
Predicting Attention Sparsity in Transformers

Anonymous ACL submission

Abstract

Transformers’ quadratic complexity with re-001
spect to the input sequence length has moti-002
vated a body of work on efficient sparse ap-003
proximations to softmax. An alternative path,004
used by entmax transformers, consists of hav-005
ing built-in exact sparse attention; however this006
approach still requires quadratic computation.007
In this paper, we propose Sparsefinder, a sim-008
ple model trained to identify the sparsity pattern009
of entmax attention before computing it. We010
experiment with three variants of our method,011
based on distances, quantization, and cluster-012
ing, on two tasks: machine translation (atten-013
tion in the decoder) and masked language mod-014
eling (encoder-only). Our work provides a new015
angle to study model efficiency by doing exten-016
sive analysis of the tradeoff between the spar-017
sity and recall of the predicted attention graph.018
This allows for detailed comparison between019
different models along their Pareto curves, im-020
portant to guide future benchmarks for sparse021
attention models.022

1 Introduction023

Transformer-based architectures have achieved re-024

markable results in many NLP tasks (Vaswani et al.,025

2017; Devlin et al., 2019; Brown et al., 2020). How-026

ever, they also bring important computational and027

environmental concerns, caused by their quadratic028

time and memory computation requirements with029

respect to the sequence length. This comes in ad-030

dition to the difficulty of interpreting their inner031

workings, caused by their overparametrization and032

large number of attention heads.033

There is a large body of work developing ways to034

“sparsify” the computation in transformers, either035

by imposing local or fixed attention patterns (Child036

et al., 2019; Tay et al., 2020; Zaheer et al., 2020), by037

applying low-rank kernel approximations to soft-038

max (Wang et al., 2020; Choromanski et al., 2021),039

or by learning which queries and keys should be040

grouped together (Kitaev et al., 2019; Daras et al.,041

th
e qu

ick
br

ow
n

fox ju
mps

ov
er

th
e

laz
y

do
g

a) Extract α-entmax graph

b) Project and group qi and kj c) Add local + global patterns

Figure 1: (a) Extract sparse attention graphs from a
pretrained α-entmax transformer; (b) Project query and
key vectors to a smaller and appropriated space such
that similar points are likely to fall in the same vicinity;
(c) Additionally, we can combine window and global
patterns (green blocks) with the learned pattern (yellow
blocks) to increase the recall in recovering ground-truth
edges from the sparse graph at the top (starred blocks).

2020; Roy et al., 2021; Wang et al., 2021). Most 042

of the existing work seeks to approximate softmax- 043

based attention by ignoring the (predicted) tails 044

of the distribution, which can lead to performance 045

degradation. An exception is transformers with 046

entmax-based sparse attention (Correia et al., 047

2019), a content-based approach which is natively 048

sparse – this approach has the ability to let each 049

attention head learn from data how sparse it should 050

be, eliminating the need for heuristics or approxi- 051

mations. The disadvantage of this approach is that 052

it still requires a quadratic computation to deter- 053

mine the sparsity pattern, failing to take computa- 054

tional advantage of attention sparsity. 055

In this paper, we propose Sparsefinder, which 056

fills the gap above by making entmax attention 057

more efficient (§4). Namely, we investigate three 058

methods to predict the sparsity pattern of entmax 059

without having to compute it: one based on metric 060

1

learning, which is still quadratic but with a better061

constant (§4.3), one based on quantization (§4.4),062

and another based on clustering (§4.5). In all cases,063

the predictors are trained offline on ground-truth064

sparse attention graphs from an entmax transformer,065

seeking high recall in their predicted edges without066

compromising the total amount of sparsity. Figure 1067

illustrates our method.068

More precisely, to evaluate the effectiveness069

of our method across different scenarios, we per-070

form experiments on two NLP tasks, encompassing071

encoder-only and decoder-only configurations: ma-072

chine translation (MT, §5) and masked language073

modeling (MLM, §6), doing an extensive analysis074

of the tradeoff between sparsity and recall (i.e., per-075

formance on the attention graph approximation),076

and sparsity and accuracy (performance on down-077

stream tasks). We compare our method with four078

alternative solutions based on efficient transform-079

ers: Longformer (Beltagy et al., 2020), Bigbird (Za-080

heer et al., 2020), Reformer (Kitaev et al., 2020),081

and Routing Transformer (Roy et al., 2021), along082

their entire Pareto curves. We complement these083

experiments by analyzing qualitatively what is se-084

lected by the different attention heads at the several085

layers and represented in different clusters/buckets.086

Overall, our contributions are:1087

• We propose a simple method that exploits learn-088

able sparsity patterns to efficiently compute089

multi-head attention (§4).090

• We do an extensive analysis of the tradeoff be-091

tween sparsity and recall, and sparsity and accu-092

racy in MT (§5) and MLM (§6), showing that093

there is clear room for improvement in the design094

of efficient transformers.095

• We qualitatively analyze what is selected by the096

different attention heads at various layers and097

represented in different clusters/buckets.098

2 Related Work099

Interpreting multi-head attention. Several100

works analyze the functionalities learned by dif-101

ferent attention heads, such as positional and local102

context patterns (Raganato and Tiedemann, 2018;103

Voita et al., 2019). Building upon prior work on104

sparse attention mechanisms (Peters et al., 2019),105

Correia et al. (2019) constrain the attention heads to106

induce sparse selections individually for each head,107

1Our code will be released upon acceptance.

