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Figure 1: VisualSync Overview. Given multiple unsynchronized videos capturing the same dynamic
scene from different viewpoints, VisualSync recovers globally time-aligned video streams by estimat-
ing temporal offsets between views. For example, in the volleyball scene, before synchronization
the player’s motion is misaligned across videos; afterwards, a given timestamp in all three streams
corresponds to the same moment.

Abstract

Today, people can easily record memorable moments, ranging from concerts, sports
events, lectures, family gatherings, and birthday parties with multiple consumer
cameras. However, synchronizing these cross-camera streams remains challenging.
Existing methods assume controlled settings, specific targets, manual correction,
or costly hardware. We present VisualSync, an optimization framework based on
multi-view dynamics that aligns unposed, unsynchronized videos at millisecond
accuracy. Our key insight is that any moving 3D point, when co-visible in two
cameras, obeys epipolar constraints once properly synchronized. To exploit this,
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VisualSync leverages off-the-shelf 3D reconstruction, feature matching, and dense
tracking to extract tracklets, relative poses, and cross-view correspondences. It
then jointly minimizes the epipolar error to estimate each camera’s time offset. Ex-
periments on four diverse, challenging datasets show that VisualSync outperforms
baseline methods, achieving an average synchronization error below 130 ms.

1 Introduction

Recording dynamic scenes from multiple viewpoints has become increasingly common in everyday
life. From concerts and sports events to lectures and birthday parties, people often capture the same
moment using different handheld devices. These multi-view recordings present a rich opportunity to
reconstruct scenes in 4D, enable bullet-time effects, or enhance the capabilities of existing vision
models. However, these videos are typically captured independently, without synchronization or
known camera poses, making it difficult to align and fuse them coherently.

Existing synchronization methods rely on controlled environments, manual annotations, specific
patterns (e.g. human pose), audio signals (e.g. flashes or claps), or expensive hardware setups such as
time-coded devices, none of which are available in casually captured videos. In this work, we design
a versatile and robust algorithm for synchronizing videos without requiring specialized capture or
making assumptions about the scene content. Our key insight is that, at the correct synchronization,
the scene is static and thus the epipolar relationship (i.e. 2’7 Fx = 0 for correspondent points 2 and
2’ in two views) must hold true for all correspondences, whether on static or dynamic objects [19].
See Fig. 2| for an illustration.

While the insight follows directly from first principles and has been used in past attempts on this
problem [13} 134,160, 41} 131 |55 [16], building a practical and robust system that works on videos in
the wild is challenging. We need a reliable estimate for the fundamental matrix between camera
pairs, dynamic objects are a priori unknown and are generally small and blurry, and not all views may
have an overlap. Our key contribution is to leverage recent advances in computer vision, specifically
dense tracking, cross-view correspondences, and robust structure-from-motion, to build a robust and
versatile system that can reliably synchronize challenging videos.

Specifically, we formulate a joint energy function that measures the violations to the epipolar
constraints between correspondences between videos and adopt a three-stage optimization procedure.
In Stage 0, we use VGGT [56] to estimate fundamental matrices between each video pair, use
MAST?3R [30] to establish correspondences across videos, and use CoTracker3 [24} 23]] to establish
dense tracks within each video. This gives us access to quantities (correspondences and fundamental
matrices) necessary to evaluate the joint energy. Optimizing this joint energy directly is challenging.
Therefore, in Stage 1, we decompose this energy into pairwise energy terms and estimate the best
temporal alignment between each video pair via a brute force search. In Stage 2, we synchronize the
temporal offsets across all video pairs to assign a globally consistent temporal offset to each video.

We validate our approach on diverse datasets and show strong performance across different scenes,
motions, and camera setups, and achieve high-precision synchronization even under severe viewpoints.
Specifically, we outperform SyncNerf [26]], a recent method for this task by radiance field optimization,
and adaptations of two recent methods Uni4D [62] and MAST3R [30]. These results demonstrate the
robustness and generality of our approach and open the door to scalable, unconstrained multi-view
4D scene understanding.

2 Related work

Tracking and Correspondence. Establishing reliable correspondences across time and views is
fundamental for synchronizing multi-view videos [15 14, 16, [12} 47, |5| 51]. Recent models like
CoTracker [24} 23] 18 [13 [14] track points densely over time, offering strong temporal coherence.
However, they do not model spatial correspondences across different viewpoints. On the other hand,
MASt3R [30, 58] focuses on spatial matching and stereo reconstruction, providing dense cross-
view correspondences, but it does not handle temporal dynamics, especially in moving scenes. Our
method bridges this gap by constructing spatio-temporal cross-view correspondences, integrating both
temporal tracking and spatial matching to enable accurate synchronization in dynamic, multi-view
video settings.
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Figure 2: Epipolar-geometry cue for video sync: When cameras are time-aligned, keypoint tracks
align with epipolar lines (bottom); misalignment causes deviations (middle). Minimizing these
deviations across tracklets recovers the correct time offset.

Time

Multi-View Structure-from-Motion. Structure-from-Motion (SfM) techniques [2} 58, 1481152, 138
39,150, 1611, such as COLMAP [48]], have significantly advanced 3D reconstruction pipelines by
producing accurate camera poses from multi-view images and videos. More recent models [[7, 53]
like HLOC [47. 146] and VGGT [36, 57 build on this progress using learning-based features and
transformers to handle large-scale matching and pose estimation. While these methods achieve strong
performance in estimating camera geometry, they fall short in synchronizing dynamic scenes, as they
rely predominantly on static visual cues. In contrast, our approach explicitly decomposes the scene
into static and dynamic components, leveraging static cues for pose estimation and dynamic cues
from moving objects to perform robust temporal synchronization across views.

