
Published as a conference paper at ICLR 2022

PARETO SET LEARNING FOR NEURAL
MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION

Xi Lin, Zhiyuan Yang, Qingfu Zhang
Department of Computer Science, City University of Hong Kong
xi.lin@my.cityu.edu.hk

ABSTRACT

Multiobjective combinatorial optimization (MOCO) problems can be found in
many real-world applications. However, exactly solving these problems would be
very challenging, particularly when they are NP-hard. Many handcrafted heuris-
tic methods have been proposed to tackle different MOCO problems over the past
decades. In this work, we generalize the idea of neural combinatorial optimiza-
tion, and develop a learning-based approach to approximate the whole Pareto set
for a given MOCO problem without further search procedure. We propose a single
preference-conditioned model to directly generate approximate Pareto solutions
for any trade-off preference, and design an efficient multiobjective reinforcement
learning algorithm to train this model. Our proposed method can be treated as
a learning-based extension for the widely-used decomposition-based multiobjec-
tive evolutionary algorithm (MOEA/D). It uses a single model to accommodate
all the possible preferences, whereas other methods use a finite number of solu-
tions to approximate the Pareto set. Experimental results show that our proposed
method significantly outperforms some other methods on the multiobjective trav-
eling salesman problem, multiobjective vehicle routing problem, and multiobjec-
tive knapsack problem in terms of solution quality, speed, and model efficiency.

1 INTRODUCTION

Many real-world applications can be modeled as multiobjective combinatorial optimization
(MOCO) problems (Ehrgott & Gandibleux, 2000). Examples include the multiobjective traveling
salesman problem (MOTSP) (Lust & Teghem, 2010a), the multiobjective vehicle routing problem
(MOVRP) (Jozefowiez et al., 2008) and the multiobjective knapsack problem (MOKP) (Bazgan
et al., 2009). These problems have multiple objectives to optimize, and no single solution can op-
timize all the objectives at the same time. Instead, there is a set of Pareto optimal solutions with
different trade-offs among the objectives.

It is very challenging to find all the exact Pareto optimal solutions for a MOCO problem. Ac-
tually, finding one single Pareto optimal solution can be NP-hard for many problems (Ehrgott &
Gandibleux, 2000), and the number of Pareto solutions could be exponentially large with regard to
the problem size (Ehrgott, 2005; Herzel et al., 2021). The decision-maker’s preference among dif-
ferent objectives is usually unknown in advance, making it very difficult to reduce the problem into
a single-objective one. Over the past several decades, many methods have been developed to find
an approximate Pareto set for different MOCO problems within a reasonable computational time.
These methods often need carefully handcrafted and specialized heuristics for each problem. It can
be very labor-intensive in practice.

In many real-world applications, practitioners need to solve many different instances for the same
particular problem, where the instances can be easily obtained or generated (Bengio et al., 2020).
It is desirable to learn the patterns behind these problem instances explicitly or implicitly to design
efficient algorithms (Cappart et al., 2021a). Machine learning techniques can be naturally used for
this purpose. Some learning-based methods have been recently proposed for solving single-objective
combinatorial optimization problems (Bengio et al., 2020; Vesselinova et al., 2020; Mazyavkina
et al., 2021; Cappart et al., 2021a). In this work, we extend the learning-based method to solve
MOCO problems in a principled way as shown in Figure 1. Our main contributions include:

1

Published as a conference paper at ICLR 2022

Neural MOCO Model

A

B

CD

E

A
B

CD

E

A
B

CD

E

A
B

CD

E

...
...

 Cost 1

 C

os
t 2

(1,3)

(2,3)

(5,2)

(2,6)

(6,3)

(1,8)
(7,9)

(4,2)(4,5)
(6,4)

P1(10,18)

P3(20,15)
P2(16,17)

A
B

CD

E

(a) Problem (b) Model (c) Solution Generation
 Fast Forward Inference

Pref. on Obj1

Pr
ef

. o
n

O
bj

2

P4(22,28)Preference:

Figure 1: Preference-Conditioned Neural Multiobjective Combinatorial Optimization: a) The
model takes a problem instance as its input. b) The decision makers assign their preferences on
different objectives to the model. c) The model directly generates approximate Pareto solutions with
different trade-offs via fast forward inference. In this example, the problem is the MOTSP with two
cost objectives to minimize. The generated solutions P1,P2 and P3 are different optimal trade-offs
between the two cost objectives. The ideal model can generate solutions for all possible optimal
trade-offs on the Pareto front and not generate a poor solution such as P4.

• We propose a novel neural multiobjective combinatorial optimization method to approx-
imate the whole Pareto set via a single preference-conditioned model. It allows decision
makers to obtain any preferred trade-off solution without any search effort.

• We develop an efficient end-to-end reinforcement learning algorithm to train the single
model for all different preferences simultaneously, and a simple yet powerful active adap-
tion method to handle out-of-distribution problem instances.

• We conduct comprehensive experiments on MOTSP, MOVR and MOKP of different set-
tings. The results show that our proposed method can successfully approximate the Pareto
sets for different problems in an efficient way. It also significantly outperforms other meth-
ods in terms of solution quality, speed, and model efficiency.

2 BACKGROUND AND RELATED WORK

Multiobjective Combinatorial Optimization (MOCO). MOCO has been attracting growing re-
search efforts from different communities over the past several decades (Sawaragi et al., 1985;
Wallenius et al., 2008; Herzel et al., 2021). There are two main approaches to tackle the MOCO
problems: the exact methods and the approximation methods (Ehrgott, 2005). Exact methods could
be prohibitively costly when, as it often happens, the MOCO problem is NP-hard and the prob-
lem size is very large (Florios & Mavrotas, 2014). For this reason, many heuristics (Jaszkiewicz,
2002; Zhang & Li, 2007; Ehrgott & Gandibleux, 2008) and approximation methods (Papadimitriou
& Yannakakis, 2000; Herzel et al., 2021) have been developed to find a manageable number of
approximated Pareto solutions with a reasonable computational budget. However, these methods
usually depend on carefully handcrafted designs for each specific problem (Ehrgott & Gandibleux,
2000), and the required effort is often nontrivial in real-world applications.

Machine Learning for Combinatorial Optimization. As summarized in Bengio et al. (2020),
there are three main learning-based approaches for combinatorial optimization: learning to config-
ure algorithms (Kruber et al., 2017; Bonami et al., 2018), learning alongside the algorithms (Lodi
& Zarpellon, 2017; Gasse et al., 2019; Chen & Tian, 2019), and learning to directly predict the
solutions (Nowak et al., 2018; Emami & Ranka, 2018; Larsen et al., 2018). Neural combinatorial
optimization (NCO) belongs to the last category where the model directly produces a good solu-
tion for a given problem instance. Vinyals et al. (2015) proposed a pointer network to sequentially
construct a solution for the TSP problem. Bello et al. (2017) made a critical improvement to use re-
inforcement learning to train the model, eliminating the impractical optimal solutions collection for
NP-hard problems. Some other improvements on model structure and training procedure have been
proposed in the past few years (Nazari et al., 2018; Deudon et al., 2018; Kool et al., 2019; Veličković
& Blundell, 2021), especially with graph neural networks (GNNs) (Dai et al., 2017; Li et al., 2018;
Joshi et al., 2019; Dwivedi et al., 2020; Drori et al., 2020). Recent efforts have been made on more

2

Published as a conference paper at ICLR 2022

efficient learning strategies (Kwon et al., 2020; Karalias & Loukas, 2020; Lisicki et al., 2020; Geisler
et al., 2022), learning-based graph search (Cappart et al., 2021b; Kool et al., 2021; Fu et al., 2021;
Xin et al., 2021; Hudson et al., 2022), and iterative improvement methods (Wu et al., 2021; Ma et al.,
2021; Li et al., 2021).

Neural MOCO. Most of the existing learning-based methods are for single-objective combinatorial
problems. Recently, a few attempts have been made to solve MOCO problems (Li et al., 2020; Wu
et al., 2020; Zhang et al., 2021a;b). These methods adopt the MOEA/D framework (Zhang & Li,
2007) to decompose a MOCO problem into a number of single-objective subproblems, and then
build a set of models to solve each subproblem separately. However, since the number of Pareto
solutions would be exponentially large (Ehrgott, 2005), the required number of models would be
huge for finding the whole Pareto set. In this work, we propose a single preference-conditioned
model for solving MOCO problems, with which the decision makers can easily obtain any trade-off
solutions. The proposed single neural MOCO solver could be much easier to use in a real-world
system (Veličković & Blundell, 2021), than those using a large set of different models.

3 PROBLEM FORMULATION

3.1 MULTIOBJECTIVE COMBINATORIAL OPTIMIZATION

A multiobjective combinatorial optimization (MOCO) problem can be defined as follows:

min
x∈X

F (x) = (f1(x), f2(x), . . . , fm(x)), (1)

where X is a discrete search space, and F (x) = (f1(x), . . . , fm(x)) is an m-objective vector. Since
the individual objectives conflict each other, no single solution can optimize all of them at the same
time. Therefore, practitioners are interested in Pareto optimal solutions, defined as follows.

Definition 1 (Pareto Dominance). Let xa, xb ∈ X , xa is said to dominate xb (xa ≺ xb) if and only
if fi(xa) ≤ fi(xb),∀i ∈ {1, ...,m} and fj(xa) < fj(xb),∃j ∈ {1, ...,m}.
Definition 2 (Pareto Optimality). A solution x∗ ∈ X is a Pareto optimal solution if there does not
exist x̂ ∈ X such that x̂ ≺ x∗. The set of all Pareto optimal solutions is called the Pareto set, and
the image of the Pareto set in the objective space is called the Pareto front.

Each Pareto solution represents an optimal trade-off among the objectives, and it is impossible to
further improve one of the objectives without deteriorating any other objectives.

3.2 DECOMPOSITION AND PREFERENCE-BASED SCALARIZATION

Decomposition is a mainstream strategy for solving multiobjective optimization problem (Zhang &
Li, 2007). It decomposes a multiobjective problem into a number of subproblems, each of which can
be a single objective or multiobjective optimization problem. MOEA/D (Zhang & Li, 2007) and its
variants (Trivedi et al., 2016) solve these subproblems in a collaborative manner and generate a finite
set of Pareto solutions to approximate the Pareto front. The most widely used way for constructing a
single objective subproblem is the preference-based scalarization (Ehrgott, 2005; Miettinen, 2012).
For an m-objective optimization problem, a preference vector for the objective functions can be
defined as λ ∈ Rm that satisfies λi ≥ 0 and

∑m
i=1 λi = 1.

Weighted-Sum Aggregation is the simplest approach. It defines the aggregation function to mini-
mize in the subproblem associated with λ as

gws(x|λ) =
m∑
i=1

λifi(x). (2)

However, this approach can only find solutions on the convex hull of the Pareto front (Ehrgott, 2005).

Weighted-Tchebycheff (Weighted-TCH) Aggregation is an alternative approach to minimize:

gtch(x|λ) = max
1≤i≤m

{λi|fi(x)− z∗i |}, (3)

where z∗i < minx∈X fi(x) is an ideal value for fi(x). Any Pareto optimal solution could be an
optimal solution of problem (3) with a specific (but unknown) preference λ (Choo & Atkins, 1983).

3

Published as a conference paper at ICLR 2022

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(a) 105 Preferences

L1

10
15

20
25

L2

10

15

20

25

L3

10

15

20

25

(b) 105 Solutions

L1

10
15

20
25

L2

10
15

20

25

L3

10

15

20

25

(c) 1, 035 Solutions

L1

10
15

20
25

L2

10
15

20

25

L3

10

15

20

25

(d) 10, 011 Solutions

Figure 2: Pareto Set Approximation for a New Problem Instance: Our method with different
numbers of preferences on three objective MOTSP with 50 nodes. a)&b) With a small number of
preferences, our model can generate a sparse approximation to the Pareto set. c)&d) With a large
number of preferences, it can generate a dense approximation. Our method can generate any trade-
off solutions with a single model without searching, whereas other methods need to solve or build a
model for each preference separately. More discussions can be found in Appendix D.3 D.5 D.6 D.7.