bringing interpretability without post-hoc manip- 108

ulation. Related approaches include the explicit 109

sparse transformer (Zhao et al., 2019) and recti- 110

fied linear attention (Zhang et al., 2021), which 111

drops the normalization constraint. Raganato et al. 112

(2020) show that it is possible to fix attention pat- 113

terns based on previously known behavior (e.g. fo- 114

cusing on previous token) while improving trans- 115

lation quality. However, a procedure that exploits 116

learnable sparsity patterns to accelerate multi-head 117

attention is still missing. 118

Low-rank softmax approximations. Methods 119

based on low-rank approximation to the softmax 120

such as Linearized Attention (Katharopoulos et al., 121

2020), Linformer (Wang et al., 2020), and Per- 122

former (Choromanski et al., 2021) reduce both 123

speed and memory complexity of the attention 124

mechanism from quadratic to linear, but make inter- 125

pretability more challenging because the scores are 126

not computed explicitly. On the other hand, meth- 127

ods that focus on inducing sparse patterns provide 128

interpretable alignments and also have performance 129

gains in terms of speed and memory. 130

Fixed attention patterns. Among fixed pattern 131

methods, Sparse Transformer (Child et al., 2019) 132

and LongFormer (Beltagy et al., 2020) attend to 133

fixed positions by using strided/dilated sliding win- 134

dows. BigBird uses random and two fixed patterns 135

(global and window) to build a block sparse ma- 136

trix representation (Zaheer et al., 2020), taking ad- 137

vantage of block matrix operations to accelerate 138

GPU computations. In contrast, we replace the 139

random pattern with a learned pattern that mimics 140

pretrained α-entmax sparse attention graphs. 141

Learnable attention patterns. Learnable pat- 142

tern methods usually have to deal with assignment 143

decisions within the multi-head attention mech- 144

anism. Clustered Attention (Vyas et al., 2020) 145

groups query tokens into clusters and computes 146

dot-products only with centroids. Reformer (Ki- 147

taev et al., 2020) and SMYRF (Daras et al., 2020) 148

use locality-sensitive hashing to efficiently group 149

tokens in buckets. More similar to our work, Rout- 150

ing Transformer (Roy et al., 2021) and Cluster- 151

Former (Wang et al., 2021) cluster queries and keys 152

with online k-means and compute dot-products 153

over the top-k cluster points. Some queries and 154

keys are discarded due to this filtering, which af- 155

fects the overall recall of the method (as we show in 156

§5 and §6). The ability of Routing Transformer to 157

2

benefit from contextual information has been ana-158

lyzed by Sun et al. (2021). In contrast, Sparsefinder159

learns to cluster based on sparsity patterns from at-160

tention graphs generated by α-entmax.161

3 Background162

3.1 Transformers163

The main component of transformers is the multi-164

head attention mechanism (Vaswani et al., 2017).165

Given as input a matrix Q ∈ Rn×d containing166

d-dimensional representations for n queries, and167

matrices K,V ∈ Rm×d for m keys and values,168

the scaled dot-product attention at a single head is169

computed in the following way:170

att(Q,K,V) = π

(
QK⊤
√
d

)
︸ ︷︷ ︸
Z∈Rn×m

V ∈ Rn×d. (1)171

The π transformation maps rows to distributions,172

with softmax being the most common choice,173

π(Z)ij = softmax(zi)j . Multi-head attention is174

computed by evoking Eq. 1 in parallel for each175

head h:176

headh(Q,K,V) = att(QWQ
h ,KWK

h ,VWV
h),177

where WQ
h , WK

h , WV
h are learned linear transfor-178

mations. This way, heads are able to learn spe-179

cialized phenomena. According to the nature of180

the input, transformers have three types of multi-181

head attention mechanism: encoder self-attention182

(source-to-source), decoder self-attention (target-183

to-target), and decoder cross-attention (target-to-184

source). While there are no restrictions to which el-185

ements can be attended to in the encoder, elements186

in position j > i in the decoder self-attention are187

masked at timestep i (“causal mask”).188

3.2 Extmax Transformers and Learned189

Sparsity190

The main computational bottleneck in transformers191

is the matrix multiplication QK⊤ in Eq. 1, which192

costs O(nmd) time and can be impractical when193

n and m are large. Many approaches, discussed194

in §2, approximate Eq. 1 by ignoring entries far195

from the main diagonal or computing only some196

blocks of this matrix, with various heuristics. By197

doing so, the result will be an approximation of the198

softmax attention in Eq. 1. This is because the orig-199

inal softmax-based attention is dense, i.e., it puts200

some probability mass on all tokens – not only a 201

computational disadvantage, but also making inter- 202

pretation harder, as it has been observed that only 203

a small fraction of attention heads capture relevant 204

information (Voita et al., 2019). 205

An alternative to softmax is the α-entmax trans- 206

formation (Peters et al., 2019; Correia et al., 2019), 207

which leads to sparse patterns directly, without any 208

approximation: 209

α-entmax(z) = [(α− 1)z− τ(z)1]
1/α−1

+ , (2) 210

where [·]+ is the positive part (ReLU) function, and 211

τ : Rn → R is a normalizing function satisfying 212∑
j [(α − 1)zj − τ(z)]

