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Abstract

Contrastive learning methods in computer vision typically rely on different views1

of the same image to form pairs. However, in medical imaging, we often seek2

to compare entire patients with different phenotypes rather than just multiple3

augmentations of one scan. We propose harnessing clinically relevant tabular4

data to identify distinct patient phenotypes and form more meaningful pairs in a5

contrastive learning framework. Our method uses tabular attributes to guide the6

training of visual representations, without requiring a joint embedding space. We7

demonstrate its strength using short-axis cardiac MR images and clinical attributes8

from the UK Biobank, where tabular data helps to more effectively distinguish9

between patient subgroups. Evaluation on downstream tasks, including fine-tuning10

and zero-shot prediction of cardiovascular artery diseases and cardiac phenotypes,11

shows that incorporating tabular data yields stronger visual representations than12

conventional methods that rely solely on image augmentations or combined image-13

tabular embeddings. Our results show that tabular-guided training produces strong14

unimodal image encoders, highlighting the potential of our approach for medical15

foundation model development.16

1 Introduction17

Biobanks provide large-scale multimodal medical datasets that can be leveraged to train medical18

foundation models. These datasets typically include imaging modalities, such as magnetic resonance19

(MR) or computed tomography (CT) scans, alongside structured tabular data describing demographics20

and clinical history. Despite the potential of image-tabular methods, integrating those two modalities21

remains limited, even though clinicians routinely combine such information for diagnosis. In22

cardiology, for instance, sex, age, and smoking status are key indicators of cardiovascular disease23

risk (7; 1), the leading cause of death worldwide (17). This highlights the importance of developing24

models that jointly leverage tabular and imaging data for improved clinical decision-making. However,25

extensive tabular information available in biobanks is often missing in practice due to time constraints26

in clinical workflows (6), motivating approaches that use tabular data only during training while27

enabling image-only inference. Contrastive learning has proven effective for multimodal data28

integration, particularly in image–text settings (19; 3). Extending this idea, Hager et al. (10) proposed29

using tabular data to supervise medical image encoders, but their formulation relied on rigid one-to-30

one sample pairing, overlooking clinical similarity between patients. Such strategies can introduce31

false negatives (13), where clinically similar patients are pushed apart in the embedding space. Recent32

findings further suggest that unimodal training can rival or surpass multimodal supervision in vision33

tasks (8; 14), motivating our vision-centric approach that exploits tabular data as training guidance34

rather than as a joint modality.35
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We introduce Tables Guide Vision (TGV), a contrastive learning framework that leverages tabular36

similarity to construct clinically meaningful image pairs for unimodal visual representation learning.37

Unlike prior multimodal approaches, TGV uses tabular data solely to guide pair selection during38

training, enabling unimodal prediction at inference. Furthermore, we propose a modified k-nearest39

neighbors (k-NN) aggregation method for zero-shot prediction, where class or phenotype estimates40

are obtained from the mean labels of the most similar reference embeddings. We evaluate TGV41

using cardiac MR images and tabular attributes from the UK Biobank (16), demonstrating strong42

performance on cardiovascular artery disease (CAD) classification and cardiac phenotype prediction.43

2 Methodology44

We follow the setting of SimCLR (4), using a vision encoder E to obtain image embeddings v ∈ Rd,45

followed by a projection head fv mapping them to z ∈ Rp.46

2.1 Defining Tabular-Guided Pairs47

Each image xi in a batch of size N is associated with tabular attributes ai = {aconi
, acati}. We com-48

pute a pairwise similarity matrix S ∈ RN×N by combining continuous and categorical similarities:49

S = λScon + (1− λ)Scat, (1)

where Scon is derived from normalized Euclidean distances between continuous variables, Scat from50

cosine similarity of categorical attributes, and λ balances their contributions.51

2.2 Tabular Data–Guided Visual Learning52

For each image xi, the most similar samples within a threshold h of the maximum similarity score in53

S are defined as positives. The contrastive loss aligns representations of similar images while pushing54

dissimilar ones apart:55

L =
1

N

N∑
i=1

− log

(∑
j∈pos exp(⟨zi, zj⟩/τ)∑N
j=1 exp(⟨zi, zj⟩/τ)

)
, (2)

where τ is a temperature parameter.56

2.3 Zero-Shot Prediction57

To enable zero-shot inference in a unimodal setting, we use a reference set P = {vj} of training58

embeddings with known tabular attributes. For an unseen image xi, cosine similarity sij is computed59

to all vj ∈ P , and the target attribute is predicted as the mean value over the top-K most similar60

samples:61

âi =
1

K

∑
j∈Ni

aj , (3)

where Ni denotes indices of the top-K similar embeddings.62

3 Experimental Setting & Results63

3.1 Dataset64

We train and evaluate our method on the UK Biobank population study (16), comprising 49,73765

pairs of short-axis cardiac MR images and tabular data. The data are split into 39,975 training, 2,79466

validation, and 6,968 test samples. Each MR volume includes 11 slices over 10 frames uniformly67

sampled from 50-frame cine sequences, zero-padded and cropped to 128 × 128. The tabular data68

contain 24 attributes (10 categorical, 14 continuous), including cardiac phenotypes such as left and69

right ventricular ejection fraction, and demographic and clinical information (e.g., sex, smoking70

status, and coronary artery disease (CAD) indicators). CAD attributes follow ICD-10 definitions71

from (10). For multi-label CAD prediction, we use a disease-balanced subset of 6,426 samples,72

considering only pre-scan diagnoses. Fine-tuning for cardiac phenotype prediction is performed on73
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CAD ↑ LVEF ↓ LVEDM ↓ LVEDV ↓ RVEF ↓ RVEDV ↓ MYOESV ↓
Model ZS FT ZS FT ZS FT ZS FT ZS FT ZS FT ZS FT

