
Journal of Systems Architecture 110 (2020) 101766

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Attacking vision-based perception in end-to-end autonomous driving

models

☆

Adith Boloor a , ∗ , Karthik Garimella

a , Xin He

b , Christopher Gill a , Yevgeniy Vorobeychik

a ,
Xuan Zhang

a

a Washington University in St. Louis United States
b University of Michigan, Ann Arbor United States

a r t i c l e i n f o

Keywords:

Machine learning
Adversarial examples
Autonomous driving
End-to-end learning
Bayesian optimization

a b s t r a c t

Recent advances in machine learning, especially techniques such as deep neural networks, are enabling a range
of emerging applications. One such example is autonomous driving, which often relies on deep learning for per-
ception. However, deep learning-based perception has been shown to be vulnerable to a host of subtle adversarial
manipulations of images. Nevertheless, the vast majority of such demonstrations focus on perception that is disem-
bodied from end-to-end control. We present novel end-to-end attacks on autonomous driving in simulation, using
simple physically realizable attacks: the painting of black lines on the road. These attacks target deep neural net-
work models for end-to-end autonomous driving control. A systematic investigation shows that such attacks are
easy to engineer, and we describe scenarios (e.g., right turns) in which they are highly effective. We define several
objective functions that quantify the success of an attack and develop techniques based on Bayesian Optimization
to efficiently traverse the search space of higher dimensional attacks. Additionally, we define a novel class of hi-

jacking attacks, where painting lines on the road cause the driverless car to follow a target path. Through the use
of network deconvolution, we provide insights into the successful attacks, which appear to work by mimicking
activations of entirely different scenarios. Our code is available on https://github.com/xz-group/AdverseDrive

1

s

m

a

r

d

f

c

I

s

a

d

s

t

W

y

s

a

t

d

t

e

t

a

s

i

a

t

t

s

o

h
R
A
1

. Introduction

With billions of dollars being pumped into autonomous vehicle re-
earch to reach Level 5 Autonomy, where vehicles will not require hu-
an intervention, safety has become a critical issue [3] . Remarkable

dvances in deep learning, in turn, suggest such approaches as natu-
al candidates for integration into autonomous control. One way to use
eep learning in autonomous driving control is in an end-to-end (e2e)
ashion, where learned models directly translate perceptual inputs into
ontrol decisions, such as the vehicle’s steering angle, throttle and brake.
ndeed, recent work demonstrated such approaches to be remarkably
uccessful, particularly when learned to imitate human drivers [4] .

Despite the success of deep learning in enabling greater autonomy,
 number of parallel efforts also have exhibited concerning fragility of
eep learning approaches to small adversarial perturbations of inputs
uch as images [5,6] . Moreover, such perturbations have been shown
o effectively translate to physically realizable attacks on deep models,
☆ This research was partially supported by NSF awards CNS-1739643, IIS-19
911NF1810208.
∗ Corresponding author.

E-mail addresses: adith@wustl.edu (A. Boloor), kvgarimella@wustl.edu (
vorobeychik@wustl.edu (Y. Vorobeychik), xuan.zhang@wustl.edu (X. Zhang).

s

b

ttps://doi.org/10.1016/j.sysarc.2020.101766
eceived 29 August 2019; Received in revised form 19 February 2020; Accepted 16 M
vailable online 4 April 2020
383-7621/© 2020 Elsevier B.V. All rights reserved.
uch as placing stickers on stop signs to cause miscategorization of these
s speed limit signs [2] . Fig. 1 (a) offers several canonical illustrations.

There is, however, a crucial missing aspect of most adversarial at-
acks to date: manipulations of the physical environment that have a
emonstrable physical impact (e.g., a crash). For example, typical at-
acks consider only prediction error as a measure of outcome and focus
ither on a static image, or a fixed set of views, without consideration of
he dynamics of closed-loop autonomous control. To bridge this gap, our
im is to study end-to-end adversarial examples. We require such adver-
arial examples to: 1) modify the physical environment, 2) be simple to
mplement, 3) appear unsuspicious, and 4) have a physical impact, such
s causing an infraction (lane violation or collision). The existing attacks
hat introduce carefully engineered manipulations fail the simplicity cri-
erion [5,7] , whereas the simpler physical attacks, such as stickers on a
top sign, are evaluated solely on prediction accuracy [2] .

The particular class of attacks we systematically study is the painting
f black lines on the road, as shown in Fig. 1 (b). These are unsuspicious
ince they are semantically inconsequential (few human drivers would
e confused) and are similar to common imperfections observed in the
05558 and CNS-1640624, ARO grant W911NF1610069 and MURI grant

K. Garimella), xinhe@umich.edu (X. He), cdgill@wustl.edu (C. Gill),

arch 2020

https://doi.org/10.1016/j.sysarc.2020.101766
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2020.101766&domain=pdf
https://github.com/xz-group/AdverseDrive
mailto:adith@wustl.edu
mailto:kvgarimella@wustl.edu
mailto:xinhe@umich.edu
mailto:cdgill@wustl.edu
mailto:yvorobeychik@wustl.edu
mailto:xuan.zhang@wustl.edu
https://doi.org/10.1016/j.sysarc.2020.101766

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

Fig. 1. (a) Existing attacks on machine learning models in the image [1] and
the physical domain [2] ; (b) conceptual illustration of potential physical attacks
in the end-to-end driving domain studied in our work.

r

d

m

i

t

a

l

f

o

t

r

o

o

t

w

a

t

g

a

a

c

t

O

d

o

o

p

e

d

m

p

v

t

2

2

m

n

i

w

s

i

w

t

T

g

r

u

p

i

d

o

r

u

i

d

2

d

i

m

d

s

c

e

i

t

t

e

(

a

f

v

l

d

i

j

C

a

f

t

l

d

o

t

s

t

w

d

a

c
eal world, such as skid marks or construction markers. Furthermore, we
emonstrate a systematic approach for designing such attacks so as to
aximize a series of objective functions, and demonstrate actual phys-

cal impact (lane violations and crashes) over a variety of scenarios, in
he context of end-to-end deep learning-based controllers in the CARLA
utonomous driving simulator [8] .

