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ABSTRACT

Selecting a sample generation scheme from multiple text-based generative models
is typically addressed by choosing the model that maximizes an averaged evalua-
tion score. However, this score-based selection overlooks the possibility that dif-
ferent models achieve the best generation performance for different types of text
prompts. An online identification of the best generation model for various input
prompts can reduce the costs associated with querying sub-optimal models. In this
work, we explore the possibility of varying rankings of text-based generative mod-
els for different text prompts and propose an online learning framework to predict
the best data generation model for a given input prompt. The proposed frame-
work adapts the kernelized contextual bandit (CB) methodology to a CB setting
with shared context variables across arms, utilizing the generated data to update a
kernel-based function that predicts which model will achieve the highest score for
unseen text prompts. Additionally, we apply random Fourier features (RFF) to the
kernelized CB algorithm to accelerate the online learning process and establish a
Õ(
√
T ) regret bound for the proposed RFF-based CB algorithm over T iterations.

Our numerical experiments on real and simulated text-to-image and image-to-text
generative models show RFF-UCB performs successfully in identifying the best
generation model across different sample types.

1 INTRODUCTION

Text-based generative artificial intelligence (AI) has found numerous applications in various engi-
neering tasks. A prompt-based generative AI represents a conditional generative model that pro-
duces samples given an input text prompt. Over the past few years, several frameworks using diffu-
sion models and generative adversarial networks have been proposed to perform text-guided sample
generation tasks for various data domains including image, audio, and video (Reed et al., 2016;
Pan et al., 2018; Xu et al., 2018; Ding et al., 2021; Singer et al., 2022; Huang et al., 2023; Podell
et al., 2024). The multiplicity of developed prompt-based models has led to significant interest in
developing evaluation mechanisms to rank the existing models and find the best generation scheme.
To address this task, several evaluation metrics have been proposed to quantify the fidelity and rel-
evance of samples created by prompt-based generative models, such as CLIPScore (Hessel et al.,
2021) and PickScore (Kirstain et al., 2023).

The existing model selection methodologies commonly aim to identify the generative model with
the highest relevance score, producing samples that correlate the most with input text prompts. A
well-known example is the CLIPScore for image generation models, measuring the expected align-
ment between the input text and output image of the model using the CLIP embedding (Radford
et al., 2021b). While the best-model identification strategy has been frequently utilized in gener-
ative AI applications, this approach does not consider the possibility that the involved models can
perform differently across text prompts. However, it is possible that one model outperforms another
model in responding to text prompts from certain categories, while that model performs worse in
generating samples for other text categories. Figure 1 shows one such example where two standard
text-to-image models exhibit different rankings on text prompts with the terms ”dog” and ”car”. In
general, the different training sets and model architectures utilized to train text-based models can re-
sult in the models’ varying performance in response to different text prompts, which is an important
consideration in the selection of text-based generative models for various text prompts. We provide
more examples in Figures 17 and 18 in the Appendix.
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Stable Diffusion PixArt-α Examples (clockwise)

Pr
om

pt
so

f
Ty

pe
“d

og
”

1. “a woman sitting with
her dog and a toy”

2. “the little dog stands
near the toilet in
a small bathroom”

3. “a dog on a leash
drinking water
from a water bottle”

4. “a dog laying on
the floor next to a door”

36.37 (±0.13) 37.24 (±0.09)

Pr
om

pt
so

f
Ty

pe
“c

ar
”

1. “a motorcycle is on
the road behind a car”

2. “two cars and a motorcycle
on a road being crossed
by a herd of elephants”

3. “a car that had run
over a red fire hydrant”

4. “a taxi driving down
a city street below
tall white buildings”

36.10 (±0.06) 35.68 (±0.15)

Figure 1: Prompt-based generated images from Stable Diffusion and PixArt-α: Stable Diffusion
attains a higher CLIPScore in generating type-2 prompts (36.10 versus 35.68) while underperforms
for type-1 prompts (36.37 versus 37.24).

In this work, we aim to develop a learning algorithm to identify the best generative model for a given
input prompt, using observed prompt/generated samples collected from the models in the previous
sample generation iterations. Since the goal of such text-based model selection is to minimize
the data queries from suboptimal generative models for an input text prompt, we view the model
selection task as an online learning problem, where after each data generation the learner updates a
function predicting which generative model performs the best in response to different text prompts.
Here, the goal of the online learner is to utilize the previously generated samples to accurately guess
the generation model with the best performance for the incoming text prompt. An optimal online
model selection method will result in a bounded regret value, measured in comparsion to the sample
generation from the groundtruth-best model for the text prompts.

The described online learning task can be viewed as a contextual bandit (CB) problem studied in the
multi-armed bandit literature (Langford & Zhang, 2007; Li et al., 2010). In a CB task, the online
learner observes the context variable (the text prompt in our setting) and guesses the best arm for the
current input context. Specifically, we focus on the kernelised upper confidence bound (kernel-UCB)
approach and adapt this methodology to propose the Shared-Context Kernel UCB (SCK-UCB) for
an online prompt-based selection of generative models. According to the SCK-UCB approach, the
learner utilizes a UCB-score from a kernel-based prediction function to choose the generative model
for the incoming text prompt and subsequently update the kernel-based prediction rule based on
the generated data for the upcoming iterations. We prove that the proposed SCK-UCB achieves an
Õ(
√
T ) regret bound over a horizon of T iterations.

Since the user applying the CB-based model selection approach may have limited compute power
and not be able to afford growing computational costs in the online learning process, we propose to
utilize the random Fourier features (RFF) framework (Rahimi & Recht, 2007b) to balance the com-
putational load between the iterations of SCK-UCB. We discuss that in the kernel-UCB methods,
including our proposed SCK-UCB, the computational cost per iteration will grow cubically as O(t3)
with iteration t. To address the growing cost per iteration of kernel-UCB, we leverage the RFF ap-
proach and develop the proxy RFF-UCB algorithm which approximates the solution to SCK-UCB,
while the computational costs grow only linearly O(t). We show that the regret bound for SCK-
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UCB will approximately hold for RFF-UCB, and therefore, RFF-UCB provides an efficient proxy
to the SCK-UCB algorithm, which can be run in devices with lower computation budget.

Finally, we present the results of several numerical experiments to show the efficacy of our pro-
posed SCK-UCB and RFF-UCB in the online selection of conditional generative models. In our ex-
periments, we simulate several text-to-image and image-captioning (image-to-text) models, where
different models lead to different rankings of CLIPScore values across sample types. Our numeri-
cal results suggest a fast convergence of the proposed online learning algorithms to the best model
available for different prompt types. Moreover, we apply the RFF-UCB method to several stan-
dard text-to-image models, and show how the algorithm can infer the model with higher CLIPScore
with a growing accuracy as the iteration grows. In our experiments, the proposed SCK-UCB and
RFF-UCB outperform the greedy baselines without any bonus term to encourage exploration in the
learning process. The main contributions of our work can be summarized as:

• Studying the prompt-based selection of conditional generative models to improve the performance
scores over every individual model

• Developing the contextual bandit-based SCK-UCB and RFF-UCB algorithms for the online se-
lection of prompt-based generative models

• Providing the theoretical analysis of the regret and computational costs of SCK-UCB and RFF-
UCB online learning methods

• Presenting numerical results on the online selection of generative models based on the incoming
prompt using SCK-UCB and RFF-UCB

2 RELATED WORK

(Automatic) Evaluation of conditional generative models. Evaluating the conditional genera-
tive models has been studied extensively in the literature. For text-to-image (T2I) generation, earlier
methods primarily rely on the Inception score (Salimans et al., 2016) and Fréchet inception dis-
tance (Heusel et al., 2017). More recent works propose reference-free metrics for robust automatic
evaluation of T2I and image captioning, with notable examples being CLIPScore (Hessel et al.,
2021) and PickScore (Kirstain et al., 2023). Kim et al. (2022) propose a mutual-information-based
metric, which attains consistency across benchmarks, sample parsimony, and robustness. To pro-
vide a holistic evaluation of T2I models, several works focus on multi-objective evaluation. Astolfi
et al. (2024) propose to evaluate conditional image generation in terms of prompt-sample consis-
tency, sample diversity, and fidelity. Kannen et al. (2024) introduce a framework to evaluate T2I
models regarding cultural awareness and cultural diversity. Masrourisaadat et al. (2024) examine
the performance of several T2I models in generating images such as human faces and groups and
present a social bias analysis. Another line of study explores evaluation approaches using large
language models (LLMs). Tan et al. (2024) develop LLM-based evaluation protocols that focus on
the faithfulness and text-image alignment. Peng et al. (2024) introduce a GPT-based benchmark for
evaluating personalized image generation. For evaluation of text-to-video (T2V) generation, Huang
et al. (2024) introduce VBench as a comprehensive evaluation of T2V models in terms of quality
and consistencey.

