
t=1

f̃t

〉
−

T∑
t=1

E
[〈

θ̃t, f̃t⟩
〉])

= B · L ·RLin-OLPO
T (L̃;B1,∞). (13)

This completes the proof of the lemma.

C.2. Proof of Lemma 3.3

Proof. To bound the regret, we observe

T∑
t=1

E
[〈

θ̃t, f̃t⟩
〉]

=

T∑
t=1

∑
h∈H

γt(h) ·
〈
θh
t , f̃t(h)

〉
≥ max

h∈H

{
T∑

t=1

〈
θh
t , f̃t(h)

〉}
−
√
T log |H|, (14)

where the inequality follows by applying the no-regret property of the multiplicative weights update algorithm E and noting
that ⟨θh

t , f̃t(h)⟩ ∈ [−1, 1] for all h ∈ H (since f̃t ∈ B∞,1). Subsequently, we apply the no-regret property of each of the
online gradient descent algorithms A1, . . . ,A|H| to obtain

T∑
t=1

〈
θh
t , f̃t(h)

〉
≥ max

θ∈B∞

{
T∑

t=1

〈
θ, f̃t(h)

〉}
−
√
TM = ∥

T∑
t=1

f̃t(h)∥1 −
√
TM, (15)
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where the regret bound uses the fact that ∥f̃t(h)∥2 ≤ ∥f̃t(h)∥1 ≤ 1 and that the ℓ2 diameter of B∞ is
√
M . Combining

(14) and (15) gives
T∑

t=1

E
[〈

θ̃t, f̃t⟩
〉]
≥ max

h∈H
∥

T∑
t=1

f̃t(h)∥1 −
√
T log |H| −

√
TM,

which upon re-arranging proves the lemma.

C.3. Proof of Lemma 3.4

Proof. Fix a transcript πT = {(xt, pt, yt)}Tt=1. To avoid notational clutter, we will drop the argument πT in the remainder
of the proof. We will also index predictions as p ∈ P , and use S(p) to denote the set of rounds in which the prediction was
p; that is, S(p) = {t ∈ [T ] : pt = p}. For h ∈ H, recall

K(h) = K(πT , h) =
1

T

∑
p∈P

∣∣∣∣∣∣
∑

t∈S(p)

h(xt) · (yt − p)

∣∣∣∣∣∣ .
Furthermore, define Kp(h) =

∣∣∣∑t∈S(p) h(xt) · (yt − p)
∣∣∣ for every p ∈ P .

Claim C.1. For any p ∈ P , let Tp = |S(p)|. Then, we have for any h, h′ ∈ H:

|Kp(h)−Kp(h
′)| ≤ Tp · ∥h− h′∥ℓ∞ .

Using this claim, we can complete the proof of Lemma 3.4. First, we note that K(h) = 1
T

∑
p∈P Kp(h). Since K(h) ≥ 0,

we have K(h) = |K(h)|. Using this, and the triangle inequality twice, we get

K(h)−K(h′) = |K(h)| − |K(h′)| ≤ |K(h)−K(h′)|

=

∣∣∣∣∣∣ 1T
∑
p∈P

(Kp(h)−Kp(h
′))

∣∣∣∣∣∣ ≤ 1

T

∑
p∈P
|Kp(h)−Kp(h

′)|

≤ 1

T

∑
p∈P

Tp · ∥h− h′∥ℓ∞ = ∥h− h′∥ℓ∞ ,

where the final inequality uses Claim C.1 and the final equality used
∑

p∈P Tp = T . By symmetry, we similarly have

K(h′)−K(h) ≤ ∥h− h′∥ℓ∞ ,

from which we conclude that |K(h) − K(h′)| ≤ ∥h − h′∥ℓ∞ . Now, fix an h ∈ H, and pick h′ ∈ Hβ such that
∥h− h′∥L∞ ≤ β (note that such an h′ ∈ Hβ always exists according to Definition 1.3). Thus, we have

K(h) ≤ K(h′) + ∥h− h′∥ℓ∞ ≤ α+ β,

as desired. We complete the proof of Lemma 3.4 by proving Claim C.1.