3.3 CURRENT DRAWBACKS AND OUR METHOD

Drawbacks of Existing Methods. For many MOCO problems, the size of the Pareto set would
be exponentially large with respect to the input size (e.g., nodes in MOTSP). It is computationally
impractical for existing methods to find the whole Pareto set (Herzel et al., 2021). For this reason, all
of the existing heuristic-based and learning-based methods are to find a small subset of approximate
Pareto solutions. Decision makers can only select solutions from this small set, which often does not
contain their preferred solutions. In addition, scalarization may also produce a complicated single
objective subproblem. For example, the Tchebycheff scalarized subproblem of MOTSP is not a
classic TSP, and thus cannot be solved by the highly specialized TSP solvers such as LKH (Helsgaun,
2000) or Concorde (Applegate et al., 2007).

Our Method. Instead of finding a set of finite solutions, we propose a novel way to approximate
the whole Pareto set using a single model. With our proposed model, decision makers can easily
obtain any solution from the approximate Pareto set to satisfy their preferred trade-offs in real time
as shown in Figure 2. This is a clear advantage to support interactive decision making. In addi-
tion, our proposed reinforcement learning based method can use a scalarization method to combine
multiobjective rewards, and does not need to consider the problem-specific condition. In this paper,
we mainly consider learning the whole Pareto front. It is possible to incorporate decision-maker’s
preferences on specific regions for model building and inference as discussed in Appendix D.6. We
believe our proposed method is a new principled way to solve multiobjective combinatorial opti-
mization problems.

4 THE PROPOSED MODEL: PREFERENCE-CONDITIONED NEURAL MOCO

4.1 PREFERENCE-CONDITIONED SOLUTION CONSTRUCTION

Decomposition and scalarization link preferences to their corresponding Pareto solutions. This work
builds a preference-conditioned model to accommodate all the preferences. We use the MOTSP
as an example to explain our model design. In an MOTSP instance s, a fully connected graph
of n nodes (cities) with m distance metrics on each edge is given. A feasible solution is a tour
that visits each city exactly once and returns to the starting city. The i-th objective to minimize
is the tour length (total cost) based on the i-th distance metric. A tour can be represented as
π = (π1, · · · , πt, · · · , πn), πt ∈ {1, · · · , n}, a permutation of all the nodes defining the order in
which n cities is visited. Our model defines a preference-conditioned stochastic policy pθ(λ)(π|s)
parameterized by θ(λ) to construct a valid solution in sequence:

pθ(λ)(π|s) =
∏n

t=1 pθ(λ)(πt|s,π1:t−1). (4)

The goal is to learn an optimal preference-conditioned policy pθ(λ)(π|s) to construct tours with the
lowest scalarized costs for each preference λ.

4

Published as a conference paper at ICLR 2022

𝜆𝜆

...𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝜓𝜓

𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆|𝜓𝜓)

(a) Instance (b) Encoder (c) Embedding (d) Decoder (e) Solution

A
B

CD

E

A

B

CD

E

A

B

CD

E

A
B

CD

E

Figure 3: Preference-conditioned Neural MOCO Model: a) The input is a problem instance s
(e.g., a graph). b) A shared attention encoder transfers the instance s into a set of embeddings. c) The
embeddings for all nodes would be used by the decoder multiple times with different preferences.
d) A MLP takes the preference λ as input, and generates the parameters for the decoder. e) The
preference-conditioned attention decoder directly generates different approximate Pareto solutions
for different preferences. The trainable parameters are in the attention encoder and MLP model.

4.2 THE PROPOSED MODEL

We propose to use an Attention Model (AM) (Kool et al., 2019) as our basic encoder-decoder model
as shown in Figure 3. For the MOCO problems considered in this work, a preference-agnostic
encoder is capable to transfer problem instances into embeddings (e.g., embedding for all cities)
used in the preference-conditioned decoder. In our model, only the decoder’s parameters θdecoder(λ)
are conditioned on the preference λ:

θ(λ) = [θencoder,θdecoder(λ)]. (5)

Preference-agnostic Encoder. The encoder takes a problem instance s (e.g., an MOTSP instance
with n cities) as its input, and outputs a set of d-dimensional node embeddings {h1, · · · ,hn} for
each city. For a given instance, the same embeddings can be used for different preferences. Hence
we only need a single forward pass for the dense encoder. We use the attention-based encoder as in
Kool et al. (2019) for all preferences.

Preference-based Attention Decoder. The decoder has the same structure as in the attention-based
model (Kool et al., 2019), but with parameters θdecoder(λ) = [WQ(λ),WK(λ),WV (λ),WMHA(λ)]
conditioned on the preference λ. It takes the nodes embeddings for all cities as input, and sequen-
tially selects the next node πt with probability pθ(λ)(πt|s,π1:t−1).

At time step t, the decoder first constructs a context embedding ĥ(C) = [hπ1
,hπt−1

]WQ(λ) from
the first selected node hπ1

, and the last selected node hπt−1
. The matrix WQ(λ) ∈ R2d×d projects

the concatenated 2d-dimensional vector to a d-dimensional vector. Then we further aggregate the
context embedding via a Multi-Head Attention (MHA) (Vaswani et al., 2017) with the embeddings
for all cities {h1, · · · ,hn}:

h(C) = MHA(Q = ĥ(C),K = {h1, · · · ,hn}WK(λ), V = {h1, · · · ,hn}WV (λ))WMHA(λ), (6)

where Q,K, V are the query, key and value for MHA, respectively. WMHA(λ) represents the MHA
parameters. The context embedding h(C) contains all information for the instance and the current
partial tour at step t. We can calculate the logit for selecting each city with its embedding hj :

logitj =

{
C · tanh(h

T
(C)hj√

d
) if j ̸= πt′ ∀t′ < t,

−∞ otherwise.
(7)

All already visited cities are masked with −∞ and will not be selected as the next city. The logits
of the rest cities are clipped into [−C,C] (C = 10) as in the AM model (Kool et al., 2019). The
probability for choosing the j-th city at time step t can be calculated as pθ(λ)(πt = j|s,π1:t−1) =

elogitj/
∑

k e
logitk . With this probability, the decoder can construct a feasible tour.

One remaining designing issue is how to generate the preference-conditioned parameters θdecoder(λ).
Multiplicative interactions (Jayakumar et al., 2020) and hypernetwork (Schmidhuber, 1992; Ha
et al., 2017) provide a powerful and efficient way for conditional computation, which is widely used
for transfer learning (von Oswald et al., 2020; Ehret et al., 2021; Lin et al., 2020; Navon et al., 2021).
We use a simple MLP hypernetwork θdecoder(λ) = MLP(λ|ψ) to generate the decoder parameters
conditioned on the preference. The details of our proposed model can be found in Appendix B.

5

Published as a conference paper at ICLR 2022

Algorithm 1 Neural MOCO Training

1: Input: preference distribution Λ, instances distribution S, number of training steps T , number
of preferences per iteration K, batch size B, number of tours N

2: Initialize the model parameters θ
3: for t = 1 to T do
4: λk ∼ SamplePreference(Λ) ∀k ∈ {1, · · · ,K}
5: si ∼ SampleInstance(S) ∀i ∈ {1, · · · , B}
6: πj

ki ∼ SampleTour(pθ(λk)(·|si)) ∀k, i ∀j ∈ {1, · · · , N}
7: b(si|λk)← 1

N

∑N
j=1 L(π

j
ki|λk, si) ∀k ∈ {1, · · · ,K} ∀i ∈ {1, · · · , B}

8: ∇J (θ)← 1
KBN

∑K
k=1

∑B
i=1

∑N
j=1[(L(π

j
ki|λk, si)− b(si|λk))∇θ(λk) log pθ(λk)(π

j
ki|si)]

9: θ ← ADAM(θ,∇J (θ))
10: end for
11: Output: The model parameter θ

Instance Augmentation for MOCO. Our proposed model only has a small extra computational
and memory overhead to the original single-objective AM solver. We keep our model as simple as
possible, making it easy for our approach to use other models and other improvements developed
for single-objective NCO. These properties are crucially important for generalizing the NCO to
multiobjective problems. In this work, we simply extend the instance augmentation method (Kwon
et al., 2020) to MOCO. The details can be found in Appendix B.1.

5 PREFERENCE-CONDITIONED MULTIOBJECTIVE POLICY OPTIMIZATION

5.1 COST FUNCTION

Our proposed node selection strategy guarantees that the model can always generate feasible solu-
tions. In this section, we develop an efficient multiobjective policy optimization method to train the
model for all the preferences simultaneously. For an MOTSP problem, the objective functions are a
vector of m different costs (i.e. lengths) for a tour L(π) = [L1(π), · · · , Lm(π)]. We can define a
weighted-Tchebycheff scalarized cost for each preference λ:

L(π|λ) = max
1≤i≤m

{λi|Li(π)− (z∗i − ε)|}, (8)

where z∗i is an ideal cost for the i-th objective. For a given instance s, our goal is to minimize the
expected cost for all preferences:

J (θ|s) = Eλ∼Λ,π∼pθ(λ)(·|s)L(π|λ), (9)

where Λ is the uniform distribution over all valid preferences. To train the model, we repeatedly sam-
ple different instances s ∼ S at each iteration. We define the training loss as J (θ) = Es∼SJ (θ|s).

5.2 MULTIOBJECTIVE REINFORCE

For a given instance s and a specific preference λ, we use the REINFORCE (Williams, 1992) to
estimate the gradient for the preference-conditioned scalar cost:

∇J (θ|λ, s) = Eπ∼pθ(λ)(·|s)[(L(π|λ, s)− b(s|λ))∇θ(λ) log pθ(λ)(π|s)], (10)

where b(s|λ) is the baseline of expected cost to reduce the gradient variance. This gradient can
be estimated by Monte Carlo sampling. At each update step, we randomly sample K preference
{λ1, · · · , λK} ∼ Λ, B instances {s1, · · · , sB} ∼ S, and N different tour {π1

i , · · · ,πN
i } ∼

pθ(λk)(·|si) for each λk-si combination. The approximated gradient is:

∇J (θ) ≈ 1

KBN

K∑
k=1

B∑
i=1

N∑
j=1

[(L(πj
i |λk, si)− b(si|λk))∇θ(λk) log pθ(λk)(π

j
i |si)]. (11)

We use the shared baseline bshared(si|λk) = 1
N

∑N
j=1 L(π

j
ki|λk, si) over N sampled tours for each

λk − si combination. The starting node for each tour πj
ki is chosen in random to force diverse

rollouts as proposed in (Kwon et al., 2020). The algorithm is shown in Algorithm 1.

6

Published as a conference paper at ICLR 2022

5.3 ACTIVE ADAPTION

We also propose a simple yet powerful active adaption approach to further adjust the whole model
to approximate the Pareto front for a given test instance in Appendix B.3. The proposed method
does not depend on specific instance distribution S, and is suitable for out-of-distribution adaption.

6 EXPERIMENTS

Problems and Model Setting. We consider MOTSP (Lust & Teghem, 2010a), MOCVRP (La-
comme et al., 2006) and MOKP (Bazgan et al., 2009) in our experimental studies, and use the same
model settings for all problems with different task-specific input sizes and mask methods. The main
policy model encoder is the Attention Model (Kool et al., 2019) and the hypernetwork is an MLP.
We randomly generate 100, 000 problem instances on the fly for each epoch, and train the model
for 200 epochs. The optimizer is ADAM with learning rate η = 10−4 and weight decay 10−6.
We train our models on a single RTX 2080-Ti GPU, and it costs about 10 minutes for an epoch on
MOTSP100. We give detailed model settings, problem formulations, and more experimental results
in Appendix BCD. The source code can be found in https://github.com/Xi-L/PMOCO.

Baseline. We call our proposed preference-conditioned multiobjective combinatorial optimization
as P-MOCO. We compare it with three widely-used evolutionary algorithm frameworks for MOCO:
MOGLS (Jaszkiewicz, 2002) is a multiobjective genetic local search algorithm, NSGAII (Deb
et al., 2002) is a Pareto dominance-based multiobjective genetic algorithm, and MOEA/D (Zhang
& Li, 2007) is a decomposition-based multiobjective evolutionary algorithm. All these algorithm
frameworks need problem-specific heuristics to generate and search feasible solutions for different
problems. We also compare P-MOCO with two other learning-based methods: DRL-MOA (Li
et al., 2020) decomposes a MOCO with different preferences and builds a Pointer Network (Vinyals
et al., 2015; Bello et al., 2017) to solve each subproblem, and AM-MOCO is a multi-models variant
of our proposed model, which builds Attention Model (Kool et al., 2019) for each subproblem. The
Weight-Sum scalarization of MOTSP and MOKP are their respective single-objective counterpart.
Therefore, we also compare our method with the approach that uses some state-of-the-art single-
objective solvers for each weight-sum subproblem.

