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Abstract
The ability to detect OOD data is a crucial as-
pect of practical machine learning applications.
In this work, we show that cosine similarity be-
tween the test feature and the typical ID feature is
a good indicator of OOD data. We propose Class
Typical Matching (CTM), a post hoc OOD detec-
tion algorithm that uses a cosine similarity scor-
ing function. Extensive experiments on multiple
benchmarks show that CTM outperforms existing
post hoc OOD detection methods.

1. Introduction
In machine learning, distribution shift is the problem where
the test distribution is not identical to the training distri-
bution. Deep learning (DL) models, including those with
good i.i.d. generalization performance, often perform poorly
when distribution shifts occur (Nguyen et al., 2014). In
real-world applications, distribution shifts are unavoidable
because the environment changes in time. An emerging
requirement for DL systems is that they must be able to
handle distribution shifts (Amodei et al., 2016).

A common approach to the distribution shift problem is to
detect out-of-distribution (OOD) samples, samples from
the shifted distribution, and remove them from the test
data. There is a wide array of OOD detection methods,
ranging from classification-based, and density-based to
distance-based methods (Yang et al., 2021). Classification-
based methods, which classify incoming data as OOD or
in-distribution (ID) based on the confidence or feature em-
bedding assigned by a classifier, are some of the most com-
monly used methods. Several improvements to classifica-
tion methods have been proposed, including modifying the
loss function (Wei et al., 2022; Ming et al., 2023), chang-
ing the classifier architecture (Malinin & Gales, 2018), and

1FPT Software AI Center 2VinUniversity 3Johns Hop-
kins University. Correspondence to: Nguyen Ngoc-Hieu
<ngochieutb13@gmail.com>.

Published at the ICML 2023 Workshop on Spurious Correlations,
Invariance, and Stability. Baltimore, Maryland, USA. Copyright
2023 by the author(s).

using post hoc processing techniques (Hendrycks & Gim-
pel, 2017; Liang et al., 2017; Liu et al., 2020; Lee et al.,
2018b). Among these techniques, post hoc methods are
often preferred in practice due to their simplicity and ease
of integration with pre-trained models without the need for
additional training.

In this paper, we introduce Class Typical Matching (CTM),
a post hoc algorithm for OOD detection. CTM is based on
our observation that the cosine similarity between the test
input’s feature and the in-distribution features is very useful
for OOD detection (Section 2.2). Different from other post
hoc methods such as Mahalanobis (Lee et al., 2018a)
and KNN (Sun et al., 2022) which leverage Euclidean dis-
tance in the feature space, our method uses cosine similarity
for OOD score computation. In section 4, we theoretically
show that cosine similarity is a good indicator for OOD
samples. Our contributions are as follows:

1. Our main contribution is CTM, a post-hoc method
that leverages angular information to enhance OOD
detection performance.

2. We conduct comprehensive experiments and ablation
studies to demonstrate the effectiveness of our method
across 3 ID datasets and 10 OOD datasets.

3. We also provide theoretical insight into the relationship
between CTM and influence measures.

2. Method
2.1. Prelimaries

Problem statement. We denote X ⊆ Rd the input space
and Y = {y1, . . . , yC} the label space. A classifier f :
X 7→ RC learns to map a given input x ∈ X to the out-
put space. Let ptrain(x, y) denote a probability distribution
defined on X × Y . Further more, let ptrain(x) and ptrain(y)
denote the marginal probability distribution on X and Y , re-
spectively. The goal is to design a binary function estimator
g : X → {in, out} that classifies whether a test example x
is generated from ptrain(x) or not.

The concept of distribution shift is very diverse. It presents a
challenge because being robust against one type of shift does
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not mean it will be effective against another shift. Therefore,
it is important to characterize real-world shifts in order
to develop effective methods for mitigating their impact.
In this paper, we work with the image data and adopt an
experimental setting presented in previous works where
OOD samples are drawn from unknown classes (Fang et al.,
2022; Yang et al., 2021).

One common approach to out-of-distribution (OOD) detec-
tion is to construct a scoring function S : X 7→ R that as-
signs lower scores to points drawn from an out-distribution
q(x). The detector, denoted as g, is then constructed based
on the level set obtained from the score function

g(x) =

{
ID, if S(x) ≥ λ

OOD, if S(x) < λ
,

where S(x) denotes a scoring function and λ is commonly
set so that g correctly classifies a high proportion (e.g., 95%)
of in-distribution (ID) data.

