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ABSTRACT

Multiobjective combinatorial optimization (MOCO) problems can be found in
many real-world applications. However, exactly solving these problems would be
very challenging, particularly when they are NP-hard. Many handcrafted heuris-
tic methods have been proposed to tackle different MOCO problems over the past
decades. In this work, we generalize the idea of neural combinatorial optimiza-
tion, and develop a learning-based approach to approximate the whole Pareto set
for a given MOCO problem without further search procedure. We propose a single
preference-conditioned model to directly generate approximate Pareto solutions
for any trade-off preference, and design an efficient multiobjective reinforcement
learning algorithm to train this model. Our proposed method can be treated as
a learning-based extension for the widely-used decomposition-based multiobjec-
tive evolutionary algorithm (MOEA/D). It uses a single model to accommodate
all the possible preferences, whereas other methods use a finite number of solu-
tions to approximate the Pareto set. Experimental results show that our proposed
method significantly outperforms some other methods on the multiobjective trav-
eling salesman problem, multiobjective vehicle routing problem, and multiobjec-
tive knapsack problem in terms of solution quality, speed, and model efficiency.

1 INTRODUCTION

Many real-world applications can be modeled as multiobjective combinatorial optimization
(MOCO) problems (Ehrgott & Gandibleux, 2000). Examples include the multiobjective traveling
salesman problem (MOTSP) (Lust & Teghem, 2010a), the multiobjective vehicle routing problem
(MOVRP) (Jozefowiez et al., 2008) and the multiobjective knapsack problem (MOKP) (Bazgan
et al., 2009). These problems have multiple objectives to optimize, and no single solution can op-
timize all the objectives at the same time. Instead, there is a set of Pareto optimal solutions with
different trade-offs among the objectives.

It is very challenging to find all the exact Pareto optimal solutions for a MOCO problem. Ac-
tually, finding one single Pareto optimal solution can be NP-hard for many problems (Ehrgott &
Gandibleux, 2000), and the number of Pareto solutions could be exponentially large with regard to
the problem size (Ehrgott, 2005; Herzel et al., 2021). The decision-maker’s preference among dif-
ferent objectives is usually unknown in advance, making it very difficult to reduce the problem into
a single-objective one. Over the past several decades, many methods have been developed to find
an approximate Pareto set for different MOCO problems within a reasonable computational time.
These methods often need carefully handcrafted and specialized heuristics for each problem. It can
be very labor-intensive in practice.

In many real-world applications, practitioners need to solve many different instances for the same
particular problem, where the instances can be easily obtained or generated (Bengio et al., 2020).
It is desirable to learn the patterns behind these problem instances explicitly or implicitly to design
efficient algorithms (Cappart et al., 2021a). Machine learning techniques can be naturally used for
this purpose. Some learning-based methods have been recently proposed for solving single-objective
combinatorial optimization problems (Bengio et al., 2020; Vesselinova et al., 2020; Mazyavkina
et al., 2021; Cappart et al., 2021a). In this work, we extend the learning-based method to solve
MOCO problems in a principled way as shown in Figure 1. Our main contributions include:
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Figure 1: Preference-Conditioned Neural Multiobjective Combinatorial Optimization: a) The
model takes a problem instance as its input. b) The decision makers assign their preferences on
different objectives to the model. c) The model directly generates approximate Pareto solutions with
different trade-offs via fast forward inference. In this example, the problem is the MOTSP with two
cost objectives to minimize. The generated solutions P1,P2 and P3 are different optimal trade-offs
between the two cost objectives. The ideal model can generate solutions for all possible optimal
trade-offs on the Pareto front and not generate a poor solution such as P4.

• We propose a novel neural multiobjective combinatorial optimization method to approx-
imate the whole Pareto set via a single preference-conditioned model. It allows decision
makers to obtain any preferred trade-off solution without any search effort.

• We develop an efficient end-to-end reinforcement learning algorithm to train the single
model for all different preferences simultaneously, and a simple yet powerful active adap-
tion method to handle out-of-distribution problem instances.

• We conduct comprehensive experiments on MOTSP, MOVR and MOKP of different set-
tings. The results show that our proposed method can successfully approximate the Pareto
sets for different problems in an efficient way. It also significantly outperforms other meth-
ods in terms of solution quality, speed, and model efficiency.

2 BACKGROUND AND RELATED WORK

Multiobjective Combinatorial Optimization (MOCO). MOCO has been attracting growing re-
search efforts from different communities over the past several decades (Sawaragi et al., 1985;
Wallenius et al., 2008; Herzel et al., 2021). There are two main approaches to tackle the MOCO
problems: the exact methods and the approximation methods (Ehrgott, 2005). Exact methods could
be prohibitively costly when, as it often happens, the MOCO problem is NP-hard and the prob-
lem size is very large (Florios & Mavrotas, 2014). For this reason, many heuristics (Jaszkiewicz,
2002; Zhang & Li, 2007; Ehrgott & Gandibleux, 2008) and approximation methods (Papadimitriou
& Yannakakis, 2000; Herzel et al., 2021) have been developed to find a manageable number of
approximated Pareto solutions with a reasonable computational budget. However, these methods
usually depend on carefully handcrafted designs for each specific problem (Ehrgott & Gandibleux,
2000), and the required effort is often nontrivial in real-world applications.