1/α−1

+ = 1 for any z. That 213

is, entries with score zj ≤ τ(z)/α−1 get exactly 214

zero probability. In the limit α → 1, α-entmax 215

recovers the softmax function, while for any value 216

of α > 1 this transformation can return sparse 217

probability vectors (as the value of α increases, 218

the induced probability distribution becomes more 219

sparse). When α = 2, we recover sparsemax (Mar- 220

tins and Astudillo, 2016). In this paper, we use 221

α = 1.5, which works well in practice and has a 222

specialized fast algorithm (Peters et al., 2019). 223

Although sparse attention improves interpretabil- 224

ity and head diversity when compared to dense al- 225

ternatives (Correia et al., 2019), the learned sparsity 226

patterns cannot be trivially exploited to reduce the 227

quadratic burden of self-attention, since we still 228

need to compute dot-products between all queries 229

and keys (QK⊤) before applying the α-entmax 230

transformation. In the next section (§4), we pro- 231

pose a simple method that learns to identify these 232

sparsity patterns beforehand, avoiding the full ma- 233

trix multiplication. 234

4 Sparsefinder 235

We now propose our method to extract sparse atten- 236

tion graphs and learn where to attend by exploiting 237

a special property of α-entmax: sparse-consistency 238

(§4.1). We design three variants of Sparsefinder to 239

that end, based on metric learning (§4.3), quantiza- 240

tion (§4.4), and clustering (§4.5). 241

4.1 Attention graph and sparse-consistency 242

For each attention head h, we define its attention 243

graph as Gh = {(qi,kj) | pi,j > 0}, a bipartite 244

graph connecting query and key pairs qi,kj ∈ Rd 245

for which the α-entmax probability pi,j is nonzero. 246

An example of attention graph is shown in Figure 1. 247

We denote by |Gh| the total size of an attention 248

3

graph, i.e., its number of edges. With α-entmax249

with α = 1.5 we typically have |Gh| ≪ nm. In250

contrast, softmax attention always leads to a com-251

plete graph, |Gh| = nm.252

Problem statement. Our goal is to build a model253

– which we call Sparsefinder – that predicts Ĝh ≈254

Gh without having to perform all pairwise compar-255

isons between queries and keys. This enables the256

complexity of evaluating Eq. 1 to be reduced from257

O(nmd) to O(|Ĝh|d), effectively taking advantage258

of the sparsity of α-entmax. In order to learn such a259

model, we first extract a dataset of sparse attention260

graphs {Gh} from a pretrained entmax-based trans-261

former, which acts as a teacher. Then, the student262

learns where to pay attention based on this informa-263

tion. This procedure is motivated by the following264

sparse-consistency property of α-entmax:265

Proposition 1 (Sparse-consistency property). Let266

b be a binary vector such that bj = 1 if p⋆j > 0,267

and bj = 0 otherwise. For any binary mask vector268

m “dominated” by b (i.e. m⊙ b = b), we have269

α-entmax(z) = α-entmax(z|m), (3)270

where zj |m = zj if mj = 1 and −∞ if mj = 0.271

Proof. See §A in the supplemental material.272

This property ensures that, if Ĝh is such that273

Gh ⊆ Ĝh, then we obtain exactly the same result as274

with the original entmax attention. Therefore, we275

are interested in having high recall,276

recall(Ĝh;Gh) =
|Ĝh ∩ Gh|

|Gh|
, (4)277

meaning that our method is nearly exact, and high278

sparsity,279

sparsity(Ĝh) = 1− |Ĝh|
nm

, (5)280

which indicates that computation can be made ef-281

ficient.2 Although a high sparsity may indicate282

that many computations can be ignored, converting283

this theoretical result into efficient computation is284

not trivial and potentially hardware-dependent. In285

this paper, rather than proposing a practical com-286

putational efficient method, we focus on showing287

that such methods do exist and that they can be288

designed to outperform fixed and learned pattern289

methods while retaining a high amount of sparsity290

when compared to the ground-truth graph.291

2For the decoder self-attention the denominator in Eq. 5
becomes n(n+ 1)/2 due to “causal” masking.