Table 1: Model Information for the learning-based methods.

Model #Models #Params #Pref.
DRL-MOA Pointer-Network 101 101× 0.2M = 20.2M (7%) Fixed 101
AM-MOCO Attention Model 101 101× 1.3M = 131.3M (1.1%) Fixed 101
P-MOCO (Ours) Pref-Conditioned AM 1 1.4M Flexible

Model Information for the learning-based methods is shown in Table 1. Our model supports flexi-
ble preference assignment and only has 1.1% total parameters to the multi-model counterpart.

Inference and Metrics. We report the results and run time for solving 200 random test instances for
each problem, with normally 101 to 105 different trade-offed solutions, and up to 10, 011 solutions
for our proposed method. In most cases, we report our model’s zero-shot generalization performance
without any search and fine-tune. We use the hypervolume indicator (Zitzler et al., 2003) to measure
the performance for each method. For a set P ⊂ Rm in the objective space, we can find a reference
point r∗ that dominated by all solutions in P , and define the hypervolume HV(P) as volume for:

S = {r ∈ Rm | ∃ y ∈ P such that y ≺ r ≺ r∗}, (12)
where HV(P) = Vol(S). In general, the larger the hypervolume, the better the solution set tends
to be. The ground truth Pareto set always has the largest hypervolume. We report the normalized
hypervolume values in [0, 1] with respect to the same r∗ for all the methods, and also the ratios of
hypervolume difference to our method. A Wilcoxon rank-sum test with a significance level 1% is
conducted to compare the results for each experiment. More details can be found in Appendix D.1.

6.1 RESULTS AND ANALYSIS

MOTSP. The results on two and three objective MOTSP are shown in Table 2 and Table 3 respec-
tively. MOGLS, NSGAII and MOEA/D all use 2-opt local search heuristic (Jaszkiewicz, 2002) to

7

https://github.com/Xi-L/PMOCO

Published as a conference paper at ICLR 2022

Table 2: Experimental results on two-objective MOTSP, MOCVRP and MOKP with different input
sizes (20,50 and 100). HV is the hypervolume metric, Gap is the ratio of hypervolume difference
with respect to our method, and Time is the running run for solving 200 random test instances. The
best result and its statistically indifferent results are highlighted in bold.

MOTSP
MOTSP20 MOTSP50 MOTSP100

Method HV Gap Time HV Gap Time HV Gap Time
Weight-Sum LKH 0.51 2.44% (3.9m) 0.58 -0.26% (42m) 0.68 -0.58% (3.1h)
Weight-Sum OR Tools 0.48 7.29% (3.7m) 0.52 9.66% (38m) 0.63 5.64% (2.8h)
MOGLS-TSP 0.48 7.96% (1.7h) 0.51 10.7% (4.5h) 0.59 14.7% (12h)
NSGAII-TSP 0.47 9.88% (45m) 0.46 19.7% (49m) 0.51 26.5% (53m)
MOEA/D-TSP 0.48 7.82% (3.1h) 0.47 18.9% (3.3h) 0.52 25.0% (3.7h)
DRL-MOA (101 models) 0.46 11.3% (2s) 0.49 15.0% (5s) 0.57 17.0% (15s)
AM-MOCO (101 models) 0.52 0.22% (2s) 0.57 1.72% (7s) 0.67 0.72% (18s)
P-MOCO (101 pref.) 0.52 0.19% (2s) 0.57 1.80% (5s) 0.67 0.60% (16s)
P-MOCO (101 pref., aug) 0.52 0.00% (2.1m) 0.58 0.00% (4.2m) 0.67 0.00% (12m)

MOCVRP
MOCVRP20 MOCVRP50 MOCVRP100

Method HV Gap Time HV Gap Time HV Gap Time
MOGLS-MOCVRP 0.33 6.66% (2.9h) 0.39 10.5% (4.1h) 0.38 13.0% (5h)
NSGAII-MOCVRP 0.31 12.3% (39m) 0.36 18.0% (39m) 0.35 20.8% (41m)
MOEAD-MOCVRP 0.29 17.9% (1.7h) 0.33 24.8% (1.8h) 0.34 22.3% (2h)
DRL-MOA (101 models) 0.32 9.19% (6s) 0.37 16.0% (15s) 0.37 16.0% (33s)
AM-MOCO (101 models) 0.35 0.71% (8s) 0.43 2.84% (21s) 0.43 3.04% (39s)
P-MOCO (101 pref.) 0.35 0.58% (8s) 0.44 0.65% (18s) 0.44 0.51% (36s)
P-MOCO (101 pref., aug) 0.35 0.00% (1m) 0.44 0.00% (2.1m) 0.45 0.00% (4.5m)

MOKP
MOKP50 MOKP100 MOKP200

Method HV Gap Time HV Gap Time HV Gap Time
Weight-Sum DP 0.70 2.11% (16m) 0.83 2.74% (1.5h) 0.66 2.86% (4.2h)
Weight-Sum Greedy 0.62 14.0% (2s) 0.77 10.1% (4s) 0.63 7.49% (7s)
MOGLS-KP 0.58 19.1% (1.8h) 0.72 15.6% (3.9h) 0.62 9.49% (9.8h)
NSGAII-KP 0.56 22.0% (34m) 0.69 19.8% (33m) 0.58 14.7% (34m)
MOEAD-KP 0.59 18.2% (1.5h) 0.76 11.1% (1.4h) 0.65 5.38% (1.6h)
DRL-MOA (101 models) 0.63 12.9% (5s) 0.78 9.32% (17s) 0.65 4.39% (35s)
AM-MOCO (101 models) 0.72 0.21% (7s) 0.86 0.41% (16s) 0.68 0.32% (42s)
P-MOCO (101 pref.) 0.72 0.00% (7s) 0.86 0.00% (15s) 0.68 0.00% (40s)

search for promising solutions. We also include two weight-sum scalarization baselines with the
state-of-the-art LKH solver (Helsgaun, 2000; Tinós et al., 2018) and Google OR tools (Perron &
Furnon, 2019). For the bi-objective problems, our proposed method with a single model has similar
performances compared with AM-MOCO on all problems. It achieves the best performance with
instance augmentation, which significantly outperforms other methods but is beaten by the LKH
solver. For the three objective problems, our method can further improve its performance by gen-
erating much more trade-off solutions within a reasonable amount of time, which other methods
cannot do. As shown in Figure 2 and Figure 5, our method can successfully learn the mapping from
preferences to the corresponding solutions, and can generate a good prediction to the whole Pareto
front. Decision makers can easily obtain any preferred trade-off solutions as they like. This flexibil-
ity could be desirable in many real-world applications. More discussion on the connection between
the preference and Pareto solution for three-objective TSP can be found in Appendix D.5 D.6 D.7.

MOCVRP. In this problem, each node has a demand, and we need to construct multiple return
routes for a vehicle with a fixed capacity from the same depot to handle all demands. The ob-
jectives we consider are to minimize the tour length for all routes and also the tour length for the
longest routes (the makespan in scheduling) (Lacomme et al., 2006). All the non-learning algorithm
frameworks use the problem-specific constructive heuristics and local search method proposed in
Lacomme et al. (2006) to search feasible non-dominated solutions. The results in Table 2 show that
our method significantly outperforms the non-learning heuristics in terms of both solution quality

8

Published as a conference paper at ICLR 2022

Table 3: Experimental results on three-objective MOTSP with different input sizes (20, 50 and 100).
The best result and its statistically indifferent results are highlighted in bold.

MOTSP20 MOTSP50 MOTSP100
Method HV Gap Time HV Gap Time HV Gap Time
Weight-Sum LKH 0.32 5.83% (4.5m) 0.36 5.48% (44m) 0.45 4.03% (3.5h)
Weight-Sum OR Tools 0.31 8.48% (4.1m) 0.31 15.5% (39m) 0.41 11.2% (3.1h)
MOGLS-MOTSP 0.27 19.6% (2h) 0.27 27.4% (5h) 0.33 30.5% (13h)
NSGAII-MOTSP 0.20 39.9% (47m) 0.18 49.3% (56m) 0.25 48.4% (1h)
MOEA/D-MOTSP 0.21 36.6% (3.3h) 0.20 46.7% (3.7h) 0.27 42.7% (4.1h)
DRL-MOA (105 models) 0.26 21.6% (2s) 0.28 23.0% (5s) 0.34 28.8% (19s)
AM-MOCO (105 models) 0.32 5.52% (2s) 0.33 6.02% (7s) 0.42 6.53% (21s)
P-MOCO (105 pref.) 0.32 5.65% (2s) 0.36 5.76% (6s) 0.44 5.52% (19s)
P-MOCO (105 pref., aug) 0.32 5.46% (2.1m) 0.36 5.43% (6.5m) 0.45 4.39% (20m)
P-MOCO (1,035 pref.) 0.33 2.08% (19s) 0.36 4.03% (48s) 0.46 2.12% (2.9m)
P-MOCO (10,011 pref.) 0.34 0.00% (3m) 0.38 0.00% (9m) 0.47 0.00% (33m)

and running time. It also outperforms AM-MOCO with 100 individual models, which could be due
to the asymmetric objective scales. We provide further analysis in Appendix D.4.

MOKP. The multiobjective 0-1 knapsack problem can be found in many real-world applica-
tions (Bazgan et al., 2009). We consider the uni-dimension problem, where each item has multi-
ple values and one weight. The goal is to select a subset of items to maximize all obtained values
with a weight constraint. The non-learning methods use binary coding with a greedy transformation
heuristic to maintain feasibility (Ishibuchi et al., 2014). We also include weight-sum scalarization
baselines with dynamic programming (DP) and a strong greedy search based on the value-weight
ratio. According to the results in Table 2, our method has the best performance on all problems. The
DP method is also outperformed by our method since the weight-sum scalarization can only find
the convex hull of the Pareto front. The Tchebycheff scalarization of MOKP is not a KP problem,
while our method is more flexible to use Tchebycheff scalarization on the reward function. We also
report the results on 10 objective MOKP100 and the generalization performance to problem with
500 items in Appendix D.8.

Out-of-Distribution Problems and Active Adaption. We also validate the generalization perfor-
mance of our method on 6 out-of-distribution (OOD) MOTSP problems from Fonseca et al. (2006).
Their ground truth Pareto fronts can be obtained by exhaustive search. The results are shown in Ap-
pendix D.2 due to the page limit. With active adaption, our method can achieve good performance
(1% - 1.5% HV gap to the ground truth Pareto fronts) on these OOD problems.

7 CONCLUSION AND FUTURE WORK

Conclusion. We have proposed a novel preference-conditioned method to approximate the whole
Pareto front for MOCO problems using a single model. It allows decision makers to directly ob-
tain any trade-off solutions without any search procedure. Experiments on different problems have
shown that our proposed method significantly outperforms other methods in terms of performance,
speed and model efficiency. We believe the proposed method is a principled way for solving MOCO.

Future Work. In a sense, our method can be regarded as a learning version of the decomposition-
based algorithm (MOEA/D (Zhang & Li, 2007)) dealing with all the possible trade-off preferences.
Instead of maintaining a set of finite solutions as in other MOEA/D vaiants (Trivedi et al., 2016), we
build a single learning-based model to solve the subproblems for all the preferences simultaneously
in a collaborative manner. We believe the single-model-for-all-preference approach is a promising
alternative to the current default finite-population-based methods, and it could be an important re-
search direction for multiobjective optimization. Our method can be further improved with other
advanced models and efficient multiobjective training procedures. In the future, we will study fun-
damental issues of multiobjective optimization (e.g., convergence v.s. diversity, exploitation v.s.
exploration trade-off) for Pareto set learning methods.

Limitation. It is very difficult to give a convergence guarantee for learning-based MOCO, where
each preference-based subproblem could be already NP-hard, and the number of Pareto solutions is
exponentially large with respect to the input size. See detailed discussion in Appendix A.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

We thank Prof. Hisao Ishibuchi for his valuable comments on an earlier version of this work. This
work was supported by the Hong Kong General Research Fund (11208121, CityU-9043148).