Video Synchronization. Video synchronization has been explored from multiple perspectives [33}
49,159,160}, 40, 165]]. Geometry-based methods [3| 55 (16} 41 34} 40, such as those by Albl et al. [3]
and Li et al. [31], estimate temporal offsets using epipolar geometry, but typically assume static
scenes or fixed viewpoint. Human-centric approaches use human pose as a synchronization signal,
benefiting from its strong visual priors [10} 163} 36, 28| [21]], yet these approaches are limited by the
accuracy of human pose estimation, the number of people present in the scene, and they struggle in
diverse scenarios without prominent human activity. Audio-based approaches [49} 20] use audio cues
for synchronization, which can only work in quiet environments and not generally applicable to in-
the-wild settings where audio is noisy or unavailable. Learning-based methods like Sync-NeRF [26]
jointly optimize camera poses and temporal offsets, but are often constrained to specific environments
or object types. Our work overcomes these limitations by leveraging pretrained visual foundation
models and framing synchronization as an epipolar-based optimization problem. By reasoning jointly
over static structures and dynamic foreground motion, we deliver a generalizable solution for aligning
asynchronous, unposed videos in complex real-world scenarios.

3 Approach

3.1 Problem Formulation

Given a set of N asynchronous videos {V?}¥ | capturing the same dynamic scene from different
viewpoints, our goal is to synchronize them and recover a globally aligned timestamp. Formally, we
aim to estimate a time offset s* € R for each video i, to be applied to its original out-of-sync clock
time. After synchronization, frames sharing the same clock time will correspond to the exact same
moment across all videos.

Key Insight. Our key insight lies in the epipolar geometry between two cameras that capture the same
scene. In Fig.[2] two cameras with known poses capture the same dynamic scene (e.g., a moving
person and their dog). We track and associate a keypoint across both videos (here, the human’s hand),
yielding a pair of tracklets (yellow and purple). If the videos are synchronized, then for any pair
of frames with the same timestamp, the keypoint observations will satisfy epipolar geometry—for
example, one keypoint will lie on the epipolar line of its counterpart. Conversely, if the videos are not
synchronized, this property does not hold, and the keypoint may deviate from the epipolar line.

Formally, let x*(¢) and x/ (t) be a pair of matched 2D tracklets in homogeneous coordinates between
cameras ¢ and j, forming continuous-time point trajectories and describing the same dynamic 3D point
the world. Let K;, K; denote the known (or estimated) intrinsics, and T*(¢), T’ (¢) the corresponding
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Figure 3: Proposed framework: Given unsynchronized videos, VisualSync follows a three-stage
pipeline. Stage 0 estimates camera parameters with VGGT [56], dense correspondences with
CoTracker3 [23]], cross-view matches with MAST3R [30], and dynamic objects with DEVA [9].
In Stage 1, we estimate pairwise frame offsets by minimizing epipolar violations over matched
trajectories. Stage 2 globally optimizes individual offsets to produce synchronized videos.

extrinsic trajectories. If the true synchronization offset between cameras i and j is A, then the epipolar
constraint holds:

(x'(t+ ) F 0, (1) = 0; (1)

where Fﬁ A is the fundamental matrix between camera ¢ at time ¢ + A and camera j at time ¢.
Otherwise, it may not be equal to zero.

By leveraging this cue, we formulate an optimization problem that finds the time offset minimizing
the epipolar distance of all associated keypoint trajectories for each camera pair with known poses.
We will then extend this approach to multi-camera and moving-camera scenarios.

Problem Formulation. Inspired by our discussion above, we formulate global synchronization as an
energy minimization problem over {s*}. Specifically, we aim to find offsets that best align all video
pairs by minimizing their pairwise synchronization error:

{s'} = arg mmZ E;j(AY),  where AY = s/ — &' 2)
{ 7,<j
Here, A denotes the relative temporal offset between videos i and j, and F; j(A") measures the
misalignment error under this candidate offset in terms of the Sampson geometric error between
associated tracklet pairs that are covisible between camera ¢ and j.

Pairwise Term. The key idea of F;;(A) is to quantify how much the paired tracklets violate epipolar
geometry. Among various epipolar-error measures, we adopt the Sampson error [[19] 35| 451 [44]],
which approximates the squared Euclidean distance from a point to its corresponding epipolar line.
By linearizing the epipolar constraint, it admits a closed-form expression and is computationally
efficient for real-world optimization. Detailed derivation are presented in Appendix [A] Formally, we
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where Ft A+ 18 the fundamental matrix between camera ¢ at time ¢ + A and camera j at time ¢,

and (x%(t),x?(t)) are matched continuous-time point-trajectory tracklets between cameras 4 and j.
Intuitively, the numerator is the squared algebraic epipolar residual, and the denominator sums the



squared lengths of the two epipolar-line normals. This normalization converts the raw residual into
an approximation of the squared point-to-line distance, closely matching the true reprojection error,
while remaining a fast and closed-form computation.

