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Abstract

Compositionality is an important feature of discrete symbolic systems, such as
language and programs, as it enables them to have infinite capacity despite a
finite symbol set. It serves as a useful abstraction for reasoning in both cognitive
science and in AI, yet the interface between continuous and symbolic processing is
often imposed by fiat at the algorithmic level, such as by means of quantization
or a softmax sampling step. In this work, we explore how discretization could
be implemented in a more neurally plausible manner through the modeling of
attractor dynamics that partition the continuous representation space into basins
that correspond to sequences of symbols. Building on established work in attractor
networks and introducing novel training methods, we show that imposing structure
in the symbolic space can produce compositionality in the attractor-supported
representation space of rich sensory inputs. Lastly, we argue that our model
exhibits the process of an information bottleneck that is thought to play a role in
conscious experience, decomposing the rich information of a sensory input into
stable components encoding symbolic information.

1 Introduction

The language of thought hypothesis posits that human thought is symbolic and compositional,
allowing us to construct a large number of complex representations by recombining a relatively small
set of simple concepts [1, 2, 3, 4, 5]. For instance, human behavior and neural data on a set of working
memory tasks can potentially be explained by a symbolic and compositional model in which stimuli
are represented using the shortest program that reconstructs them [6]. However, while symbolic
manipulation is a useful construct at the cognitive level [7], its implementation [8] at the neuronal
level is almost certainly continuous and distributed [9]. Although deep learning has helped bridge the
gap by incorporating inductive biases for discreteness in representations (e.g., [10, 11]) and symbolic
processing [12, 13, 14, 15, 16, 17, 18, 19], these models explicitly assume discretization by means of
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Figure 1: Model concept. The density landscape is the terminal distribution of 𝑧𝑇 given the input
on the left, where the height of each mode is proportional to how well the corresponding sentence
represents it. The orange dotted line shows the initial encoding using 𝑃(𝑧0 |𝑥) and the solid lines
show sample trajectories by following the stochastic dynamics 𝑃(𝑧𝑡+1 |𝑧𝑡 ). The modes correspond to
symbol sequences 𝑤, and the red points at the modes indicate the sentence embeddings 𝑧𝑤 , which are
related to the sentences via the discretizer (𝑃(𝑤 |𝑧, 𝑥)) and embedding (𝑧𝑤) functions, represented
using the solid and dashed purple lines. Green lines indicate trajectories that originate from other
inputs. Trajectories are shown using bi-directional arrows, representing the forward and backward
policies learned by the model.

discrete actions and the pre-allocation of neural modules [20], thereby demonstrating the strengths
of neuro-symbolic algorithms but leaving open several implementation questions, notably in how
discretization occurs.

Our work seeks to close this gap further by building on theoretical work by Ji et al. [21] that
conceptualizes discretization through a dynamical system with attractor basins that partition a
high-dimensional continuous space into discrete regions. Attractor networks and attractor-based
representations are not new, yet their use in a compositional and symbolic setting remain relatively
unexplored. Intuitively, the model should learn to sample trajectories to multiple attractors for a
given input proportional to how well their corresponding sentence representations encode the input.
However, defining these properties as a differentiable objective function for a neural network model
is difficult since initially, there is no grounded meaning in the model’s internal language and thus
the target density is not known. Moreover, the learned symbolic representations should represent
semantic attributes of the inputs such that they form a compositional code of meaningful primitives
rather than arbitrary mappings. We overcome this limitation by using a generative flow network
(GFN) [22] which allows us to specify the desired distribution using an unnormalized target function
and the GFN expectation-maximization algorithm (GFN-EM) [23] to learn the mapping between
the attractors and their symbolic representations. We demonstrate that not only is such a dynamical
system learnable using a neural network, but that the learned attractors also adopt compositional
structure to efficiently encode information using sequences of symbols.

We summarize our contributions as the following:

1. A model that bridges high-dimensional, continuous, distributed patterns of neural activity and
discrete compositional “thoughts” at the implementation level using attractor dynamics.

2. A method for learning an emergent compositional language that encodes rich sensory information
using the generative flow network expectation-maximization algorithm (GFN-EM) [23].

2 Methods

We construct our model as a dynamical system defined by a continuous stochastic policy
𝑃𝜃 (𝑧𝑡+1 |𝑧𝑡 , 𝑥) over time 𝑡 = 1..𝑇 that begins at some latent representation 𝑧0 ∼ 𝑃𝜃 (𝑧0 |𝑥) of an
input 𝑥 and terminates at a point 𝑧𝑇 , which is expected to be near an attractor 𝑧𝑤 corresponding to
some discrete token sequence 𝑤. The policy is a conditional Gaussian distribution with parameters
output by a neural network, i.e., a discretized neural stochastic differential equation [24].