We consider scenarios where correct behavior involves turning right,
eft, and driving straight. Surprisingly, we find that right turns are by
ar the riskiest, meaning that the right scenario is the easiest to attack;
n the other hand, as expected, going straight is comparatively robust
o our class of attacks. We use network deconvolution to explore the
easons behind successful attacks. Here, our findings suggest that one
f the causes of controller failure is partially mistaking painted lines
n the road for a curb or barrier common during left-turn scenarios,
hereby causing the vehicle to steer sharply left when it would other-
ise turn right. By increasing the dimensionality of our attack space
nd using a more efficient Bayesian optimization strategy, we are able
o find successful attacks even for cases where the driving agent needs to
o straight. Our final contribution is a demonstration of novel hijacking

ttacks, where painting black lines on the road causes the car to follow
 target path, even when it is quite different from the correct route (e.g.,
ausing the car to turn left instead of right).

This paper is an extension our previous work [9] , with the key addi-
ions of new objective functions, a new optimization strategy, Bayesian
ptimization, and a new type of adversary in the form of hijacking self-
riving models. In this paper, we first talk about relevant prior work
n deep neural networks, adversarial machine learning in the context
f autonomous vehicles, in Section 2 . Then in Section 3 we define the
roblem statement and present several objective functions that math-
matically represent the problem statement. In Section 4 , we intro-
uce some optimization strategies. In Section 5 , we discuss our experi-
ental setup including our adversary generation library and simulation
ipeline. Section 6 shows how we were able to successfully generate ad-
ersaries against e2e models, and presents a new form of attack, dubbed
he hijacking attack where we control the route of the e2e model.

. Related work

.1. Deep neural networks for perception and control

Neural Networks (NN) are machine learning models that consist of
ultiple layers of neurons, where each neuron implements a simple
on-linear function (such as a sigmoid function), and where the output
s some prediction. Deep Neural Networks (DNNs) are neural networks
ith more than two layers of neurons, and have increasingly become the

tate-of-the-art approach for a host of vision based perception problems
n the context of autonomous vehicles. Deep convolutional neural net-
orks have been used to detect pedestrians, vehicles and other objects

hat could serve as obstacles on an autonomous vehicle’s path [10–15] .
hese networks have been trained on large image datasets such as Ima-
enet [16] and KITTI [17] for detection with nearly human level accu-
acy. DNNs, along with traditional computer vision practices have been
sed extensively for lane detection, which is a key part of the self-driving
ipeline [18–21] . Furthermore, DNN models have been created for the
mage segmentation task where the camera images are segmented into
ifferent classes such as roads, vehicles, pedestrians, traffic lights, and
ther hazards [22–25] . Rather than traditional depth estimation algo-
ithms which use stereo images or LiDAR point clouds, DNNs have been
sed to estimate depth using just single images as input [26–29] . This
s an important component of perception in self-driving vehicles so that
istances to other vehicles and obstacles can be estimated.

.2. End-to-end self-driving

While these perception modules are used in various stages of self-
riving stacks, end-to-end driving models are capable of directly learn-
ng driving decisions from camera images. End-to-end (e2e) learning
odels for self-driving are comprised of a DNN that accept raw input
ata like camera images and directly calculate the desired output such as
teering angle, throttle, and brake. Rather than explicitly decomposing a
omplex problem into its constituent parts and solving them separately,
2e self-driving models directly generate driving decisions from a set of
nputs. This is achieved by applying gradient-based learning methods to
he entire e2e neural architecture. End-to-end models have been shown
o have good performance when learning lane-following tasks; one such
xample is the Autonomous Land Vehicle In a Neural Network model
ALVINN), a 3-layer neural network which took as input a camera im-
ge and laser range finder value to output a steering direction in order to
ollow the road [30] . More recently, e2e learning models driven by Con-
olutional Neural Networks (CNN) which learn using online imitation
earning policies have been shown to be successful in learning off-road
riving policies [31] . Previous research has also shown that e2e learn-
ng models can be extended to not only make driving decisions but also
ointly estimate localization for a fixed environment [32] . In addition to
NN-based e2e models, e2e Long Short Term Memory (LSTM) networks,
 form of Recurrent Neural Networks (RNN), have been able to train
rom only a front camera image in order to predict longitudinal con-
rol (i.e. the speed of the autonomous vehicle) [33] . More recently, e2e
earning has shown promise in multi-modal learning in which both the
riving decision and predicted speed of vehicle are learned simultane-
usly [34] . Self driving simulators such as CARLA [8] have accelerated
he development of research in multi-modal e2e models. For example,
everal types of multi-modal e2e models have been developed within
he CARLA simulator which include models trained from RGB images as
ell as RGB+Depth (RGBD) images [35] . In contrast to e2e models, self-
riving stacks such as Apollo [36] and Autoware [37] decompose the
utonomous driving problem into several sub-modules and solve each
omponent individually. Despite having complete autonomous driving

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

s

w

a

2

4

i

a

s

a

h

s

i

a

a

h

t

L

s

p

p

p

s

p

d

i

3

s

W

r

o

F

i

a

w

t

v

c

d

a

t

s

t

t

t

o

a

w

s

v

C

v

p

w

t

p

c

i

t

𝑎

p

b

f

t

v

v

𝜃

i

i

q

3

3

e

Θ

W

C

v

s

t

t

m

w

t

t

l

s

3

t

p

Θ

r

p

m

s

a

d

3

w

p

D

r
tacks which include trained DNN models for perception, a series of real-
orld crashes involving autonomous vehicles demonstrate the stakes,
nd some of the existing limitations of the technology [38–41] .