3.2 Inference

Challenges. Minimizing the energy in Eq. (2) poses three challenges. First, the optimization problem
is highly non-convex. Second, the formulation is continuous-time, yet observations arrive at discrete
frame times. Third, in real-world scenarios, it is difficult to associate dense trajectories across cameras
with significantly different viewpoints and to estimate accurate poses for moving cameras.

Overview. We address the challenge via a three-stage optimization strategy. Stage 0 leverages large,
pretrained vision models for dense pose-trajectory tracking, feedforward camera-pose and intrinsic
estimation, and extreme-viewpoint matching, making energy evaluation tractable. Then we adopt a
divide-and-conquer approach to minimize the proposed energy optimization. Stage 1 performs per-
pair, discrete-time surrogate optimizations via exhaustive search to find each camera pair’s optimal
alignment. Stage 2 aggregates these pairwise alignments to recover the global, continuous-time offset
via solving a robust least square problem.

Stage 0: Visual Cue Extraction. Computing E;; defined in Eq. () requires camera parameters
(intrinsics and poses) and dynamic point trajectory pairs across views. To obtain these, we use
VGGT [56] to jointly reasons about all cameras’ intrinsics and pose trajectories from static background
regions in a common coordinate system. We apply GPT40, SAM and DEVA [9, 27, 43, 132]] and
CoTrackerV3 [23] to segment dynamic objects and track dense 2D point trajectories within each
video, and we employ MASt3R [30] to match these per-view tracklets across cameras by comparing
sampled keyframes, yielding the cross-view correspondences needed for Sampson error evaluation.
We provide more details in the appendix.

Stage 1: Estimating Pairwise Offsets. To handle the joint-optimization challenge with non-convexity
and only discrete visual evidence at each frame, we drop the constraint in Eq. (2) and instead search
over a discrete set of offsets A% € S, for each camera pair (7, 7). In this way, we can independently
minimize each pairwise energy term:

V(i,j): AV =arg min E;(A), )

where S is a finite set of time offsets, step size is determined by the frame rate and range is a
hyperparameter.

Note that not all camera pairs (i, j) yield reliable time-offset estimates. In practice, some pairs have
minimal temporal overlap, others lack sufficient viewpoint overlap, or our visual cues may be noisy.
Using the per-pair estimates in Eq. (@), We discard any pair whose ratio of the optimal energy to
the next-best local minimum falls below 0.1 or more than two local minima found, resulting in £ of
reliable pairs for global synchronization.

Stage 2: Global Offset Esimation. The goal in this stage is to recover the global offsets {s'} for all
videos from the pairwise estimation A*/. Since the discrete, imperfect estimates A* may not admit
a solution {s'} perfectly satisfying s’ — s* = A" for every pair (¢, j) € £, we formulate a robust
least-squares problem:

{s'}* =argmin > ps(s’ — s’ — AY), )

B e

where ps is the Huber loss. We solve this with an iteratively reweighted least squares (IRLS)
procedure [[11]], yielding the final global synchronization offsets {s*}*.

4 Experiments
4.1 Experimental Setup

Implementation details. Given the input videos, we first extract dynamic object categories using
GPT [I1]] and apply Grounded-SAM [43\ 30]] to obtain initial per-frame segmentations. We then run
DEVA [9] to track these instance masks across time, producing temporally consistent segmentations
for each moving object. For each tracked instance, we apply CoTracker3 [23] to perform per-instance
temporal tracking. To establish cross-view correspondences, we sample keyframes every 10 frames
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Figure 4: Qualitative Comparison of synchronization on Egohumans across baselines We
visually assess temporal synchronization by presenting magnified views of the shuttlecock’s position
across time. In this complex scenario—marked by large temporal discrepancies, a small dynamic
element, and moving cameras— Visual Sync achieves the most accurate alignment.
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Figure 5: Qualitative Comparison of Video Sync across datasets. We show the synchronized
videos on CMU-Panoptic, UDBD, 3D-POP and Egohumans dataset. Top 3 rows shows the estimated
synchronized time stamps from 3 different views. The bottom row shows synchronized timelines
across multiple videos. Our method performs robustly across diverse scenes.

and query Mast3R [30] within the dynamic instance masks, linking tracklets across views. Camera
poses are estimated by VGGT [56]. We compute pairwise synchronization energy over the maximum
overlapping time window between video pairs and evaluate energy across different offsets. Finally,
we select reliable pairs for global synchronization. More details can be found in Appendix [A]

Datasets. We evaluate our method on a comprehensive suite of multi-view video datasets capturing
dynamic scenes. These datasets vary across several dimensions—including camera motion (static vs.
dynamic), environment (indoor vs. outdoor), realism (real vs. synthetic), and motion type (human and
non-human). CMU Panoptic [22] features a real-world indoor dataset with 30 static cameras captured
at 30fps capturing human interactions. Egohumans [23]] is a challenging multi-view egocentric and
static cameras capturing various sports taking place both indoors and outdoors at different resolutions.
3DPOP [37] is a large scale 2D to 3D posture, identity and trajectory dataset featuring moving



Table 1: Video Evaluation Results. For each dataset, we show mean and median errors (ms) for
video metrics. We bold and underline the best and second best results respectively. Methods with *
indicates using GT camera pose as input. Without relying on any GT input, our method achieves the
best overall performance across all four datasets, spanning diverse subjects and scenes.