Notation. Posthoc methods often use a trained neural net-
work to derive the score function. A trained deep NN classi-
fier generally consists of two components: (1) a deep feature
extractor that maps the input to a feature embedding and
(2) a head that maps the embedding to an output. The most
common choice for feature embedding is the output of the
penultimate layer just before the classification layer. We
denote the feature embedding map by h : X 7→ Rm, where
m is the dimension of the embedding. Given x ∈ X , denote
z ∈ Rm the feature of x i.e. z = h(x). The last FC layer in
a neural network is given by:

f(x) = Wh(x) + b = Wz+ b (1)

where W ∈ RC×m is the weight matrix, and b ∈ RC is
the bias vector. We also denote wk the k-th row of W . For
operators, we denote ⟨·, ·⟩ the inner product between two
vectors and ∥ · ∥ is the Euclidean norm.

2.2. Method

Hendrycks et al. (2022) show that the Maximum logit score
is a strong baseline for large-scale OOD detection. This
method scores each input by the largest values of their logits
vector. Concretely, given the input’s penultimate feature z
the score is computed by the following equation:

max
k

⟨wk, z⟩+ bk

where wk and bk are weights and bias of the last layer w.r.t
class k. This score function can also be formulated as

max
k

∥wk∥∥z∥ cos(wk, z) + bk

where cos(wk, z) is the cosine similarity between wk and
z. This formulation separates norm terms (∥wk∥, ∥z∥) and

angular term cos(wk, z). Note that for a particular input, the
model’s prediction is argmaxk ∥wk∥∥z∥ cos(wk, z) + bk.
As ∥z∥ is fixed for different k and the terms ∥wk∥ and
bk are independent of the input, the cosine similarity term
cos(wk, z) carries the most information for the model’s pre-
diction. When the cos(wk, z) values are similar for different
k values, the score is influenced by the norms of wk and bk.
This can make the OOD problem more challenging if the
OOD sample is assigned to a class with larger weight norm
∥wk∥ and bias bk. We also observe that the norm of OOD
feature embeddings can be large and increase the score. In
fact, Sun et al. (2022) found that using the normalized penul-
timate feature greatly improves the KNN method, while Wei
et al. (2022) suggests that the norm of logit is the source
of the over-confident behavior of neural network trained
with cross-entropy loss. CIDER (Ming et al., 2023) uses
hypersphere representation to benefit OOD detection tasks
by designing an end-to-end loss function. We argue that
using only the term cos(wk, z) can retain the performance
on the OOD detection task. Furthermore, our empirical
finding suggests that replacing wk with µk - the mean of
feature vectors in class k, and using cos(µk, z) improve
OOD detection performance. Intuitively, this score can be
thought of as computing the similarity between the input’s
feature and the typical feature of class k.

From the above motivation, we propose using cosine simi-
larity with within-class feature mean µk for OOD detection

g(x) =

{
ID, if max

k
cos(µk, z) ≥ λ

OOD, otherwise
,

where λ is the threshold. The score function S(x) =
maxk cos(µk, z) measures the similarity between the test
input’s feature and within-class mean features. In the next
section, we show that this simple idea is, in fact, very effec-
tive for detecting OOD inputs.

3. Experiments
In this section, we present the experimental results of CTM
on several benchmarks and an ablation study of the method.

3.1. Experimental Setup

Datasets and models. We conducted experiments on mod-
erate and large-scale benchmarks. The moderate bench-
marks include CIFAR-10 and CIFAR-100 (Krizhevsky et al.,
2009) as in-distribution datasets and six out-of-distribution
datasets: SVHN (Netzer et al., 2011), LSUN-Crop (Yu et al.,
2015), LSUN-Resize (Yu et al., 2015), iSUN (Xu et al.,
2015), Textures (Cimpoi et al., 2014), and Places365 (Zhou
et al., 2017). The model used in the CIFAR benchmarks is
a pre-trained DenseNet-101 (Huang et al., 2017). The pro-
posed method was also evaluated on a large-scale dataset,
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Table 1. OOD detection results on ImageNet. Proposed and baseline methods are based on a ResNet-50 (He et al., 2016) model trained
on ImageNet-1k (Deng et al., 2009) only. ↓ indicates smaller values are better and ↑ indicates larger values are better.