Our strategies. We teach the student model to 292

predict Ĝh ≈ Gh by taking inspiration from the 293

Reformer model (Kitaev et al., 2020) and the Rout- 294

ing Transformer (Roy et al., 2021). Formally, we 295

define a set of B buckets, B = {1, . . . , B}, and 296

learn functions fq, fk : Rd → 2B \ {∅}, which 297

assign a query or a key to one or more buckets. We 298

will discuss in the sequel different design strategies 299

for the functions fq, fk. Given these functions, the 300

predicted graph is: 301

Ĝh = {(qi,kj) | fq(qi) ∩ fk(kj) ̸= ∅}, (6) 302

that is, an edge is predicted between qi and kj iff 303

they are together in some bucket. 304

We present three strategies, based on distance- 305

based pairing (§4.3), quantization (§4.4) and clus- 306

tering (§4.5). As a first step, all strategies require 307

learning a metric that embeds the graph (projecting 308

queries and keys) into a lower-dimensional space 309

Rr with r ≪ d, such that positive query-key pairs 310

are close to each other, and negative pairs are far 311

apart. 312

4.2 Learning projections 313

According to the α-entmax sparse-consistency 314

property, in order to get a good approximation of 315

Gh, we would like that fq and fk produce a graph 316

Ĝh that maximizes recall, defined in Eq. 4. How- 317

ever, maximizing recall in this setting is difficult 318

since we do not have ground-truth bucket assign- 319

ments. Instead, we recur to a contrastive learning 320

approach by learning projections via negative sam- 321

pling, which is simpler and more scalable than 322

constrained clustering approaches (Wagstaff et al., 323

2001; de Amorim, 2012). 324

For each head, we start by projecting the orig- 325

inal query and key q,k ∈ Rd vectors into lower 326

dimensional vectors q′,k′ ∈ Rr such that r ≪ d. 327

In practice, we use a simple head-wise linear pro- 328

jection for all queries and keys gθ : Rd → Rr. To 329

learn the parameters of the projection layer we min- 330

imize a hinge loss with margin ω for each head h: 331

332

Lθ(Gh) =
[
ω+∥q′−k′

P∥22−∥q′−k′
N∥22
]
+
, (7) 333

where (q′,k′
P) ∈ Gh is a positive pair and 334

(q′,k′
N) /∈ Gh is a negative pair sampled uniformly 335

at random. In words, we want the distance between 336

a query vector to negative pairs to be larger than 337

the distance to positive pairs by a margin ω. This 338

4

approach can also be seen as a weakly-supervised339

learning problem, where the goal is to push dissim-340

ilar points away while keeping similar points close341

to each other (Xing et al., 2002; Weinberger and342

Saul, 2009; Bellet et al., 2015).343

4.3 Distance-based pairing344

To take advantage of the proximity of data points345

on the embedded space, we first propose a sim-346

ple method to connect query and key pairs whose347

Euclidean distance is less than a threshold t, i.e.348

Ĝh = {(qi,kj) | ∥q′
i − k′

j∥2 ≤ t}. Although349

this method also requires O(n2) computations, it350

is more efficient than a vanilla transformer since351

it reduces computations by a factor of d/r by us-352

ing the learned projections. This method is also353

useful to probe the quality of the embedded space354

learned by the projections, since the recall of our355

other methods will be contingent on it.356

4.4 Buckets through quantization357

Our second strategy quantizes each dimension358

1, . . . , r of the lower-dimensional space into β bins,359

placing the queries and keys into the corresponding360

buckets (B = rβ buckets in total). This way, each361

qi and kj will be placed in exactly r buckets (one362

per dimension). If qi and kj are together in some363

bucket, Sparsefinder predicts that (qi,kj) ∈ Ĝh.364

Note that for this quantization strategy no learn-365

ing is needed, only the hyperparameter β and the366

binning strategy need to be chosen. We propose a367

fixed-size binning strategy: divide each dimension368

into β bins such that all bins have exactly ⌈n/β⌉369

elements. In practice, we append padding symbols370

to the input to ensure that bins are balanced.371

4.5 Buckets through clustering372

The clustering strategy uses the low-dimensional373

projections and runs a clustering algorithm to as-374

sign qi and kj to one or more clusters. In this375

case, each cluster corresponds to a bucket. In our376

paper, we employed k-means to learn B centroids377

{c1, . . . , cB}, where each cb ∈ Rr, over a small378

portion of the training set. This strategy is simi-379

lar to the Routing Transformer’s online k-means380

(Roy et al., 2021), but with two key differences: (a)381

our clustering step is applied offline; (b) we assign382

points to the top-k closest centroids rather than383

assigning the closest top-k closest points to each384

centroid, ensuring that all queries are assigned to a385

cluster.3 At test time, we use the learned centroids 386

to group queries and keys into k clusters each: 387

fq(qi) = arg top-k
1≤b≤B

−∥qi − cb∥22, (8) 388

fk(kj) = arg top-k
1≤b≤B

−∥kj − cb∥22, (9) 389

where the arg top-k operator returns the indices of 390

the kth largest elements. As in the quantization- 391

based approach, queries and keys will attend to 392

each other, i.e., Sparsefinder predicts (qi,kj) ∈ Ĝh 393

if they share at least one cluster among the k closest 394

ones. Smaller values of k will induce high sparsity 395

graphs, whereas a larger k is likely to produce a 396

denser graph but with a higher recall. 397

4.6 Computational cost 398

Let L be the maximum number of elements in a 399

bucket. The time and memory cost of bucketed 400

attention computed through quantization or clus- 401

tering is O(BL2). With balanced buckets, we get 402

a complexity of O(n1.5) by setting B =
√
n. Al- 403

though this cost is sub-quadratic, leveraging the 404

sparse structure of Ĝh in practice is challenging, 405

since it might require specialized hardware or ker- 406

nels. In general, we have |Ĝh| =
∑B

b=1 nbmb ≪ 407

nm, where nb and mb are the number of queries 408

and keys in each bucket, since we have small com- 409

plete bipartite graphs on each bucket. Instead of 410

viewing quadratic methods only in light of their 411

performance, we adopt an alternative view of as- 412

sessing the tradeoff of these methods in terms of 413

sparsity and recall of their approximation Ĝh. This 414

offers a theoretical perspective to the potential per- 415

formance of each approximation on downstream 416

tasks, helping to find the best approximations for a 417

desired level of sparsity. 418

4.7 Combining learned and fixed patterns 419

As pointed out in prior work (Voita et al., 2019), 420

several attention heads rely strongly in local pat- 421

terns or prefer to attend to a particular position, 422

more promimently in initial layers. Therefore, 423

we take inspiration from the Longformer (Beltagy 424

et al., 2020) and BigBird (Zaheer et al., 2020) and 425

combine learned sparse patterns with window and 426

3The difference relies on the dimension on which the top-
k operation is applied. Routing Transformer applies top-k
to the input dimension, possibly leaving some queries unat-
tended, whereas Sparsefinder applies to the centroids dimen-
sion, avoiding this problem.

5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0

10

20

30

BL
EU

Baseline BigBird Longformer Reformer Routing Sf. distance Sf. k-means Sf. quant.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0

10

20

30

BL
EU

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

10

20

30

40

BL
EU

Figure 2: Sparsity-recall (left) and sparsity-BLEU (right) tradeoff averaged across all layers and heads on IWSLT
EN→DE (top) and EN→FR (bottom). The vertical dashed line represents the gold sparsity obtained by the original
α-entmax transformer (which requires quadratic computation), and the starred marks depict its BLEU score: 34.47
on EN→DE and 42.65 on EN→FR.