Mean-Guess - - 4.81 - 17.85 - 29.54 - 4.73 - 26.73 - 17.85 -

Supervised
ResNet50 (11) - 65.61 - 4.31 - 5.59 - 10.27 - 3.81 - 8.55 - 6.44

Image Augmentation
SimCLR (4) 62.05 71.68 4.72 3.49 13.01 5.25 23.26 9.82 4.71 3.18 21.89 8.25 13.48 6.06
BYOL (9) 56.99 67.32 4.92 3.99 16.43 5.74 27.81 10.31 4.95 3.39 26.29 7.99 16.19 5.96
SimSiam (5) 57.01 69.89 4.93 3.93 16.04 6.59 27.46 11.09 4.94 3.43 25.62 8.52 16.14 5.89
Barlow Twins (18) 55.12 65.01 4.90 3.57 16.54 6.12 27.17 11.01 4.97 3.39 25.98 8.35 16.52 6.14

Tabular Supervision
MMCL (10) 62,49 72.91 4.48 3.27 8.74 5.63 15.12 9.95 4.55 3.12 13.70 7.47 9.54 5.51

Tabular Guidance
TGV (Ours) 68.70 76.1 4.08 3.18 7.64 4.86 13.63 9.23 3.98 2.95 12.43 7.39 8.18 5.2

Table 1: Downstream task performance comparison for multi-label CAD classification evaluated
using AUC and cardiac phenotype prediction (remaining columns, ↓) using MAE. ZS stands for
zero-shot, FT for fine-tuning. The best result is shown in bold, while the second-best is underlined.

5,000 samples, with label quality checks following (2). A balanced reference set of 2,000 patients74

is used for zero-shot prediction, where predictions are averaged over the top 20% most similar75

embeddings for CAD classification and 2.5% for phenotype estimation, with percentages tuned on76

the validation set.77

3.2 Tabular Guidance Outperforms Image Augmentation and Tabular Supervision78

We benchmark our approach against both supervised and contrastive learning baselines. Specifically,79

we compare with a supervised ResNet50 (12) and five self-supervised methods: four image-only80

models, SimCLR (4), SimSiam (5), Barlow Twins (18), and BYOL (9), and one multimodal method,81

MMCL (10), which applies tabular supervision in a CLIP-like manner (15). All models are evaluated82

on two downstream tasks. The first is multilabel coronary artery disease (CAD) classification,83

evaluated using the area under the ROC curve (AUC), which provides a robust evaluation metric84

for imbalanced datasets with few pathological samples. The second task is cardiac phenotype85

prediction, evaluated using mean absolute error (MAE) across six attributes: left ventricular ejection86

fraction (LVEF), left ventricular end-diastolic mass (LVEDM), left ventricular end-diastolic volume87

(LVEDV), right ventricular ejection fraction (RVEF), right ventricular end-diastolic volume (RVEDV),88

and myocardial end-systolic volume (MYOESV). These metrics comprehensively assess model89

performance across both systolic and diastolic phases and capture all major cardiac regions. Table 190

summarizes results for zero-shot and fine-tuned evaluations, with zero-shot scores averaged across91

three representative patient sets P .92

Our method consistently achieves the best results across all tasks and evaluation modes, demonstrat-93

ing the effectiveness of integrating tabular information into visual representation learning. These94

findings indicate that forming pairs using clinically meaningful tabular attributes leads to stronger95

representations than conventional augmentation-based sampling. Furthermore, TGV surpasses tabular96

supervision, suggesting that enforcing a shared embedding space with tabular data can constrain the97

image encoder and reduce its capacity to extract informative visual cues. In contrast, tabular guidance98

encourages the model to internalize clinically relevant patterns directly from the images, resulting in99

a more expressive and semantically aligned visual encoder.100

4 Conclusion101

We present TGV, a contrastive learning paradigm leveraging tabular data to generate clinically102

meaningful pairs for training of visual representations. Our approach outperforms augmentations-103

based image only contrastive learning and tabular-supervision on CAD classification and cardiac104

phenotype prediction, highlighting the strength of our approach in a medical setting. Additionally, we105

propose a zero-shot prediction method compatible with unimodal image representations, overcoming106

a crucial limitation of those representations. TGV can be leveraged to train medical foundation107

models grounded on rich clinical information, paving the way for more robust and generalizable108

medical models.109
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