.3. Attacks on autonomous vehicles

Adversarial examples (also called attacks and adversaries) [5,42–
4] are deliberately calculated perturbations to the input which result
n an error in the output from a trained DNN model. The idea of using
dversarial examples against static image classification models demon-
trated that DNNs are highly susceptible to carefully designed pixel-level
dversarial perturbations [5,7,45] . More recently, adversarial attacks
ave been implemented in the physical domain [2,6,46] , such as adding
tickers to a stop sign that result in misclassification [2] . Additionally,
t has been shown that state-of-the-art autonomous driving stacks such
s Apollo [36] which rely upon LiDARs are susceptible to physically re-
lizable attacks. In particular, carefully engineered 3D physical objects
ave been constructed and tested both in simulation and the real-word
hat remain undetected by Apollo’s perception module [47] . Moreover,
iDAR spoofing attacks have been shown to fool the Apollo perception
tack to detect a fake object in front of the vehicle thus affecting the
lanning component. [48,49] . The camera-based object detection com-
onents of these driving stacks have also been shown to be susceptible to
hysical adversaries [2,50] . Recently, researchers have briefly demon-
trated that placing stickers on the road can make the Tesla autopilot
erceive a lane marker when it does not exist [51] .

In this work, we focus on attacking vision based end-to-end self-
riving models such as the Imitation Learning and Reinforcement Learn-
ng models [8] using physical adversaries.

. Modeling framework

In this paper, we focus on exploring the influence of a physical adver-
ary that successfully subverts RGB camera-based e2e driving models.
e define physical adversarial examples as attacks that are physically

ealizable in the real world. For example, deliberately painted shapes
n the road or on stop signs would be classified as physically realizable.
ig. 1 (b) displays the conceptual view of such an attack involving paint-
ng black lines. We define our adversarial examples as patterns . To create
n adversarial example that forces the e2e model to crash the vehicle,
e need to choose the parameters of the pattern ’s shape that maximize

he objective functions that we present. This may cause the vehicle to
eer into the wrong lane or go offroad, which we characterize as a suc-
essful attack. Conventional gradient-based attack techniques are not
irectly applicable, since we need to run simulations (using the CARLA
utonomous driving simulator) both to implement an attack pattern, and
o evaluate the end-to-end autonomous driving agent’s performance.

At the high level, our goal is to paint a pattern (such as a black line)
omewhere on the road to cause a crash. We formalize such attacks in
erms of optimizing an objective function that measures the success of
he attack pattern at causing driving infractions. Since driving infrac-
ions themselves are difficult to optimize because of discontinuity in the
bjective (infraction either occurs, or not), one of our goals it to identify
 high-quality proxy objective. Moreover, since the problem is dynamic,
e must consider the impact of the object we paint on the road over a

equence of frames that capture the road, along with this pattern, as the
ehicle moves towards and, eventually, over the modified road segment.
rucially, we modify the road itself, which is subsequently captured in
ision, digitized, and used as input into the e2e model’s controller.

To formalize, we now introduce some notation. Let 𝛿 refer to the
attern painted on the road, and let l denote the position on the road
here we place the pattern. We use L to denote the set of feasible loca-

ions at which we can position the adversarial pattern 𝛿, and S the set of
ossible patterns (along with associated modifications; in our case, we
onsider either a single black line, or a pair of black lines, with mod-
fications involving, for example, the distance between the lines, and
heir rotation angles). Let a l be the state of the road at position l , and
 𝑙 + 𝛿 then becomes the state of the road at this same position when the
attern 𝛿 is added to it. The state of the road at position l is captured
y the vehicle’s vision system when it comes into view; we denote the
rame at which this location initially comes into view by F l , and let Δ be
he number of frames over which the road in position l is visible to the
ehicle’s vision system. Given the road state a l at position l , the digital
iew of it in frame F is denoted by I F (a l) or simply I F . Finally, we let

𝐹 = 𝑔 𝑠𝑎 (𝐼 𝐹) denote the predicted steering angle given observed digital
mage corresponding to frame F . With this formalism established, we
ntroduce several candidates for a proxy objective function that would
uantify the success of an attack.

.1. Candidate objective functions

.1.1. Steering angle summations

First, we denote the vector of predicted steering angles during an
pisode with an attack 𝛿 starting from frame F l to frame 𝐹 𝑙+Δ as:

⃗
𝛿 = [𝜃𝐹 𝑙 , 𝜃𝐹 𝑙+1 , ⋯ , 𝜃𝐹 𝑙+Δ] (1)

e define two objective functions as:

ollide Right ∶ max
𝑙,𝛿

Δ∑
𝑖 =0

Θ⃗𝛿𝑖
(2a)

Collide Lef t ∶ min
𝑙,𝛿

Δ∑
𝑖 =0

Θ⃗𝛿𝑖
(2b)

subject to ∶ 𝑙 ∈ 𝐿, 𝛿 ∈ 𝑆. (2c)

Eq. (2a) says that to optimize an attack that causes the vehicle to
eer off towards the right and collide, we need to maximize the sum of
teering angles for that particular experiment for the frames in which
he pattern is in view. And similarly in Eq. (2b) , we need to minimize
he steering sum, to make the vehicle veer left. We convert Eq. (2b) to a
aximization problem for consistency in our search procedures that we
ill describe. Using Eq. 2 as the objective function allows us to have con-

rol over which direction we would like the car to crash. The following
wo metrics, the absolute steering angle difference and path deviation,
ose this ability to distinguish direction-based attacks, since they are es-
entially L-1 and L-2 norms.