The relationship between an attractor point 𝑧 in continuous space and its tokenized form is represented
using a stochastic discretizer function 𝑑𝜃 : 𝑧 ↦→ 𝑤 and a deterministic embedding function 𝑒𝜙 : 𝑤 ↦→
𝑧𝑤 .2 The unfolded trajectory 𝑧0 ⇝ 𝑧𝑇 from the initial encoding to the attractor point models the
continuous dynamics that underlie the discretization of rich information to compositional and stable

2We use 𝜃 and 𝜙 to denote functions with learnable parameters, where parameters 𝜃 are optimized during
E-steps using GFN objectives and 𝜙 during M-steps.

2



(a) (b) (c) (d)

Figure 2: (a) The Gaussians dataset. Each point is colored according to the Gaussian it was sampled
from. (b) The vector field, sentence embeddings, and terminal distribution of a model trained on the
Gaussians task. (c) PCA of sample trajectories from the dSprites model using red, green, and blue
images that terminated at attractors with sentences containing h, x, or B, which encode red, green,
and blue respectively. (d) Left: sample sentences from the dSprites model using the red square input
in Figure 1 and decoded images from their corresponding attractors. Right: averaged pixels of inputs
with sample trajectories terminating at attractors where the sentences contain tokens h, o, or v.

thoughts. Thus, the model is trained to learn a terminal distribution 𝑃(𝑧𝑇 |𝑥) such that 𝑧𝑇 clusters
around the attractor basin 𝑧 proportionally to how well the attractor represents 𝑥.

Formally, our aim is to learn a marginal distribution 𝑃(𝑧𝑇 , 𝑤 |𝑥) over the final point of the trajectory 𝑧𝑇
and its discretization 𝑤 such that both are sampled proportionally to the reward function 𝑅𝜙 (𝑧𝑇 , 𝑤; 𝑥)
in Eq. 1 – a product model that combines a similarity/reconstruction measure 𝑠𝜙 (𝑥, 𝑧𝑤), the distance
between 𝑧 and the attractor point 𝑧𝑤 , and a prior 𝑃𝜙 (𝑤) over the token sequence 𝑤.

𝑃(𝑧𝑇 , 𝑤 | 𝑥) ∝ 𝑅𝜙 (𝑧𝑇 , 𝑤, 𝑥) = 𝑠𝜙 (𝑥, 𝑧𝑤) · N (𝑧𝑇 | 𝑧𝑤 , 𝜖2) · 𝑃𝜙 (𝑤) (1)
We train our model as a continuous generative flow network (GFN) [22, 25]: a method for learn-
ing a generative model that samples a trajectory of states such that the distribution of terminal
states is proportional to an unnormalized target density. The training procedure alternates steps in
an expectation-maximization (EM) loop [23] in which the dynamics model serves as a posterior
estimator:

• The E-step optimizes the sampling policy, consisting of the initial embedding 𝑃𝜃 (𝑧0 |𝑥), the forward
dynamics 𝑃𝜃 (𝑧𝑡+1 |𝑧𝑡 , 𝑥), and the discretizer 𝑑𝜃 (𝑤 |𝑧𝑇 , 𝑥), together with auxiliary objects for GFN
optimization.

• The M-step optimizes the objects involved in the reward – 𝑠𝜙 (𝑥, 𝑧𝑤), the attractor embeddings 𝑧𝑤 ,
and the prior 𝑃𝜙 (𝑤) – so as to maximize the log-reward log 𝑅(𝑧𝑇 , 𝑤, 𝑥) on pairs 𝑧𝑇 , 𝑤 drawn from
the dynamics model learnt in the E-step. It also optimizes a reconstruction model 𝑃𝜙 (𝑥 |𝑧0) that
promotes high mutual information between 𝑥 and the initial point of the dynamics 𝑧0.

Details of the GFN training objectives and the the sampling procedure are given in the Appendix.

The forward dynamics and discretizer are conditioned on the input 𝑥. However, to decouple the neural
dynamics model from dependence on the input 𝑥, we train a separate marginalized policy 𝑃𝜃 (𝑧𝑡+1 |𝑧𝑡 )
by maximizing the log-likelihood of sample trajectories drawn from 𝑃𝜃 (𝑧𝑡+1 |𝑧𝑡 , 𝑥). This post hoc
marginalization step is performed once, after the input-dependent model has been fully trained.