Proof of Claim C.1. Applying the reverse triangle inequality, we have

K(h)−K(h′) =

∣∣∣∣∣∣
∑

t∈S(p)

h(xt) · (yt − p)

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑

t∈S(p)

h′(xt) · (yt − p)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

t∈S(p)

h(xt) · (yt − p)−
∑

t∈S(p)

h′(xt) · (yt − p)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

t∈S(p)

(h(xt)− h′(xt)) · (yt − p)

∣∣∣∣∣∣ .
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Applying again the triangle inequality to the expression above, and using the fact that yt ∈ [0, 1] for all t ∈ [T ], we get

K(h)−K(h′) ≤
∑

t∈S(p)

|(h(xt)− h′(xt))| ≤ Tp ·max
x∈X
|h(x)− h′(x)| = Tp · ∥h− h′∥ℓ∞ . (16)

By symmetry, we also have the following.

K(h′)−K(h) ≤ Tp · ∥h′ − h∥L∞ . (17)

Combining (16) and (17) completes the proof.

This completes the proof of Lemma 3.4.

C.4. Applications of Theorem 1.4

In this section, we give applications of Theorem 1.4 to specific function classes.

Application 1: Polynomial Regression. Suppose X = [0, 1]d, and our hypothesis class corresponds to multivariate
polynomial regression functions of degree k; that is, given x ∈ X , h(x) =

∑d
i=1

∑k
a=1 hi+(a−1)k · xa

i where g ∈ Rkd.
Suppose thatH(d, k) = {h ∈ Rkd : ∥h∥1 ≤ B}. Then, constructing an β-cover forH in the traditional sense gives us an
β-cover forH in the functional sense. In particular, since X = [0, 1]d, we have

max
x∈X
|h(x)− h′(x)| ≤ ∥h− h′∥1.

It is then a standard fact that the β-covering number of the ℓ1 ball of radius B with respect to the ℓ1-norm is at most(
1 + 2B

β

)kd
. Therefore, applying Theorem 1.4 and setting β := T−1/3 gives us multicalibration error

E[K(πT ,Hpoly(d,k))] = O
(
B(kd)1/2T−1/3 log(BT )

)
.

The class of bounded linear functions is subsumed by this class (when k = 1), for which we obtain the Corollary 1.5.

Application 2: Bounded, uniformly Lipschitz, convex functions. Let H([0, 1]d, B, L) ⊆ HB denote the set of real-
valued convex functions defined on X := [0, 1]d that are uniformly bounded by B and uniformly Lipschitz3 with constant

L. (?)Theorem 6]bronshtein1976varepsilon shows that in this case, |Hβ | ≤ C
(

1
β

)d/2
, where C is a positive constant

that depends only on the Lipschitz parameter L. Therefore, applying Theorem 1.4 and setting β := T− 1
2+d/2 yields

multicalibration error

K(πT ,H([0, 1]d, B, L)) = Õ(Bd1/2T−1/3 log(BT )) + Õ(T− 1
2+d/2 ).

The second term dominates if d > 2, and reflects the standard “curse of dimensionality” that we encounter in statistical
learning of real-valued convex functions.

D. Missing Proofs from Section 4
D.1. Proof of Theorem 4.4

We first show that if the perturbation translation matrix Γ ∈ [−B,B](|H|×2M )×N satisfies δ-admissibility, then Algorithm 3
has regret bounded by O(BN

√
T/δ). Then, we show that since Γ satisfies implementability with complexity D, we can

indeed execute Algorithm 3 efficiently. For ease of exposition, we will use RT to denote the regret of Algorithm 3. To begin,
recall that we defined

RT = max
h∗∈H,θ∗∈{±1}M

{〈
θ∗,

T∑
t=1

h∗(xt) · ft

〉}
−

T∑
t=1

E[⟨θt, ht(xt) · ft⟩]. (18)

3Without the Lipschitz assumption, (Guntuboyina & Sen, 2012) showed that the covering number of is actually infinity.

18
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It suffices to uniformly upper bound the regret incurred by each h ∈ H; we will provide a worst-case analysis of this quantity
for arbitrary reward vectors {ft}Tt=1 Formally, we can write

RT = max
h∈H

RT (h) where

RT (h) := max
θ∈{±1}M

{
T∑

t=1

⟨θ, h(xt) · ft⟩

}
− E

[
T∑

t=1

⟨θt, ht(xt) · ft⟩

]
.