global patterns by adding connections in the pre-427

dicted graph Ĝh to improve the recall of all meth-428

ods. Figure 1 illustrates how these patterns are429

combined in the last step.430

5 Experiments: Machine Translation431

Setup. We pretrain a transformer-large model (6432

layers, 16 heads) on the Paracrawl dataset (Esplà433

et al., 2019). Next, we finetune it with α-entmax,434

fixing α = 1.5 for all heads, on EN→DE and435

EN→FR language pairs from IWSLT17 (Cettolo436

et al., 2017). We use the 2011-2014 sets as valida-437

tion data and the 2015 set as test data. We encode438

each word using byte pair encoding (BPE, Sen-439

nrich et al. 2016) with a joint segmentation of 32k440

merges. As Vaswani et al. (2017), we finetune our441

models using the Adam optimizer with an inverse442

square root learning rate scheduler, with an initial443

value of 5× 10−4 and a linear warm-up in the first444

4000 steps. We evaluate translation quality with445

sacreBLEU (Post, 2018). Training details, hyper-446

parameters, and data statistics are described in §C.447

Learning projections. To learn projections for448

queries and keys (§4.2), we randomly selected 10K449

long instances (n > 20 tokens) from the training450

set and extracted the α-entmax attention graphs451

Gh from the decoder self-attention for each head.452

This led to an average of 8M and 9M positive pairs453

(qi,kj) per layer for EN→DE and EN→FR, respec-454

tively. In practice, due to the small number of pa-455

rameters for each head (only 4,160), a single epoch456

with Adam was sufficient to optimize the loss in 457

Eq. 7. The hyperparameters and the training details 458

for learning projections can be found in §C. 459

Pareto-curves. Using the learned projections, 460

we investigate the recall and the accuracy of all 461

Sparsefinder variants by comparing them with 462

Longformer, BigBird, Reformer, and Routing 463

Transformer. To get a fair comparison, we ana- 464

lyze each method for different levels of sparsity by 465

varying the following hyperparameters: 466

• Distance-based methods: the threshold t within 467

{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}. 468

• Bucketing-based methods: the number of buck- 469

ets B within {2, 4, 6, 8, 10, 12, 16, 20}. 470

• Fixed-pattern methods: the number of random 471

blocks of size 1 within {2, 4, 6, 8, 10, 12, 16, 20} 472

for BigBird; and the number of random global to- 473

kens within {2, 4, 6, 8, 10, 12, 16, 20} for Long- 474

former. 475

We also add global and local patterns to 476

all methods, varying the window size within 477

{0, 1, 3, 5, 7, 9, 11, 15, 19, 23, 27} to get different 478

levels of locality. We further compare all meth- 479

ods with a simple window baseline that only in- 480

duces the window and global patterns. Since all 481

methods exhibit a tradeoff between sparsity and re- 482

call/accuracy, we plot the scores obtained by vary- 483

ing the hyperparameters and draw their respective 484

Pareto frontier to see the optimal Pareto-curve. 485

6

Methods whose points lie below this frontier are486

said to be Pareto-dominated, meaning that their487

recall/accuracy cannot be increased without sac-488

rificing sparsity, or vice-versa. Concretely, each489

point on the curve is measured as a function of the490

approximation to the ground-truth α-entmax atten-491

tion graph Gh by replacing it by Ĝh at test time.492

Sparsity-recall tradeoff. Pareto-curves for the493

sparsity-recall tradeoff are shown on the left of494

Figure 2 for both language pairs. Overall, both495

language pairs have similar trends for all meth-496

ods. Sparsefinder’s distance-based and clustering497

approaches Pareto-dominates the other methods,498

followed by Routing Transformer. Interestingly,499

Longformer, BigBird, Routing Transformer, and500

Sparsefinder’s bucketing approach perform on par501

with the baseline, indicating that a simple local502

window is a hard baseline to beat. Since the LSH503

attention in Reformer shares queries and keys be-504

fore hashing, the resultant buckets are also shared505

for queries and keys, explaining the high recall and506

the low sparsity of Reformer.507

Sparsity-accuracy tradeoff. We show the trade-508

off between sparsity and BLEU on the right of509

Figure 2. For lower levels of sparsity, all meth-510

ods perform well, close to the full entmax trans-511

former. But as sparsity increases, indicating that512

only a few computations are necessary, we see513

that the distance-based and k-means variants of514

Sparsefinder Pareto-dominate other methods, keep-515

ing a very high BLEU without abdicating sparsity.516

In particular, Sparsefinder’s distance and clustering517

approaches perform on par with the full entmax518

transformer when the amount of sparsity is close519

to the original entmax transformer (around the ver-520

tical dashed line). Overall, these plots show that521

methods with a high recall for higher levels of spar-522

sity also tend to have a higher BLEU score.523

Learned patterns. We select some heads and524

show in Figure 3 examples of the pattern learned525

by our k-means variant on EN→FR. More exam-526

ples can be found in §E. We note that the window527

pattern is useful to recover local connections. We528

can see that the k-means variant groups more query529

and key pairs than the actual number of ground-530

truth edges (left plots). However, due to the sparse-531

consistency property (right plots), most of these532

predictions receive zero probability by α-entmax,533

resulting in a very accurate approximation.534

Figure 3: Learned patterns by Sparsefinder k-means
(left) and the subsequent attention weights (right).
Starred blocks represent ground-truth edges.

6 Experiments: Masked LM 535

Setup. Following Beltagy et al. (2020), we initial- 536

ize our model from a pretrained RoBERTa check- 537

point. We use the roberta-base model from 538

Huggingface’s transformers library, with 12 layers 539

and 12 heads.4 We finetune on WikiText-103 (Mer- 540

ity et al., 2017), replacing softmax by α-entmax 541

with α = 1.5 for all heads. Training details, model 542

hyperparameters, and data statistics can be found 543

in §D. 544

Learning projections. As done for MT experi- 545

ments, we learn to project keys and queries from 546

the original 64 dimensions into r = 4 dimensions. 547

To this end, we use 1K random samples from the 548

training set, each with length of 512, keeping half 549

for validation. We extract the α-entmax attention 550

graphs Gh but from the encoder self-attention of 551

each head, leading to an average of 3M positive 552

pairs per layer. Due to the small number of learn- 553

able parameters for each head (256), training was 554

done with Adam for one epoch. 555

Results. Our full transformer trained with α- 556

entmax achieved a perplexity score of 3.5004 with 557

an overall sparsity of 0.9804 on WikiText-103. 558

As in sentence-level MT experiments, we mea- 559

sure the sparsity-recall and the sparsity-perplexity 560

tradeoff via the change of Gh with Ĝh at test 561

time. Moreover, since MLM has longer inputs, 562

we increased the range of the window pattern to 563

{31, 41, 51, 75, 101, 125, 151, 175, 201, 251}. 564

We show in Figure 4 the Pareto curves for the 565

tradeoff between sparsity and recall (left), and the 566

tradeoff between sparsity and perplexity (right). 567

The curves for the sparsity-recall tradeoff are simi- 568

lar to the ones found in MT experiments, with the 569

distance-based method outperforming all methods, 570

4https://huggingface.co/roberta-base

7

https://huggingface.co/roberta-base

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0

10

20

30

BL
EU

Baseline BigBird Longformer Reformer Routing Sf. distance Sf. k-means Sf. quant.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sparsity

0.70

0.75

0.80

0.85

0.90

0.95

Re
ca

ll

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sparsity

6.0

5.5

5.0

4.5

4.0

3.5

Ne
g.

 P
er

pl
ex

ity

Figure 4: Sparsity-recall and sparsity-(neg-)perplexity tradeoff averaged across all layers and heads on WikiText-103.
The vertical dashed line represents the gold sparsity obtained by the full α-entmax transformer.

followed by the k-means variant of Sparsefinder571

and Routing Transformer. In terms of perplexity,572

our distance-based approach also Pareto-dominates573

other methods, followed by our clustering vari-574

ant and Routing Transformer. As in the MT ex-575

periments, the window baseline yields a similar576

sparsity-recall curve to other approaches, reinforc-577

ing the importance of local patterns. Although the578

distance-based method requires a quadratic num-579

ber of computations, it reduces them by a factor580

of d/r = 64/4 = 16, as described in §4.3, and581

achieves better recall and perplexity than any other582

tested method. This finding indicates clear room583

for improvement in designing efficient attention584

methods that have a better tradeoff between effi-585

ciency and accuracy than existing approaches.586

Learned patterns. In Figure 5 we show587

Sparsefinder k-means’ predicted attention graphs588

for a specific attention head that originally learned589

to focus on coreference tokens. We can see that the590

pattern induced by Sparsefinder keeps the behav-591

ior of attending to coreferences. Concretely, our592

method achieves a high recall score (∼ 80%) with593

a high sparsity rate (∼ 75%) on this attention head.594

Figure 5: Attention pattern learned by Sparsefinder k-
means that focus on coreference tokens.

Cluster analysis. To understand what is repre- 595

sented in each cluster learned by Sparsefinder k- 596

means, we run the following experiment: we obtain 597

POS tags using spaCy,5 and calculate the distribu- 598

tion of each tag over clusters for all heads. We 599

show an example in Figure 6, where Sparsefinder 600

learned a cluster that makes verbs and nouns attend 601

to themselves, and additionally to most auxiliary 602

verbs. 603

ADJ
ADP

ADV
AUX

CCONJ
DET INTJ

NOUN
NUM

PA
RT

PR
ON

PR
OPN

PU
NCT

SC
ONJ

SP
ACE

SY
M

VER
B X

0%

20%

40%

60%

80% Queries
Keys

Figure 6: Percentage of POS tags assigned to a given
cluster on the entire Wikitext 103 validation set.