3 Experiments

3.1 Grid of Gaussians

As an initial validation of our approach, we begin with a simple task where the inputs are generated
from a mixture of 2-dimensional Gaussian distributions with component means in a 4 × 4 grid [23]
(Figure 2) where we can intuitively expect attractors to emerge at the center of each Gaussian. In
this simplified setup, we let 𝑧0 := 𝑥 (therefore 𝑃(𝑧0 |𝑥), 𝑃(𝑥 |𝑧0), and L𝑧0 are not used) and use a
distance based similarity measure 𝑠(𝑥, 𝑧𝑤) = N(𝑥 |𝑧𝑤 , 𝜖2) with a fixed 𝜖 = .04. Since there are 4 × 4
Gaussians, we use length-2 token sequences with 4 possible tokens in each position.

Prior to training, the sentence embeddings are randomly positioned without any resemblance of
compositionality or disentanglement. After training, however, the sentence embeddings settle to the

3



center of each Gaussian that generated the dataset with contractive dynamics converging around the
embedding points. Compositional syntax and semantics also emerge in the sentences that represent
the attractor points, where the first token represents the row and the second token represents the
column for the model shown in Figure 2. Incidentally, the meaning of the tokens are also tied to their
positions in the sentence.

3.2 dSprites

To evaluate our model on a more complex task, we use the dSprites [26] dataset which consists of
synthetic images that contain a single shape of various sizes in various positions. For our experiment,
we colorized the dataset and simplified some features so that each input has one of 7 colors, 3 shapes,
6 sizes, and 5 × 5 (𝑋,𝑌 ) coordinates. We allowed sentences with up to 5 tokens and a vocabulary
size of 7 tokens per position.

Unlike in the Gaussians dataset, 𝑧0 must be learned, without any guarantees that it would initially
be disentangled or compositional. Moreover, the training objective for the attractive dynamics
only encourages the model to use the existing sentence embeddings 𝑧𝑤 , allowing discretization to
emerge but not necessarily compositional structure. Therefore, to induce compositionality, we require
additional inductive biases over the structure of attractors, which we impose by maximizing the
pointwise mutual information between 𝑥 and the sentence 𝑤 that maps to the attractor.

We once again use the GFN-EM algorithm to learn a compositional code for 𝑋 by using a conditional-
VAE (CVAE) [27] for the similarity measure 𝑠𝜙 (𝑥, 𝑧), where the encoder 𝑃𝜙 (𝜁 |𝑥, 𝑧) and decoder
𝑃𝜙 (𝑥 |𝜁, 𝑧) are conditioned on 𝑧. Intuitively, when applied to sentence representations, 𝜁 represents
information about 𝑥 that is not encoded in the sentence vector 𝑧𝑤 . However, the CVAE is liable
to learn to reconstruct 𝑥 for any 𝑤, even when 𝑤 has incomplete or even incorrect information, by
encoding the entire informational context of 𝑥 in 𝜁 . To minimize over-dependence on 𝜁 , we regularize
𝑠𝜙 when training the discretizer 𝑑𝜃 using the KL-divergence between 𝑃𝜙 (𝜁 |𝑥, 𝑧𝑤) and 𝑃(𝜁 |𝑧𝑤)
= N(0, 1), effectively penalizing the model for sampling 𝑤’s based the ineffable content, or the
information lost through discretization, measured as the number of additional bits of information that
are needed to reconstruct 𝑥 [21].

log 𝑠𝜙 (𝑥, 𝑧𝑤) = log 𝑃𝜙 (𝑥 |𝜁, 𝑧𝑤) − 𝐷KL (𝑃𝜙 (𝜁 |𝑥, 𝑧𝑤) ∥ 𝑃(𝜁 |𝑧𝑤) = N(0, 1)) (2)

The trained model exhibits high compositionality and moderate disentanglement. Figure 2d shows
samples drawn from the red square composed of tokens that represent red hues (‘h’), the right region
(‘o’), and the top region (‘v’). To measure compositionality, we trained a linear decoder that takes a
length-5 token sequence as a bag-of-words 5-hot vector and outputs to a probability distribution over
the possible values of each feature. Because the contribution from each token is strictly additive in
a linear decoder without interaction between the tokens, this model would only be able to predict
accurately if the emergent language is compositional. We find that the position and individual RGB
values of inputs can be linearly decoded with high accuracy, but not shape and scale, though even
these are above chance (Table 1).