REFERENCES

David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The traveling salesman
problem: A computational study, 2007.

Cristina Bazgan, Hadrien Hugot, and Daniel Vanderpooten. Solving efficiently the 0-1 multi-
objective knapsack problem. Computers & Operations Research, 36(1):260–279, 2009.

Cristina Bazgan, Florian Jamain, and Daniel Vanderpooten. Discrete representation of the non-
dominated set for multi-objective optimization problems using kernels. European Journal of
Operational Research, 260(3):814–827, 2017.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In International Conference on Learning Representa-
tions (ICLR) Workshops, 2017.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. European Journal of Operational Research, 2020.

Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. Learning a classification of mixed-integer
quadratic programming problems. In International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research (CPAIOR), 2018.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. In Inter-
national Joint Conferences on Artificial Intelligence (IJCAI), 2021a.

Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and Andre A
Cire. Combining reinforcement learning and constraint programming for combinatorial optimiza-
tion. In AAAI Conference on Artificial Intelligence (AAAI), 2021b.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Eng Ung Choo and DR Atkins. Proper efficiency in nonconvex multicriteria programming. Mathe-
matics of Operations Research, 8(3):467–470, 1983.

Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Indraneel Das and John E Dennis. Normal-boundary intersection: A new method for generating the
pareto surface in nonlinear multicriteria optimization problems. SIAM journal on optimization, 8
(3):631–657, 1998.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):
182–197, 2002.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. In International Conference
on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research
(CPAIOR), 2018.

Iddo Drori, Anant Kharkar, William R Sickinger, Brandon Kates, Qiang Ma, Suwen Ge, Eden Dolev,
Brenda Dietrich, David P Williamson, and Madeleine Udell. Learning to solve combinatorial
optimization problems on real-world graphs in linear time. In IEEE International Conference on
Machine Learning and Applications (ICMLA), 2020.

10

Published as a conference paper at ICLR 2022

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Benjamin Ehret, Christian Henning, Maria R. Cervera, Alexander Meulemans, Johannes von Os-
wald, and Benjamin F. Grewe. Continual learning in recurrent neural networks. In International
Conference on Learning Representations (ICLR), 2021.

Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business Media,
2005.

Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliography of multiobjective
combinatorial optimization. OR-Spektrum, 22(4):425–460, 2000.

Matthias Ehrgott and Xavier Gandibleux. Multiobjective combinatorial optimization—theory,
methodology, and applications, pp. 369–444. Springer, 2003.

Matthias Ehrgott and Xavier Gandibleux. Hybrid metaheuristics for multi-objective combinatorial
optimization. In Hybrid metaheuristics, pp. 221–259. Springer, 2008.

Patrick Emami and Sanjay Ranka. Learning permutations with sinkhorn policy gradient. arXiv
preprint arXiv:1805.07010, 2018.

Kostas Florios and George Mavrotas. Generation of the exact pareto set in multi-objective traveling
salesman and set covering problems. Applied Mathematics and Computation, 237:1–19, 2014.

Carlos M Fonseca, Luı́s Paquete, and Manuel López-Ibánez. An improved dimension-sweep algo-
rithm for the hypervolume indicator. In IEEE Congress on Evolutionary Computation (CEC),
2006.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In AAAI Conference on Artificial Intelligence (AAAI), 2021.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann.
Generalization of neural combinatorial solvers through the lens of adversarial robustness. In
International Conference on Learning Representations (ICLR), 2022.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on
Learning Representations (ICLR), 2017.

Pierre Hansen. Bicriterion path problems. In Multiple criteria decision making theory and applica-
tion, 1980.

Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic.
European Journal of Operational Research, 126(1):106–130, 2000.

Arne Herzel, Stefan Ruzika, and Clemens Thielen. Approximation methods for multiobjective op-
timization problems: A survey. INFORMS Journal on Computing, 2021.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. In International Conference on Learn-
ing Representations (ICLR), 2022.

Hisao Ishibuchi, Naoya Akedo, and Yusuke Nojima. Behavior of multiobjective evolutionary algo-
rithms on many-objective knapsack problems. IEEE Transactions on Evolutionary Computation,
19(2):264–283, 2014.

Hisao Ishibuchi, Yu Setoguchi, Hiroyuki Masuda, and Yusuke Nojima. Performance of
decomposition-based many-objective algorithms strongly depends on pareto front shapes. IEEE
Transactions on Evolutionary Computation, 21(2):169–190, 2016.

11

Published as a conference paper at ICLR 2022

Hisao Ishibuchi, Linjun He, and Ke Shang. Regular pareto front shape is not realistic. In 2019 IEEE
Congress on Evolutionary Computation (CEC), pp. 2034–2041. IEEE, 2019.

Andrzej Jaszkiewicz. Genetic local search for multi-objective combinatorial optimization. European
Journal of Operational Research, 137(1):50–71, 2002.

Siddhant M. Jayakumar, Jacob Menick, Wojciech M. Czarnecki, Jonathan Schwarz, Jack Rae, Si-
mon Osindero, Yee Whye Teh, Tim Harley, and Razvan Pascanu. Multiplicative interactions and
where to find them. In International Conference on Learning Representations (ICLR), 2020.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. Multi-objective vehicle routing prob-
lems. European Journal of Operational Research, 189(2):293–309, 2008.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework
for combinatorial optimization on graphs. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Vladlen Koltun and Christos H Papadimitriou. Approximately dominating representatives. In Inter-
national Conference on Database Theory, pp. 204–214. Springer, 2005.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations (ICLR), 2019.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. arXiv preprint arXiv:2102.11756, 2021.

Markus Kruber, Marco E Lübbecke, and Axel Parmentier. Learning when to use a decomposition.
In International Conference on the Integration of Constraint Programming, Artificial Intelligence,
and Operations Research (CPAIOR), 2017.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Philippe Lacomme, Christian Prins, and Marc Sevaux. A genetic algorithm for a bi-objective capac-
itated arc routing problem. Computers & Operations Research, 33(12):3473–3493, 2006.

Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien, and
Andrea Lodi. Predicting tactical solutions to operational planning problems under imperfect in-
formation. arXiv preprint arXiv:1807.11876, 2018.

Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective optimization.
IEEE Transactions on Cybernetics, 2020.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolu-
tional networks and guided tree search. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam Kwong. Controllable pareto multi-task learning.
arXiv preprint arXiv:2010.06313, 2020.

Michal Lisicki, Arash Afkanpour, and Graham W Taylor. Evaluating curriculum learning strategies
in neural combinatorial optimization. arXiv preprint arXiv:2011.06188, 2020.

Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey. TOP, 25(2):207–236,
2017.

12

Published as a conference paper at ICLR 2022

Thibaut Lust and Jacques Teghem. The multiobjective traveling salesman problem: A survey
and a new approach. In Advances in Multi-Objective Nature Inspired Computing, pp. 119–141.
Springer, 2010a.

Thibaut Lust and Jacques Teghem. Two-phase pareto local search for the biobjective traveling
salesman problem. Journal of Heuristics, 16(3):475–510, 2010b.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Comput. Oper. Res., 2021.

Kaisa Miettinen. Nonlinear multiobjective optimization. Springer Science & Business Media, 2012.

Aviv Navon, Aviv Shamsian, Ethan Fetaya, and Gal Chechik. Learning the pareto front with hyper-
networks. In International Conference on Learning Representations (ICLR), 2021.

Mohammadreza Nazari, Afshin Oroojlooy, Martin Takáč, and Lawrence V Snyder. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. Revised note on learning algo-
rithms for quadratic assignment with graph neural networks. In IEEE Data Science Workshop
(DSW), 2018.

Christos H Papadimitriou and Mihalis Yannakakis. On the approximability of trade-offs and optimal
access of web sources. In IEEE Symposium on Foundations of Computer Science (FOCS), 2000.

Laurent Perron and Vincent Furnon. Or-tools, 2019. URL https://developers.google.
com/optimization/.

Hiroyuki Sato. Inverted pbi in moea/d and its impact on the search performance on multi and
many-objective optimization. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation, pp. 645–652, 2014.

Yoshikazu Sawaragi, HIROTAKA NAKAYAMA, and TETSUZO TANINO. Theory of multiobjec-
tive optimization. Elsevier, 1985.

Jürgen Schmidhuber. Learning to control fast-weight memories: an alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

Renato Tinós, Keld Helsgaun, and Darrell Whitley. Efficient recombination in the lin-kernighan-
helsgaun traveling salesman heuristic. In International Conference on Parallel Problem Solving
from Nature (PPSN), 2018.

Anupam Trivedi, Dipti Srinivasan, Krishnendu Sanyal, and Abhiroop Ghosh. A survey of multi-
objective evolutionary algorithms based on decomposition. IEEE Transactions on Evolutionary
Computation, 21(3):440–462, 2016.

Sergei Vassilvitskii and Mihalis Yannakakis. Efficiently computing succinct trade-off curves. The-
oretical Computer Science, 348(2-3):334–356, 2005.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, 2021.

13

https://developers.google.com/optimization/
https://developers.google.com/optimization/

Published as a conference paper at ICLR 2022

Natalia Vesselinova, Rebecca Steinert, Daniel F Perez-Ramirez, and Magnus Boman. Learning
combinatorial optimization on graphs: A survey with applications to networking. IEEE Access,
8:120388–120416, 2020.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems (NeurIPS), 2015.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F. Grewe. Continual
learning with hypernetworks. In International Conference on Learning Representations (ICLR),
2020.

Jyrki Wallenius, James S Dyer, Peter C Fishburn, Ralph E Steuer, Stanley Zionts, and Kalyanmoy
Deb. Multiple criteria decision making, multiattribute utility theory: Recent accomplishments
and what lies ahead. Management Science, 54(7):1336–1349, 2008.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Hong Wu, Jiahai Wang, and Zizhen Zhang. Modrl/d-am: Multiobjective deep reinforcement learn-
ing algorithm using decomposition and attention model for multiobjective optimization. In Inter-
national Symposium on Intelligence Computation and Applications (ISICA), 2020.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE Transactions on Neural Networks and Learning Systems,
2021.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. NeuroLKH: Combining deep learning model
with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on decompo-
sition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

Richard Zhang and Daniel Golovin. Random hypervolume scalarizations for provable multi-
objective black box optimization. In International Conference on Machine Learning (ICML),
2020.

Yongxin Zhang, Jiahai Wang, Zizhen Zhang, and Yalan Zhou. Modrl/d-el: Multiobjective deep re-
inforcement learning with evolutionary learning for multiobjective optimization. In International
Joint Conference on Neural Networks (IJCNN), 2021a.

Zizhen Zhang, Zhiyuan Wu, and Jiahai Wang. Meta-learning-based deep reinforcement learning for
multiobjective optimization problems. arXiv preprint arXiv:2105.02741, 2021b.

Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca, and Viviane Grunert Da Fon-
seca. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans-
actions on Evolutionary Computation, 7(2):117–132, 2003.

Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. The hypervolume indicator revisited: On the
design of pareto-compliant indicators via weighted integration. In International Conference on
Evolutionary Multi-Criterion Optimization (EMO), 2007.

14

Published as a conference paper at ICLR 2022

We provide more discussion, details on the method and MOCO problems, experimental results and
analysis in this appendix. Specifically:

• Learning Ability and Approximation Analysis: We discuss the learning ability of our
proposed method, and give a thorough analysis on its approximation ability in Section A.

• Method and Problem Details: We provide the details on our proposed model and the
MOCO problems in Section B and Section C, respectively.

• More Experimental Results: We give a detailed introduction to the hypervolume indica-
tor, and present more experimental results with analysis in Section D.

A PARETO SET LEARNING AND APPROXIMATION ANALYSIS

A.1 PARETO SET LEARNING AND CONVERGENCE GUARANTEE

In this work, we have proposed a novel neural combinatorial optimization (NCO) method to approx-
imate the whole Pareto set for MOCO problems with a single model. The proposed learning-based
MOCO solver can directly generate arbitrary trade-off solutions without extra optimization. We
believe it is a principled way to solve MOCO problems.