(Kernelized) Contextual bandits. The contextual bandits (CB) is an efficient framework for
online decision-making with context information (Langford & Zhang, 2007; Foster et al., 2018),
which is widely adopted in domains such as recommendation system and online advertisement (Li
et al., 2010). A key to its formulation is the relationship between the context (vector) and the ex-
pected reward. In linear CB, the reward is assumed to be linear to the context vector (Li et al., 2010;
Chu et al., 2011). To incorporate non-linearity, Valko et al. (2013) propose kernelized CB, which
assumes the rewards are linear-realizable in a reproducing kernel Hilbert space (RKHS). However,
the proposed algorithm requires solving a kernel ridge regression per iteration, whose computation
and required space have polynomial dependence on the number of iterations. To address this prob-
lem, a line of study leverages the assumption that the kernel matrix is often approximately low-rank
and uses Nyström approximations (Calandriello et al., 2019; 2020; Zenati et al., 2022). [Recently,
a line of study utilizes (contextual) bandit algorithms to improve the performance of generative
models (Chen et al., 2024; Lin et al., 2024).]
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3 PRELIMINARIES

3.1 CLIPSCORE

CLIPScore (Hessel et al., 2021) is a widely used automatic metric to evaluate the alignment of text-
to-image/video (T2I/V) and image captioning models. Let (y, x) ∈ Y × X be any text-image pair.
We denote by cy ∈ Sd−1 := {z ∈ Rd : ∥z∥2 = 1} and vx ∈ Sd−1 the (normalized) embeddings
of text y ∈ Y and image x ∈ X , respectively, both extracted by CLIP (Radford et al., 2021a). The
CLIPScore (Hessel et al., 2021) is given by

CLIPScoreT2I(y, x) := max{0, 100 · cos(vx, cy)}, (1)

and note that cos(vx, cy) = ⟨vx, cy⟩ as we operate under the normalized embeddings. Further, for a
video X := {x(l)}Ll=1 consisting of L frames, where x(l) is the l-th frame, the score is the averaged
frame CLIPScore, that is,

CLIPScoreT2V(y,X) :=
1

L

L∑
l=1

CLIPScoreT2I(y, x(l)). (2)

3.2 KERNEL METHODS AND RANDOM FOURIER FEATURES

Let ϕ : Rd → H denote a mapping from the primal space Rd to the (possibly infinite-
dimensional) associated reproducing kernel Hilbert space (RKHS) H. The corresponding kernel
function is defined by k(y, y′) := (ϕ(y))⊤ϕ(y′) for any y, y′ ∈ Rd, where we use matrix notation
h⊤
1 h2 := ⟨h1, h2⟩H to denote the inner product of two elements h1, h2 ∈ H. The kernel func-

tion k is positive definite if
∑n

i=1

∑n
j=1 cicjk(yi, yj) ≥ 0 for any n ∈ N+, y1, · · · , yn ∈ Rd,

and c1, · · · , cn ∈ R. In other words, the kernel matrix K := [k(yi, yj)]
n
i,j=1 ∈ Rn×n is al-

ways positive semi-definite (PSD). Further, a positive definite kernel function is shift invariant if
k(y, y′) := k(y− y′) for any y, y′ ∈ Rd. An example is the radial basis function (RBF) kernel, i.e.,
kRBF(y, y

′) = exp(−∥y − y′∥22/(2σ2)) with σ > 0.

Kernel ridge regression (KRR). [Given empirical data (y1, s1), · · · , (yn, sn), where {yi ∈
Rd}ni=1 are dependent variables and {si ∈ R}ni=1 are target variables, respectively], the kernel
method assumes the existence of w⋆ ∈ H such that E[si|yi] = (ϕ(y))⊤w⋆ for any i = 1, · · · , n.
Let α ≥ 0 denote a regularization parameter. KRR constructs the estimator ŝKRR(y) :=
k⊤y (K + αIn)

−1v for any y ∈ Rd, where K = [k(yi, yj)]
n
i,j=1 ∈ Rn×n is the kernel matrix,

v := [s1, · · · , sn]⊤ ∈ Rn, and ky = [k(y1, y), · · · , k(yn, y)]⊤ ∈ Rn. The estimator can be inter-
preted as first estimating w⋆ by ridge regression ŵ := argminw∈H

∑n
i=1((ϕ(yi))

⊤w−si)2+α∥w∥,
where ∥w∥ :=

√
w⊤w for any w ∈ H, and then making the prediction ŝKRR(y) = (ϕ(y))⊤ŵ.

Random Fourier features (RFF). One problem of KRR is that it scales poorly with the size n
of the empirical data, i.e., computing the KRR estimator generally requires Ω(n3) time and Ω(n2)
memory. To address this problem, Rahimi & Recht (2007a) propose to scale up kernel methods by
RFF sampling. Specifically, the Bochner’s Theorem (Rudin, 2017) implies that for any (properly
scaled) shift-invariant kernel k(y, y′) = k(y − y′), there exists a distribution p ∈ ∆(Rd) such that
k(y, y′) = Ew∼p[e

iw⊤(y−y′)], where eiθ := cos θ+i·sin θ for any θ ∈ R and i is the imaginary unit.
Therefore, the idea of RFF is to sample w1, · · · , ws ∼ p and approximate k(y, y′) by the empirical
mean s−1

∑s
j=1 e

iw⊤
j (y−y′) to within ϵ with only s = O(dϵ−2 log(1/ϵ2)). Since the kernel k(·) is

real, we can replace the complex exponentials with cosines and define

φ(y) :=

√
2

s
· [cos(w⊤

j y + bj), · · · , cos(w⊤
s y + bs)]

⊤, where wj
i.i.d∼ p, bj

i.i.d∼ Unif([0, 2π]) (3)

and k(y, y′) is approximated by (φ(y))⊤φ(y′). The resulting approximate KRR estimator
s̃KRR(y) := (Φ̃∗Φ̃ + αIs)

−1Φ̃∗v, where Φ := [φ(yi)
⊤]ni=1 ∈ Cn×s, can be computed in O(ns2)

time and O(ns) memory, giving substantial computational savings if s ≪ n (Avron et al., 2017).
For the RBF kernel, the distribution pRBF is the multivariate Gaussian N (0, σ−2 · Id).
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4 PROMPT-BASED SELECTION AS CONTEXTUAL BANDITS

In this section, we introduce the framework of online prompt-based selection of generative models,
which is given in Protocol 6. Let [N ] := {1, · · · , N} for any positive integer N ∈ N+. We denote
by G := [G] the set of (prompt-based) generative models. The evaluation proceeds in T ∈ N+

iterations. At any iteration t ∈ [T ], a prompt yt ∈ Y is drawn from a fixed distribution ρ ∈ ∆(Y)
on the prompt space Y ⊆ Sd−1, e.g., (the normalized embedding of) a picture in image captioning
or a paragraph in text-to-image/video generation. Based on prompt yt (and previous observation
sequence), an algorithm A picks model gt ∈ G and samples an answer xt ∼ Pgt(·|yt), where
Pg(·|y) ∈ ∆(X ) is the conditional distribution of answers generated from any model g ∈ G. The
quality of answer xt is given by s(yt, xt), where s : Y × X → [−1, 1] is the score function. The
algorithm A aims to minimize the regret

Regret(T ) :=
T∑

t=1

(s⋆(yt)− sgt(yt)) , (4)

where we denote by sg(y) := Exg∼Pg(·|y)[s(y, xg)] the expected score of any model g ∈ G and
s⋆(y) := maxg∈G sg(y) the optimal expected score, both conditioned to prompt y.

Protocol 1 Online Prompt-based Selection of Generative Models
Require: total iterations T ∈ N+, set of generators G = [G], prompt distribution ρ ∈ ∆(Y), score

function s : Y × X → [−1, 1], algorithm A : (Y × G × R)∗ × Y → ∆(G)
Initialize: observation sequence D ← ∅

1: for iteration t = 1, 2, · · · , T do
2: Prompt yt ∼ ρ is revealed.
3: Algorithm A picks model gt ∼ A(·|D, yt) and samples an answer xt ∼ Pgt(·|yt).
4: Score st ← s(yt, xt) is assigned.
5: Update observation sequence D ← D ∪ {(yt, gt, st)}.
6: end for

5 AN OPTIMISM-BASED APPROACH FOR PROMPT-BASED SELECTION

Under the setting of online prompt-based selection, a key challenge is to learn the relationship
between the prompt and the expected score for each model. In this paper, we assume the scores are
linear to the prompt vector in the reproducing kernel Hilbert space (RKHS) with model-dependent
weights.
Assumption 1 (Realizability). There exists a mapping ϕ : Rd → H and weight w⋆

g ∈ H such that
score sg(y) = ⟨y, w⋆

g⟩H for any prompt vector y ∈ Rd and model g ∈ G. Further, it holds that
∥w⋆

g∥ ≤ 1, and k(y, y) ≤ κ2 and ∥ϕ(y)∥ ≤ 1 for any y ∈ Y , where k : Rd × Rd → R is the kernel
function of the mapping ϕ.
Remark 1 (Shared context with kernelized rewards). We note that Assumption 1 is slightly different
from the one made in kernelized bandits (Valko et al., 2013; Zenati et al., 2022), where a context
is observed per each arm and assumes the existence of a shared weight. [However, in the prompt-
based generation setting, there is a single prompt at each iteration and responses can vary across
the models, which leads to our formulation of shared context and model-dependent weights.]
Remark 2. Our assumption of linear-realizable scores in RKHS is motivated by the following ob-
servations. First, the relationship between the prompt vector and score is often highly non-linear
and generator-dependent. For instance, the generated images often vary across the prompts and
different T2I models, which can have substantial effect on the resulting CLIPScore (1). Second, the
kernel methods can approximate any function arbitrarily well with enough training data and enjoy
nice statistical properties.