As a preliminary baseline, we performed principal component analysis (PCA) on the images to reduce
their dimensions to 5 principal components, randomly projected these components to 35 dimensions,
and binarized the dimensions by setting the 5 dimensions with the highest magnitude to 1 and all
others to 0 to produce a 5-hot vector. This produces a length-5 discrete code with the same structure
as the sentences sampled by our model. We also trained a zero-step model where we removed the
dynamics module and conditioned the discretization directly on 𝑧0, which allows us to evaluate
the model’s capacity to discretize its distributed latent representations without constraining it for
biological plausibility. While the attractor model results in a higher accuracy than the PCA baseline,
the zero-step model does better still, suggesting that there remains a gap in how well the attractor
dynamics model can learn compositional code, likely due to the challenges of efficient exploration
and credit assignment in traversing through a high-dimensional continuous space.

4 Discussion

The model we introduce in this paper builds on the theoretic advancements toward neurally plausible
implementation of symbolic thought using attractor dynamics that partitions the space into discrete
basins as proposed in Ji et al. [21]. The trajectory from the initial latent representation of the
input to an attractor represents the loss of ineffable information, so that the resulting representation
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Table 1: Prediction accuracy
of linear classifiers on a held-
out set of dSprites images and
their features. PCA results
indicate top accuracy out of
100 random projections.

X Y Shape Scale Color R G B

Chance 20.0 20.0 33.3 16.7 14.3 50.0 50.0 50.0
PCA (max) 97.1 99.4 48.6 27.9 14.3 55.6 64.4 63.2
0 steps 95.4 94.2 88.7 40.2 92.9 94.1 98.1 98.6
Attractors 98.1 98.8 56.0 43.1 69.2 91.9 85.8 84.5

at the end of the trajectory is stable and resembles a symbolic entity, despite having arisen from
distributed neural dynamics. Moreover, the model also provides a way to measure this decomposition
of the input’s informational content into its ineffable and effable components using the additional
information provided by the input that is not contained in the symbolic representation.

We also show how properties of language can provide the inductive bias for learning compositional
codes that represent rich, sensory information. However, a key limitation in our approach is that
although the final resulting model successfully implements discretization from dynamics alone,
the training method still relies on an explicit discretizer. Nevertheless, we view language as an
important informational bottleneck that encourages the emergence of compositionality and enables
the expressivity of reasoning and thought, and we hope to explore in future work how these explicit
forms of discretization may be relaxed during training while retaining their useful inductive biases.
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A GFlowNet Training Objective

The objective we use, detailed balance with forward-looking flow parametrization (FL-DB) [22, 28],
requires optimizing several auxiliary objects: an estimate of the backward dynamics 𝑃←

𝜃
(𝑧𝑡 |𝑧𝑡+1, 𝑡 +

1, 𝑥) and a ‘forward-looking flow’ model 𝑔𝜃 (𝑧𝑡 , 𝑥, 𝑡) constrained to equal 0 when 𝑡 = 𝑇 . The forward
and backward dynamics models are conditional Gaussian distributions with means and variances
predicted by a neural network, so sampling of the policy is equivalent to Euler-Maruyama simulation
of a stochastic differential equation. (Note that the forward dynamics are time-independent.) The
FL-DB objective for a trajectory 𝑧0 ⇝ 𝑧𝑇 , with symbol sequences 𝑤𝑖 sampled from each 𝑧𝑖 , is:

Ltraj =

𝑇−1∑︁
𝑡=0

(
log

(
𝑔𝜃 (𝑧𝑡 , 𝑥, 𝑡)

𝑔𝜃 (𝑧𝑡+1, 𝑥, 𝑡 + 1)
𝑅𝜙 (𝑧𝑡 , 𝑤𝑡 , 𝑥)

𝑅𝜙 (𝑧𝑡+1, 𝑤𝑡+1, 𝑥)
𝑑𝜃 (𝑤𝑡+1 |𝑧𝑡+1, 𝑥)
𝑑𝜃 (𝑤𝑡 |𝑧𝑡 , 𝑥)

𝑃𝜃 (𝑧𝑡+1 |𝑧𝑡 , 𝑥)
𝑃←
𝜃
(𝑧𝑡 |𝑧𝑡+1, 𝑥, 𝑡 + 1)

))2
(3)

Although this objective is sufficient to train the model, jointly learning the dynamics and the discretizer
can be difficult in practice. To improve training efficiency, the discretizer can be optimized separately
by minimizing Eq. 4 with respect to the discretizer parameters and a learned estimator 𝐹𝜃 (𝑧, 𝑥)
and interweaving the updates between the dynamics and discretizer models. We note that although
we define the discretization function as a distribution for the purposes of the GFN objective, its
probability mass collapses to a single token sequence as 𝑧 approaches 𝑧𝑤 , becoming effectively a
deterministic mapping.