.1.2. Absolute steering angle differences

Again, let’s denote the predicted steering angles with an attack 𝛿 over
he frames F l to 𝐹 𝑙+Δ as Θ⃗𝛿 as shown in Eq. (1) . Now, let’s denote the
redicted steering angles without any attack over the same frames as
⃗

baseline . This represents an episode where no attack is added to the
oad (we refer to this as the baseline run) and the car travels the intended
ath with minimal infractions. We can now define our second candidate
etric as:

max
𝑙,𝛿

||Θ⃗𝛿 − Θ⃗baseline ||1 (3a)

ubject to ∶ 𝑙 ∈ 𝐿, 𝛿 ∈ 𝑆. (3b)

Eq. (3a) optimizes an attack over the frames Δ that cause the largest
bsolute deviation in predicted steering angles with respect to the pre-
icted steering angles when no pattern has been added to the road.

.1.3. Path deviation

First denote the (x, y) position of the agent from frames F l to 𝐹 𝑙+Δ
ith an attack 𝛿 as:

⃗
 𝛿 = [(𝑥 𝑙 , 𝑦 𝑙) , (𝑥 𝑙+1 , 𝑦 𝑙+1) , ⋯ , (𝑥 𝑙+Δ, 𝑦 𝑙+Δ)] (4)

efine p⃗ baseline as the position of the agent with no attack added to the
oad over the same frames (the baseline run). We can optimize the path

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

d

s

f

v

4

o

4

a

s

b

a

t

A

R

r

a

c

A

r

p

4

a

s

f

r

O

t

l

a

g

g

4

f

s

a

f

𝛿

w

W

P

𝜇

f

k

𝑘

w

𝛿

L

e

c

w

w

r

o

t

i

u

a

w

t



s

𝑢

G

f

𝑧

𝑢

w

o

t

v

s

e

a

A

a

u

t

p

s

a

d

a

f
eviation from the baseline path:

max
𝑙,𝛿

||𝑝 𝛿 − ⃗𝑝 baseline ||2 (5a)

ubject to ∶ 𝑙 ∈ 𝐿, 𝛿 ∈ 𝑆. (5b)

Similar to Eq. (3a) , we can use this metric to optimize deviation
rom the baseline route, except we are now attacking the position of the
ehicle which is directly influenced by the outputs of the e2e models.

. Approaches for generating adversaries

We now describe our approaches for computing adversarial patterns
r, equivalently, optimizing the objective functions defined above.

.1. Random and grid search

Each pattern we generate (labeled earlier as 𝛿) can be described by
 set of parameters such as length, width, and rotation angle with re-
pect to the road. Two naive methods of finding successful attacks would
e to generate a pattern through either a random or grid search (using
 coarse grid) and evaluate this pattern using one of the above objec-
ive functions. Algorithm 1 shows this setup. The function RunScenario()

lgorithm 1 Adversary search algorithm.

equire: Strategy ∈ Random, Grid
𝑖 ← 0
MetricsList ← []
loop

𝛿𝑖 ← GenerateAttack (Strategy)
results ← RunScenario(𝛿𝑖)
𝑦 𝑖 ← CalculateObjectiveFunction(results)
MetricsList .append(𝑦 𝑖)
𝑖 ← 𝑖 + 1

end loop

return arg max MetricsList

uns the simulation and returns data such as vehicle speed, predicted
cceleration, GPS position, and steering angle. We use these results to
alculate one of the objective functions (CalculateObjectiveFunction()).
s our goal is to maximize this metric, we use MetricsList to store the
esults of the objective function at each iteration. Finally, we return the
arameters that maximized our objective function.

.2. Bayesian optimization search policy

Algorithm 1 works well when the number of parameters for 𝛿 are rel-
tively small. For a larger pattern space, and to enable us to explore the
pace more finely, we turn to Bayesian Optimization, which is designed
or optimizing an objective function that is expensive to query without
equiring gradient information [52] . It has been shown that Bayesian
ptimization (BayesOpt) can be useful for optimizing expensive func-

ions in various domains such as hyper-parameter tuning, reinforcement
earning, and sensor calibration [53–56] . In our case, since we use an
utonomous driving simulator, it is expensive to run a simulation with a
enerated attack in order to find, for example, the sum of steering an-
les as shown in Eq. (2). On average, one episode takes between 20 to
0 seconds depending upon the scenario; consequently, it is important
or the optimization to sample efficiently.

At the high level, our goal is to generate physical adversaries that
uccessfully attack e2e autonomous driving models, where a successful
ttack can be quantified as trying to maximize some objective function
 (𝛿). Our goal, therefore, is to find a physical attack, 𝛿∗ , such that:

∗ = arg max
𝛿

𝑓 (𝛿) , (6)

here 𝛿∗ ∈ 

𝑑 and d is the number of parameters of the physical attack.
e first assume that the objective f can be represented by a Gaussian
rocess, which we denote by GP (f, 𝜇(𝛿), k (𝛿, 𝛿′)) with a mean function of
(𝛿) and a covariance function k (𝛿, 𝛿′) [57] . We assume the prior mean
unction to be 𝜇(𝛿) = 𝟎 and the covariance function to be the Matérn 5/2
ernel:

 (𝛿, 𝛿′) =

(

1 +

√
5 𝑟
𝓁

+

5 𝑟 2

3 𝓁 2

)

exp

(

−

√
5 𝑟
𝓁

)

, (7)

here r is the Euclidean distance between the two input points, ||𝛿 −
′||2 , and 𝓁 is a scaling factor optimized during simulation run-time.
et’s suppose that we have already generated several adversaries and
valuated our objective function f for each of these adversaries. We
an denote this dataset as  = {(𝛿1 , 𝑦 1) , ⋯ , (𝛿𝑛 −1 , 𝑦 𝑛 −1)} . Therefore, if we
ould like to sample our function f at some point along the input space 𝛿,
e would obtain some posterior mean value 𝜇𝑓 | (𝛿) along with a poste-

ior confidence or standard deviation value of 𝜎𝑓 | (𝛿) . As noted earlier,
ur objective function f is expensive to query. When we use Bayesian op-
imization to find the parameters that define our next adversary 𝛿n , we
nstead maximize a proxy function known as the acquisition function,
 (𝛿). Compared to the objective function, it is trivial to maximize the
cquisition function using an optimizer such as the L-BFGS-B algorithm
ith a number of restarts to avoid local minima. In our case, we utilize

he Expected Improvement (EI) acquisition function. Given our dataset,
 , we first let y max be the highest objective function value we have seen

o far. The EI can be evaluated at some point 𝛿 as:

 (𝛿) = E[max (0 , 𝑓 (𝛿) − 𝑦 max)] . (8)

iven the properties of a Gaussian Process, this can be written in closed
orm as follows:

 =

𝜇𝑓 | (𝛿) − 𝑦 max

𝜎𝑓 | (𝛿) ; (9)

 (𝛿) = (𝜇𝑓 | (𝛿) − 𝑦 max)Φ(𝑧) + 𝜎𝑓 | (𝛿) 𝜙(𝑧) , (10)

here Φ and 𝜙 are the cumulative and probability distribution functions
f the Gaussian distribution, respectively. Effectively, the first term in
he above acquisition function leads to exploiting information from pre-
iously generated adversaries to generate parameters for 𝛿n while the
econd term prefers exploring the input space of the adversary param-
ters. Given this setup, Algorithm 2 presents a Bayesian Optimization
pproach for generating and searching for adversarial patterns.

lgorithm 2 Bayesian adversary search algorithm.

𝑖 ← 0
MetricsList ← []
loop

𝛿𝑖 ← arg max 𝑢 (𝛿)
results ← RunScenario(𝛿𝑖)
𝑦 𝑖 ← CalculateObjectiveFunction(results)
MetricsList .append(𝑦 𝑖)
Update Gaussian Process and  with (𝛿𝑖 , 𝑦 𝑖)
𝑖 ← 𝑖 + 1

end loop

return arg max MetricsList

In this algorithm, the Gaussian process is updated in each iteration,
nd the acquisition function reflects those changes. An initial warm-
p phase where the adversary parameters are chosen at random and
he simulation is queried for the objective function is used for hyper-
arameter tuning.

While Bayesian Optimization has been shown to be an efficient
earch policy, it is best suited to search spaces with limited dimension-
lity, typically less than 20 bounded parameters [58] . Our experiments
escribed in Section 5 contains a search space of 4 bounded parameters,
 dimensionality sufficiently small for Bayesian Optimization to be ef-
ective. In general, our methodology can be applied to vision based e2e

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

m

t

d

j

e

m

5

p

e

p

e

5

v

u

i

s

W

b

e

s

t

e

t

h

t

c

s

r

s

a

e

u

a

e

5

C

(

t

b

t

t

T

a

g

c

a

c

p

s

t

d

b

M

a

b

t

5

5

n

d

e

p

n

c

p

g

t

v

p

o

C

F

o

odels since the camera input has a direct effect on the objective func-
ions described in Section 3.1 . However, in the context of autonomous
riving stacks such as Apollo [36] and Autoware [37] in which the ob-
ective functions are influenced by several perception modules (e.g. cam-
ra, LiDAR, Radar), our adversary generation method would need to be
odified to directly influence all modules.

. Experimental methodology

This section introduces the various building blocks that we use to
erform our experiments. Fig. 2 shows the overall architecture of our
xperimentation method, including the CARLA simulator block, the
ython client block, and how they communicate with each other to gen-
rate and test the attack patterns on the simulator.

.1. Autonomous vehicle simulator

Autonomous driving simulators are often used to test autonomous
ehicles for the sake of efficiency and safety [59–62] . After testing pop-
lar autonomous simulators [36,63–65] , we choose to run our exper-
ments on the CARLA [8] (CAR Learning to Act) autonomous vehicle
imulator, due to its feature-set and ease of source code modification.
ith Unreal Engine 4 [66] as its backend, CARLA has sufficient flexi-

ility to create realistic simulated environments, with a robust physics
ngine, lifelike lighting, 3D objects including roads, buildings, traffic
igns, vehicles and pedestrians. Fig. 2 shows how the simulator looks in
he third person view. It allows us to acquire sensor data like the cam-
ra image for each frame (camera view), vehicle measurements (speed,
hrottle, steering angle and brake) and other environmental metrics like
ow the vehicle interacts with the environment in the form of infrac-
ions and collisions. Since we use e2e models that use only the RGB
amera, we disable the LiDAR (Light Detection And Ranging), semantic
egmentation, and depth cameras. Steering angle, throttle and brake pa-
ameters are the primary control parameters to drive the vehicle in the
imulation. CARLA (v0.8.2) comes with two maps: a large training map
nd a smaller testing map which are used for training and testing the
2e models respectively. CARLA also allows the user to run experiments
nder various weather conditions like sunset, overcast and rain, which
re determined by the client input. To keep consistent frame rate and
xecution time, we run CARLA using a fixed time-step.
ig. 2. Architecture overview of our simulation infrastructure including the interface
f the camera and the third person views from one attack episode are also shown.
.2. End-to-end driving models

The CARLA simulator comes with two trained end-to-end models:
onditional Imitation Learning (IL) [67] and Reinforcement Learning
RL) [8] . Their commonality ends at using the camera image as the input
o produce output controls that include steering angle, acceleration, and
rake. The IL model uses a trained network which consists of demonstra-
ions of human driving on the simulator. In other words, the IL model
ries to mimic the actions of the expert from whom it was trained [68] .
he IL model’s structure comprises of a conditional, branched neural
rchitecture model where the conditional part is a high-level command
iven by the CARLA simulator at each frame. This high-level command
an be left, right or straight at an intersection, and lane follow when not at

n intersection . At each frame, the image, current speed, and high-level
ommand are used as inputs to the branched IL network to directly out-
ut the controls of the vehicle. Therefore, each branch is allocated a
ub-task within the driving problem (making a decision to cross an in-
ersection or following the current lane). The RL model uses a trained
eep network based on a rewards system, provided by the environment
ased on the corresponding actions, without the aid of human drivers.
ore specifically, for RL, the asynchronous advantage actor-critic (A3C)

lgorithm was used. It is worth mentioning that the IL model performed
etter than the RL model in untrained (test) scenarios [8] . Because of
his, we focus our research primarily on attacking the IL model.