5.1 THE SCK-UCB ALGORITHM

In this section, we present SCK-UCB in Algorithm 2, an optimism-based approach to the online
evaluation of prompt-base generation. At each iteration, SCK-UCB first estimates the scores via

5
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kernel ridge regression (KRR) and then picks the model with the highest estimated score. To con-
struct the KRR dataset, the algorithm maintains index sets {Ψg}g∈G , where each set Φg ⊆ [T ] stores
the iterations such that model g is chosen (line 6).

Algorithm 2 Shared-Context Kernel UCB (SCK-UCB)
Require: total iterations T ∈ N+, set of generators G = [G], prompt distribution ρ ∈ ∆(Y), score

function s : Y × X → [−1, 1], positive definite kernel k : Y × Y → R, regularization and
exploration parameters α, η ≥ 0

Initialize: observation sequence D ← ∅ and index set Ψg ← ∅ for all g ∈ G
1: for iteration t = 1, 2, · · · , T do
2: Prompt yt ∼ ρ is revealed.
3: Compute {(µ̂g, σ̂g)← COMPUTE UCB(D, yt,Ψg)}g∈G .
4: Pick model gt ← argmaxg∈G{ŝg}, where ŝg ← µ̂g + (2η +

√
α) · σ̂g .

5: Sample an answer xt ∼ Pgt(·|yt) and compute the score st ← s(yt, xt).
6: Update D ← D ∪ {(yt, st)} and Ψgt ← Ψgt ∪ {t}.
7: end for

8: function COMPUTE UCB(D, y,Ψg)
9: if Ψg is empty then

10: µ̂g ← +∞, σ̂g ← +∞.
11: else
12: Set K ← [k(yi, yj)]i,j∈Ψg , v ← [si]

⊤
i∈Ψg

, and ky ← [k(y, yi)]
⊤
i∈Ψg

.
13: µ̂g ← k⊤y (K + αI)−1v.

14: σ̂g ← α− 1
2

√
k(y, y)− k⊤y (K + αI)−1ky .

15: end if
16: return (µ̂g, σ̂g).
17: end function

The key design in SCK-UCB is the function COMPUTE UCB (lines 8-17), which outputs both
the KRR estimator µ̂g and an uncertainty quantifier σ̂g . The estimated score is then computed by
ŝg = µ̂g + (2η +

√
α)σ̂g (line 4), which is initially set to +∞ to ensure each model is picked

at least once (lines 9-10). Particularly, the following lemma shows that under some conditions,
ŝg is an optimistic estimation of sg(yt) with high probability. The detailed proof can be found in
Appendix C.1.

Lemma 1 (Optimism). Let Ψg ⊆ [T ] be an index set such that the set of scores {st : t ∈ Ψg}
are independent random variables. Then, under Assumption 1, with probability at least 1 − δ, the
quantity µ̂g computed in function COMPUTE UCB(D, y,Ψg) satisfies that

|µ̂g − sg(y)| ≤ (2η +
√
α)σ̂g, (5)

where η =
√

2 log(2/δ). Hence, it holds that ŝg = µ̂g + (2η +
√
α)σ̂g ≥ sg(y).

We show that a variant of SCK-UCB attains a regret of Õ(
√
GT ). The formal statement and the

proof can be found in Appendix A.

Theorem 1 (Regret, informal). Under the same conditions in Lemma 1, with probability of at least
1− δ, a variant of Algorithm 2 attains a regret of Õ(

√
GT ).

5.2 SCK-UCB WITH RANDOM FOURIER FEATURES

The SCK-UCB solves a KRR for each model at an iteration to estimate the scores, which can be
expensive in both computation and memory for a large number of iterations. To address this problem,
we leverage the random Fourier features (RFF) sampling (Rahimi & Recht, 2007a) for positive
definite shift-invariant kernels. At a high level, RFF maps the input data, e.g., the prompt (vector)
in our setting, to a randomized low-dimensional feature space and then applies fast linear methods
to solve the regression problem. Particularly, the inner product between these projected randomized
features is an unbiased estimation of the kernel value.

6
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We present the RFF-UCB algorithm, which is a variant of SCK-UCB with random features. RFF-
UCB leverages a RFF-based approach to compute the mean and uncertainty quantifier in line 3 of
Algorithm 2, which we present in Algorithm 3. Upon receiving the regression dataset consisting of
prompt-score pairs, COMPUTE UCB RFF first projects each d-dimensional prompt vector to a ran-
domized s-dimensional feature space according to Equation (3) (lines 5-6) and then solves a linear
ridge regression to estimate the mean and uncertainty (lines 8-9). To derive statistical guarantees,
the number of features varies according to both the input data and error thresholds, which we will
specify in Appendix B.1. In practice, we find that a size around 50 can attain satisfactory empirical
performance. To see why RFF can reduce the computation, note that the size of the (regularized)
Gram matrix (Φ̃⊤

g Φ̃g+αI) in line 8 is fixed to be s in the whole process, while the size of (K+αI)
in line 13 of Algorithm 2 scales with |Ψg| and can grow linearly over iterations. Particularly, the
following lemma shows that COMPUTE UCB RFF can reduce the time and space by an order of
O(t2) and O(t), respectively.

Algorithm 3 Compute UCB with Random Fourier Features
Require: the Fourier transform p of a positive definite shift-invariant kernel k(y, y′) = k(y − y′),

error thresholds ϵRFF,∆RFF > 0, regularization and exploration parameters α, η ≥ 0
Initialize: number of features s, bonus terms Bg,1 and Bg,2

1: function COMPUTE UCB RFF(D, y,Ψg)
2: if Ψg is empty then
3: µ̃g ← +∞, σ̃g ← +∞.
4: else
5: Draw ω1, · · · , ωs

i.i.d.∼ p and b1, · · · , bs
i.i.d.∼ Unif([0, 2π]).

6: Define mapping φ(y′)←
√

2
s · [cos(w

⊤
1 y+ b1), · · · , cos(w⊤

s y+ bs)]
⊤ for any y′ ∈ Rd.

7: Set Φ̃g ← [φ(yi)
⊤]i∈Ψg

and v ← [si]
⊤
i∈Ψg

.

8: µ̃g ← (φ(y))⊤(Φ̃⊤
g Φ̃g + αI)−1Φ̃⊤

g v + Bg,1.

9: σ̃g ← α− 1
2

√
1− (φ(y))⊤(Φ̃⊤

g Φ̃g + αI)−1Φ̃⊤
g Φ̃g(φ(y)) + Bg,2.

10: end if
11: return (µ̃g, σ̃g).
12: end function

Lemma 2 (Time and space complexity). At any iteration t ∈ [T ], COMPUTE UCB (lines 8-17
of Algorithm 2) requires O(t3/G2) time and O(t2/G) space, while COMPUTE UCB RFF with
random features of size s ∈ N+ (Algorithm 3) requires O(ts2) time and O(ts) space, where G is
the number of generators. See Appendix B.5 for details.

It can be shown that the implementation of SCK-UCB with RFF attains the exact same regret guar-
antees for adaptively selected feature sizes. The formal statement and the proof can be found in
Appendix B.2.
Theorem 2 (Regret when using RFF, informal). Under the same conditions in Theorem 4, a variant
of RFF-UCB attains a regret of Õ(

√
GT ).

6 NUMERICAL RESULTS

In this section, we provide numerical results for the proposed SCK-UCB-poly3 algorithm (SCK-
UCB using polynomial kernel with degree 3, i.e., kpoly3(x1, x2) = (1 + x⊤

1 x2)
3) and the RFF-UCB

algorithm using RBF kernel on various prompt-based generation tasks, including text-to-image (T2I)
generation, image captioning (image-to-text), and text-to-video (T2V) generation.

[Baselines. We compare the proposed methods with five baselines, including 1) Lin-UCB: SCK-
UCB with linear kernel, i.e., klin(x1, x2) = x⊤

1 x2, which does not incorporate non-linearity in score
estimation, 2) One-arm Oracle: always picking the model with the maximum averaged CLIPScore,
3) Naive-KRR: SCK-UCB-poly3 without exploration, which selects the model with the highest
estimated mean conditioned to the prompt, 4) Greedy: always generating samples from the model
with the highest empirical CLIPScore, and 5) Random: uniformly selecting a generator at each step.
The results for baselines are presented by dot lines with different colors.]
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Performance metrics. For each experiment, we report three performance metrics: [(i) outscore-
the-best (O2B): the difference between the CLIPScore attained by the algorithm and the highest
average CLIPScore attained by any single model], (ii) optimal-pick-ratio (OPR): the overall ratio
that the algorithm picks the best generator conditioned to the prompt type, (iii) moving-average
OPR: OPR over the last 100 iterations.