Ldisc =

(
log

𝑑𝜃 (𝑧, 𝑥)𝑑𝜃 (𝑤 |𝑧, 𝑥)
𝑅𝜙 (𝑧, 𝑤; 𝑥)

)2
(4)

A significant challenge in training is that the reward penalizes based on distance from the sentence
embedding at every point along the trajectory. Consequently, when there are two sentences that are
equally representative of an input, the model will favor exploring the closer embedding and be slow
to learn the more distant embedding as an attractor. Therefore, while the model can in theory learn to
sample both modes with equal probability given sufficient training, this may take a very long time in
practice. One possibility to accelerate training is to train the discretizer with its reward independent of
𝑥, such that 𝑅𝜙 (𝑤; 𝑥) only measures how well 𝑤 encodes 𝑥 without considering the distance between
𝑧 and 𝑧𝑤 . The reward 𝑅𝜙 (𝑧, 𝑤, 𝑥) is kept as is in Ltraj so that the dynamics are still encouraged to
move closer to the sentence embeddings.

The placement of the initial latent 𝑧0 is trained using Eq. 5 by treating the flow at the start of the
trajectory as the reward, weighted by the variational autoencoder (VAE) objective [29] to encourage
mutual information between 𝑧0 and 𝑥.

Linit =

(
log

𝐹𝜃 (𝑥)𝑃𝜃 (𝑧0 |𝑥)
𝑃(𝑧0)𝑃𝜙 (𝑥 |𝑧)𝐹𝜃 (𝑧0, 𝑥, 𝑡 = 0)

)2
(5)
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B Training Details

In both experiments, we use a multi-layer perceptron (MLP) for the dynamics models that outputs
the means and standard deviations of a Gaussian to sample the next step in the trajectory. We also
use MLPs for the discretizer models 𝑑𝜃 , where given 𝑧, the model simultaneously outputs 𝑃(𝑤𝑖 |𝑧)
for each position 𝑖 in the token sequence. We use a recurrent network for the embedding model
𝑒𝜙 : 𝑤 ↦→ 𝑧 in the Gaussians task, where the memory vector is initialized as a projection of 𝑧, and
the output vector after reading all 𝑤𝑖 is used as 𝑧𝑤 . In the dSprites task, we use an MLP for 𝑒𝜙 . For
simplicity, we use a uniform prior in both experiments.

We allowed the Gaussians model to generate 2-token sequences with 4 possible tokens in each
position to account for the 4 × 4 Gaussians in the dataset. The dSprite model was allowed to generate
up to 5 tokens to account for each of the 5 features, with 7 possible tokens to account for the 7 colors,
which was the feature with the largest number of possible values. In the Gaussians task, the model
always chooses between 4 tokens for both token positions, but we allow variable-length sequences in
the dSprites task using a null token.

We use a fixed 𝜖 in computing the distance measure N(𝑧 | 𝑧𝑤 , 𝜖2). In the Gaussians task, we
use .04, the same as used in the similarity measure 𝑠(𝑥, 𝑧𝑤). For the dSprites task, due to the high
dimensionality of the latent space, we tune 𝜖 by pre-training a VAE to learn 𝑃(𝛾 | 𝑤) = N(𝛾 | 𝑧𝑤 , 𝜖2)
and 𝑃(𝑤 | 𝛾) with a single 𝜖 value for the whole model.

To accelerate training and help prevent modal collapse, we initialize the dSprites model with pretrain-
ing. First, rather than starting with attractors determined by a randomly initialized neural network
that would place all attractors near the origin, we take the 𝑧𝑤 learned by the VAE used to tune 𝜖 .
Second, learning 𝑃𝜃 (𝑧0 | 𝑥) and 𝑃𝜙 (𝑥 | 𝑧) can be challenging using the GFlowNet objective alone
since the gradient is not passed through end-to-end, and so we pre-train these functions using the
VAE objective instead. We note that 𝑃𝜃 (𝑧0 | 𝑥) learned as a standard VAE is unlikely to produce
compositional representations, and were not observed to do so in any of our experiments. Lastly,
we use the reconstruction score from 𝑃𝜙 (𝑥 | 𝑧) as the reward function to initialize the GFlowNet
modules (𝑃𝜃 (𝑧𝑡+1 | 𝑧𝑡 , 𝑥), 𝑃←𝜃 (𝑧𝑡 | 𝑧𝑡+1, 𝑥, 𝑡 + 1), and 𝑑𝜃 (𝑧)), which in turn is used to initialize the
CVAE.
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Algorithm 1 Train dSprites model