7 Conclusions 604

We proposed Sparsefinder, a method to identify 605

the sparsity pattern of entmax-based transformers 606

while avoiding full computation of the score matrix. 607

Our method learns a low-dimensional projection of 608

queries and keys with a contrastive objective, and 609

comes with three variants: distance, quantization, 610

and clustering-based. We compared these variants 611

against competing approaches on two tasks: ma- 612

chine translation and masked language modeling. 613

We obtained favorable sparsity-recall and sparsity- 614

accuracy tradeoff curves. Our theoretical sparsity 615

provides a lower bound for how much computa- 616

tional sparsity can be achieved, and may guide 617

future research on efficient transformers. 618

5https://spacy.io/

8

https://spacy.io/

References619

Aurélien Bellet, Amaury Habrard, and Marc Sebban.620
2015. Metric learning. Synthesis Lectures on Artifi-621
cial Intelligence and Machine Learning, 9(1):1–151.622

Iz Beltagy, Matthew E. Peters, and Arman Cohan.623
2020. Longformer: The long-document transformer.624
arXiv:2004.05150.625

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie626
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind627
Neelakantan, Pranav Shyam, Girish Sastry, Amanda628
Askell, et al. 2020. Language models are few-shot629
learners. In Advances in Neural Information Process-630
ing Systems (NeurIPS), volume 33, pages 1877–1901.631
Curran Associates, Inc.632

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,633
Niehues Jan, Stüker Sebastian, Sudoh Katsuitho,634
Yoshino Koichiro, and Federmann Christian. 2017.635
Overview of the iwslt 2017 evaluation campaign. In636
Proceedings of the 14th International Workshop on637
Spoken Language Translation (IWSLT), pages 2–14.638

Rewon Child, Scott Gray, Alec Radford, and639
Ilya Sutskever. 2019. Generating long se-640
quences with sparse transformers. arXiv preprint641
arXiv:1904.10509.642

Krzysztof Marcin Choromanski, Valerii Likhosherstov,643
David Dohan, Xingyou Song, Andreea Gane, Tamas644
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz645
Mohiuddin, Lukasz Kaiser, David Benjamin Be-646
langer, Lucy J Colwell, and Adrian Weller. 2021. Re-647
thinking attention with performers. In International648
Conference on Learning Representations (ICLR).649

Gonçalo M. Correia, Vlad Niculae, and André F. T.650
Martins. 2019. Adaptively sparse transformers. In651
Proceedings of the 2019 Conference on Empirical652
Methods in Natural Language Processing and the653
9th International Joint Conference on Natural Lan-654
guage Processing (EMNLP-IJCNLP), pages 2174–655
2184, Hong Kong, China. Association for Computa-656
tional Linguistics.657

Giannis Daras, Nikita Kitaev, Augustus Odena, and658
Alexandros G Dimakis. 2020. Smyrf - efficient at-659
tention using asymmetric clustering. In Advances in660
Neural Information Processing Systems, volume 33,661
pages 6476–6489. Curran Associates, Inc.662

Renato Cordeiro de Amorim. 2012. Constrained clus-663
tering with minkowski weighted k-means. In 2012664
IEEE 13th International Symposium on Computa-665
tional Intelligence and Informatics (CINTI), pages666
13–17. IEEE.667

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and668
Kristina Toutanova. 2019. BERT: Pre-training of669
deep bidirectional transformers for language under-670
standing. In Proceedings of the 2019 Conference of671
the North American Chapter of the Association for672
Computational Linguistics: Human Language Tech-673
nologies, Volume 1 (Long and Short Papers), pages674

4171–4186, Minneapolis, Minnesota. Association for 675
Computational Linguistics. 676

Miquel Esplà, Mikel Forcada, Gema Ramírez-Sánchez, 677
and Hieu Hoang. 2019. ParaCrawl: Web-scale paral- 678
lel corpora for the languages of the EU. In Proceed- 679
ings of Machine Translation Summit XVII Volume 2: 680
Translator, Project and User Tracks, pages 118–119, 681
Dublin, Ireland. European Association for Machine 682
Translation. 683

Patrick Fernandes, Kayo Yin, Graham Neubig, and An- 684
dré F. T. Martins. 2021. Measuring and increasing 685
context usage in context-aware machine translation. 686
In Joint Conference of the 59th Annual Meeting of 687
the Association for Computational Linguistics and 688
the 11th International Joint Conference on Natural 689
Language Processing (ACL-IJCNLP), Virtual. 690

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. 691
2020. Transformers are rnns: Fast autoregressive 692
transformers with linear attention. In Proceedings of 693
the International Conference on Machine Learning 694
(ICML). 695

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi- 696
lingual constituency parsing with self-attention and 697
pre-training. In Proceedings of the 57th Annual Meet- 698
ing of the Association for Computational Linguistics, 699
pages 3499–3505, Florence, Italy. Association for 700
Computational Linguistics. 701

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 702
2020. Reformer: The efficient transformer. In In- 703
ternational Conference on Learning Representations 704
(ICLR). 705

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 706
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 707
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 708
Roberta: A robustly optimized bert pretraining ap- 709
proach. arXiv preprint arXiv:1907.11692. 710

Andre Martins and Ramon Astudillo. 2016. From soft- 711
max to sparsemax: A sparse model of attention and 712
multi-label classification. In International Confer- 713
ence on Machine Learning (ICML), volume 48 of 714
Proceedings of Machine Learning Research, pages 715
1614–1623, New York, New York, USA. PMLR. 716

Stephen Merity, Caiming Xiong, James Bradbury, and 717
Richard Socher. 2017. Pointer sentinel mixture mod- 718
els. In 5th International Conference on Learning 719
Representations (ICLR). 720

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, 721
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, 722
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 723
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch- 724
esnay. 2011. Scikit-learn: Machine learning in 725
Python. Journal of Machine Learning Research 726
(JMLR), 12:2825–2830. 727

Ben Peters, Vlad Niculae, and André F. T. Martins. 2019. 728
Sparse sequence-to-sequence models. In Proceed- 729
ings of the 57th Annual Meeting of the Association for 730

9

https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://doi.org/10.18653/v1/D19-1223
https://proceedings.neurips.cc/paper/2020/file/47d40767c7e9df50249ebfd9c7cfff77-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/47d40767c7e9df50249ebfd9c7cfff77-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/47d40767c7e9df50249ebfd9c7cfff77-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/W19-6721
https://www.aclweb.org/anthology/W19-6721
https://www.aclweb.org/anthology/W19-6721
https://arxiv.org/abs/2105.03482
https://arxiv.org/abs/2105.03482
https://arxiv.org/abs/2105.03482
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://openreview.net/forum?id=rkgNKkHtvB
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.18653/v1/P19-1146

Computational Linguistics, pages 1504–1519, Flo-731
rence, Italy. Association for Computational Linguis-732
tics.733

Matt Post. 2018. A call for clarity in reporting BLEU734
scores. In Proceedings of the Third Conference on735
Machine Translation: Research Papers, pages 186–736
191, Brussels, Belgium. Association for Computa-737
tional Linguistics.738

Alessandro Raganato, Yves Scherrer, and Jörg Tiede-739
mann. 2020. Fixed encoder self-attention patterns740
in transformer-based machine translation. In Find-741
ings of the Association for Computational Linguistics:742
EMNLP 2020, pages 556–568, Online. Association743
for Computational Linguistics.744