| Egohumans | CMU Panoptic | 3D-POP | UDBD
MCthOd ‘ 6meanxlf 6medxlf ‘ 6meun¢ 5med¢ ‘ 5meanJ/ 5meri»l/ ‘ 5mean»l/ 5me(i»l/
Uni4D* [[62] 447.4 222.1 777.9 99.9 1600.1 1265.4 103.2 25.1
Mast3R[30] 742.3 263.8 113.4 58.1 150.3 72.2 10.1 7.4
Sync-NeRF*[26] - - 919.5 866.7 1138.9 1100.0 04 0.2
Ours 122.1 46.6 112.6 41.5 114.7 77.8 20.2 59

Table 2: Stage-1 Pairwise Evaluation Results. For each dataset, we show mean and median errors
(ms) for pairwise metrics. We bold and underline the best and second best results respectively.
Methods with * indicates using GT camera pose as input. Our method outperforms other baselines
on both metrics across datasets.

| Egohumans | CMU Panoptic | 3D-POP | UDBD
Method | A@I00T A@5001 | A@100T A@5001 | A@100T A@5001 | A@100T A@5007
Uni4D* [62] 23.8 49.4 323 60.7 0.9 9.5 46.2 74.1
Mast3R[30] 243 50.4 29.6 49.8 15.7 69.1 77.8 95.4
Sync-NeRF*[26] - - 3.0 13.8 0.0 8.2 86.7 97.35
Ours 33.9 55.8 26.0 51.2 33.3 69.3 82.1 94.3

pigeons.Unsynchronized Dynamic Blender Dataset (UDBD) is a synthetic toy example created with
dynamic blender assets used in SyncNeRF [26].

To prepare these multi-view datasets for multi-video synchronization, we take subsequences of each
video while ensuring that they all have a common overlap. Each sequence is roughly 10 seconds
long, with a random cropping of around 2-3 seconds from the front and back to simulate offsets and
unsynchronized videos. These offsets are used for evaluative purposes.

Baselines. For baselines, we explore leading methods using different strategies for multi-video
synchronization. Following Uni4D [62], we adopt a geometric approach using metric depth estimation
to compute Chamfer distances between projected dynamic pixels. Ground-truth camera poses are
used to triangulate scene points and resolve per-image scale ambiguity. For a learning-based approach,
we use Mast3r [30], which leverages attention and confidence maps shown to capture motion and
rigidity [8]. We compute energy for each offset as the mean confidence between keyframe pairs
within dynamic masks. Sync-NeRF [26] incorporates temporal offsets into photometric optimization.
We adapted its codebase for varying intrinsics, but excluded Egohuman due to egocentric camera
challenges. For Uni4D and Mast3r, we compute pairwise offsets followed by global optimization,
similar to our method.

Metrics. We evaluate both pairwise and per-video offset performance across all datasets. For pairwise
evaluation, predicted offsets are compared with ground-truth relative offsets between every pair of
cameras within the same dynamic scene. We report the AUC for error thresholds at 100ms (A @100)
and 500ms (A @500) respectively. For video evaluation, we compute a single offset per-video while
fixing the offset for the same reference camera. We report both the mean (§,,¢qn) and median
(0meq) error. Since our datasets have different FPS, we report our results in milliseconds. The mean
synchronization error ( 100 ms) is heavily influenced by a small number of extremely challenging
camera views, as we did not exclude any views from our evaluation. Typically, the mean error is
more sensitive to a few challenging camera views, as we did not exclude any from evaluation.

4.2 Results

Quantitative. Our analysis of offset results across diverse datasets and baselines is detailed in
Tab.[I] (video synchronization) and Tab. 2] (pairwise synchronization). Notably, on the challenging
EgoHumans dataset [25], VisualSync demonstrates superior performance, achieving successful video
synchronization with a median error of just 46.6 milliseconds. The geometric approach, Uni4D,
exhibits strong performance on datasets where dynamic objects are in closer proximity to the camera.



Table 3: Ablation of key components on Egohumans dataset. We bold and underline the best
and second best results respectively. The /st two rows show the oracle performance leveraging GT
information as input. The 2nd block compares different camera pose estimations, the 3rd block
compares different energy terms, the 4¢h block compare different solvers for global optimization. Our
proposed pipeline achieves the best overall performance.

Design Choices | Solver | Pairwise | Video

Segmentation ~ Correspondence ~ Camera  Energy | | A@100F A@5001 | dmeand | dmeald
GT GT GT Sampson | IRLS 94.8 97.9 11.3 2.0
DEVA CoTracker+Mast3R GT Sampson | IRLS 56.0 85.0 72.4 28.6
DEVA CoTracker+Mast3R ~ hloc ~ Sampson | IRLS | 38.2 68.8 | 1995 | 753

DEVA CoTracker+Mast3R  ransac Inlier IRLS 20.1 39.5 1656.5 | 1544.8
DEVA CoTracker+Mast3R  vggt Cosine IRLS 28.0 61.1 239.8 94.6
DEVA CoTracker+Mast3R  vggt  Algebraic | IRLS 32.6 63.6 167.3 57.9
DEVA CoTracker+Mast3R  vggt Epipolar | IRLS 36.2 69.4 125.0 354

DEVA CoTracker+Mast3R  vggt Sampson LS 20.3 56.7 205.9 118.0
DEVA CoTracker+Mast3R  vggt Sampson | IRLS 40.2 73.4 122.1 46.6