For each h ∈ H, let θ∗
h ∈ {±1}M be a maximizer of the function

∑T
t=1 ⟨θ, h(xt) · ft⟩ in the variable θ. Then, we can

decompose RT (h) into two terms as below:

RT (h) = E

[
T∑

t=1

⟨θ∗
h, h(xt) · ft⟩ −

T∑
t=1

⟨θt, ht(xt) · ft⟩

]

= E
[ T∑

t=1

⟨θ∗
h, h(xt) · ft⟩ −

T∑
t=1

⟨θt+1, ht+1(xt) · ft⟩︸ ︷︷ ︸
T1

]

+ E
[ T∑

t=1

⟨θt+1, ht+1(xt) · ft⟩ −
T∑

t=1

⟨θt, ht(xt) · ft⟩
]

︸ ︷︷ ︸
T2

(19)

The first term T1 corresponds to an approximation error term: suppose we could use the clairvoyant decision (ht+1,θt+1)
for round t — without noise, this would be optimal, but with noise it will create extra error. The following lemma(Lemma B.1
in (Dudı́k et al., 2020)), characterizes T1 pointwise for every realization of the noise α.

Lemma D.1. (Be-the-Approximate Leader Lemma) In the Generalized FTPL algorithm, we have

T1 ≤ α · (Γ(h1,θ1) − Γ(h,θ)) + ϵ · (T + 1)

for each (h,θ) ∈ H × {±1}M and every realization of the noise α.

Proof. We will prove this lemma by induction on T . For the base case, T = 0, and so it suffices to show that α · (Γ(h1,θ1)−
Γ(h,θ)) + ϵ ≥ 0 for all (h,θ). Here, the statement follows directly from the ϵ-approximate optimality of oracle; that is, we
select (h1,θ1) such that

α · Γ(h1,θ1) ≥ max
h∈H,θ∈{±1}M

{
α · Γ(h,θ)

}
− ϵ.

Next, we prove the inductive step. Assume that the lemma holds for some T . Now, for all (h,θ) ∈ H × {±1}M , we have

T+1∑
t=1

⟨θt+1, ht+1(xt) · ft⟩+α · Γ(h1,θ1) =

T∑
t=1

⟨θt+1, ht+1(xt) · ft⟩+α · Γ(h1,θ1) + ⟨θT+2, hT+2(xT+1) · fT+1⟩

≥
T∑

t=1

⟨θT+2, hT+2(xt) · ft⟩+α · Γ(hT+2,θT+2) − ϵ · (T + 1)

+ ⟨θT+2, hT+2(xT+1) · fT+1⟩

=

T+1∑
t=1

⟨θT+2, hT+2(xt) · ft⟩+α · Γ(hT+2,θT+2) − ϵ · (T + 1)

≥
T+1∑
t=1

⟨θ, h(xt) · ft⟩+α · Γ(h,θ) − ϵ · (T + 2)

where the first inequality follows by applying the induction hypothesis and considering the pair (hT+2,θT+2), and the final
inequality follows by the ϵ-approximate optimality of the oracle at time T + 2. This completes the proof of the lemma.

19
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Next, we characterize the term T2 in (19). The term T2 is essentially a stability error term, which measures the cumulative
effect of the difference in the decisions (ht+1,θt+1) and (ht,θt) on reward. Intuitively, a stable algorithm will result in
similar or slowly varying decisions over time and therefore a small stability error term. The following lemma characterizes
the stability error term under the condition that the perturbation matrix Γ is δ-admissible.

Lemma D.2. (Stability Lemma) Suppose we run Algorithm 3 with a δ-admissible matrix Γ ∈ [0, 1](|H|×2M )×N and random
vector α = (α1, · · · , αN ) such that each αi is drawn independently from Unif[0,

√
T ]. Then, we have

T2 ≤ 4TN · (1 + δ−1) ·
(
B + ϵ√

T

)
.

The proof is identical to the proof of the stability lemma (Lemma 2.4) presented in (Dudı́k et al., 2020), and is omitted here.
Plugging our upper bounds on T1 and T2 into (19) gives us

RT (h) ≤ E
[
α ·
(
Γ(h1,θ1) − Γ(h,θ∗

h)

)]
+ ϵ · (T + 1) + 4TN · (1 + δ−1) ·

(
B + ϵ√

T

)
≤ E

[
α · Γ(h1,θ1)

]
+ ϵ · (T + 1) + 4TN · (1 + δ−1) ·

(
B + ϵ√

T

)
≤ N

√
T + ϵ · (T + 1) +

16BN
√
T

δ
= O

(
BN
√
T

δ

)

Above, the first inequality uses the fact that α ⪰ 0 and Γ ∈ [0, 1](|H|×2M )×N ; the second inequality uses the fact that
Γ ∈ [0, 1](|H|×2M )×N and each αi is drawn independently from Unif[0,

√
T ], and the final equality uses the assumption

that ϵ = 1/
√
T .