OOD Datasets

Methods iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Softmax score (Hendrycks & Gimpel, 2017) 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99
MaxLogit (Hendrycks et al., 2022) 50.78 91.15 60.42 86.44 66.07 84.03 54.93 86.39 58.05 87.00
ODIN (Liang et al., 2017) 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41
Mahalanobis (Lee et al., 2018b) 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47
Energy score (Liu et al., 2020) 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17
KNN (Sun et al., 2022) 59.08 86.20 69.53 80.10 77.09 74.87 11.56 97.18 54.32 84.59

CTM (Our) 22.58 95.51 55.02 85.55 63.07 81.73 15.25 96.70 38.98 89.87

using ImageNet-1k (Deng et al., 2009) as the ID dataset
and four OOD datasets: iNaturalist (Van Horn et al., 2018),
SUN (Xiao et al., 2010), Place365 (Zhou et al., 2017), and
Textures (Cimpoi et al., 2014). We used ResNet-50 (He
et al., 2016) as the backbone for the ImangeNet benchmark.
All networks were pre-trained using ID datasets without
regularizing on auxiliary outlier data. The model parame-
ters remained unchanged during the OOD detection phase,
providing a fair comparison among the different methods.

Evaluation metrics. In our study, we evaluated the per-
formance of OOD detection by measuring the following
metrics: (1) the False Positive Rate (FPR95), which is the
percentage of OOD images that were wrongly classified as
ID images when the true positive rate of ID examples is 95%;
(2) the Area Under the Receiver Operating Characteristic
curve (AUROC), which assesses the overall performance
of the OOD detection method; and (3) the Area Under the
Precision-Recall curve (AUPR).

3.2. Results on both CIFAR and ImageNet benchmarks

We compared our method with other established post-hoc
methods that do not require modifying the training pro-
cess and have similar computational complexity and time
requirements. Specifically, we selected MSP (Hendrycks
& Gimpel, 2017), MaxLogit (Hendrycks et al., 2022),
Energy (Liu et al., 2020), ODIN (Liang et al., 2017),
Mahalanobis (Lee et al., 2018b), and KNN (Sun et al.,
2022). The results of the CIFAR evaluations are presented
in Table 2. We report the average performance over the six
OOD datasets for 2 evaluation metrics: FPR95 and AUROC.
On average CTM has 96.40% AUROC on CIFAR-10 and
89.11% AUROC on CIFAR-100, which is competitive with
KNN method on CIFAR-10 and surpasses it on CIFAR-100
benchmark while algorithmically simpler. Detailed perfor-
mance on individual datasets is reported in Appendix B.

Table 1 presents the performance of OOD detection methods

Table 2. OOD detection results on CIFAR benchmarks. The
results were averaged from 6 OOD datasets and measured in terms
of FPR95 and AUROC. All values are percentages. All methods
are based on a DenseNet-101 (Huang et al., 2017) model trained
on ID data only.

CIFAR-10 CIFAR-100

Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
Softmax score 48.73 92.46 80.13 74.36
MaxLogit 26.44 94.47 69.98 80.31
Energy score 26.55 94.57 68.45 81.19
ODIN 24.57 93.71 58.14 84.49
Mahalanobis 31.42 89.15 55.37 82.73
KNN 16.61 96.71 42.34 87.56

CTM (Ours) 18.23 96.40 41.76 89.11

on ImageNet. As we can see, CTM establishes favorable
performance across OOD datasets and evaluation metrics.
It reduces the FPR95 metrics by 15.43% compare to KNN.