This suggests that more accurate metric estimations in these scenarios directly translate to improved
alignment results. Conversely, Uni4D’s performance significantly deteriorates on the 3D-POP
dataset [37]], where small, distant dynamic objects (pigeons) likely introduce inconsistencies in multi-
view metric estimations. The energy landscape of Uni4D is also noisy and there is no clear cues to
remove spurious pairwise results, resulting in worse global synchronization. The optimization-based
method, Sync-NeRF, jointly optimizes temporal offsets and photometric loss. However, consistent
with findings in related work [10], Sync-NeRF struggles to calibrate more complex dynamic scenes
beyond UDBD [26] in settings of large offsets like ours, likely due to a lack of strong priors and
effective offset initialization. Interestingly, the learning-based approach, Mast3R [30], showcases
surprisingly strong generalization capabilities. Despite not being explicitly trained for this task, it
outperforms the other two baselines on several datasets in both pairwise and video synchronization
evaluations. However, its performance on the EgoHumans dataset [[25] is notably weaker, potentially
indicating a limitation in handling challenging egocentric views and motion blur.

Qualitative. We present qualitative comparisons on the EgoHumans dataset [25] against Uni4D
and Mast3R in Fig.[4 As shown in Fig.[] both methods struggle with highly dynamic motions and
egocentric—third-person alignment. The timeline below shows ground-truth key events and sequence
lengths. We further demonstrate our method on four datasets (Fig. [5) and in-the-wild sports footage
(NBA, EFL) (Fig.[6), effectively handling rapid motion, zooms, and dynamic camera movements
across diverse scenes. Additional qualitative results can be seen in Fig. [I3|and Fig.[14]

4.3 Analysis

Key components. We evaluate the contribution of key components in our framework through
an ablation study on the EgoHumans dataset, as shown in Tab.[3] Note A@100 and A@500 are
intermediate metrics across all video pairs, including those with opposite viewpoints or no temporal
overlap. The first block reports oracle results using ground-truth segmentation, camera poses, and
correspondences for all video pairs—regardless of overlap—demonstrating near-perfect performance
with perfect inputs and serving as an upper bound. The second block examines different camera
pose estimation methods. Our framework performs consistently across alternatives, with VGGT
achieving the best results. Compared to the 28.6ms oracle result (2nd row), using estimated camera
poses from VGGT achieves a 46.6ms median error, demonstrating the robustness of our approach
under imperfect pose inputs and its effectiveness in practical conditions. We further report camera
pose and synchronization results (relative angular error in rotation and translation following VGGT)
across randomly selected EgoHumans sports videos in Tab. [/} The third block ablates various
pairwise energy terms used for synchronization. We include a baseline method inspired by [3]],
which relies solely on dynamic tracklets and uses RANSAC to compute inlier matches as the
pairwise energy metric. In contrast, our method leverages both static background and camera pose
information. We also evaluate three geometric energy terms—cosine error, algebraic error [29],
and symmetric epipolar distance—which are detailed in Appendix[A] Among all energy terms, the
Sampson error performs best, as it explicitly models noise in the tracklets and provides a lower bound



Table 4: Ablation of input settings, spurious pair detection, and stage contribution on the
Egohumans dataset. The first 3 rows ablate number of input pairs. RST denotes a Random Spanning
Tree using only the minimal number of pairs needed to form connectivity. For each setting, we run
10 times and report the mean and variance for each metric. Pairwise metrics in * are computed after
global sychronization except for 4¢h row. In 5th row, we show the importance of removing spurious
pairs. Our method achieves comparable performance even only using 50% of pairs input.

Input Setting | Stage | Pairwise* | Video

Pairs Ratio  Spurious Det. | | A@1001 A@500T | Omeand Omead
RST v Full 195+19 432431 | 436.4+63.1 130.0+24.5
50% v Full 280+05 59.8+1.0 212.6 9.5 70.7 £ 1.3
80% v Full 35440 692+ 0 1444 + 0 447+ 0
100% v Stage-1 33.9 55.8 - -
100% X Full 30.7 58.1 371.4 111.5
100% v Full 40.1 73.4 122.1 46.6

Table 5: Ablation of varying frame rates on Table 6: Ablation of low frame Rates on the
the CMU Panoptic dataset. We keep 30 fps for CMU Panoptic dataset. Downsampling from 30
the constant setting and downsample them to  fps to 15 fps causes a slight performance drop
5-30 fps for the varying setting, achieving simi-  due to reduced temporal overlap, yet the method

lar performance without any pipeline changes. remains robust under the low-fps setting.
Input FPS Omeand Omedd Input FPS Omeand Omedd
Constant 112.6 41.5 30 112.6 41.5
Varying 103.9 51.5 15 157.2 45.6

on the true epipolar error through a linear approximation under noisy estimates. The last block
compares different solvers. A least-squares solver performs reasonably but is sensitive to outliers.
Our IRLS-based solver achieves better accuracy by down-weighting unreliable estimates. Overall,
our configuration achieves the best performance, validating the effectiveness of each design choice.

Input and different stage contributions. Tab.[d]evaluates the impact of input pair selection, spurious
pair removal, and multi-stage optimization. In the first block, we ablate the number of input pairs.
RST uses only the minimal set to form a connected graph, yet achieves <150 ms median error. Even
with 50% of pairs, performance remains close to the full setting, showing robustness to limited
input. The second block highlights the benefits of spurious pair filtering and two-stage optimization.
By exploiting energy landscape structure, our method filters unreliable pairs and improves global
accuracy. The final row, using the full pipeline, yields the best results.