Finally, we argue that if Γ satisfies implementability with complexity D, then Algorithm 3 with ϵ = 1/
√
T can be

implemented in time poly(N,D, T ). This directly follows by noting that for any α, we have a set of coefficients {κj}Dj=1

and vectors {f̂j}Dj=1 (which may depend on α) such that

t−1∑
s=1

⟨θ, h(xs) · fs⟩+α · Γ(h,θ) =

t−1∑
s=1

⟨θ, h(xs) · fs⟩+
D∑

j=1

κj ·
〈
θ, h(xj) · f̂j

〉
.

This is exactly in the form of our offline oracle (Definition 4.1). Thus, the runtime of Algorithm 3, treating as black boxes
the step of sampling from the uniform distribution and the oracle (3) is O(T 2 + TND). This completes the proof of
Theorem 4.4.

D.2. Proof of Lemma 4.5

Proof. We consider Γ ∈ [−B,B](|H|×2M )×(DM), so that the rows of Γ can be indexed by (h,θ) ∈ H × {±1}M and the
columns of Γ can be indexed by (j, i) ∈ [D]× [M ]. Then, we will specify each entry as Γ(h,θ),(i,j) = h(xi) · θj . Note that
|Γ(h,θ),(i,j)| ≤ B since h ∈ H ⊆ HB . We first prove implementability and then 1-admissibility.

Proof of implementability. Consider any realization of the noise α. As with the columns of Γ, we index α by the tuple
(j, i) ∈ [D]× [M ]. We denote as α(j,·) ∈ RM the sub-vector

(
α(j,1), · · · , α(j,M)

)
. Then, we have

〈
α,Γ(h,θ)

〉
=

D∑
j=1

M∑
i=1

α(j,i) · h(xj) · θi

=

D∑
j=1

h(xj)
〈
α(j,·),θ

〉
,

which clearly satisfies the implementability condition (5) with complexity D, κj = 1 for all j ∈ [D], and f̃j = α(j,·).

Proof of admissibility. Consider any two rows indexed by (h,θ), (h′,θ′). We need to show that:
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1. Γ(h,θ) ̸= Γ(h′,θ′).

2. If Γ(h,θ),(j,i) ̸= Γ(h′,θ′),(j,i), then |Γ(h,θ),(j,i) − Γ(h′,θ′),(j,i)| ≥ 1.

Showing the first statement is easy: either h ̸= h′, in which case there exists at least one index j ∈ [D] such that
h(xj) ̸= h′(xj). In the other case where h = h′, consider any index j such that h(xj) ̸= 0 (at least one such index must
exist, otherwise we can simply remove h from the hypothesis class without loss of generality). Further, since in this case we
must have θ ̸= θ′, there exists at least one index i for which θi ̸= θ′i. Therefore, we have Γ(h,θ),(j,i) = h(xj)θi ̸= h(xj)θ′i.

To show the second statement, we use the structure of the Boolean hypercube to say that if θi ̸= θ′i, then |θi − θ′i| = 2.
Similarly, if θi ̸= 0, then |θi| = 1. Then, we again consider two cases when Γ(h,θ),(j,i) ̸= Γ(h′,θ′),(j,i). The first is if
h(xj) ̸= h′(xj). In this case, suppose without loss of generality that h(xj) = 1 while h′(xj) = 0. Then, we have

|Γ(h,θ),(j,i) − Γ(h′,θ′),(j,i)| = |θi| = 1.

On the other hand, suppose that h(xj) = h′(xj). If h(xj) = 0, we have Γ(h,θ),(j,i) = Γ(h′,θ′),(j,i). If h(xj) = 1, we have

|Γ(h,θ),(j,i) − Γ(h′,θ′),(j,i)| = |θi − θ′i| ∈ {0, 2}

This proves the second statement and therefore we have proved 1-admissibility, which completes the proof of the lemma.
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