[Summary of results. The main finding of our numerical experiments is the improvement of the
proposed contextual bandit SCK-UCB algorithm over the one-arm oracle baseline. This result means
that the online learning algorithm can outperform a user with side-knowledge of the single best-
performing model, which is made possible by a prompt-based selection of the model. This finding
supports the application of contextual bandit algorithms in the selection of text-based generative
models. Moreover, our numerical results indicate that the proposed SCK-UCB algorithm can per-
form better with a non-linear kernel function. Finally, in our experiments, the proposed RFF-UCB
variant could reduce the computational costs of the general SCK-UCB algorithm.]

6.1 TEXT-TO-IMAGE GENERATION

Setup 1: Prompt-based selection between real generative models. The first set of experiments
are on the setup illustrated in Figure 1, where we generate images from two T2I generators, including
Stable Diffusion v1-51 and PixArt-α-XL-2-512x5122 (see Figure 2). The results show that SCK-
UCB-poly3 outperforms the baseline algorithm and attains a high optimal-pick-ratio, which shows
that it can identify the optimal model conditioned to the prompt. Additionally, we provide numerical
results on various T2I generative models, including uni-Diffuser3 and DeepFloyd IF-I-M-v1.0.4 (see
Figures 14, 15, and 16 in the Appendix).

0 1000 2000 3000 4000 5000
Iteration

1.5
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0.5

0.0

0.5

SCK-UCB-poly3
RFF-UCB
Lin-UCB
One-arm Oracle
Naive-KRR
Greedy
Random

(a) Outscore-the-best (O2B)

0 1000 2000 3000 4000 5000
Iteration

0.50

0.55

0.60
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0.70

SCK-UCB-poly3
RFF-UCB
Lin-UCB
One-arm Oracle
Naive-KRR
Greedy
Random

(b) Optimal-pick-ratio (OPR)

Figure 2: Prompt-based selection between Stable Diffusion and PixArt-α (Setup 1): Results are
averaged over 20 trials.

[Setup 2: Adapt to newly-introduced prompts and generators. We consider scenarios where
new generative models or prompt types are introduced after the initial deployment. In the first
experiment, there are two available generators initially, including Stable Diffusion and PixArt-α.
After 2,500 iterations, uniDiffuser is also available (see Figure 3). In the second experiment, we
generate samples from both PixArt-α and uniDiffuser, and a new prompt type is introduced after
each 1,000 iterations (see Figure 13 in the Appendix). The results show that SCK-UCB-poly3 can
well adapt to new prompt types and generators.]

Setup 3: Synthetic expert T2I models. In this setup, we synthesize five T2I generators based
on Stable Diffusion 2, where each generator is an “expert” in generating images corresponding to
a prompt type. The prompts are captions in the MS-COCO dataset from five categories: dog, car,
carrot, cake, and bowl. At each iteration, a caption is drawn from a (random) category, and an image

1https://huggingface.co/docs/diffusers/en/api/pipelines/stable diffusion/text2img
2https://huggingface.co/PixArt-alpha/PixArt-XL-2-512x512
3https://github.com/thu-ml/unidiffuser
4https://github.com/deep-floyd/IF
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Figure 3: Adapt to newly-introduced generators (Setup 2): Results are averaged over 20 trials.

is generated from Stable Diffusion 2. If the learner does not select the expert generator, then we add
Gaussian noise to the generated image. Examples are visualized in Figure 4.

Generator 1 2 3 4 5

Type 1

Type 2

Type 3

Type 4

Type 5

Figure 4: Generated images with noise perturbations: Each row and column display the generated
images from a synthetic generator according to one single type of prompts. Images generated by the
expert models are framed by green boxes. Gaussian noises are applied to non-expert models.
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Figure 5: Synthetic expert T2I models (Setup 3): Results are averaged over 20 trials.
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6.2 RESULTS ON OTHER PROMPT-BASED GENERATION TASKS

Setup 4: Image Captioning. In this setup, the images are chosen from the MS-COCO dataset
from five categories: dog, car, carrot, cake, and bowl. Similar to Section 6.1, we synthesize five ex-
pert generators based on vit-gpt2 model in the Transformers repository.5 If a non-expert generator is
chosen, then the caption is generated from the noisy image perturbed by Gaussian noises. Examples
are visualized in Figure 19. The numerical results are summarized in Figure 6.
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(b) Optimal-pick-ratio (OPR)

Figure 6: Image captioning (Setup 4): Results are averaged over 20 trials.

Setup 5: Synthetic Text-to-Video (T2V) task. We provide numerical results on a synthetic T2V
setting. Specifically, both the captions and videos are randomly selected from the following five
categories of the MSR-VTT dataset (Xu et al., 2016): sports/action, movie/comedy, vehicles/autos,
music, and food/drink. Each of the five synthetic arms corresponds to an expert in “generating”
videos from a single category. Gaussian noises are applied to the video for non-experts. The results
are summarized in Figure 7.
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Figure 7: Synthetic T2V task (Setup 5): Results are averaged over 20 trials.

7 CONCLUSION

In this work, we investigated prompt-based selection of generative models using a contextual ban-
dit algorithm, which can identify the best available generative model for a given text prompt.
We adapted the Kernel-UCB algorithm to perform this selection task and proposed two new al-
gorithms: SCK-UCB and RFF-UCB. Our numerical results on text-to-image, text-to-video, and
image-captioning tasks demonstrate the effectiveness of the proposed framework in scenarios where
the available generative models have varying performance rankings depending on the type of prompt.

5https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
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An interesting direction for future research is to extend the application of our algorithms to text-to-
text language models, where different models may respond better to questions on different topics.
Furthermore, considering evaluation criteria beyond relevance, such as diversity and novelty scores,
could lead to extensions of our proposed framework.
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A PROOF IN SECTION 5.1

The technical challenge in analyzing SCK-UCB is that predictions in later iterations are made use of
previous outcomes. Hence, the rewards {si}i∈Ψg are not independent if the index set Φg is updated
each time when model g is chosen (line 6 of Algorithm 2). To address this problem, we leverage a
standard approach used in prior works (Auer, 2003; Chu et al., 2011; Valko et al., 2013) and present
a variant of SCK-UCB in Algorithm 4, which is called Sup-SCK-UCB. We prove it attains a regret
of order Õ(

√
T ).

A.1 THE Sup-SCK-UCB ALGORITHM

Algorithm 4 Sup-SCK-UCB
Require: total iterations T ∈ N+, set of generators G = [G], prompt distribution ρ ∈ ∆(Y), score

function s : Y × X → [−1, 1], positive definite kernel k : Y × Y → R, regularization and
exploration parameters α, η ≥ 0, function COMPUTE UCB in Algorithm 2

Initialize: observation sequence D ← ∅ and index sets {Ψm
g ← ∅}Mm=1 for all g ∈ G, where

M ← log T
1: for iteration t = 1, 2, · · · , T do
2: Prompt yt ∼ ρ is revealed.
3: Set stage m← 1 and Ĝ1 ← G.
4: repeat
5: Compute {(µ̂m

g , σ̂m
g )← COMPUTE UCB(D, yt,Ψm

g )}g∈Ĝm .

6: Set upper confidence bound ŝmg (y)← µ̂m
g + (2η +

√
α) · σ̂m

g for all g ∈ Ĝm.
7: if (2η +

√
α) · σ̂m

g ≤ 1/
√
T for all g ∈ Ĝm then

8: Pick model gt ← argmax ŝmg (y).
9: else if (2η +

√
α) · σ̂m

g ≤ 2−m for all g ∈ Ĝm then
10: Ĝm+1 ← {g ∈ Ĝm : ŝmg (y) ≥ maxg∈Ĝm ŝmg (y)− 21−m}.
11: Set stage m← m+ 1.
12: else
13: Pick gt ∈ Ĝm such that (2η +

√
α) · σ̂m

g > 2−m.
14: Update Ψm

gt ← Ψm
gt ∪ {t}.

15: end if
16: until a model gt is selected
17: Sample an answer xt ∼ Pgt(·|yt) and compute the score st ← s(yt, xt).
18: Update D ← D ∪ {(yt, st)}.
19: end for

A.2 ANALYSIS

In this section, we prove the following regret bound of Sup-SCK-UCB.
Theorem 3 (Regret of Sup-SCK-UCB). Under Assumption 1, with probability at least 1 − δ, the
regret of Sup-SCK-UCB with η =

√
2 log(2(log T )GT/δ) is bounded by

Regret(T ) ≤ Õ

(
(1 +

√
α)

√
deff

(
10 +

15

α

)
GT

)
(6)

where deff is a data-dependent quantity defined in Lemma 10 and logarithmic factors are hidden in
the notation Õ(·).