However, the lack of an exact optimality guarantee is a limitation of the proposed method, which is
also the case for previous work on single-objective neural combinatorial optimization (Vinyals et al.,
2015; Bello et al., 2017; Kool et al., 2019). This limitation is mainly due to the fact that many single-
objective combinatorial optimization (CO) problems are NP-hard, and the size of Pareto sets for a
MOCO problem would be exponentially huge, which makes it very difficult to exactly solving the
problems (Ehrgott, 2005; Herzel et al., 2021). In addition, the training for the parameterized policy
(neural network model) cannot guarantee to fit all training problems perfectly. The generalization
ability to problem instances with different patterns (out-of-distribution generalization) is another
critical issue that makes it difficult to give an exact optimality guarantee to the proposed learning-
based algorithm.

On the other hand, our proposed model is an efficient mapping from the preferences to the corre-
sponding approximate set of the Pareto optimal solutions. It provides a flexible way for decision
makers to obtain an approximate solution with their preferred trade-off directly. The experimental
results also show that our proposed method can generate good approximate Pareto sets for three
different MOCO problems. In the next subsection, we provide a thorough discussion on the approx-
imation ability of our proposed method.

A.2 APPROXIMATION ANALYSIS

For a MOCO problem, the number of Pareto solutions could be exponentially large with respect
to its input size, which makes the problem intractable (Ehrgott, 2005; Herzel et al., 2021). The
preference-based scalarization methods and decomposition methods (Choo & Atkins, 1983; Zhang
& Li, 2007) we used provides a principled way to link the Pareto solutions with preference, allowing
us to tackle the problem in a systematic manner. In this work, we propose to approximately solve
the scalarized subproblem with all preferences via a single model.

We first briefly review the weighted scalarization method and its Pareto optimality guarantee as
discussed in the main paper. Then we provide further discussion on the approximation analysis.

Our proposed method decomposes a MOCO problem into preference-based subproblems with the
weighted-Tchebycheff scalarization (Weighted-TCH):

min
x∈X

gtch(x|λ) = min
x∈X

max
1≤i≤m

{λi|fi(x)− (z∗i − ε)|}, (13)

where z∗i is the ideal value for objective fi(x) (e.g., the lower bound), and u∗i = z∗i − ε is a
utopia value with small positive component ε. The preference vector λ ∈ Rm satisfies λi ≥ 0
and

∑m
i=1 λi = 1, where λi is the preference for the i-th objective. This approach has a desirable

property:

Lemma 1 (Choo & Atkins (1983)). A feasible solution x ∈ X is Pareto optimal if and only if there
is a weight vector λ > 0 such that x is an optimal solution to the problem (13).

15

Published as a conference paper at ICLR 2022

According to Lemma 1, we can obtain any Pareto solution by solving the Weighted-TCH subprob-
lem with a specific weight. However, the weight for each Pareto solution depends on its objective
values, which are not known in advance (Sawaragi et al., 1985; Ehrgott, 2005). The decision-maker
still needs to solve multiple subproblems with different preferences to find a desirable solution. To
find the whole Pareto set, it needs to solve an exponentially huge number of subproblems.

Given a problem instance s, our proposed model provides a single mapping function xλ = h(λ)
from any preference λ to its corresponding solution xλ, which is constructed by the preference-
based policy pθ(λ)(x|s). In the ideal case, if all generated solutions xλ are the optimal solutions x∗λ
of problem (13) with preference λ, according to Lemma 1, our proposed model can generate the
whole Pareto set (all Pareto optimal solutions) for the original MOCO problem.

In practice, we are interested in the proposed method’s approximation ability. We find that its per-
formance strongly depends on the approximation ability of the parameterized policy (neural net-
work model) on the single-objective scalarized subproblem. We first give an informal claim on our
method’s approximation ability, then provide detailed explanations and discussions.

(Informal) Claim 1. If the proposed method can approximately solve the subproblem (13) with any
preference λ, it can generate a good approximation to the whole Pareto set for the MOCO problem.

To support this claim, we follow the traditional ε-Pareto approximate method for MOCO prob-
lems (Papadimitriou & Yannakakis, 2000; Herzel et al., 2021). First, an ε-Pareto domination relation
between two individual solutions can be defined as:

Definition 3 (ε-Pareto Domination). For a MOCO problem and an ε > 0, let xa, xb ∈ X , xa is
said to ε-dominate xb (xa ≺ε xb) if fi(xa) ≤ (1 + ε)fi(xb),∀i ∈ {1, · · · ,m}.
This definition is a natural generalization from the (1 + ε)-approximation for single-objective opti-
mization. With this concept, an ε-approximate Pareto set (Papadimitriou & Yannakakis, 2000) can
be defined as:

Definition 4 (ε-Approximate Pareto Set). For an ε > 0, a set Pε ⊂ X is an ε-approximate Pareto
set, if for any feasible solution x ∈ X , there exists a solution x′ ∈ Pε such that x′ ≺ε x.

In other words, all feasible solutions of the MOCO problem can be almost dominated by some
solutions in Pε (Papadimitriou & Yannakakis, 2000). When the Pareto set is intractable and hard to
find, the ε-approximate Pareto set would be a reasonable choice to achieve in practice. Each MOCO
problem has a unique Pareto set, but can have different ε-approximate Pareto sets. The ability of our
proposed method to find an ε-approximate Pareto set strongly depends on its performance on each
single-objective preference-based subproblem.

Theorem 1. Let x∗λ denotes the optimal solution of the problem (13) with preference λ, if the
proposed method can generate an approximate solution xλ ≺ε x

∗
λ for any preference λ, it is able to

generate an ε-approximate Pareto set Pε to the MOCO problem.

Proof. Let P be the Pareto set for a MOCO problem, for any xPareto ∈ P , according to Lemma 1,
there is a weight vector λ > 0 such that x = x∗λ is the optimal solution for subproblem (13) with
a specific preference λ. Therefore, our proposed method can generate an approximated solution
xλ ≺ε x

∗
λ = xPareto. By generating approximate solutions for all xPareto ∈ P , our proposed method

is able to generate an ε-approximate Pareto set Pε to the MOCO problem.

A.3 LIMITATION

Strong Assumption on (Approximately) Solving all Subproblems: The approximation guaran-
tee in Theorem 1 heavily depends on the ability to (approximately) solve each weighted subprob-
lem. Due to the NP-harness, it is indeed non-trivial to give a convergence guarantee to generate
ε-dominate solutions for any preference with a small enough ε. This limitation also applies for other
end-to-end learning-based (e.g, neural combinatorial optimization) and heuristic-based methods.

We are aware that some efforts have been made to combine the learning-based method with dynamic
programming to achieve asymptotically optimal solution solution for specific single-objective prob-
lem in recent works (Cappart et al., 2021b; Kool et al., 2021). These methods provide a controllable
trade-off between the solution quality and the computational cost for solving NP-hard problems.

16

Published as a conference paper at ICLR 2022

However, their generalization to the multi-objective problem is not straightforward, since the scalar-
ized subproblem for each preference is not necessary the same as its single-objective counterpart.
For example, a Tchebycheff scalarized MOTSP is not a single-objective TSP as discussed at the end
of Section 3.2. In addition, according to Bengio et al. (2020), these methods belong to the class
of learning alongside the algorithms, while our proposed approach is learning to directly produce
the solutions (neural combinatorial optimization). Therefore, the idea for learning enhanced multi-
objective combinatorial algorithm could be an important research topic in future, but out of the scope
for the current work.

Dense Approximation for the Whole Pareto Set: Another concern would be the required number
of solutions in the ε-approximate Pareto set Pε. If the required number is exponential to the input
size, the approximation itself is also intractable. In their seminal work, Papadimitriou & Yannakakis
(2000) establish a promising result:

Theorem 2 (Papadimitriou & Yannakakis (2000)). For any multiobjective optimization problem
and any ε, there is an ε-approximate Pareto set Pε of which the size is polynomial in the number of
solutions and 1

ε (but exponential in the number of objectives).

However, the existence of such a set still does not mean that it can be easily found (Papadimitriou
& Yannakakis, 2000; Herzel et al., 2021). The computability (whether Pε can be constructed in
polynomial time) would be hard to justify for a real-world problem. For a new unseen problem in-
stance in practice, our proposed method might still need to generate an exponentially large number
of solutions to construct an ε-approximate Pareto set Pε. It is also unclear how to properly select a
set of preferences in advance. Many research efforts have been made on developing approximation
methods for solving MOCO problems in the past decades (Herzel et al., 2021; Hansen, 1980; Pa-
padimitriou & Yannakakis, 2000; Vassilvitskii & Yannakakis, 2005; Koltun & Papadimitriou, 2005;
Bazgan et al., 2017). In future work, it is important to better leverage the current advanced ap-
proximation strategies to design more efficient preference-based methods. In the learning-based
optimization scenario we consider, it is also possible to learn the suitable approximation method
and/or preference distribution directly from the data (problem instances).

17

Published as a conference paper at ICLR 2022

B DETAILS ON THE PROPOSED MODEL

B.1 MODEL SETTING

Table 4: Model Information.

#Models #Total Params #Encoder Params #Decoder Params #Preference

Attention Model 1 1.3M 1.2M 0.1M Fixed 1
P-MOCO (Ours) 1 1.4M 1.2M 0.2M Flexible

We use the same model for all MOCO problems while tuning the input size and mask method for
each problem. Table 4 shows the number of parameters of a standard single-objective attention
model (Kool et al., 2019) and our proposed preference-based multiobjective attention model. Our
model supports flexible preference assignment at the inference time with a small overhead, while
the other neural MOCO methods all require training multiple AM models for different preferences.
We build the single-preference attention models as well as our model following the implementation
in Kwon et al. (2020).

Attention Encoder. The encoder we use is the standard attention encoder as in Kool et al. (2019),
and it is shared by all preferences. The encoder has 6 attention layers, and 128-dimensional node
embedding for the input nodes. Each attention layer has a multi-head attention (MHA) with eight
16-dimensional heads, and a fully connected layer (FC) with one 512-dimension hidden sublayer.
The encoder also includes skip-connection and batch normalization for each attention layer. We
use the same model for all MOCO problems (MOTSP, MOCVRP, MOKP) but with different input
dimensions for each problem, which will be introduced in the next section.

Preference-Conditioned Decoder. The decoder’s main model structure is the same as the AM
decoder (Kool et al., 2019). It has one multi-head attention layer with eight 16-dimensional heads
similar to the encoder, but without skip-connection and batch normalization. The decoder uses a
single 128-dimensional attention head to calculate the probabilities of selecting different nodes at
each step. Different problems have different masking methods for probability calculation.

We use a simple MLP model to generate the preference-conditioned parameters for the decoder. For
all MOCO problems, the MLP model has two 128-dimensional hidden layers with ReLu activation.
The input is an m-dimensional preference vector λ which satisfies λi ≥ 0 and

∑m
i=1 λi = 1, where

m is the number of objectives and λi is the preference for the i-th objective. We adopt the parameter
compression approach in Ha et al. (2017) to control the model size. The MLP model first generates a
hidden embedding e(λ) = MLP(λ|ψ), then maps the hidden embedding to the decoder parameters
via linear projection θdecoder = We(λ) + b. The learnable parameters are ψ for the MLP model
MLP(λ|ψ) and the parameter matrices W and b for the decoder.

Training Procedure. For all problems, we train our proposed model for 200 epochs, with 100, 000
problem instances randomly generated on the fly at each epoch. At each iteration step, we need to
sample K preferences, B problem instances, and N tours to calculate the policy gradient. We set
K×B = 64 to make the batch of 64 instances for training a single AM model, and letN equal to the
problem size (e.g., the number of nodes) as in Kwon et al. (2020). We find the model performance
is equally good for setting K = 1, 2 and 4, and keep using K = 1 for all problems. In other words,
we randomly generate a preference λ that satisfies λi ≥ 0 and

∑m
i=1 λi = 1 at each training step.

For the AM-MOCO baseline, we adapt the transfer training approach in Li et al. (2020) to train
multiple AM models for different preferences. We first train a single AM model with a single
preference on one objective from scratch with 200 epochs, then transfer its parameter to the model
for neighbor subproblem with similar preference, and fine-tune the new model with 5 epochs. With
sequentially transfer and fine-tune, we can obtain a set of trained models for different preferences.
In most experiments, we set the number of preferences as 101. Therefore, we need to build 101 AM
models with total 700 training epochs.