1: Train 𝑃𝜙 (𝛾 | 𝑤) = N(𝛾 | 𝑒𝜙 (𝑤), 𝜖2) using VAE objective
2: Train 𝑃𝜃 (𝑧0 | 𝑥) and 𝑃𝜙 (𝑥 | 𝑧) using VAE objective

3: repeat
4: E-step using log 𝑠← 𝑃𝜙 (𝑥 | 𝑧)
5: until convergence

6: repeat
7: M-step
8: until convergence

9: repeat
10: E-step
11: M-step
12: until convergence

13: Train marginalized models 𝑃(𝑧𝑡+1 | 𝑧𝑡 ) and 𝑃(𝑧𝑡 | 𝑧𝑡+1, 𝑡 + 1) using MLE

Algorithm 2 E-step

1: Sample 𝑧0 ∼ 𝑃𝜃 (𝑧0 | 𝑥)

2: repeat
3: Sample 𝑧𝑡 ∼ 𝑃𝜃 (𝑧𝑡 | 𝑧𝑡−1, 𝑥)
4: Sample 𝑤𝑡 ∼ 𝑑𝜃 (𝑧𝑡 )
5: until some stopping condition

6: L = L𝑖𝑛𝑖𝑡 (𝑥, 𝑧0) + L𝑡𝑟𝑎 𝑗 (𝑥, 𝑧0, ..., 𝑧𝑇 , 𝑤0, ..., 𝑤𝑇 ) + L𝑑𝑖𝑠𝑐 (𝑥, 𝑤0, ..., 𝑤𝑇 ) ⊲ Eq. 3, 4, 5
7: Update 𝜃 using ∇L

Algorithm 3 M-step

1: Sample 𝑧0 ∼ 𝑃𝜃 (𝑧0 | 𝑥)

2: repeat
3: Sample 𝑧𝑡 ∼ 𝑃𝜃 (𝑧𝑡 | 𝑧𝑡−1, 𝑥)
4: until some stopping condition

5: Sample 𝑤 ∼ 𝑑𝜃 (𝑧𝑇 )
6: 𝑧𝑤 ← 𝑒𝜙 (𝑤)
7: L = − log 𝑠𝜙 (𝑥, 𝑧𝑤) ⊲ Eq. 2
8: Update 𝜙 using ∇L
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C Sampling

Given a fully trained model, we enumerate some of the possible ways to sample from the model. The
steps below assume the model was trained on the dSprites dataset, where 𝑧0 is a latent representation
of 𝑥.

1. 𝑃(𝑧0, ..., 𝑧𝑇 | 𝑥): To sample a trajectory from an image, first sample 𝑧0 ∼ 𝑃(𝑧0 | 𝑥) to get
the initial encoding of the input. We then iteratively sample 𝑧𝑡+1 ∼ 𝑃(𝑧𝑡+1 | 𝑧𝑡 ) if using the
marginalized model or 𝑧𝑡+1 ∼ 𝑃(𝑧𝑡+1 | 𝑧𝑡 , 𝑥) using the input-dependent model.

2. 𝑑𝜃 (𝑤 | 𝑥): To sample a sentence from an image, first sample the trajectory (𝑧0, ..., 𝑧𝑇 )
using the above procedure, then sample 𝑑𝜃 (𝑤 | 𝑧𝑇 , 𝑥). If 𝑧𝑇 is sufficiently close to 𝑧𝑤 , then
𝑑𝜃 (𝑤 | 𝑧𝑇 , 𝑥) will be almost deterministic.

3. 𝑃(𝑥 | 𝑤): To sample an image from a sentence, map 𝑤 to 𝑧𝑤 using the embedding function,
then use the marginalized backward dynamics 𝑃←

𝜃
(𝑧𝑡 |𝑧𝑡+1, 𝑡 + 1) starting from 𝑧𝑤 for 𝑇

steps to get (𝑧0, ..., 𝑧𝑇−1, 𝑧𝑤). Use the reconstruction model 𝑃𝜃 (𝑥 | 𝑧0) to map 𝑧0 into the
input space.
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