Notations. To facilitate the analysis, we add an subscript t to all the notations in Algorithm 4 to
indicate they are quantities computed at the t-th iteration, i.e., µ̂m

g,t, σ̂
m
g,t, ŝ

m
g,t, Ĝmt , and Ψm

g,t.
6

6Note that line 14 in the algorithm is rewritten as “Ψm
gt,t+1 ← Ψm

gt,t+1 ∪ {t},Ψm′
gt,t+1 ← Ψm′

gt,t for any
m′ ̸= m, and Ψm′

g,t+1 ← Ψm′
g,t for any g ̸= gt and m ∈ [M ]”. In addition, we set Ψm

g,t+1 ← Ψm
g,t+1 for all

g ∈ G and m ∈ [M ] in line 8.
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We leverage the following two lemmas to prove Theorem 3. The first lemma shows that the con-
struction of index sets {Ψm

g,t}Mm=1 ensures the independence among the rewards {si}i∈Ψm
g,t

, which
allows us to utilize Lemma 1 to bound the estimation error.
Lemma 3 (Auer (2003), Lemma 14). For any iteration t ∈ [T ], model g ∈ G, and stage m ∈ [M ],
the set of rewards {si}i∈Ψm

g,t
are independent random variables such that E[si] = sg(yi).

The second lemma shows several properties of the estimated score ŝmg,t and the set Ĝmt . The detailed
proof can be found in Appendix C.2.
Lemma 4 (Valko et al. (2013), Lemma 7). With probability at least 1− (MGT )δ, for any iteration
t ∈ [T ] and stage m ∈ [M ], the following hold:

• |µ̂m
g,t − sg(yt)| ≤ (2η +

√
α)σ̂m

g,t for any g ∈ Ĝmt ,

• argmaxg∈G sg(yt) ∈ Ĝmt , and

• s⋆(yt)− sg(yt) ≤ 23−m for any g ∈ Ĝmt .

Now, we are ready to finish the proof of Theorem 3.

Proof of Theorem 3. Let T1 := ∪m∈[M ],g∈GΨ
m
g,T+1 and T0 := [T ]\T1. Note that T0 and T1 are sets

of iterations such that model is picked in lines 8 and 13 of Algorithm 4, respectively.

1. Regret incurred in T0. For any t ∈ [T ], let mt denote the stage that model gt is picked at the
t-th iteration. We have that∑

t∈T0

(s⋆(yt)− sgt(yt)) ≤
∑
t∈T0

(ŝmt
g⋆,t,t(y)− sgt(yt))

≤
∑
t∈T0

(ŝmt
gt,t(y)− sgt(yt))

=
∑
t∈T0

(
µ̂mt
gt,t + (2η +

√
α)σ̂mt

gt,t − sgt(yt)
)

≤2(2η +
√
α)
∑
t∈T0

σ̂mt
gt,t

≤2(2η +
√
α)
∑
t∈T0

T− 1
2 ≤ 2(2η +

√
α)
√
T ,

(7)

where the second inequality holds by the definition of gt and the fact that g⋆,t ∈ Ĝmt
t , and the fifth

inequality holds by line 7 of Algorithm 4.

2. Regret incurred in T1.∑
t∈T1

(s⋆(yt)− sgt(yt)) =
∑
g∈G

∑
m∈[M ]

∑
t∈Ψm

g,T+1

(s⋆(yt)− sgt(yt))

≤
∑
g∈G

∑
m∈[M ]

23−m · |Ψm
g,T+1|,

(8)

where the inequality holds by the last statement in Lemma 4. It remains to bound |Ψm
g,T+1|. First

note that for any m ∈ [M ], we have that

(2η +
√
α)

∑
t∈Ψm

g,T+1

σ̂m
g,t > 2−m · |Ψm

g,T+1|

from line 13 of Algorithm 4. In addition, by a similar statement of (Valko et al., 2013, Lemma 4),
which is stated in Lemma 10, we have that∑

t∈Ψm
g,T+1

σ̂m
g,t ≤ Õ

(√
deff

(
10 +

15

α

)
|Ψm

g,T+1|

)
, (9)
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where deff is defined therein and logarithmic factors are hidden in the notation Õ(·). Plugging in
Equation (8) results in

∑
t∈T1

(s⋆(yt)− sgt(yt)) ≤Õ

(1 +
√
α)
∑
g∈G

∑
m∈[M ]

√
deff

(
10 +

15

α

)
|Ψm

g,T+1|


≤Õ

(1 +
√
α)
√
GM

√√√√deff

(
10 +

15

α

)∑
g∈G

∑
m∈[M ]

|Ψm
g,T+1|


≤Õ

(
(1 +

√
α)

√
deff

(
10 +

15

α

)
GT

)
,

(10)

where the second inequality holds by Cauchy-Schwarz inequality.

3. Putting everything together. Combining Inequalities (7) and (10) leads to

Regret(T ) =

(∑
t∈T0

+
∑
t∈T1

)
(s⋆(yt)− sgt(yt)) ≤ Õ

(
(1 +

√
α)

√
deff

(
10 +

15

α

)
GT

)
,

which concludes the proof.

B PROOF IN SECTION 5.2

B.1 ERROR OF KRR ESTIMATORS WITH RANDOM FEATURES

Theorem 4. Assume the error thresholds input to Algorithm 3 satisfy that ∆RFF, ϵRFF ≤ 1/2. Under
the same conditions in Lemma 1, with probability at least 1 − 2δ, the quantity µ̃g computed by
function COMPUTE UCB RFF satisfies that

|µ̃g − sg(y)| ≤ Bg,1 + (2η +
√
α)(σ̃g + Bg,2),

with the number of features satisfying Inequality (12) and bonus terms Bg,1 and Bg,2 given by
Equations (11) and (13), where η =

√
2 log(2/δ). Hence, it holds that s̃g = µ̃g + Bg,1 + (2η +√

α)(σ̃g + Bg,2) ≥ sg(y).

Proof. The proof is based on the following two lemmas, which analyze the concentration error of
the quantities µ̃g and σ̃g . The detailed proof can be found in Appendix B.3 and B.4, respectively.

Lemma 5 (Concentration of mean using RFF). Let ∆RFF, ϵRFF ≤ 1/2. Under the same condi-
tions in Lemma 1, with probability at least 1 − δ, the quantity µ̃g computed by function COM-
PUTE UCB RFF satisfies that

|µ̃g − µ̂g| ≤ Bg,1 := α−1|Ψg| ϵRFF +α−2 ∆RFF(∥K∥2 + α) (11)

with number of features

s ≥ max

{
4(d+ 2)

ϵRFF
2

log

(
σ2
p

(δ/2) · ϵRFF
2
· 28
)
,
8|Ψg|
3α

∆RFF
−2 log

(
32sα(K)

δ

)}
, (12)

where µ̂g = (ϕ(y))⊤Φ⊤
g (K + αI)−1v, and σ2

p and sα(·) are two quantities defined in Lemmas 8
and 9, respectively.

Lemma 6 (Concentration of variance using RFF). Let c > 0 denote a lower bound of 1 −
∥ky∥2(K+αI)−1 . Then, conditioned on the successful events in Lemma 5, the quantity σ̃g computed
by function COMPUTE UCB RFF satisfies that

|σ̃g − σ̂g| ≤ Bg,2 := (c · α)− 1
2

(
2|Ψg|α−2 ∆RFF(∥K∥2 + α) + 3α−1|Ψg| ϵRFF

)
(13)

where σ̂g = α− 1
2

√
k(y, y)− k⊤y (K + αI)−1ky .
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Finally, combining Lemmas 1, 5, and 6, we derive that

|µ̃g − sg(y)| ≤|µ̃g − µ̂g|+ |µ̂g − sg(y)|
≤Bg,1 + (2η +

√
α)σ̂g

≤Bg,1 + (2η +
√
α)(σ̃g + Bg,2),

which concludes the proof.

B.2 Sup-SCK-UCB WITH RANDOM FOURIER FEATURES

Algorithm description. To apply RFF to Sup-SCK-UCB, we replace function COMPUTE UCB
with COMPUTE UCB RFF in Algorithm 4. To achieve the regret bound (6), an important problem
is to design (adaptive) error thresholds, i.e., ϵRFF and ∆RFF, when computing UCB at each stage m
and iteration t. We prove the regret bound in the following theorem.

Theorem 5 (Regret of Sup-RFF-UCB). Under Assumption 1, with probability at least 1 − δ, Sup-
RFF-UCB attains the regret bound (6), where η =

√
2 log(4(log T )GT/δ) and sequence of error

thresholds input to function COMPUTE UCB RFF satisfying Equation (14).

Proof. The proof is similar to the proof of Theorem 3. First, combining Lemmas 8 and 3, the
following lemma can be proved by the exact same analysis for Lemma 4.

Lemma 7. With probability at least 1 − (2MGT )δ, for any iteration t ∈ [T ] and stage m ∈ [M ],
the following hold:

• |µ̃m
g,t − sg(yt)| ≤ Bmg,1,t + (2η +

√
α)(σ̃m

g,t + Bmg,2,t) for any g ∈ Ĝmt ,

• argmaxg∈G sg(yt) ∈ Ĝmt , and

• s⋆(yt)− sg(yt) ≤ 23−m for any g ∈ Ĝmt .

where the first statement is guaranteed by Theorem 4, Bmg,1,t and Bmg,2,t are the bonus (11) and (13)
computed at the m-th stage of iteration t.