Instance Augmentation for MOCO. Due to the design choice of minimal essential change (e.g.,
the preference-conditioned decoder), our method can also enjoy the current improvements that were
originally proposed for the single objective NCO. Here, we generalize the instance augmentation
method proposed in Kwon et al. (2020) to the MOCO version.

18

Published as a conference paper at ICLR 2022

The key idea of instance augmentation for NCO is to find multiple efficient transformations for the
original problem such that they share the same optimal solution. Then, we can use an NCO method
to solve all problems and select the best solution among all obtained (potentially different) solu-
tions. In this way, we have a more robust result similar to the test-time augmentation for computer
vision (Szegedy et al., 2016). For the single-objective euclidean TSP and CVRP, there is a set of
straightforward transformations, which simply flips or rotates the coordinate for all the 2D locations
in a problem instance (Kwon et al., 2020). For a location (x, y), there is eight different transforma-
tion, namely, {(x, y), (y, x), (x, 1−y), (y, 1−x), (1−x, y), (1−y, x), (1−x, 1−y), (1−y, 1−x)}.
For an m-objective euclidean MOTSP problem, the concrete location representations are indepen-
dent for each objective. Therefore, we can independently apply different transformations for each
objective. Consider the above eight different transformations for each objective, we can have 8m

different problem transformations for an MOTSP instance. We have fixed 8 transformations for
MOCVRP since it only has one 2D coordinate, and no transformation for MOKP. The details for
each problem can be found in the next section.

B.2 TRAINING EFFICIENCY

We use the same amount of samples to train our proposed preference-based model as the other
single-objective solvers need (Kool et al., 2019; Kwon et al., 2020). Indeed, our proposed model
requires significantly fewer samples and training epochs, compared to the other MOCO methods
that need to build multiple models for different preferences.

Table 5: The Performance on a Single Preference.

Concorde LKH OR Tools AM
(Single Obj.)

P-MOCO
(Single Pref.)

P-MOCO
(all pref.)

TSP20 3.83 (5m) 3.83 (42s) 3.86 (1m) 3.83 (4s) 3.83 (4s) 3.83 (4s)
TSP50 5.69 (13m) 5.69 (6m) 5.85 (5m) 5.71 (15s) 5.71 (15s) 5.71 (15s)
TSP100 7.76 (1h) 7.76 (25m) 8.06 (23m) 7.82 (1m) 7.82 (1m) 7.82 (1m)

We compare our model’s performance on one of the objective (e.g., with preference (1, 0)) with the
other SOTA single-objective solver and learning-based solver, the results are shown in Table 5. The
results of Concorde/LKH/OR Tools are from Kwon et al. (2020), and we run the learning-based
solver by ourselves. We report the average performance over 10, 000 test instances. AM is the
single-objective solver (one model in AM-MOCO), P-MOCO (single preference) is our proposed
model but only training on a single fixed preference (1, 0), and P-MOCO (all preferences) is our
proposed model with the reported result on the preference (1, 0). With the same amount of training
samples, our model has similar single-objective performance with learning-based single-objective
solver, while it can additionally approximate the whole Pareto front. The learning-based solver’s
performance can be further improved by sampling or active search.

These results indicate that we can use a single encoder to efficiently learn a shared representation
for all trade-offs among different objectives, and there is a positive knowledge transfer among pref-
erences during the learning procedure. In addition, it also confirms the assumption that similar
preferences should have similar corresponding (approximate) Pareto solutions for the multiobjec-
tive problems we consider in this paper. These findings could be useful to design more powerful
learning-based models for MOCO in the future.

B.3 ACTIVE ADAPTION

After end-to-end training, our proposed method can directly generate different trade-off solutions
to a given problem without further search procedure. However, similar to single-objective neural
combinatorial optimization, this approach could still have a gap to the Pareto front, especially for
problems out of the training distribution S (e.g., with different sizes and patterns) (Lisicki et al.,
2020). Iterative search methods, such as sampling and beam search, can further improve the per-
formance for a single solution or single preference (Veličković & Blundell, 2021). However, these
approaches can not find a better approximation to the whole Pareto set for a MOCO problem.

19

Published as a conference paper at ICLR 2022

Algorithm 2 Neural MOCO Active Adaption

1: Input: model parameter θ, instance s, preference distribution Λ, number of adaption steps T ,
number of preferences per iteration K, number of tours N

2: for t = 1 to T do
3: λk ∼ SamplePreference(Λ) ∀k ∈ {1, · · · ,K}
4: πj

k ∼ SampleTour(pθ(λk)(·|s)) ∀k ∈ {1, · · · ,K} ∀j ∈ {1, · · · , N}
5: b(s|λk)← 1

N

∑N
j=1 L(π

j
k|λk, s) ∀k ∈ {1, · · · ,K}

6: ∇J (θ)← 1
KN

∑K
k=1

∑N
j=1[(L(π

j
k|λk, s)− b(s|λk))∇θ(λk) log pθ(λk)(π

j
k|s)]

7: θ ← ADAM(θ,∇J (θ))
8: end for
9: Output: The model parameter θ

We propose a simple yet powerful active adaption approach as shown in Algorithm 2. It iteratively
adapts the model parameter θ(λ) to a given instance s (or a batch of instances) with all preferences
from the distribution Λ rather than searching for a specific solution. This method is similar to
the active search in Bello et al. (2017) which actively refines the single-objective model for efficient
candidate solutions searching. Our approach focuses on adapting the whole model for a better Pareto
front approximation. Since this method is distribution-agnostic (not depend on specific instance
distribution S), it is suitable for out-of-distribution adaption.

20

Published as a conference paper at ICLR 2022

C DETAILS OF THE MOCO PROBLEMS

This section introduces the detailed problem formulation for the MOTSP, MOCVRP and MOKP
we used in this work. We also provide the model configuration (e.g., input size, masks) for each
problem.

C.1 MOTSP

We consider the Euclidean multiobjective traveling salesman problem (Euclidean MOTSP), which
is widely used in the MOCO community (Lust & Teghem, 2010b; Florios & Mavrotas, 2014). Its
single objective counterpart, 2D Euclidean TSP, has also been studied in single-objective neural
combinatorial optimization (NCO) (Vinyals et al., 2015; Bello et al., 2017; Kool et al., 2019). A
general m-objective MOTSP instance s with n nodes has m n × n cost matrices {Ci = (cijk), i =

1, · · · ,m} for m different costs. The problem is to find a tour (cyclic permutation π) to minimize
all the costs:

minL(π|s) = min(L1(π|s), L2(π|s), · · · , Lm(π|s)),

where Li(π|s) = ciπ(n)π(1) +

n−1∑
j=1

ciπ(j)π(j+1).
(14)

In a Euclidean MOTSP, the cost information is stored in the nodes rather than the edges. The j-th
node has a 2m-dimensional vector [x1

j ,x
2
j , · · · ,xm

j] where xi
j ∈ R2 is a 2D coordinate for the i-th

objective. The i-th cost cijk = ||xi
j − xi

k||2 is the Euclidean distance for moving from node j to k.

If we only have one objective m = 1, it reduces to the single-objective 2D Euclidean TSP:

min
π
L1(π|s) = ||xπ(n) − xπ(1)||2 +

n−1∑
j=1

||xπ(i) − xπ(i+1)||2. (15)

The single-objective TSP is already NP-hard, so does the MOTSP. In addition, the Pareto set of
MOTSP has an exponential cardinality with respect to its input size (e.g., number of nodes), so it is
intractable even for the 2-objective case (Ehrgott & Gandibleux, 2003).

Problem Instance. Similar to the previous work on single-objective NCO (Lust & Teghem, 2010b;
Florios & Mavrotas, 2014), we randomly sample all n nodes with uniform distribution on the 2m-
dimensional unit hyper-square (e.g., [0, 1]2m) for all problem instances.

Model Details. In m-objective MOTSP, each node has a 2m-dimensional vector to store all cost
information, so the input size is 2m for the encoder. To calculate the probability for selecting the
next node, the decoder needs to mask all already visited nodes as unavailable. We have a valid tour
when all node is selected (we assume the end node will connect to the start node).

C.2 MOCVRP

The vehicle routing problem (VRP) is a classical generalization of TSP, which has been studied
for several decades. This work studies the capacitated vehicle routing problem (CVRP). In this
problem, in addition to the location, each node (city) has a demand δi needed to be satisfied. There
is an extra depot node and a vehicle with a fixed capacity D > δi,∀i to handle all the demands.
The vehicle will always start from the depot node, then goes to different cities to satisfy multiple
demands

∑
δi ≤ D , and turns back to the depot node. A solution to this problem is a set of routes

that satisfies the demands for all cities.

In the multiobjective problem, we consider two objectives to optimize. The first one is the total tour
length as in the single-objective CVRP, and the other one is the tour length for the longest route
(which is also called makespan in scheduling theory). This problem has been studied in the MOCO
community (Lacomme et al., 2006).

Problem Instance. Similar to the TSP problem, the location of n nodes are uniformly sam-
pled from the unit square. For the demand, similar to the previous work on the single-objective
counterpart (Kool et al., 2019; Kwon et al., 2020), we randomly sample discrete δi from the set
{1, · · · , 9}. For problem with size n = 20, 50, 100, we set the capacity as D20 = 30, D50 = 40

21

Published as a conference paper at ICLR 2022

and D100 = 50, respectively. Without loss of generality, we normalize the demands δ̂i = δi
D and

capacity D̂ = D
D = 1 as in the previous work (Kool et al., 2019; Kwon et al., 2020). Split delivery

is not allowed in this problem.

Model Details. In the MOCVRP, the depot node has a 2-dimensional location vector, and the
other nodes all have 3-dimensional vectors to store their locations and demands. We use different
parameter matrices to project the nodes into the input embedding with the same dimension dh =
128. For node selection, the model records the current capacity of the vehicle and the rest demands
for all nodes. If a node has been already visited or has demand larger than the vehicle’s current
capacity, it will be masked as unavailable for the vehicle to visit. If no node is available to visit, the
vehicle will go back to the depot. Once all nodes have 0 demands, the node selection is finished and
we have a valid solution to the problem.

C.3 MOKP

Knapsack problem (KP) is also a widely studied combinatorial optimization problem. In this work,
we consider the 0-1 multiobjective knapsack problem (MOKP) with m objectives and n items:

max f(x) = max(f1(x), f2(x), · · · , fm(x)),

where fi(x) =
∑n

j=1 v
i
jxj ,

subject to
∑n

j=1 wjxj ≤W, xj ∈ {0, 1},
(16)

where each item has a weight wj and m different values {vij , i = 1, · · · ,m}. The problem (e.g.,
knapsack) has a maximum weight capacity W , and the goal is to select a set of items within the
weight capacity to maximize the sum values for each objective. To make this problem nontrivial,
we further assume all values vij ,∀i, j, weights wj∀j and the total capacity are non-negative real
value. The total weight of all items is larger than the capacity

∑
wi > W , while each single weight

is smaller than the capacity wi < W, ∀i = 1, · · · , n. The single-objective knapsack problem is
NP-hard, so does the MOKP problem (Ehrgott & Gandibleux, 2003).

Problem Instance. We randomly generate the values and weight for each item both uniformly in
[0, 1]. We consider problems with n = 50, 100, 200 nodes, and the weight capacities are W50 =
12.5,W100 =W200 = 25 as in the previous work (Bello et al., 2017; Kwon et al., 2020).

Model Details. In an m-objective MOKP, each item has m values and 1 weight, so the input
dimension is 3 for the encoder. For node selection at each step, we mask all already selected nodes
and nodes with weights larger than the remained capacity as unavailable. We terminate the selection
when all nodes are labeled as unavailable.

22

Published as a conference paper at ICLR 2022

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 HYPERVOLUME INDICATOR

𝑝𝑝1

𝑝𝑝2

𝑝𝑝3

𝑝𝑝4

𝑟𝑟∗

Figure 4: Hypervolume illustration.

To solve a MOCO problem, the result for each method is a set of approximate Pareto solutions. Since
the ground truth Pareto set is usually unknown, we use the hypervolume (HV) indicator (Zitzler
et al., 2007) to numerically compare the performance for each method. The hypervolume indicator
is widely used in the MOCO community for algorithm comparison.