Alessandro Raganato and Jörg Tiedemann. 2018. An745
analysis of encoder representations in transformer-746
based machine translation. In Proceedings of the747
2018 EMNLP Workshop BlackboxNLP: Analyzing748
and Interpreting Neural Networks for NLP, pages749
287–297, Brussels, Belgium. Association for Com-750
putational Linguistics.751

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and752
David Grangier. 2021. Efficient content-based sparse753
attention with routing transformers. Transactions754
of the Association for Computational Linguistics755
(TACL), 9:53–68.756

Rico Sennrich, Barry Haddow, and Alexandra Birch.757
2016. Neural machine translation of rare words with758
subword units. In Proceedings of the 54th Annual759
Meeting of the Association for Computational Lin-760
guistics (Volume 1: Long Papers), pages 1715–1725,761
Berlin, Germany. Association for Computational Lin-762
guistics.763

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-764
Micke, and Mohit Iyyer. 2021. Do long-range lan-765
guage models actually use long-range context? In766
Proceedings of the 2021 Conference on Empirical767
Methods in Natural Language Processing, pages 807–768
822, Online and Punta Cana, Dominican Republic.769
Association for Computational Linguistics.770

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and771
Da-Cheng Juan. 2020. Sparse sinkhorn attention.772
In International Conference on Machine Learning773
(ICML), pages 9438–9447. PMLR.774

Constantino Tsallis. 1988. Possible generalization of775
boltzmann-gibbs statistics. Journal of Statistical776
Physics.777

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob778
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz779
Kaiser, and Illia Polosukhin. 2017. Attention is all780
you need. In Advances in Neural Information Pro-781
cessing Systems (NeurIPS), volume 30, pages 5998–782
6008. Curran Associates, Inc.783

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-784
nrich, and Ivan Titov. 2019. Analyzing multi-head785

self-attention: Specialized heads do the heavy lift- 786
ing, the rest can be pruned. In Proceedings of the 787
57th Annual Meeting of the Association for Computa- 788
tional Linguistics, pages 5797–5808, Florence, Italy. 789
Association for Computational Linguistics. 790

A. Vyas, A. Katharopoulos, and F. Fleuret. 2020. Fast 791
transformers with clustered attention. In Proceedings 792
of the International Conference on Neural Informa- 793
tion Processing Systems (NeurIPS). 794

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan 795
Schrödl. 2001. Constrained k-means clustering with 796
background knowledge. In International Conference 797
on Machine Learning (ICML), page 577–584. 798

Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun 799
Chen, Yuwei Fang, Siqi Sun, Yu Cheng, and Jingjing 800
Liu. 2021. Cluster-former: Clustering-based sparse 801
transformer for question answering. In Findings of 802
the Association for Computational Linguistics: ACL- 803
IJCNLP 2021, pages 3958–3968, Online. Association 804
for Computational Linguistics. 805

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, 806
and Hao Ma. 2020. Linformer: Self-attention with 807
linear complexity. arXiv preprint arXiv:2006.04768. 808

Kilian Q Weinberger and Lawrence K Saul. 2009. Dis- 809
tance metric learning for large margin nearest neigh- 810
bor classification. Journal of Machine Learning Re- 811
search (JMLR), 10(2). 812

Eric P Xing, Andrew Y Ng, Michael I Jordan, and Stuart 813
Russell. 2002. Distance metric learning with applica- 814
tion to clustering with side-information. In Advances 815
in Neural Information Processing Systems (NeurIPS), 816
volume 15, page 12. 817

Manzil Zaheer, Guru Guruganesh, Kumar Avinava 818
Dubey, Joshua Ainslie, Chris Alberti, Santiago On- 819
tanon, Philip Pham, Anirudh Ravula, Qifan Wang, 820
Li Yang, et al. 2020. Big bird: Transformers for 821
longer sequences. Advances in Neural Information 822
Processing Systems (NeurIPS), 33. 823

Biao Zhang, Ivan Titov, and Rico Sennrich. 2021. 824
Sparse attention with linear units. arXiv preprint 825
arXiv:2104.07012. 826

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xu- 827
ancheng Ren, Qi Su, and Xu Sun. 2019. Explicit 828
sparse transformer: Concentrated attention through 829
explicit selection. arXiv preprint arXiv:1912.11637. 830

10

https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/2021.emnlp-main.62
https://aclanthology.org/2021.emnlp-main.62
https://aclanthology.org/2021.emnlp-main.62
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/2021.findings-acl.346
https://doi.org/10.18653/v1/2021.findings-acl.346
https://doi.org/10.18653/v1/2021.findings-acl.346

A Sparse Attention 831

A natural way to get a sparse attention distribution is by using the sparsemax transformation (Martins 832

and Astudillo, 2016), which computes an Euclidean projection of the score vector onto the probability 833

simplex △n := {p ∈ Rn | p ≥ 0, 1⊤p = 1}, or, more generally, the α-entmax transformation (Peters 834

et al., 2019): 835

α-entmax(z) := arg max
p∈△n

p⊤z+Hα(p), (10) 836

where Hα is a generalization of the Shannon and Gini entropies proposed by Tsallis (1988), parametrized 837

by a scalar α ≥ 1: 838

Hα(p) :=

{
1

α(α−1)

∑
j(pj − pαj), α ̸= 1

−
∑

j pj log pj , α = 1.
(11) 839

Setting α = 1 recovers the softmax function, while for any value of α > 1 this transformation can return 840

a sparse probability vector. Letting α = 2, we recover sparsemax. A popular choice is α = 1.5, which 841

has been successfully used in machine translation and morphological inflection applications (Peters et al., 842

2019; Correia et al., 2019). 843

Proof to Proposition 1. 844

Proof. From the definition of z|m and from Eq. 2, we have that 845{
zj |m = zj >

τ(z)
α−1 if p∗j > 0

zj |m ≤ zj ≤ τ(z)
α−1 if p∗j = 0.