Next, for iterations in T0 (model gt is picked in line 8 of Algorithm 4), we still have∑
t∈T0

(s⋆(yt)− sgt(yt)) ≤ Õ(
√
αT ).

Further, for iterations in T1 (model gt is picked in line 13 of Algorithm 4), the third statement in the
above lemma and line 14 of Algorithm 3 ensure that∑

t∈T1

(s⋆(yt)− sgt(yt))

≤
∑
g∈G

∑
m∈[M ]

23−m · |Ψm
g,T+1|

<8
∑
g∈G

∑
m∈[M ]

∑
t∈Ψm

g,T+1

(
Bmt
gt,1,t

+ (2η +
√
α)
(
σ̃m
g,t + B

mt
gt,2,t

))
≤8
∑
g∈G

∑
m∈[M ]

∑
t∈Ψm

g,T+1

(
Bmt
gt,1,t

+ (2η +
√
α)
(
σ̂m
g,t + 2Bmt

gt,2,t

))

=8
∑
g∈G

∑
m∈[M ]

 ∑
t∈Ψm

g,T+1

(
Bmt
gt,1,t

+ 2(2η +
√
α)Bmt

gt,2,t

)
+ (2η +

√
α)

∑
t∈Ψm

g,T+1

σ̂m
g,t

 .

Note that the upper bound of the second term has been derived in Equation (9). It remains to bound
the first term. Essentially, we will find a sequence of error thresholds, and hence the number of
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features defined in Inequality (12), such that the first term is bounded by Õ(
√
GT ). For convenience,

we introduce the following notations:

Additional notations. For any iteration t ∈ [T ], model g ∈ G, and stage m ∈ [M ], we define
Km

g,t := Φm
g,t(Φ

m
g,t)

⊤, where Φm
g,t := [ϕ(yi)

⊤]i∈Ψm
g,t

. In addition, we denote by 0 < cmg,t ≤ 1 the
lower bound in Lemma 6 corresponding to yt and Km

g,t. Let

ϵmRFF,g,t ≤ t−
1
2 (|Ψm

g,t|)−1
√
G · cmg,t, ∆m

RFF,g,t ≤ t−
1
2 (|Ψm

g,t|(∥Km
g,t∥2 + α))−1

√
G · cmg,t (14)

denote the (upper bound of) error thresholds input to function COMPUTE UCB RFF.∑
g∈G,m∈[M ]

∑
t∈Ψm

g,T+1

Bmgt,1,t

=
∑

g∈G,m∈[M ]

∑
t∈Ψm

g,T+1

(
α−1|Ψm

g,t|ϵmRFF,g,t + α−2∆m
RFF,g,t(∥Km

g,t∥2 + α)
)

≤
√
G

∑
g∈G,m∈[M ]

∑
t∈Ψm

g,T+1

(α−1t−
1
2 + α−2t−

1
2 )

≤
√
G

T∑
t=1

(α−1t−
1
2 + α−2t−

1
2 )

≤O
(
(α−1 + α−2)

√
GT
)

(15)

where the first inequality holds by the fact that each t ∈ [T ] appears in at most one index set.∑
g∈G,m∈[M ]

∑
t∈Ψm

g,T+1

Bmgt,2,t

≤
∑

g∈G,m∈[M ]

∑
t∈Ψm

g,T+1

(c · α)− 1
2

(
2|Ψg|α−2∆m

RFF,g,t(∥Km
g,t∥2 + α) + 3α−1|Ψm

g,t|ϵmRFF,g,t

)
≤
√
G

∑
g∈G,m∈[M ]

∑
t∈Ψm

g,T+1

(
2α− 5

2 t−
1
2 + 3α− 3

2 t−
1
2

)

≤
√
G

T∑
t=1

(
2α− 5

2 t−
1
2 + 3α− 3

2 t−
1
2

)
≤O

(
(α− 5

2 + α− 3
2 )
√
GT
)

(16)

Therefore, we conclude the proof.

B.3 PROOF OF LEMMA 5

Proof. For convenience, we define k̃y := Φ̃g(φ(y)) ∈ R|Ψg|, Q := (K + αI)−1 ∈ R|Ψg|×|Ψg|, and
Q̃ := (K̃ + αI)−1 ∈ R|Ψg|×|Ψg|, where K̃ := Φ̃gΦ̃

⊤
g . Using the same notations in the proof of

Lemma 1, we obtain that

|µ̃g − µ̂g| =
∣∣∣(φ(y))⊤Φ̃⊤

g (K̃ + αI)−1v − k⊤y (K + αI)−1v
∣∣∣

=
∣∣∣k̃⊤y Q̃v − k⊤y Qv

∣∣∣
≤
∣∣∣k̃⊤y (Q̃−Q)v

∣∣∣+ ∣∣∣(k̃y − ky)
⊤Qv

∣∣∣ ,
(17)

where we use Equation (22) to derive µ̃g = (φ(y))⊤(Φ̃⊤
g Φ̃g + αI)−1Φ̃⊤

g v = (φ(y))⊤Φ̃⊤
g (K̃ +

αI)−1v in the first equation.
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1. Bounding |(k̃y − ky)
⊤Qv|. We evoke (Rahimi & Recht, 2007a, Claim 1), which is rewritten in

Lemma 8 using our notations. For a desired threshold ϵRFF > 0, set

s =
4(d+ 2)

ϵRFF
2

log

(
σ2
p

(δ/2) · ϵRFF
2
· 28
)
.

Then, with probability at least 1− δ
2 , it holds that supy,y′∈Y |(φ(y))⊤φ(y′)− k(y, y′)| ≤ ϵRFF, and

hence ∥k̃y − ky∥∞ ≤ ϵRFF. Therefore, we obtain

|(k̃y − ky)
⊤Qv| ≤ ∥k̃y − ky∥2 · ∥Q∥2 · ∥v∥2 ≤ ϵRFF

√
|Ψg| · α−1 ·

√
|Ψg| = α−1|Ψg| ϵRFF, (18)

where the last inequality holds by ∥Q∥2 = λ−1
min(K + αI) ≤ α−1 and ∥v∥∞ ≤ 1.

2. Bounding |k̃⊤y (Q̃−Q)v|. Note that

|k̃⊤y (Q̃−Q)v| ≤∥k̃y∥2 · ∥Q̃−Q∥2 · ∥v∥2

≤
√

2|Ψg| · ∥Q̃−Q∥2 ·
√
|Ψg|

where the first inequality holds by the fact that (φ(y))⊤φ(yi) = (2/s)
∑s

j=1 cos(w
⊤
j y +

bj) cos(w
⊤
i,j + bi,j) ≤ 2. To bound ∥Q̃ − Q∥2, we evoke (Avron et al., 2017, Theorem 7), which

is rewritten in Lemma 9. For a desired threshold ∆RFF ≤ 1/2, the following inequality holds with
probability at least 1− δ

2 :

(1−∆RFF)(K + αI) ⪯ K̃ + αI

for s ≥ 8|Ψg|
3α ∆RFF

−2 log(32sα(K)/δ). By Sherman-Morrison-Woodbury formula, i.e., A−1 −
B−1 = A−1(B −A)B−1 where A and B are invertible, we derive

∥(K̃ + αI)−1 − (K + αI)−1∥2
≤∥(K̃ + αI)−1∥2 · ∥(K + αI)− (K̃ + αI)∥2 · ∥(K + αI)−1∥2
≤α−2 ∆RFF(∥K∥2 + α)

(19)

where the last inequality holds by the fact that ∥(K̃ +αI)−1∥2, ∥(K +αI)−1∥2 ≤ α−1 and ∥(K +

αI)− (K̃ + αI)∥2 ≤ ∥∆RFF(K + αI)∥2 ≤ ∆RFF(∥K∥2 + α).