The hypervolume of a set is the volume in the objective space it dominates. For a set P ⊂ Rm in
the objective space, we can find a reference point r∗ that dominated by all solutions in P , and define
the hypervolume HV(P) as the volume of the set:

S = {r ∈ Rm | ∃y ∈ P such that y ≺ r ≺ r∗}, (17)

where HV(P) = Vol(S). An illustration example is shown in Figure 4. The grey area is the set
S dominated by the solutions in set P = {p1, p2, p3, p4} with the reference point r∗. In this 2-
dimensional case, the hypervolume HV(P) is the size of the grey area.

The hypervolume indicator has two important advantages for measuring the approximate set quality
with respect to Pareto optimality (Zitzler et al., 2007). First, if an approximate set A dominates
another approximate setB, it will have a strictly better hypervolume HV(A) > HV(B). In addition,
if an approximate set C contains all Pareto optimal solutions, it is guaranteed to have the maximum
hypervolume value. In comparison, an approximate set has better performance if it has a larger
hypervolume.

With different objective scales, the hypervolume value will vary significantly among different prob-
lems. We report the normalized hypervolume values Ĥ(P) = HV(P)/

∏m
i r∗i for all methods and

also their performance gaps to our method. For each experiment, all methods share the same refer-
ence point r∗, which contains the largest value achieved for each objective. Since all problems we
consider have positive objective values, we have 0 ≤ Ĥ(P) ≤ 1 for all solution sets. The ground
truth Pareto set P ∗ usually has Ĥ(P ∗) < 1, unless the zero vector 0 ∈ Rm is feasible and in the
Pareto set.

23

Published as a conference paper at ICLR 2022

D.2 OUT-OF-DISTRIBUTION PROBLEM WITH EXACT PARETO FRONT

Table 6: The Results on Problems with Exact Pareto Front.

L1 L2
Method HV HV Gap IGD HV HV Gap IGD
Exact Pareto front 0.733 - 0 0.735 - 0
Weight-Sum LKH 0.728 0.71% 0.008 0.730 0.75% 0.007
Weight-Sum OR Tools 0.721 1.68% 0.012 0.722 1.76% 0.009
P-MOCO (101 pref.) 0.718 2.01% 0.014 0.717 2.43% 0.013
P-MOCO (101 pref., aug.) 0.722 1.52% 0.012 0.721 1.88% 0.010
P-MOCO (101 pref., aug., active) 0.724 1.21% 0.010 0.724 1.48% 0.008

L3 L4
Method HV HV Gap IGD HV HV Gap IGD
Exact Pareto front 0.737 - 0 0.737 - 0
Weight-Sum LKH 0.733 0.53% 0.007 0.731 0.83% 0.006
Weight-Sum OR Tools 0.723 1.89% 0.012 0.718 2.56% 0.014
P-MOCO (101 pref.) 0.722 2.04% 0.013 0.720 2.27% 0.012
P-MOCO (101 pref., aug.) 0.724 1.72% 0.012 0.723 1.93% 0.011
P-MOCO (101 pref., aug., active) 0.726 1.43% 0.010 0.727 1.33% 0.008

L5 L6
Method HV HV Gap IGD HV HV Gap IGD
Exact Pareto front 0.734 - 0 0.746 - 0
Weight-Sum LKH 0.727 0.92% 0.007 0.742 0.48% 0.006
Weight-Sum OR Tools 0.721 1.79% 0.012 0.728 2.43% 0.015
P-MOCO (101 pref.) 0.719 2.05% 0.014 0.729 2.19% 0.014
P-MOCO (101 pref., aug.) 0.723 1.48% 0.011 0.732 1.82% 0.012
P-MOCO (101 pref., aug., active) 0.725 1.29% 0.009 0.737 1.19% 0.009

We conduct experiments on 6 two-objective MOTSP100 instance (L1-L6) in Florios & Mavrotas
(2014) of which the exact Pareto fronts are available. In these problems, the objective functions
have different ranges, and the cities are not uniformly located, so they are out of our method’s
training distribution. The results can be found in the Table 6.

In addition to hypervolume, we also report the Inverted Generational Distance (IGD) (Fonseca et al.,
2006) to measure the average Euclidean distance between the set of approximated Pareto solutions to
the exact Pareto front. A smaller IGD value means the approximated set is closer to the exact Pareto
front. According to the results, our method, with the instance augmentation and/or active search
(10 min budget), can have a good performance on these out-of-distribution (OOD) instances with a
1%− 1.5% hypervolume gap. The proposed method also significantly outperforms the weight-sum
OR tools baseline. There is still a gap to the strong weight-sum LKH baseline. As discussed in the
paper, robust OOD generalization is an important research direction for the learning-based solver.

24

Published as a conference paper at ICLR 2022

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2
0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(a) 105 Preferences

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(b) 1035 Preferences (c) 10011 Preferences

L1

4 5 6 7 8 9 10 11

L2

4
5

6
7

8
9

10
11

L3

4
5
6
7
8
9
10
11

(d) MOTSP20: 105 Solutions

L1

4 5 6 7 8 9 10 11

L2

4
5

6
7

8
9

10
11

L3

4
5
6
7
8
9
10
11

(e) MOTSP20: 1035 Solutions (f) MOTSP20: 10011 Solutions

L1

10
15

20
25

L2

10

15

20

25

L3

10

15

20

25

(g) MOTSP50: 105 Solutions

L1

10
15

20
25

L2

10
15

20

25

L3

10

15

20

25

(h) MOTSP50: 1035 Solutions (i) MOTSP50: 10011 Solutions

L1

10
20

30
40

50

L2

10
20

30
40

50

L3

10

20

30

40

50

(j) MOTSP100: 105 Solutions

L1

10
20

30
40

50

L2

10
20

30
40

50

L3

10

20

30

40

50

(k) MOTSP100: 1035 Solutions (l) MOTSP100: 10011 Solutions

Figure 5: Different number of uniform distributed preferences and the corresponding solutions gen-
erated by our method on MOTSP20, MOTSP50 and MOTSP100. Our model can generate well-
distributed solutions with a small number of preferences, and generate a dense approximation with
a large number of preferences.

25

Published as a conference paper at ICLR 2022

D.3 FLEXIBLE PREFERENCE-BASED APPROXIMATION

With our model, it is flexible to generate different number of solutions to approximate the Pareto
front. We present an example on the three-objective TSP in Figure 5. We use the structured weight
assignment approach from Das & Dennis (1998) to give the sets of weights for different instances.
This method can generate n = Cm+p−1

p evenly distributed weights with an identical distance to
their nearest neighbor on the unit simplex (e.g.,

∑m
i=1 λi = 1 with λi ≥ 0,∀i), where m is the

number of objectives and p is a parameter to control the number of weights.

For the three objective TSP problems (m = 3), we assign p = 13, 44 and 140 to generate
n = 105, 1035 and 10011 weights respectively. We also show the corresponding generated so-
lutions for MOTSP instances with 20, 50 and 100 cities. According to the results in Figure 5, our
model can generate well-distributed solutions with a small number of preferences, and generate a
dense approximation with more preferences. The ability to generate a dense approximation to the
whole Pareto set also allows the decision-maker to generate arbitrary preferred solutions on the
approximate front.

D.4 PREFERENCE-SOLUTION CONNECTION

0 1 2 3 4 5
Preference on Cost 1

0

1

2

3

4

5

Pr
ef

er
ec

e
on

 C
os

t 2

10 15 20 25 30 35 40 45 50
Cost 1

10

15

20

25

30

35

40

45

50

Co
st

 2

Preference
Solution

(a) 11 Preferences (HV = 0.649)

0 1 2 3 4 5
Preference on Cost 1

0

1

2

3

4

5

Pr
ef

er
ec

e
on

 C
os

t 2

10 15 20 25 30 35 40 45 50
Cost 1

10

15

20

25

30

35

40

45

50

Co
st

 2

Preference
Solution

(b) 101 Preferences (HV = 0.664) (c) 1,001 Preferences (HV = 0.669)

Figure 6: Different number of uniformly distributed preferences and their connections to the corre-
sponding solutions on MOTSP100.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Preference on Objective 1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pr
ef

er
ec

e
on

 O
bj

ec
tiv

e
2

20 30 40 50 60
Objective 1

1.2

1.4

1.6

1.8

2.0

Ob
je

ct
iv

e
2

Preference
Solution

(a) MA-MOCO
(101 Models, HV = 0.417)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Preference on Objective 1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pr
ef

er
ec

e
on

 O
bj

ec
tiv

e
2

20 25 30 35 40 45 50
Objective 1

1.2

1.4

1.6

1.8

2.0

Ob
je

ct
iv

e
2

Preference
Solution

(b) P-MOCO
(101 Preferences, HV = 0.435)

(c) P-MOCO
(1,001 Preferences, HV = 0.441)

Figure 7: Different number of uniformly distributed preferences and their connections to the corre-
sponding solutions on MOCVRP100. We report the approximate Pareto front for MA-MOCO with
101 models, and our model with 101 and 1, 001 preferences.

We further analyze the connection between the preference and its corresponding solution on the
uniform and non-uniform Pareto front. Figure 6 shows the connections in our model with different
numbers of preferences for the MOTSP100 instance. Since the two objectives (costs) in MOTSP
have the same scale, this problem has a uniform connection between the preferences and the (ap-
proximate) Pareto front. By increasing the number of preferences, we have three sparse to dense
generated Pareto front approximations.

We are more interested in MOCVRP, which has a non-uniform Pareto front. In this problem, we
consider two different objectives to optimize, namely, the total tour length (objective 1) and the tour

26

Published as a conference paper at ICLR 2022

length for the longest route (objective 2). These two objectives are in quite different scales, where the
first objective is significantly larger than the second one. In Figure 7, we show different connections
for the MOCVRP100 instance. For MA-MOCO, we report the connections for all 101 models. For
our proposed model, we report the connections with different numbers of uniform preferences.

In this problem, 101 models or our model with 101 uniform preferences are not enough to gener-
ate a dense approximate Pareto front. The obtained solutions are biased to the area that objective
1 has a much better relative performance. By increasing the number of preferences, our proposed
method can generate more solutions that have relatively better performance for objective 2, which
leads to a better Pareto front approximation with higher hypervolume. In this work, we always use
a straightforward uniform sampling method to select the preferences. It is interesting to design a
learning-based approach to select the preferences for a given problem instance. Preference adjust-
ment and model adaption with awareness on the shape of Pareto front are also worthy to investigate.
We left them to the future work.

In the MOCVRP instance, we also find the 101-model MA-MOCO has a worse performance com-
pared to our method with 101 preferences. The reason would be the mismatch between the uniform
transfer training and the non-uniform Pareto front. Increasing the training steps for fine-tuning each
model might fix this issue, but will lead to an even larger computational overhead, given the current
training already require 700 epochs. The fixed preferences assignment is another issue for MA-
MOCO. It requires a fixed set of preferences for each model at the start of the training procedure
when the decision makers might have no knowledge on the problem. When the training procedure
is done, it dose not allow any preference adjustment without retraining the models.

D.5 CONNECTION BETWEEN PREFERENCES AND SOLUTIONS

In the previous sections, we use the weighted Tchebycheff aggregation to connect the preference to
its corresponding solution for two-objective optimization problems:

gtch(x|λ) = max
1≤i≤m

{λi|fi(x)− z∗i |}, (18)

where z∗i < minx∈X fi(x) is an ideal value for fi(x). There are also many other aggregation func-
tion we can use to build the connection. For example, a modified version of weighted Tchebycheff
aggregation can be defiend as:

gmtch(x|λ) = max
1≤i≤m

{ 1
λi
|fi(x)− z∗i |}, (19)

where the only difference is the weight vector 1
λi

.

The penalty-based boundary intersection (PBI) is another widely-used aggregation function for
decomposition-based multiobjective optimization (Zhang & Li, 2007):

gpbi(x|λ) = d1 + θd2,

d1 = |(F (x)− z∗)Tλ|/||λ||,

d2 = ||F (x)− z∗ − d1
λ

||λ||
||, (20)

where θ is the penalty parameter, F (x) = (f1(x), . . . , fm(x)) and z∗ = (z∗i , . . . , z
∗
i) are the ob-

jective vector and ideal vector respectively. An inverted version of PBI (IPBI) aggregation func-
tion (Sato, 2014) can be defined as:

gipbi(x|λ) = −d1 + θd2,

d1 = |(zN − F (x))Tλ|/||λ||,

d2 = ||zN − F (x)− d1
λ

||λ||
||, (21)

where zN is the nadir vector that contain each objective’s worst value among all Pareto solutions.