3.3. Cosine similarity is informative.

We test the effectiveness of cosine similarity for OOD detec-
tion by making two modifications to the prediction process
of an already trained network, (1) remove the bias bk and
normalize wk and (2) normalize the penultimate features be-
fore feeding them to the linear layer. The prediction function
after these modifications is given by the following equation:

argmax
k

exp ⟨ŵk, ẑ⟩∑
c exp ⟨ŵc, ẑ⟩

= argmax
k

exp cos(wk, z)∑
c exp cos θc(z)

where ŵk = wk

∥wk∥ and ẑ = z
∥z∥ . We call this modification

CW stands for cosine with weight. CW discards the mag-
nitude component in z and the prediction is solely based
on its direction. We also present another modification: co-
sine with mean (CM) which replaces wk by the mean µk

of the training feature of class k. For this experiment we
use two architecture: WideResNet-40-2 (Zagoruyko & Ko-
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modakis, 2016) and DenseNet-101 (Huang et al., 2017),
and two datasets: CIFAR-10 and CIFAR-100. The result,
reported in table 3, suggests that using only angular infor-
mation cos(wk, z) can retain the most performance of the
OOD detection task without much degradation on the classi-
fication task. Notice that CM increases the OOD detection
performance by a large margin. These results verify our
motivation in section 2.2 that cosine similarity is informa-
tive for both classifying ID examples and detecting OOD
examples.

Table 3. Cosine similarity is effective. Test accuracy and OOD
Detection performance (AUROC) of models before and after mod-
ification.

Model & Dataset Test Accuracy AUROC

Standard/CW/CM Standard/CW/CM

WideResNet-40-2 + CIFAR-10 94.84/94.82/95.02 91.29/92.49/92.49
WideResNet-40-2 + CIFAR-100 75.95/75.93/75.03 77.39/79.77/86.95

DenseNet + CIFAR-10 94.52/94.55/94.40 94.62/94.40/96.40
DenseNet + CIFAR-100 75.08/74.69/71.66 80.28/75.01/89.11

4. An analysis of cosine similarity from
influence perspective

In this section, we analyze why using cosine similarity be-
tween the input feature and the mean is effective for out-
of-distribution detection. We show that cosine similarity
naturally arises from the influence perspective, which char-
acterizes how a function’s value at one input changes when
we modify its value at another input. In particular, given a
scalar output function gW parameterized by W , Charpiat
et al. (2019) proposes a kernel measuring the influence be-
tween two input z and z′:

Kg(z, z
′) =

⟨∇W gW (z),∇W gW (z′)⟩
∥∇W gW (z)∥∥∇W gW (z′)∥

.

This kernel measures how similar output of g at z and z′

change if the weight W is perturbed. Notice that the kernel
is bounded between [−1, 1]. If the value Kg(z, z

′) closes to
1 then gW (z) and gW (z′) response similar to each other for
a perturbation on W . Intuitively, large Kg(z, z

′) indicates
that z and z′ are similar under the point of view of g.

For the choice of g, inspired by Huang et al. (2021), we
let g be the Kullback–Leibler (KL) divergence between the
softmax output and a uniform distribution. Formally, denote
p = softmax(Wz + b) and p′ = softmax(Wz′ + b) as
predicted label probabilities assign to feature z and z′ by the
trained model. Then we have g = DKL(u||p), where DKL
is the KL divergence, and u is a uniform distribution on
labels, i.e u = [1/C, 1/C, . . . , 1/C] ∈ RC . The gradient
of g(z′) w.r.t W points to direction which increase model’s
uncertainty at z′. The kernel Kg now measure how much
the predicted distribution at z become uniform if the weight

W is perturbed such that increasing the uncertainty at z′.
Intuitively, if z′ is a typical ID point then this perturbation
will affect the model’s prediction on an ID input more than
on an OOD input. This also makes Kg agnostic to the true
label of z or z′.

Given the kernel Kg , for each test point z which is predicted
with label k, we chose the point z′ as the reference point
such that it represents class k and measure the influence be-
tween z′ and z. To get the value Kg(z, z

′), we first compute
the gradient of g w.r.t. W . We have

∇W gW (z) =
∂DKL(u||pW )

∂ vecW

= (u− p)⊤ ⊗ z⊤ ∈ RCd.

where ⊗ is Kronecker product. Assume that z is not a zero
vector and p is not uniform then ∥∇W gW (z)∥ > 0. Apply
the same assumption for z′ and p′ then

Kg(z
′, z) =

⟨∇W gW (z′),∇W gW (z)⟩
∥∇W gW (z′)∥∥∇W gW (z)∥

=
⟨u− p′,u− p⟩
∥u− p′∥∥u− p∥

· ⟨z′, z⟩
∥z′∥∥z∥

=
⟨p′,p⟩ − 1/C

∥u− p′∥∥u− p∥
· ⟨z′, z⟩
∥z′∥∥z∥

(2)