3. Putting everything together. Combining Equations (18) and (19), with probability at least
1− δ, it holds that

|µ̃g − µ̂g| ≤ α−1|Ψg| ϵRFF +α−2 ∆RFF(∥K∥2 + α)

when

s ≥ max

{
4(d+ 2)

ϵRFF
2

log

(
σ2
p

(δ/2) · ϵRFF
2
· 28
)
,
8|Ψg|
3α

∆RFF
−2 log

(
32sα(K)

δ

)}
,

which concludes the proof.
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B.4 PROOF OF LEMMA 6

Proof. We use the same notations in the proof of Lemma 5. Let c denote a lower bound of 1 −
∥ky∥2(K+αI)−1 . Note that

|σ̃g − σ̂g|

=α− 1
2

∣∣∣∣√1− (φ(y))⊤Φ̃⊤
g (K̃ + αI)−1Φ̃g(φ(y))−

√
1− k⊤y (K + αI)−1ky

∣∣∣∣
≤(c · α)− 1

2

∣∣∣(φ(y))⊤Φ̃⊤
g (K̃ + αI)−1Φ̃g(φ(y))− k⊤y (K + αI)−1ky

∣∣∣
=(c · α)− 1

2

∣∣∣k̃⊤y Q̃k̃y − k⊤y Qky

∣∣∣
≤(c · α)− 1

2

(∣∣∣k̃⊤y (Q̃−Q)k̃y

∣∣∣+ ∣∣∣(k̃y − ky)
⊤Qk̃y

∣∣∣+ ∣∣∣k⊤y Q(k̃y − ky)
∣∣∣)

≤(c · α)− 1
2

(
∥k̃y∥22∥Q̃−Q∥2 + ∥k̃y − ky∥2∥k̃y∥2∥Q∥2 + ∥k̃y − ky∥2∥ky∥2∥Q∥2

)
≤(c · α)− 1

2

(
2|Ψg|α−2 ∆RFF(∥K∥2 + α) + 3α−1|Ψg| ϵRFF

)

(20)

which concludes the proof.

B.5 ANALYSIS OF LEMMA 2

Proof. Solving KRR with n regression data requires Θ(n3) time and Θ(n2) space. Hence, by
the convexity of the cubic and quadratic functions, the time for COMPUTE UCB scales with
Θ(
∑

g∈G n3
g) = O(t3/G2), and the space scales with Θ(

∑
g∈G n2

g) = O(t2/G), where ng := |Ψg|
is the visitation to any model g ∈ G up to iteration t, and we have

∑
g∈G ng = t. On the other hand,

solving KRR with n regression data and random features of size s requires O(ns2) time and O(ns)
space. Therefore, the time for COMPUTE UCB RFF scales with O(

∑
g∈G ngs

2) = O(ts2), and
the space scales with O(

∑
g∈G ngs) = O(ts).

C AUXILIARY LEMMAS

C.1 PROOF OF LEMMA 1

Proof. We rewrite the proof using the notations in Section 5. Obviously, Equation (5) holds when
the index set Ψg is empty. In the following, we consider non-empty Ψg . Let Φg := [ϕ(yi)

⊤]i∈Ψg .
Note that ky = [k(y, yi)]

⊤
i∈Ψg

= Φg(ϕ(y)) and K = [k(yi, yj)]i,j∈Ψg
= ΦgΦ

⊤
g . We have

µ̂g − sg(y) =(ϕ(y))⊤Φ⊤
g (K + αI)−1v − (ϕ(y))⊤w⋆

g

=(ϕ(y))⊤(Φ⊤
g Φg + αI)−1Φ⊤

g v − (ϕ(y))⊤(Φ⊤
g Φg + αI)−1(Φ⊤

g Φg + αI)w⋆
g

=(ϕ(y))⊤(Φ⊤
g Φg + αI)−1Φ⊤

g (v − Φgw
⋆
g)− α(ϕ(y))⊤(Φ⊤

g Φg + αI)−1w⋆
g ,

(21)

where the second equation holds by the positive definiteness of both matrices (K+αI) and (Φ⊤
g Φg+

αI) and hence

Φ⊤
g (K + αI)−1 = (Φ⊤

g Φg + αI)−1Φ⊤
g . (22)

1. Bounding (ϕ(y))⊤(Φ⊤
g Φg + αI)−1Φ⊤

g (v − Φgw
⋆
g). Note that the scores {st : t ∈ Ψg} are

independent by the construction of Φg and E[st] = (w⋆
g)

⊤ϕ(yt), we have that

(ϕ(y))⊤(Φ⊤
g Φg + αI)−1Φ⊤

g (v − Φgw
⋆
g) =

|Ψg|∑
i=1

[(ϕ(y))⊤(Φ⊤
g Φg + αI)−1Φ⊤

g ]i · [v − Φgw
⋆
g ]i

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

are summation of zero mean independent random variables, where we denote by [·]i the i-th element
of a vector. Further, each variable satisfies that∣∣[(ϕ(y))⊤(Φ⊤

g Φg + αI)−1Φ⊤
g ]i · [v − Φgw

⋆
g ]i
∣∣

≤∥(ϕ(y))⊤(Φ⊤
g Φg + αI)−1Φ⊤

g ∥ · |[v − Φgw
⋆
g ]i|

≤
√
(ϕ(y))⊤(Φ⊤

g Φg + αI)−1Φ⊤
g Φg(Φ⊤

g Φg + αI)−1(ϕ(y)) · (1 + ∥w⋆
g∥)

≤2σ̂g

where the last inequality holds by ∥w⋆
g∥ ≤ 1 and the second inequality holds by

σ̂g =α− 1
2

√
k(y, y)− k⊤y (K + αI)−1ky

=α− 1
2

√
(ϕ(y))⊤(ϕ(y))− (ϕ(y))⊤Φ⊤

g (K + αI)−1Φg(ϕ(y))

=α− 1
2

√
(ϕ(y))⊤

(
I − (Φ⊤

g Φg + αI)−1Φ⊤
g Φg

)
(ϕ(y))

=
√
(ϕ(y))⊤(Φ⊤

g Φg + αI)−1(ϕ(y)),

Then, by Azuma-Hoeffding inequality, it holds that

P
(
|(ϕ(y))⊤(Φ⊤

g Φg + αI)−1Φ⊤
g (v − Φgw

⋆
g)| > 2ησ̂g

)
≤2 exp

(
−

σ̂2
gη

2

2|Ψg|σ̂2
g

)
≤2 exp(−η2/2)

(23)

2. Bounding α(ϕ(y))⊤(Φ⊤
g Φg + αI)−1w⋆

g . By the Cauchy-Schwarz inequality, it holds that∣∣(ϕ(y))⊤(Φ⊤
g Φg + αI)−1w⋆

g

∣∣
≤∥w⋆

g∥ · ∥(ϕ(y))⊤(Φ⊤
g Φg + αI)−1∥

=∥w⋆
g∥ ·

√
(ϕ(y))⊤(Φ⊤

g Φg + αI)−1α−1αI(Φ⊤
g Φg + αI)−1(ϕ(y))

≤α−1/2
√
(ϕ(y))⊤(Φ⊤

g Φg + αI)−1(Φ⊤
g Φg + αI)(Φ⊤

g Φg + αI)−1(ϕ(y))

=α−1/2σ̂g,

(24)

where the second inequality holds by the positive definiteness of Φ⊤
g Φg .

3. Putting everything together. Plugging (23) and (24) in (21) and setting δ = 2 exp(−η2/2)
concludes the proof.

C.2 PROOF OF LEMMA 4

Proof. The first statement holds by both Lemma 3 and Lemma 1, and a uniform bound over all
t ∈ [T ], g ∈ G, and m ∈ [M ]. Let g⋆,t := argmaxg∈G sg(yt) is the optimal model for prompt yt
and ĝm⋆,t := argmaxg∈Ĝm

t
ŝmg,t is optimistic model at stage m.

To show the second statement, first note that g⋆,t ∈ Ĝ1t . Assume g⋆,t ∈ Ĝmt for some m ∈ [M − 1].
Then, by the first statement, we obtain that ŝmg⋆,t,t−maxg∈Ĝm

t
ŝmg,t ≥ sg⋆,t(yt)− (2η+

√
α) · σ̂m

g⋆,t−
(sĝm

⋆,t
(yt)+(2η+

√
α) · σ̂m

ĝm
⋆,t,t

) ≥ −(2η+
√
α) · (σ̂m

g⋆,t + σ̂m
ĝm
⋆,t,t

) ≥ 2 ·2−m = 21−m, which ensures

g⋆,t ∈ Ĝm+1
t .

Finally, by the first two statements, we have that s⋆(yt)− sg(yt) ≤ ŝmg⋆,t,t + 2(2η +
√
α) · σ̂m

g⋆,t −
(ŝmg,t − 2(2η +

√
α) · σ̂m,t

g ) ≤ 2 · 21−m = 23−m. We conclude the proof.
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C.3 USEFUL LEMMAS

Lemma 8 (Rahimi & Recht (2007a), Claim 1). Let M be a compact subset of Rd with diameter
diam(M). Then, for the mapping φ : Rd → Rs defined in Equation (3), we have

P
(

sup
y,y′∈M

|(φ(y))⊤φ(y′)− k(y, y′)| ≥ ϵ

)
≤ 28

(
σp · diam(M)

ϵ

)2

exp

(
− sϵ2

4(d+ 2)

)
,

where σ2
p := Ep[ω

⊤ω] is the second moment of the Fourier transform of k.7 Further,
supy,y′∈M |(φ(y))⊤φ(y′)−k(y, y′)| ≤ ϵ with any constant probability when s = Ω((d/ϵ2) log(σp ·
diam(M)/ϵ)).
Lemma 9 (Avron et al. (2017), Theorem 7). Let K = [k(yi, yj)]i,j∈[n] denote the Gram matrix of
{yi ∈ Rd}ni=1, where k is a shift-invariant kernel function. Let ∆ ≤ 1/2 and δ ∈ (0, 1). Assume that
∥K∥2 ≥ α. If we use s ≥ 8n

3α∆
−2 log(16sα(K)/δ) random Fourier features, then with probability

at least 1− δ, it holds that

(1−∆)(K + αI) ⪯ K̃ + αI ⪯ (1 + ∆)(K + αI)

where sα(K) := Tr[(K + αI)−1K] and we denote by K̃ = [(φ(yi))
⊤(φ(yj))]i,j∈[n] the approx-

imated Gram matrix using s ∈ N+ random Fourier features, where φ : Rd → Rs is the feature
mapping.
Lemma 10 (Valko et al. (2013), Lemma 4). For any model g ∈ G and stage m ∈ [M ], let λm

g,1 ≥
λm
g,2 ≥ · · · denote the eigenvalues (in the decreasing order) of the matrix (Φm

g )⊤Φm
g + αI , where

Φm
g = [ϕ(yi)

⊤]i∈Ψm
g,T+1

. Then, for any iteration t ∈ [T ], it holds that

∑
t∈Ψm

g,T+1

σ̂m
g,t ≤ Õ

(√
deff

(
10 +

15

α

)
|Ψm

g,T+1|

)
where deff := maxg∈G,m∈[M ] min{j ∈ N+ : jα log T ≥ Λm

g,j} and Λm
g,j :=

∑
i>j λ

m
g,i − α is the

effective dimension.