Input frame rate. To evaluate the robustness of our method under different temporal conditions, we
conduct two ablation study on the CMU Panoptic dataset [22]. In Tab.[5] we test synchronization
across videos with varying frame rates (2nd row), sampling each video between 5 fps and 30 fps. Our
method is applied directly without any pipeline changes, achieving 51.5 ms performance—comparable
to 41.5 ms at the original 30 fps setting—demonstrating strong adaptability to frame rate variations in
real-world data. In Tab.[6] we test robustness to low frame rates by downsampling videos from 30 fps
to 15 fps. While performance slightly degrades due to reduced temporal overlap, the method remains
accurate, demonstrating resilience under sparse sampling. Notably, our preprocessing modules
(Co-Tracker [23] and DEVA [9]) are optimized for high frame rates, making 15 fps particularly
challenging.

Runtime. Motion segmentation and VGGT [56] pose estimation run at 0.3 s and 0.35 s per frame,
respectively. Tracking [23] takes 120 s per 10s video, and Mast3R [30] takes 60 s per video pair.
Energy evaluation and global sync are efficient, taking under 10s and 1 s per pair, respectively.
Although our method is O(N?) in the number of videos, we show in Tab. E]that using only 50% of
pairs or a Random Spanning Tree (RST) offers a good trade-off. All runtimes are measured on a single
A6000 GPU. On the CMU Panoptic dataset (15 videos, 200 frames each), our method takes about 3.3
hours—comparable to Uni4D (3.9 hrs) and Sync-NeRF (4.2 hrs), though slower than MAST3R (1.2
hrs). Efficiency can be further improved with lightweight modules and additional computing resources
with parallel preprocessing, making the method practical for offline multi-camera applications such
as sports analysis, film production, and surveillance.



Figure 6: Qualitative Synchronization of VisualSync on In-the-Wild Sports Videos. We showcase
VisualSync on challenging multi-view sports footage with large camera motions, motion blur, and
zoom variations. Despite these real-world challenges, our method achieves accurate synchronization.
In the absence of ground-truth alignments, we qualitatively verify accuracy through the precise
alignment of key events (e.g., ball release, contact) across views.
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Figure 7: K-Plane Rendering on VisualSync Results. We train K-Planes on CMU Panoptic [22]
multi-view videos for novel view synthesis. Unsynchronized inputs (1st) produce blurry results,
while our synchronized outputs (2nd) are sharp and comparable to ground-truth sync (3rd). The 4th
column shows real images. Our method enables high-quality synthesis from unsynchronized inputs.

Limitations. Our method has three main limitations. First, it requires a subset of reliable camera
poses (not necessary for the entire sequence). Second, it can’t handle clips containing non-uniform
motion speeds—for example, videos that alternate between slow-motion and fast-motion segments.
Third, the pairwise estimation step scales quadratically (O(NN?)) with the number of videos, which
can affect efficiency in large-scale setups. Failure case analysis of each module is shown in Fig. [I2]

4.4 Application

Video synchronization unlocks downstream applications like multi-view dynamic scene reconstruc-
tion. As demonstrated in Fig.[7] directly applying K-Planes to unsynchronized data yields
unsatisfactory novel view renderings. In contrast, our Video Sync approach enables significantly
improved novel view synthesis, achieving results comparable to those obtained with ground truth syn-
chronized video. This demonstrates that our method can serve as a fundamental tool for downstream
applications such as novel-view synthesis in real, multi-view unsynchronized dynamic world.

5 Conclusion

We presented VisualSync, a robust framework for synchronizing unposed, unsynchronized multi-
camera videos with millisecond accuracy. By minimizing epipolar error over dense correspondences,
it recovers precise time offsets across diverse scenes and motions. Experiments on four datasets show
VisualSync outperforms recent methods. Our approach contributes a practical step toward enabling
dynamic multi-view video motion understanding and related downstream tasks.
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Figure 8: Grounding-DINO [32] + SAM2 [42] Segmentation results We visualize Grounding-
DINQO’s proposed bounding box given the dynamic labels produced by GPT4o0, along with SAM?2
segmentation results with confidence scores. Note that objects that are generally not dynamic (eg.
basketball, football, chest) is identified as dynamic in these specific scenes due to inputting video
frames into GPT4o.

Figure 9: Visualization of Cotracker and Mast3R correspondences We visualize actual spatial-
temporal correspondences predicted using CotrackerV3 (temporal) and Mast3R (spatial).

A Implementation Details

Motion Segmentation. For dynamic object segmentation, we follow the pipeline of Uni4D [62]
with key modifications. Unlike Uni4D, which relies on Recognize Anything [[64] and LLM filtering,
we directly feed video frames into GPT-40 to identify dynamic classes. The GPT40 Prompt used for
automatic motion segmentation is shown in Fig.[TT] Every 20th frame is sampled as input, and the
detected classes guide GroundingDINO [32] to generate bounding boxes, which then prompt SAM 2
for precise segmentation masks. As shown in Fig.[8] this pipeline achieves robust dynamic object
segmentation, with DEVA [9]] applied afterward for temporally consistent motion segmentation.