.3. Physical adversary generation

.3.1. Unreal engine

To generate physically realizable adversaries in a systematic man-
er, we modify CARLA’s source code. The CARLA simulator (v0.8.2)
oes not allow spawning of objects into the scene which do not already
xist in the CARLA blueprint library (which includes models of vehicles,
edestrians, and props). With the Unreal Engine 4 (UE4), we create a
ew Adversarial Plane Blueprint , which is a 200 × 200 pixel plane or
anvas with a dynamic UE4 material, which we can overlay on desired
ortions of the road. The key attribute of this blueprint is that it reads a
enerated attack image (a.png file) and places it within CARLA in real
ime. Hence this blueprint has the ability to continuously read an image
ia an HTTP server. The canvas allows the use of images with an al-
ha channel which allows attacks which are partly transparent, like the
ne shown in Fig. 3 . Then, we clone the two maps that are provided by
ARLA and choose regions of interest within each of them where attacks
s between the CARLA simulator and the pattern generator scripts. Visualization

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

Fig. 3. Attack Generator Capabilities. (a) shows the most basic
attack which is a single line. (b) and (c) show attacks using two
lines, but (b) has a constraint that the lines always need to be
parallel, (d) shows the ability of the generator to generate N

number of lines with various shapes and color.

Table 1

Different types of attacks and their respective parameters and con-
straints. var - variable, const - constant, NA - Not Applicable

Attack Type

params Single Line Double Line Two Lines N-Lines

lines 1 2 2 N

position var var var var

rotation var var var var

length const const const var

width const const const var

gap NA var NA NA

color const const const var

opacity const const const var

dimensions 2 3 4 N × 6

s

p

W

e

C

s

5

s

g

o

a

i

b

p

w

t

b

s

p

j

w

t

r

5

t

t

W

f

t

(

d

W

w

o

5

t

e

s

r

s

s

e

a

c

t

p

w

t

w

e

w

s

6

o

T

t

h

t

6

6

(

v

F

o

p

s

t

r

t
pawn. Some interesting regions are at the turns and intersections. We
lace the Adversarial Plane Blueprint canvas in each of these locations.
hen CARLA runs, an image found on the HTTP server gets overlaid on

ach canvas. Finally, we compile and package this modified version of
ARLA. Hence we are able to place physical attacks within the CARLA
imulator.

.3.2. Pattern generator library

We built a pattern generator that creates different kinds of shapes as
hown in Fig. 3 using the pattern parameters (Table 1). For the pattern
enerator, we explore parameters like the position, width, and rotation
f the line(s). We sweep the position and rotation from 0 to 200 pixels
nd 0–180 degrees respectively to generate variations of attacks. Sim-
larly, we create a more advanced pattern which involves two parallel
lack lines called the double-line pattern as described in Table 1 . It com-
rises of the previous parameters, namely, position, rotation, and width,
ith the addition of a new gap parameter which is the distance between

he two parallel lines. Lastly, we remove the parallel constraint on dou-
le lines to increase the search space of the attacks while preserving
implicity. Fig. 2 shows some examples of the generated double line
atterns which can be seen overlaid on the road in frames 55 and 70.

Additionally, our library has the ability to read a dictionary ob-
ect containing the number of lines, the parameters (position, rotation,
idth, length and color) for each line, and produce a corresponding at-

ack pattern as shown in Fig. 3 (d). Once the pattern is generated, it is
ead via the HTTP server and is placed within the Carla simulator.

.3.3. OpenAI-gym environment for carla

Since CARLA runs nearly in real-time, experiments take a long time
o run. In order to efficiently run simulations with our desired parame-
ers, we convert the CARLA setup to an OpenAI-Gym environment [69] .

hile the OpenAI-Gym framework is primarily used for training rein-
orcement learning models, we find the format helpful as we are able
o easily run the simulator with a set of initial parameters like the task
straight, right, left), the map, the scene, the end-to-end model and the
esired output metric (eg. average infraction percent for that episode).
ith this set up, we are able to use an optimizer to generate an attack
ith a set of defined constraints, run an episode and get the resulting
utput metric.
.4. Experiment setup and parallelism

To ensure a broad scope to test the effectiveness of the different at-
acks in various settings, we conduct experiments by changing various
nvironment parameters like the maps (training map and testing map),
cenes, weather (clear sky, rain, and sunset), driving scenarios (straight
oad, right turn, and left turn), e2e models (IL and RL) and the entire
earch space for the patterns. Here, we describe the six available driving
cenarios for CARLA:

1. Right Turn : the agent follows a lane that smoothly turns 90 degrees
towards the right.

2. Left Turn : the agent follows a lane that smoothly turns 90 degrees
towards the left.

3. Straight Road : the agent follows a straight path.
4. Right Intersection : the agent takes a right turn at an intersection.
5. Left Intersection : the agent takes a left turn at an intersection.
6. Straight Intersection : the agent navigates straight through intersec-

tion.

We choose the baseline scenarios (no attack) where the e2e mod-
ls drive the vehicle with minimal infractions. We run the experiments
t 10 frames per second (fps) and collect the following data for each
amera frame (a typical experiment takes between 60 to 100 frames
o run): camera image from the mounted RGB camera, vehicle speed,
redicted acceleration, steering and brake, percentage of vehicle in the
rong lane, percentage of vehicle on the sidewalk (offroad), GPS posi-

ion of the vehicle, and collision intensity. Fig. 2 shows this dataflow
hich is sufficient to assess the ramifications of a particular attack in an

xperiment.
To search the design space thoroughly, we build a CARLA docker

hich allows us to run as many as 16 CARLA instances simultaneously,
pread over 8 RTX GPUs [70] .