(12) 846

We first prove that τ(z|m) = τ(z). From the definition of τ(z) we have that
∑

j [(α−1)zj−τ(z)]
1/α−1

+ = 1. 847

Plugging the (in)equalities from Eq. 12, we thus have 848

1 =
∑
j

[(α− 1)zj − τ(z)]
1/α−1

+ =
∑
j

[(α− 1)zj |m − τ(z)]
1/α−1

+ . (13) 849

Since τ(z) satisfies the second equation – which is the condition that defines τ(z|m) – we thus conclude 850

that τ(z|m) = τ(z). Combining the results in Eqs. 12–13, we see that the supports of α-entmax(z) and 851

α-entmax(z|m) are the same and so are the thresholds τ , and therefore from Eq. 2 we conclude that 852

α-entmax(z|m) = α-entmax(z). 853

B Computing infrastructure 854

Our infrastructure consists of 4 machines with the specifications shown in Table 1. The machines were 855

used interchangeably, and all experiments were executed in a single GPU. Despite having machines with 856

different specifications, we did not observe large differences in the execution time of our models across 857

different machines. 858

GPU CPU

1. 4 × Titan Xp - 12GB 16 × AMD Ryzen 1950X @ 3.40GHz - 128GB
2. 4 × GTX 1080 Ti - 12GB 8 × Intel i7-9800X @ 3.80GHz - 128GB
3. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB
4. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB

Table 1: Computing infrastructure.

C Machine Translation 859

C.1 Setup 860

Data. Statistics for all datasets used in MT experiments can be found below in Table 2. 861

11

DATASET # TRAIN # TEST AVG. SENTENCE LENGTH

IWSLT17 (EN→DE) 206K 1080 20 ±14 / 19 ±13
IWSLT17 (EN→FR) 233K 1210 20 ±14 / 21 ±15

Table 2: Statistics for MT datasets.

Training and Model. We replicated the sentence-level model of Fernandes et al. (2021) with the862

exception that we used α-entmax with α = 1.5 instead of softmax in all attention heads and layers. Table 3863

shows some architecture (transformer large) and training hyperparameters used for MT experiments. We864

refer to the original work of Fernandes et al. (2021) for more training details.865

HYPERPARAM. VALUE

Hidden size 1024
Feedforward size 4096
Number of layers 6
Number of heads 16
Attention mapping π 1.5-entmax
Optimizer Adam
Number of epochs 20
Early stopping patience 10
Learning rate 0.0005
Scheduling Inverse square root
Linear warm-up steps 4000
Dropout 0.3
CoWord dropout 0.1
Beam size 5

Table 3: Hyperparmeters for neural machine translation models.

C.2 Projections setup866

Data. Statistics for the subsets of IWSLT used in the projection analysis can be found below in Table 4.

TRAIN VALIDATION

PAIR # SENT. # POS. PAIRS AVG. SENT. LENGTH # SENT. # POS. PAIRS AVG. SENT. LENGTH

EN→DE 9K 8M ±1M 35 ±16 1K 330K ±56K 36 ±17
EN→FR 9K 9M ±1M 37 ±17 1K 334K ±58K 37 ±16

Table 4: Statistics for subsets of IWSLT used for training and evaluating projections.
867

Training. After extracting the α-entmax graphs, we optimize the learnable parameters of Equation 7 with868

Adam over a single epoch. Moreover, we used the k-means implementation from scikit-learn (Pedregosa869

et al., 2011) for our clustering-based approach. The hyperparameters used both for training the projections870

and for clustering with k-means are shown in Table 5.871

Projection analysis. We compare Sparsefinder, varying B ∈ {2, 4, 6, 8, 10, 12} for bucket-based872

methods, and t ∈ {0.5, 1.0, 1.5, 2.0, 2.5} for the distance-based variant, with the following methods:873

• Window baseline: connect all query and key pairs within a sliding window of size w ∈874

{0, 1, 3, 5, 7, 9, 11, 15, 19, 23, 27}.875

• Learnable patterns: Reformer by varying the number of buckets within {2, 4, 6, 8, 10, 12}; Routing876

transformer by varying the number of clusters within c ∈ {2, 4, 6, 8, 10} with top-k set to ⌈n/c⌉ (i.e.877

balanced clusters).878

• Fixed patterns: BigBird by varying the number of random blocks within {2, 4, 6, 8, 10} with a block879

size of 1; Longformer by varying the number of random global tokens within {4, 8, 12, 16, 20}.880

12

HYPERPARAM. VALUE

Projection dim. r 4
Loss margin ω 1.0
Batch size 16
Optimizer Adam
Number of epochs 1
Learning rate 0.01
ℓ2 regularization 0
k-means init k-means++
k-means max num. inits 10
k-means max iters 300

Table 5: Hyperparmeters for MT projections.

Sparsity-recall tradeoff per layer and head. Plots are shown in Figures 7 and 8 for EN→DE and 881

EN→FR, respectively. 882

Figure 7: Sparsity-recall tradeoffs with a fixed window pattern of size 11 for EN→DE.

Figure 8: Sparsity-recall tradeoffs with a fixed window pattern of size 11 for EN→FR.

D Masked Language Modeling 883

D.1 Setup 884

Data and model. In order to have a transformer model trained with α-entmax, we finetuned RoBERTa- 885

Base (Liu et al., 2019) on WikiText-103 (Merity et al., 2017) over 3000 steps with Adam (learning rate of 886

13

3× 10−5). To mimic the finetuning approach adopted by Longformer, we employed a batch size of 2 by887

accumulating gradients over 32 steps due to GPU memory constraints. Table 6 shows some architecture888

(transformer large) and training hyperparameters used for MT experiments. We refer to the original work889

of Liu et al. (2019) for more architecture details.890

HYPERPARAM. VALUE

Hidden size 64
Feedforward size 3072
Max input length 514
Number of layers 12
Number of heads 12
Attention mapping π 1.5-entmax
Optimizer Adam
Number of steps 3000
Learning rate 0.00003

Table 6: Hyperparmeters for masked language modeling models.

D.2 Projections setup891

Data and training. The subset used for Masked LM projections experiments contains 500 instances for892

training and 500 instances for validation. Moreover, all instances have a sentence length of 512 tokens.893

We got 3M (±1M) positive pairs for training and 2.5M (±1M) for validation. The hyperparameters for894

Masked LM are the same as the ones used in the MT experiments, shown in Table 5.895

Projection analysis. We perform the same analysis as in MT, but now we vary the window size of the896

baseline within {0, 1, 3, 7, 11, 25, 31, 41, 51, 75, 101, 125, 151, 175, 201, 251, 301, 351, 401, 451, 501,897

512}.898

Sparsity-recall tradeoff per layer and head. Plots are shown next in Figure 9.899

Figure 9: Sparsity-recall tradeoffs with a fixed window pattern of size 25 for MLM.

E Attention plots900

Examples of attention maps can be seen in Figure 10 and 11.901

14

Figure 10: Learned patterns by Sparsefinder k-means (left) and the subsequent attention weights (right). Starred
blocks represent ground-truth edges.

Figure 11: Learned patterns by Sparsefinder k-means (left) and the subsequent attention weights (right). Starred
blocks represent ground-truth edges.

15