For a two-objective optimization problem, when we can find a dense set of corresponding solutions
to cover the Pareto front for each aggregation function, their performance could be similar to each

27

Published as a conference paper at ICLR 2022

10
15

20
25

30

10
15

20
25

30

10

15

20

25

30

(a) TCH: 105 Solutions

10
15

20
25

30

10
15

20
25

30

10

15

20

25

30

(b) TCH: 1035 Solutions (c) TCH: 10011 Solutions

10
15

20
25

30

10
15

20
25

30

10

15

20

25

(d) Modified TCH: 105 Solutions

10
15

20
25

30

10
15

20
25

30

10

15

20

25

(e) Modified TCH: 1035 Solutions (f) Modified TCH: 10011 Solutions

L1

10
15

20
25

L2

10

15

20

25

L3

10

15

20

25

(g) IPBI: 105 Solutions

L1

10
15

20
25

L2

10
15

20

25

L3

10

15

20

25

(h) IPBI: 1035 Solutions (i) IPBI: 10011 Solutions

Figure 8: Different number of approximate Pareto solutions generated by our method with uniformly
distributed weight vectors and different aggregation functions.

other. However, different aggregation functions would have quite different performances on the
problems with three or more objective functions (called many-objective optimization problems).
The performances will heavily depend on the shape of Pareto front (Ishibuchi et al., 2016), especially
with a limited number of approximate solutions.

We compare the performance of our proposed method with different aggregation functions on
MOTSP50 with 105, 1035 and 10011 preferences respectively in Fig. 8. According to the results, the
IPBI method can generate the most uniformly distributed solutions for the MOTSP problem with an
inverted triangular shape of Pareto front, of which the shape is similar to the weight vector distribu-
tion (e.g., see Fig 5). This observation is consistent with the findings and analysis in Ishibuchi et al.
(2016). According to these results, we use the Tchebycheff aggregation for all two-objective opti-
mization problems and IPBI aggregation for all problems with more than two objective functions in
this work. Since the shape of Pareto front tends to be irregular for real-world applications (Ishibuchi
et al., 2019), how to properly choose the aggregation function and assign the preference distribution
could be an important future work.

28

Published as a conference paper at ICLR 2022

D.6 THREE-OBJECTIVE MOTSP WITH ASYMMETRIC PARETO FRONT

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(a) Uniform Weights

L1

10
20

30
40

50

L2

5
10

15
20

25

L3

1

2

3

4

5

(b) 105 Solutions

L1

10
20

30
40

50

L2

5
10

15
20

25

L3

1

2

3

4

5

(c) 1035 Solutions

L1

10
20

30
40

50

L2

5
10

15
20

25

L3

1

2

3

4

5

(d) 10011 Solutions

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(e) Non-Uniform Weights

L1

10
20

30
40

50

L2

5
10

15
20

25

L3

1

2

3

4

5

(f) 105 Solutions

L1

10
20

30
40

50

L2

5
10

15

20

25

L3

1

2

3

4

5

(g) 1035 Solutions

L1

10
20

30
40

50

L2

5
10

15
20

25

L3

1

2

3

4

5

(h) 10011 Solutions

Figure 9: The uniform/non-uniform distributed preferences and different number of corresponding
solutions generated by our method on three-objective MOTSP100 with asymmetric Pareto front. We
use 1035 different preferences as example for the uniform and non-uniform case respectively, and
present the results for 105, 1035 and 10011 solutions. Top Row: Uniform distributed preferences
and the corresponding non evenly distributed solutions. Bottom Row: Non-uniform distributed
preferences and the corresponding solutions which are more evenly distributed.

In this subsection, we conduct experiments on the three-objective MOTSP100 instances with asym-
metric Pareto fronts. The definition of irregular MOTSP instance is almost the same as in Sec-
tion C.1, except the coordinates for the three objectives and randomly sampled from [0, 1]2, [0, 0.5]2
and [0, 0.1]2 respectively, rather than uniformly from [0, 1]6. In this way, the objective values for the
MOTSP instance will be in quite different scales, thus leading to an irregular Pareto front (the axes
in Figure 9 are in different scales).

A well-known drawback of the scalarization-based approach is that it cannot evenly explore the ir-
regular Pareto front with a set of uniform weights, which can also be observed in Figure 9(a)-(d).
Our proposed approach allows the user to generate arbitrary trade-off Pareto solutions on the infer-
ence time, therefore they can directly generate a dense approximation and then select the preferred
solutions as in Figure 9(d). This flexibility can partially address the unevenly distributed issues
caused by a (small) set of fixed weights in the traditional scalarization-based approach.

If we know the approximate range of different objectives in advance, we can first normalize them
into [0, 1] to encourage a more symmetric Pareto front. Otherwise, on the inference time, we can
use a (prior knowledge-based) biased and non-uniform weight assignment to generate uniformly
distributed solutions. In Figure 9(e)-(h), we first multiple the three-dimensional weights by (1, 2, 10)
and then normalize them back to [0, 1]3 which leads to a set of non-uniform weights as shown in
Figure 9(e). With this weight assignment, we have a a set of more evenly distributed Pareto solutions
as shown in Figure 9(f)-(h).

D.7 PREFERENCE-BASED INFERENCE

Even without any prior knowledge, our proposed approach allows the user to adaptively adjust the
weights in real-time to search for the most suitable solutions in their preferred region(s). Some ex-
amples of selected weights and their corresponding solutions are shown in Figure 10 for symmetric
Pareto front and Figure 11 for asymmetric Pareto front. If we have prior knowledge of the preference

29

Published as a conference paper at ICLR 2022

(e.g., the decision-makers will only care about a specific region of the Pareto front), we can modify
the training preference distribution Λ accordingly to enhance the training efficiency.

For the problem with a truly irregular Pareto front, it is also possible to adaptively adjust the given
weights to make them evenly explore the Pareto front during the learning/searching process. One
potential direction could be to consider the connection between scalarization and hypervolume max-
imization as in Zhang & Golovin (2020). We believe this could be an important research topic for
the learning-based scalarization approach in future work.

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(a) Biased Weights: Obj1

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(b) Biased Weights: Obj2

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(c) Biased Weights: Obj3

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(d) Biased Weights: Mid

L1

10
20

30
40

50
60

L2

10
20

30
40

50
60

L3

10

20

30

40

50

60

(e) Biased Sols.: Obj1

L1

10
20

30
40

50
60

L2

10
20

30
40

50
60

L3

10

20

30

40

50

60

(f) Biased Sols.: Obj2

L1

10
20

30
40

50
60

L2

10
20

30
40

50
60

L3

10

20

30

40

50

60

(g) Biased Sols.: Obj3

L1

10
20

30
40

50
60

L2

10
20

30
40

50
60

L3

10

20

30

40

50

60

(h) Biased Sols.: Mid

Figure 10: Symmetric Pareto Front. Different set of biased weights and their corresponding solu-
tions on different regions of the symmetric Pareto front.

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(a) Biased Weights: Obj1

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(b) Biased Weights: Obj2

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(c) Biased Weights: Obj3

Preference 1
0.0

0.2
0.4

0.6
0.8

1.0

Pre
fer

en
ce

2

0.0

0.2

0.4
0.6

0.8
1.0

Pr
ef

er
en

ce
 3

0.0

0.2

0.4

0.6

0.8

1.0

(d) Biased Weights: Mid

L1

10
20

30
40

50
60

L2

5
10

15
20

25
30

L3

1

2

3

4

5

6

(e) Biased Sols.: Obj1

L1

10
20

30
40

50
60

L2

5
10

15
20

25
30

L3

1

2

3

4

5

6

(f) Biased Sols.: Obj2

L1

10
20

30
40

50
60

L2

5
10

15
20

25
30

L3

1

2

3

4

5

6

(g) Biased Sols.: Obj3

L1

10
20

30
40

50
60

L2

5
10

15
20

25
30

L3

1

2

3

4

5

6

(h) Biased Sols.: Mid

Figure 11: Asymmetric Pareto Front. Different set of biased weights and their corresponding
solutions on different regions of the irregular Pareto front. The uniformness of the weights and the
corresponding solutions could be different due to the asymmetry. However, the user can adaptively
adjust the weights in real-time to search for the most suitable weight(s) and solution(s).

30

Published as a conference paper at ICLR 2022

D.8 PROBLEM WITH MORE OBJECTIVES

1 2 3 4 5 6 7 8 9 10
Objective

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0
Va

lu
es

MOEA/D

(a) MOEA/D (5× 105 evals.)

1 2 3 4 5 6 7 8 9 10
Objective

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Va
lu

es

NSGA-II

(b) NSGA-II (5× 105 evals.)

1 2 3 4 5 6 7 8 9 10
Objective

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Va
lu

es

P-MOCO

(c) P-MOCO (zero-shot)

Figure 12: The value path plots for the 10-objective MOKP100 obtained by MOEA/D, NSGA-II
and our proposed P-MOCO. In the plot, each line (value path) represents a solution’s 10 objective
values with its specific preference. In MOKP, we want to maximize the values for all objectives.
Our proposed method has significantly better overall performance.

1 2 3 4 5 6 7 8 9 10
Objective

130

140

150

160

170

180

190

200

210

Va
lu

es

MOEAD

(a) MOEA/D (10× 105 evals.)

1 2 3 4 5 6 7 8 9 10
Objective

130

140

150

160

170

180

190

200

210

Va
lu

es

NSGA-II

(b) NSGA-II (10× 105 eval.)

1 2 3 4 5 6 7 8 9 10
Objective

130

140

150

160

170

180

190

200

210

Va
lu

es

P-MOCO

(c) P-MOCO (zero-shot)

Figure 13: The value path plots for the 10-objective MOKP with 500 items obtained by MOEA/D,
NSGA-II and our proposed P-MOCO. Our model is trained on 10-objective MOKP100.

Finally, we test the performance of our proposed method on the 10-objective knapsack problems.
We train a new model for the 10 objective MOKP with 100 items with uniform 10-dimension pref-
erences. The obtained value path plots on the 10-objective MOKP100 are shown in Figure 12. For
problems with more objectives, we need a large number of solutions to approximate the Pareto set.
Training a large number of neural network models would have a huge computational and storage
overhead, which is also not desirable in practice. Therefore, we do not compare with the AM-
MOCO and MOA-DRL methods on this problem.

For inference, to approximate the Pareto set, we use a set of 715 fixed preferences following
the weight assignment approach from (Das & Dennis, 1998) (with m = 10, p = 4, hence
n = C10+4−1

4 = 715). The model generates different trade-off solution for each preference, so
there are 715 different value paths (lines) on each plot. In MOKP, we want to maximize the values
for all objectives under the capacity limitation. A set of good approximate solutions should have rel-
atively high overall values. According to the results, our proposed method has the best performance.
We also test the performance of our method on a larger problem with 500 items. The results shown
in Figure 13 confirm that our trained model generalizes well to problems with a larger size.

31

	Introduction
	Background and Related Work
	Problem Formulation
	Multiobjective Combinatorial Optimization
	Decomposition and Preference-based Scalarization
	Current Drawbacks and Our Method

	The Proposed Model: Preference-Conditioned Neural MOCO
	Preference-Conditioned Solution Construction
	The Proposed Model

	Preference-conditioned Multiobjective Policy Optimization
	Cost Function
	Multiobjective REINFORCE
	Active Adaption

	Experiments
	Results and Analysis

	Conclusion and Future Work
	Pareto Set Learning and Approximation Analysis
	Pareto Set Learning and Convergence Guarantee
	Approximation Analysis
	Limitation

	Details on the Proposed Model
	Model Setting
	Training Efficiency
	Active Adaption

	Details of the MOCO Problems
	MOTSP
	MOCVRP
	MOKP

	Additional Experimental Results
	Hypervolume Indicator
	Out-of-Distribution Problem with Exact Pareto Front
	Flexible Preference-based Approximation
	Preference-Solution Connection
	Connection between Preferences and Solutions
	Three-Objective MOTSP with Asymmetric Pareto Front
	Preference-based Inference
	Problem with More Objectives