Spatial-Temporal Correspondence. To capture motion trajectories of dynamic objects, we apply
CoTracker to each video 4 within its dynamic region {M¢}, producing a set of 2D tracklets
{X?}. Each tracklet x* = {x%(¢)} represents the observed image-space trajectory of a dynamic 3D
point over time. To establish spatio-temporal correspondences across views, we perform cross-view
matching using Mast3R [30]]. For each tracklet x* in video i, we seek its matching tracklet x’ in
another video j. To ensure robust matching under asynchronous capture, we sample a subset of
keyframes from each tracklet and compute pairwise similarity between all keyframe pairs across
views. For each pair of sampled frames, we construct a candidate tracklet pair (x?,x’) from the
correspondences obtained by Mast3R [30] in the two views. The visualization output is shown in

Fig.

Correspondence Filtering. To further suppress noise, we leverage instance segmentation matching
from DEVA to filter correspondences across video pairs. We first construct a pairwise matching matrix
by counting correspondences between each instance pair over a sampled subset of frames. Bipartite
matching is then applied to obtain optimal one-to-one assignments between instances in the two
videos. To ensure reliability, we discard matched instance pairs with fewer than 100 correspondences.
After this instance-level matching, we retain only Mast3R correspondences whose endpoints belong
to the same matched instance. All remaining correspondences are aggregated into a unified set of
spatio-temporal matches, which serve as input to our energy-based synchronization process.

Camera Parameters. We use VGGT [56] to extract camera poses and intrinsics in our preprocess-
ing pipeline. For static cameras, we feed only the first frame as input, while for dynamic cameras,
all available frames are used to estimate poses and intrinsics. To manage memory constraints, we
subsample dynamic sequences to ensure that every offset computation has overlapping frames with
predicted camera poses. The outputs of VGGT include per-frame extrinsics {P? € SE(3)} and
intrinsics K¢ for each video i, where Pi = [R! | t¢]. These parameters are then used to compute
relative poses and fundamental matrices. Example output is shown in Fig.
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Figure 10: VGGT [56] Predicted Camera poses compared to GT poses for all datasets We visual-
ize VGGT predicted camera poses and ground truth camera poses for Egohumans [25]], Panoptic [22],
UDBD [26], and 3D-POP [37] respectively. Different colors represent different multi-view cameras,
while the corresponding lighter palette represents ground truth camera poses.

(“Context )
You are a computer vision assistant specialized in analyzing video frames to identify objects that are ACTUALLY MOVING in the sequence. Your task is to identify categories of
objects that are visibly in motion across the provided frames - NOT just objects that have the capacity to move. Focus only on objects that show evidence of movement or
position changes between frames. For naming objects:

1. Use singular form for all objects

2. Use specific instance categories rather than general ones (e.g., 'man’, 'woman, ‘child’ instead of 'person’)
3. Use lowercase format for consistency

4. 0Only include objects that you can confidently determine are moving across the frames

5. Use generic class names (if there are multiple man, just list 'man’ once, not each individual man)

Prompt
These are frames from a video. Analyze them and identify ONLY categories of objects that are ACTUALLY MOVING across these frames. Return ONLY a JSON response with the
following structure:

"dynamic": ["object1", "object2", "object3"],
"reasoning": "detailed explanation of how you identified movement between frames for each object type*

}

For the "dynamic" list:

- Include ONLY object categories that show visible motion or position changes between frames

- Use SINGULAR FORM for all objects (e.g., 'athlete’ not 'athletes’)

- For multiple instances of the same type, list the type only ONCE

- Keep terms simple and in lowercase

- Do NOT include static objects or objects that merely have the capacity to move

- If multiple instances of the same type are moving, list them individually (e.g., 'man’, 'woman, 'child' instead of 'people’)
Be conservative - only include objects where you can clearly see evidence of motion across the frames.

Sample Response

"dynamic": [ "man", "woman", “child", "ball" ],
"reasoning": "The man, woman, and child show visible changes in position and posture across the frames, indicating they are walking or running. The ball also changes its
position between frames, confirming it is in motion as it is being interacted with by the people.",

U J

Figure 11: GPT40 Prompt used for automatic motion segmentation We sample every 20th frame
from our video and input to GPT40 with the following context and prompt to identify motion classes
to be given to GroundingDINO module for robust video motion segmentation.

Sampson Error. We use the Sampson error in Sec. [3.1]to quantify epipolar constraint violations.
Below, we analyze it as a linearized approximation of the true epipolar distance. Let x; = [x*(t +
A); x7(t)] denote a noisy spatial-temporal correspondence at time ¢ + A in video i and ¢ in video j.
Let z; be the underlying clean correspondence. To quantify the deviation of the noisy observation x;
from satisfying the epipolar constraint, we define the energy £ as:

&? :n;in ||zt—xt|\2 6)

S.t. C(Zt) =0 (7)

This energy measures the minimal correction required to project x; onto the epipolar manifold defined
by C(z:) = 0. The constraint function C(z;) evaluates the epipolar consistency between two views:

Cla) = x'(t+ A)TF 5, % (1) @®)
where Fg_ A ¢ 18 the fundamental matrix at frames ¢ + A and t.

Since this constrained optimization is nonlinear and difficult to solve directly, we approximate it by
linearizing the constraint around x;. Using a first-order Taylor expansion, we obtain:

C(Zt) ~ O(Xt) + Jt(Zt — Xt) (9)

where J; is the Jacobian of C' with respect to x;. Solving for the optimal correction yields the
Sampson approximation of £2, which provides a first-order lower bound on the original energy.