For z′ = µk, we observe that p′
W is approximately one-

hot vector with (p′
W )k = 1. This observation is consistent

with different architectures (DenseNet and ResNet) and
training datasets (CIFAR-10, CIFAR-100, and ImageNet-
1k). Substitute this one-hot vector p′ to equation 2, we
get

Kg(µk, z) =
pk − 1/C

(1− 1/C)(∥p∥2 − 1/C)
· cos(µk, z)

Since p is not uniform and pk = maxi(pW )i we have
(pk − 1/C) > 0 and (∥p∥2 − 1/C > 0). This suggests that
Kg(µk, z) and cos(µk, z) are positively correlated. There-
fore, a lower value of cos(µk, z) means that the typical ID
feature µk and the test input’s feature z are less related and
this could indicate an OOD input.

5. Conclusion
This paper introduces CTM, a post hoc approach to out-of-
distribution detection based on the use of cosine similar-
ity. The comprehensive experimental evaluation on 3 ID
datasets, 10 OOD datasets, and using 3 performance met-
rics proves the efficacy of CTM. The importance of both
feature embedding and an appropriate similarity measure
for effective OOD detection was also confirmed through ex-
periments. After theoretical analysis, we have demonstrated
that cosine similarity is a suitable indicator for identifying
OOD samples. We hope our work will encourage future
research into using angular information for OOD detection.
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A. Implimentation
Software and Hardware. All experiments are run with PyTorch and NVIDIA RTX3090 GPUs.

Number of evaluation. In each run, we select a subset from the OOD dataset such that its size is equal to the size of the
ID dataset. We run 5 times for each combination of method, ID data, and OOD data and report the average result.

Note on CIFAR results

• For the reimplementation of KNN with DenseNet-101, we tried a grid search, where the number of neigboors k include
{10, 20, 50, 100, 200, 400}. We report the best result out of all hyperparameter combinations, given by k = 50 for
CIFAR-10 and k = 200 for CIFAR-100.

B. Detailed CIFAR results
Table 4 and 5 present the full results on 6 OOD datasets for CIFAR-10 and CIFAR-100 benchmarks respectively.

C. Additional results
We include the result using MobileNetV2 (Sandler et al., 2018) for the ImageNet experiment in table 6.

D. Feature layers
The main results shown in the paper are generated by using features from the penultimate layer. In table 7, we show if we
use feature from different layers of the network (Illustrated in Figure 1).

Conv
3x3  Dense Block 1 Dense Block 2

Trans. 1

Trans. 2

R
eLU

Avg Pool

FCDense Block 3

PenultimateConv 1 Trans 1 Trans 2 Block 3

Figure 1. Diagram of DenseNet-101 architecture and indications of feature extraction layers.
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Table 6. OOD detection results on ImageNet. Proposed and baseline methods are based on a MobilenetV2 model trained on ImageNet-1k
(Deng et al., 2009) only. ↓ indicates smaller values are better and ↑ indicates larger values are better.

OOD Datasets

Methods iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Softmax score 64.29 85.32 77.02 77.10 79.23 76.27 73.51 77.30 73.51 79.00
ODIN 55.39 87.62 54.07 85.88 57.36 84.71 49.96 85.03 54.20 85.81
Mahalanobis 62.11 81.00 47.82 86.33 52.09 83.63 92.38 33.06 63.60 71.01
Energy score 59.50 88.91 62.65 84.50 69.37 81.19 58.05 85.03 62.39 84.91

CTM (Our) 46.66 90.41 71.28 77.55 78.86 73.03 14.49 96.60 52.82 84.39

Table 7. OOD detection results on CIFAR benchmarks. The results were averaged from 6 OOD datasets and measured in terms of
FPR95 and AUROC. All values are percentages. All methods are based on a DenseNet-101 (Huang et al., 2017) model trained on ID data
only.

CIFAR-10 CIFAR-100

Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
CTM before dense blocks 95.07 53.59 95.20 54.79
CTM after 1st Transition Block 66.10 81.73 68.21 76.15
CTM after 2nd Transition Block 25.91 92.24 62.87 78.09
CTM after 3rd Dense Block 16.29 96.25 58.69 80.35
CTM after penultimate Layer 18.23 96.40 41.76 89.11