. Experimental results

Through experimentation, we demonstrate the existence of conspicu-
us physical adversaries that successfully break the e2e driving models.
hese adversaries do not need to be subtle or sophisticated modifica-
ions to the scene. Although they can be distinguished and ignored by
umans drivers with ease, they effectively cause serious traffic infrac-
ions against the e2e driving models we evaluate.

.1. Simple physical adversarial examples

.1.1. Effectiveness of attacks

To begin, we generate two types of adversarial patterns: single line
with varying positions and rotation angles), and double lines (with
arying positions, rotation angles, and distance between the lines). In
ig. 4 (a), we define different safety regions of the road in ascending
rder of risk. We start with the vehicle’s own lane (safe region), the op-
osite lane (unsafe), offroad/sidewalk (dangerous) and regions of colli-
ions (very dangerous) past the offroad region. Fig. 4 (b)(c)(d)(e) shows
hat by sweeping through the three scenarios (straight road driving,
ight turn driving, left turn driving) with the single and double line pat-
erns, for both the training map and testing maps, we see that some pat-

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

Fig. 4. Comparison of the infractions caused
by different patterns. (a) Driving Infraction
regions; (b)(c) Infraction percentages for IL;
(d)(e) Infraction percentages for RL; NA - No
Attack, SL - Single Line pattern, DL - Double
Lines pattern; Straight - Straight Road Driving,
Right - Right Turn Driving, Left - Left Turn Driv-
ing

t

v

i

s

a

m

w

i

S

t

6

s

fi

s

a

i

i

c

b

w

t

i

c

a

f

p

m

m

f

n

s

t

o

6

(

c

I
erns cause infractions. Here we use a naive grid search approach to tra-
erse the search space with the Steering Sum optimization metric defined
n Eq. (2a) . First, we observe the transfer-ability of adversaries since
ome of our generated adversarial examples cause both IL (Fig. 4 (b))
nd RL (Fig. 4 (d)) models to produce infractions. Second, attacks are
ore successful against the RL model than the IL model. Additionally,
e notice that the double line adversarial examples cause more severe

nfractions than their single line counterparts. Lastly, we observe that
traight Road Driving and Left Turn Driving are more resilient to attacks
hat cause stronger infractions.

.1.2. Analysis of attack objectives

To find the optimal adversary which produce infractions like colli-
ions for the case of Right Turn Driving scenario, the optimizer has to
nd a pattern that maximizes the first candidate objective function: the
um of steering angles as hypothesized in Eq. (2) . A positive steering
ngle denotes steering towards the right and a negative steering angle
mplies steering towards the left. Fig. 5 (a)(b) show the sum of steer-
ng angles and the sum of infractions respectively, for each of the 375
ombinations of double line patterns. The infractions are normalized
ecause collision data is recorded in SI units of intensity [kg × m / s],
hereas the lane infractions are in percentages of the vehicle area in
he respective regions. Fig. 5 also shows the three lowest points (min-
ma) for the steering sum and the three highest points (maxima) for the
ollisions plot. In Fig. 5 (c), we use the argmin and argmax on the set of
ttacks to observe the shapes of the corresponding adversarial examples
or both the steering sum and infraction results. We observe that the
atterns that minimize the sum of steering angle and correspondingly maxi-

ize the collision intensity are very similar. Thus, the objective based on
aximizing or minimizing steering angles is clearly yielding valuable in-

ormation for the underlying optimization problem. However, this does
ot mean that it’s the best objective, among the three choices we con-
idered above. We explore this issue in greater depth in the next subsec-
ion, as we move towards studying more complex attacks using Bayesian
ptimization.

.2. Exploration of large design spaces

In Fig. 4 , we observe that when we switch from a Single Line attack
with 2 dimensions) to a Double Line attack (with 3 dimensions), in most
ases, there is a significant increase in the number of successful attacks.
t is reasonable to assume that as we increase the number of degrees of

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

Fig. 5. Adversary against ”Right Turn Driv-
ing ”. (a) Adversarial examples significantly
changes the steering control. (b) Some patterns
cause minor infractions whereas others cause
level 3 infractions. (c) The patterns that cause
the minimum steering sum and maximum col-
lisions look similar.

Fig. 6. A comparison of different search algorithms for generating successful attacks. In each driving scenario: Left Turn (a), Straight Road (b), and Right Turn
(c) Driving, the Bayesian approach not only finds more unique, successful adversaries in the same number of iterations but also finds these attacks at a faster rate.
BayesOpt randomly samples the adversary search space for the first 400 iterations (shown before the dashed line) to tune the hyper-parameters of the kernel function.
After these randomly sampled points, BayesOpt utilizes an acquisition function to sample the search space. While a dense grid search would eventually find at the
least the same number of attacks as BayesOpt, we constrain our experiments to 1000 iterations given our computational resources.

f

r

c

r

F

r

m

g

a

p

i

d

G

m

a

f

S

i

s

w

t

t

d

o

B

i

o

L

F

a

t

i

s

t

l

s

t
reedom in the attack, it should be possible to also increase the success
ate. We lend further support to this intuition by considering an attack
alled the Two Line attack, shown in Fig. 3 (c), with 4 dimensions by
emoving the constraint that the two lines must be parallel. As shown in
ig. 4 , attack success rates increase considerably compared to the more
estricted attack.