(Xi(t +A)T Fﬁ_&t xJ (t))2 a0)
= i : gl J
||Fti-A,t xJ (t)H%Z + ”Fti-A,t x'(t+ A)”%z

2
SSampson
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Figure 12: Failure Case Visualizations We visualize failure cases across our camera pose, motion
segmentation, and spatial correspondence modules. Specifically, observe the incorrect predicted
camera poses for the dynamic camera (red) against the ground truth (pink). Background individuals
are occasionally mis-segmented for motion segmentation, and some segmentations appear fragmented.
Furthermore, Mast3R sometimes generates incorrect correspondences within dynamic masks.

Table 7: Camera pose error vs. synchronization accuracy. Even with large rotation and translation
errors in camera pose estimates (relative angular errors from VGGT), our method maintains low
synchronization errors (e.g., 9.6 ms for Fencing and 19.4 ms for Tagging). The higher error in Tennis
stems from distant camera placement with minimal observable motion.

Metric Fencing Volleyball LegoAssemble Badminton Tagging Basketball Tennis
Cam Rot Err | 10.9 8.5 3.1 10.2 5.8 4.0 2.7
Cam Trans Err | 14.0 14.6 7.1 11.8 9.1 12.2 13.9
Omed 9.6 30.8 383 34.6 19.4 275 113.6

Other Energy Terms. Our ablation study also compares other three distinct geometric energy
terms: symmetric epipolar distance, cosine error, and algebraic error. Following the definitions
proposed by Terekohov et al. [54]], these terms are formally defined as:

o AEL WOP AL R0
" [EENEIOTER [(F7 a0 0+ D)7,

|7 (¢ + A)TFY, X (1) (7 (¢ + A)TFY, o X (1)
(8 + D) PIF LA 2 DI 1 A )T+ AP (1)

(12)

2 _
gCosine -

gAlgebraic = ‘(X’L(t =+ A))TFgFAthj (t)| (13)

As shown in and our experiments in Tab. 3, the Sampson error is more robust to input
noise. In our setting, we extend the point-wise Sampson error to a spatial-temporal formulation by
considering tracklets as input.

B Failure Case

VisualSync depends on several upstream modules and is thus sensitive to their prediction errors. As
shown in Fig.[T2] inaccuracies in camera pose estimation, motion segmentation, or correspondence
matching can propagate through the pipeline and introduce error in synchronization. However, most
unreliable cases could be detected by analyzing the pairwise energy landscape. Estimates with
ambiguous or low-confidence minima are discarded to prevent degradation of global synchronization.
Despite occasional failures, our robust preprocessing effectively limits their impact, enabling Visual-
Sync to maintain strong performance for in-the-wild videos. Its modular design also ensures that
improvements to individual components directly enhance overall synchronization quality.

C Additional Results

Camera pose error vs. synchronization accuracy. We report camera pose and synchronization
results (relative angular errors in rotation and translation following VGGT) across randomly selected
EgoHumans sports videos in Tab. [7} demonstrating the robustness of our approach under varying pose
estimation quality. Even with large pose errors, our method maintains low synchronization errors
(e.g., 9.6 ms for Fencing and 19.4 ms for Tagging), indicating that pose noise does not directly lead
to synchronization failure.
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Figure 13: Qualitative Comparison of VisualSync across datasets We show the synchronized
videos on CMU-Panoptic, UDBD, 3D-POP and Egohumans dataset using VisualSync. The top 3
rows show the estimated synchronized time stamps from 3 different views. The bottom row shows
synchronized timelines between multiple videos. Our method performs robustly across diverse
scenes.

Figure 14: Qualitative Comparison of synchronization on Egohumans across baselines We
visualize synchronization results in the challenging volleyball sequence in Egohumans. Notice that
VisualSync achieves the most accurate alignment even for egocentric views (orange highlight).

Qualitative results. To further demonstrate VisualSync’s capabilities, we present additional qual-
itative results across 4 datasets, specifically Egohumans [25], Panoptic [22]], UDBD [26], and
3D-POP [37], in Fig. We also provide comprehensive comparisons with baselines Uni4D [62]
and Mast3R [30]) in Fig. Note that we excluded Sync-NeRF [26] for comparison as it struggled to
produce meaningful offset predictions beyond its simpler native UDBD dataset. For visualization, we
show three selected camera views. The first view (blue highlight) serves as the reference, and corre-
sponding frames from other views are aligned accordingly. The timeline below depicts ground-truth
keyframe alignments, marking the synchronized frame positions across camera sequences. These
qualitative results demonstrate VisualSync’s strong synchronization performance across datasets and
baselines. Full video visualizations can be found in the supplementary material or on the project page
at https://stevenlsw.github.io/visualsync,
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NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is discussed in the experiment section and supplementary.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: NA

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided implementation details in the experiment and supplementary. All
experiments in the paper are reproducible.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: All data we used are public. We mainly use off-the-shelf models in our paper,
we will release the complete code with instructions upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our method is training-free, and we provide experiment details in the experi-
ment section.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run our experiments multiple times and report both the mean and variance
for each one.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide computing resources in implementation details.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that every aspect of our work adheres to the NeurIPS Code of
Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: we describe positive outcomes and possibility of misuse in the broader impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards -

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper has no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The datasets and models used in the paper are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: We don’t introduce new assets in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We don’t perform such crowdsourcing human study in the paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method doesn’t involve LLM as the components.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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