Machine Learning for Combinatorial Optimization. As summarized in Bengio et al. (2020),
there are three main learning-based approaches for combinatorial optimization: learning to config-
ure algorithms (Kruber et al., 2017; Bonami et al., 2018), learning alongside the algorithms (Lodi
& Zarpellon, 2017; Gasse et al., 2019; Chen & Tian, 2019), and learning to directly predict the
solutions (Nowak et al., 2018; Emami & Ranka, 2018; Larsen et al., 2018). Neural combinatorial
optimization (NCO) belongs to the last category where the model directly produces a good solu-
tion for a given problem instance. Vinyals et al. (2015) proposed a pointer network to sequentially
construct a solution for the TSP problem. Bello et al. (2017) made a critical improvement to use re-
inforcement learning to train the model, eliminating the impractical optimal solutions collection for
NP-hard problems. Some other improvements on model structure and training procedure have been
proposed in the past few years (Nazari et al., 2018; Deudon et al., 2018; Kool et al., 2019; Veličković
& Blundell, 2021), especially with graph neural networks (GNNs) (Dai et al., 2017; Li et al., 2018;
Joshi et al., 2019; Dwivedi et al., 2020; Drori et al., 2020). Recent efforts have been made on more
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ef�cient learning strategies (Kwon et al., 2020; Karalias & Loukas, 2020; Lisicki et al., 2020; Geisler
et al., 2022), learning-based graph search (Cappart et al., 2021b; Kool et al., 2021; Fu et al., 2021;
Xin et al., 2021; Hudson et al., 2022), and iterative improvement methods (Wu et al., 2021; Ma et al.,
2021; Li et al., 2021).

Neural MOCO. Most of the existing learning-based methods are for single-objective combinatorial
problems. Recently, a few attempts have been made to solve MOCO problems (Li et al., 2020; Wu
et al., 2020; Zhang et al., 2021a;b). These methods adopt the MOEA/D framework (Zhang & Li,
2007) to decompose a MOCO problem into a number of single-objective subproblems, and then
build a set of models to solve each subproblem separately. However, since the number of Pareto
solutions would be exponentially large (Ehrgott, 2005), the required number of models would be
huge for �nding the whole Pareto set. In this work, we propose a single preference-conditioned
model for solving MOCO problems, with which the decision makers can easily obtain any trade-off
solutions. The proposed single neural MOCO solver could be much easier to use in a real-world
system (Veli�cković & Blundell, 2021), than those using a large set of different models.

3 PROBLEM FORMULATION

3.1 MULTIOBJECTIVE COMBINATORIAL OPTIMIZATION

A multiobjective combinatorial optimization (MOCO) problem can be de�ned as follows:

min
x 2X

F (x) = ( f 1(x); f 2(x); : : : ; f m (x)) ; (1)

whereX is a discrete search space, andF (x) = ( f 1(x); : : : ; f m (x)) is anm-objective vector. Since
the individual objectives con�ict each other, no single solution can optimize all of them at the same
time. Therefore, practitioners are interested in Pareto optimal solutions, de�ned as follows.

De�nition 1 (Pareto Dominance). Let xa ; xb 2 X , xa is said to dominatexb (xa � xb) if and only
if f i (xa) � f i (xb); 8i 2 f 1; :::; mg andf j (xa) < f j (xb); 9j 2 f 1; :::; mg.

De�nition 2 (Pareto Optimality). A solutionx � 2 X is a Pareto optimal solution if there does not
exist x̂ 2 X such that̂x � x � . The set of all Pareto optimal solutions is called the Pareto set, and
the image of the Pareto set in the objective space is called the Pareto front.

Each Pareto solution represents an optimal trade-off among the objectives, and it is impossible to
further improve one of the objectives without deteriorating any other objectives.

3.2 DECOMPOSITION ANDPREFERENCE-BASED SCALARIZATION

Decomposition is a mainstream strategy for solving multiobjective optimization problem (Zhang &
Li, 2007). It decomposes a multiobjective problem into a number of subproblems, each of which can
be a single objective or multiobjective optimization problem. MOEA/D (Zhang & Li, 2007) and its
variants (Trivedi et al., 2016) solve these subproblems in a collaborative manner and generate a �nite
set of Pareto solutions to approximate the Pareto front. The most widely used way for constructing a
single objective subproblem is the preference-based scalarization (Ehrgott, 2005; Miettinen, 2012).
For anm-objective optimization problem, a preference vector for the objective functions can be
de�ned as� 2 Rm that satis�es� i � 0 and

P m
i =1 � i = 1 .

Weighted-Sum Aggregationis the simplest approach. It de�nes the aggregation function to mini-
mize in the subproblem associated with� as

gws(xj� ) =
mX

i =1

� i f i (x): (2)

However, this approach can only �nd solutions on the convex hull of the Pareto front (Ehrgott, 2005).

Weighted-Tchebycheff (Weighted-TCH) Aggregationis an alternative approach to minimize:

gtch(xj� ) = max
1� i � m

f � i jf i (x) � z�
i jg; (3)

wherez�
i < minx 2X f i (x) is an ideal value forf i (x). Any Pareto optimal solution could be an

optimal solution of problem (3) with a speci�c (but unknown) preference� (Choo & Atkins, 1983).
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