D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

1. Implementation details. We use the CLIP-based features of the prompts as the context vec-
tor (Cherti et al., 2023) for tasks of T2I and T2V generation, and we use the CLIP-based features of
the images in the task of image captioning. We set both the exploration and regularization parame-
ters α, η = 1 in all the experiments. Two hyperparameters have to be chosen. The first one is the
parameter γ in the polynomial and radial basis function (RBF) kernels, which are given by

kγpoly3(x1, x2) = (γ · x⊤
1 x2 + 1)3, kγRBF(x1, x2) = exp(−γ · ∥x1 − x2∥2).

In the experiments, we select γ to be 5 and 1 for the polynomial and RBF kernel functions, respec-
tively. The second hyperparameter is the number of random features in the RFF-UCB algorithm. In
addition, the features are generated once for each sample and stored to save the computation of the
RFF-UCB algorithm.

2. Ablation study on hyperparameters. We conduct ablation studies on the selections of pa-
rameter γ in the RBF kernel function and the number of features in RFF-UCB. The results are
summarized in Figures 8 and 9, respectively. We select γ = 1 (default), 3, 5, and 7 and num-
ber of features varying between 25, 50 (default), 75, and 100. Results show that the RFF-UCB
algorithm can attain consistent performance. [Additionally, we test the SCK-UCB-poly3 algo-
rithm with γ = 1, 3, 5 (default), and 7 in the polynomial kernel and regularization parameter
α = 0.5, 1.0 (default), and 1.5 in KRR. The results are summarized in Figures 10 and 11, re-
spectively.]

3. Comparison on running time. [We compare the running time of SCK-UCB and RFF-UCB,
and the results are summarized in Figure 12.]

7For the RBF kernel with parameter σ2, i.e., kRBF(y, y
′) = exp(− 1

2σ2 ∥y − y′∥22), we have σ2
pRBF = d

σ2 .
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Figure 8: Parameter γ in the RBF kernel function: Results are averaged over 20 trials.
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Figure 9: Number of random features in RFF-UCB: Results are averaged over 20 trials.
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Figure 10: Parameter γ in the polynomial kernel function: Results are averaged over 20 trials.
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Figure 11: Regularization parameter α in KRR: Results are averaged over 20 trials.
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Figure 12: Running time: The execution time of SCK-UCB-RBF (SCK-UCB using the RBF kernel)
and RFF-UCB on Setup 4. SCK-UCB-RBF takes around 10 minutes to finish 2,000 iterations of
model selection, while RFF-UCB uses less than 2 minutes. Results are averaged over 20 trials.

0 1000 2000 3000 4000 5000
Iteration

2.0

1.5

1.0

0.5

0.0

0.5

SCK-UCB-poly3
RFF-UCB
Lin-UCB
One-arm Oracle
Naive-KRR
Greedy
Random

(a) Outscore-the-best (O2B)

0 1000 2000 3000 4000 5000
Iteration

0.34

0.36

0.38

0.40

0.42
SCK-UCB-poly3
RFF-UCB
Lin-UCB
One-arm Oracle
Naive-KRR
Greedy
Random

(b) Optimal-pick-ratio (OPR)

100 1000 2000 3000 4000 5000
Iteration

0.35

0.40

0.45

SCK-UCB-poly3
RFF-UCB
Lin-UCB
One-arm Oracle
Naive-KRR
Greedy
Random

(c) Moving-average OPR

Figure 13: T2I generation with newly-introduced prompt types: Prompts are drawn from two cate-
gories in the MS-COCO dataset for the first 1k iterations. After that, an additional prompt category
is added after each 1k iterations. Images are generated from PixArt-α and uniDiffuser. Results are
averaged over 20 trials.

4. Additional examples. We provide more examples showing that prompt-based generative mod-
els can outperform for text prompts from certain categories while underperforming for other text
categories (see Figures 17 and 18).
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Figure 14: Prompt-based selection between uniDiffuser and PixArt-α (see Figure 17): Results are
averaged over 20 trials.
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(c) Moving-average OPR

Figure 15: Prompt-based selection between uniDiffuser and Stable Diffusion (see Figure 18): Re-
sults are averaged over 20 trials.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000
Iteration

2.0

1.5

1.0

0.5

0.0

SCK-UCB-poly3
RFF-UCB
Lin-UCB
One-arm Oracle
Naive-KRR
Greedy
Random

(a) Outscore-the-best (O2B)

0 1000 2000 3000 4000 5000
Iteration

0.30

0.35

0.40

0.45

0.50

0.55

SCK-UCB-poly3
RFF-UCB
Lin-UCB
One-arm Oracle
Naive-KRR
Greedy
Random

(b) Optimal-pick-ratio (OPR)

100 1000 2000 3000 4000 5000
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

SCK-UCB-poly3
RFF-UCB
Lin-UCB
One-arm Oracle
Naive-KRR
Greedy
Random

(c) Moving-average OPR

Figure 16: Prompt-based selection among Stable Diffusion v1-5, PixArt-α, and DeepFloyd:
Prompts are drawn from types “carrot” and “bowl” in the MS-COCO dataset. Results are aver-
aged over 20 trials.

uniDiffuser PixArt-α Examples (clockwise)

Pr
om

pt
so

f
Ty

pe
“t

ra
in

”

1. “the rusted out remains
of a small railway line”

2. “a skier stands in the
snow outside of a train

3. “train cars parked on a train track
near a pile of construction material”

4. “several people on horses with
a train car in the background”

35.29 (±0.08) 34.25 (±0.12)

Pr
om

pt
so

f
Ty

pe
“b

as
eb

al
lb

at
” 1. “a man in red shirt

holding a baseball bat”
2. “a woman holding a baseball bat

with her head resting on it
3. “baseball player in the batter’s box

hitting a baseball
4. “hind view of a baseball player,

an umpire, and a catcher”

32.51 (±0.05) 34.30 (±0.04)

Figure 17: Prompt-based generated images from uniDiffuser (Bao et al., 2023) and PixArt-α: uni-
Diffuser attains a higher CLIPScore in generating type “train” prompts (35.29 versus 34.25) while
underperforms for type “baseball bat” prompts (32.51 versus 34.30).
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uniDiffuser Stable Diffusion Examples (clockwise)

Pr
om

pt
so

f
Ty

pe
“e

le
ph

an
t” 1. “an elephant is carrying people

across a forested area”
2. “an elephant has a sheet on its back
3. “a small gray elephant standing

on a beach next to a lake”
4. “a large elephant in an open

field approaching a vehicle”

36.67 (±0.05) 35.08 (±0.06)

Pr
om

pt
so

fT
yp

e
“fi

re
hy

dr
an

t” 1. “a fire hydrant in a clump
of flowering bushes”

2. “a fire hydrant on a gravel
ground with a fence behind it”

3. “a fire hydrant that is in the grass
4. “a toy Ford truck next to a fire hydrant”

35.11 (±0.14) 37.23 (±0.05)

Figure 18: Prompt-based generated images from uniDiffuser and Stable Diffusion: uniDiffuser at-
tains a higher CLIPScore in generating type “elephant” prompts (36.67 versus 35.08) while under-
performs for type “fire hydrant” prompts (35.11 versus 37.23).

Example 1 Example 2 Example 3

C
le

an

“a person on
a surfboard

in the air above
the water”

“a man standing
in a kitchen
with a dog”

“a bowl filled
with ice cream

and strawberries

28.57 40.53 27.98

N
oi

sy “a blurry photo of
a skateboarder flying

through the air”

“a cat that is
standing in
the grass”

“a blue and
white bowl filled

with water”

24.72 13.27 25.83

Figure 19: Generated captions for the clean and noise-perturbed images from vit-gpt2 and the cor-
responding CLIPScore.
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