However, increasing the dimensionality of the attack search space
akes grid search impractical. For example, the Single Line attack with

rid search requires around 375 iterations to sweep the search space
t a 20 pixel resolution. Preserving the same parameter resolution (or
recision) would require 1440 iterations for Double Lines, and 12,960
terations for the Two Line attack. Naive search would require around 45
ays to sweep through the search space for a single scenario on a modern
PU. Additionally, using a sparser resolution for the attack parameters
eans that we would not find potential attacks which can only be found

t a higher resolution.
We address this issue by adopting the Bayesian Optimization

ramework (BayesOpt) for identifying attack patterns (introduced in
ection 4.2). This requires a change in our search procedure as shown
n Algorithm 2 . In short, it uses the prior history of the probed search
pace to suggest the next probing point.
Fig. 6 shows the comparison between the 3 optimization techniques
e employ for the straight, left-turn, and right-turn scenarios. We see

hat for all three cases, BayesOpt outperforms the naive grid search and
he random search methods. In Fig. 6 , BayesOpt uses 400 initial ran-
om points to sample the search space and subsequently samples 600
ptimizing points. Hence, we observe that for the first 400 iterations,
ayesOpt follows closely with random search, and after probing those

nitial random points, we observe a significant increase in the number
f successful attacks.

Because we observe many more successful attacks against the
eft and Right Turn scenarios as compared to the Straight Scenario,
ig. 6 further supports our notion that driving straight is harder to attack
s compared to the right and left turn scenarios.

Equipped with BayesOpt, we now systematically evaluate the rela-
ive effectiveness of the different objective functions. Table 2 shows the
nfractions caused by each of the objective functions (path deviation,
um of steering angles, and absolute difference in steering angles with
he baseline). For Left Turn, Straight Road, and Right Turn Driving, we
ist the percentage out of 600 simulation runs using BayesOpt that were
afe, incurred collisions, off road infractions, or opposite lane infrac-
ions. We observe that the absolute difference in steering angles with

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

Table 2

Comparison of Candidate Objective Functions as listed in Section 3 (in %). Σ st. angles - sum of steering angles, abs. st. diff. - absolute steering difference

Left Straight Right

Metric safe collision offroad opp. lane safe collision offroad opp. lane safe collision offroad opp. lane

Σ st. angles 18.2 0 0 81.8 99 0 0 1 72.2 9.5 13.8 24.5

path deviation 64.6 0 0 35.4 23.8 2.5 2.8 76.2 57.2 24.0 28.3 40.2

abs. st. diff. 0.2 0 0 99.8 22.7 7.5 9.3 77.3 0 95.2 99.2 100

Fig. 7. Paths taken by e2e model in Left Turn,
Straight Road, and Right Turn Driving with no
attack (baseline), an unsuccessful attack, and a
successful attack (a). Cumulative sum of steer-
ing angles for each scenario (b). While the suc-
cessful attack is able to cause the e2e agent to
incur an infraction or collision in each scenario,
the steering sum metric is unable to capture dis-
tinguish between the successful and unsuccess-
ful attack in two of the three scenarios.

r

B

m

e

p

s

O

d

6

d

s

a

s

c

u

o

r

f

c

s

a

s

F

w

D

t

b

i

a

o

a

s

e

p

c

p

o

l

c

v

p

c

m

t

a

c

6

t

o

j

a

espect to the baseline run is the strongest metric when coupled with
ayesOpt to discover unique, successful attacks. While the most natural
etric would seem to be steering sum , it is in practice considerably less

ffective than maximizing absolute difference in the steering angle. The
ath deviation objective function performs well in right turn and straight

cenarios , but fails to find optimal attacks in the left turn driving scenario.
verall it still under-performs when compared to the absolute steering
ifference objective function.

.3. Importance of selecting a reliable objective function

In Section 6.2 , we evaluate three different objective functions: path

eviation, sum of steering angles and absolute steering difference . We ob-
erve that the choice of the right objective function is crucial for success,
nd this choice is not necessarily obvious.

Most surprisingly, perhaps, we find that the objective that uses the
teering angles to guide adversarial example construction is not the best
hoice, even though it is perhaps the first that comes to mind, and one
sed in prior work [61] . We now investigate why this choice of the
bjective can fail.

Fig. 7 shows three driving scenarios (left turn, driving straight, and
ight turn) respectively. Fig. 7 (a) shows the paths taken by the vehicle
or 3 cases: a baseline case where there is no attack, an unsuccessful attack

ase where an attack pattern does not cause the e2e model to deviate
ignificantly from the baseline path, and a successful attack case where
n attack causes a large deviation resulting in an infraction. Fig. 7 (b)
hows the sum of steering angles for each of the corresponding cases in
ig. 7 (a). Note that for Left Turn Driving , we try to maximize Eq. (2a) ,
hich is to collide to the right, and for Straight Driving and Right Turn

riving , we maximize Eq. (2b) , which is to collide to the left. For the right
urn driving scenario, we observe that there is indeed a large difference
etween the steering sums for a strong attack and a weak attack, but
n the other two scenarios, we notice that the baseline, unsuccessful
ttack and successful attack have very similar steering sums. Hence, the
ptimizer has a difficult time distinguishing between an unsuccessful
nd successful attack. In straight driving scenario , we see that the steering
um for a successful attack begins increasing and then sharply decreases,
ven though the vehicle has deviated significantly from the baseline
ath. This is due to the ability of the IL e2e model to recover in this
ase, resulting from data augmentation at training time where initial
osition of the car was randomly perturbed. The sum of steering angles

bjective function is unable to capture this behavior. For the case of
eft turn driving , we discover that the successful attack not only causes a
hange in steering angle, but also a change in throttle, resulting in the
ehicle speeding up and reaching a position further along the baseline
ath, which opens up new possibilities for generating attacks as well as
ausing new types of infractions.

The absolute steering difference mitigates the above issues by sum-
ing up the absolute steering differences between the baseline and at-

ack cases. This allows the objective function to counteract the recovery
bility of the e2e models. However, we do lose the ability to directly
ontrol the direction towards which we desire the vehicle to crash.

.4. Vehicle hijacking attacks

Thus far, our exploration of adversarial examples against au-
onomous driving models focused on causing the car to crash, or cause
ther infractions. We now explore a different kind of attack: vehicle hi-
acking. In this attack, the primary purpose is to stealthily lead the car
long a target path of the adversary’s choice.

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

Fig. 8. Illustration of a hijack attack where we use an attack to trick the vehicle
to deviate from its normal path (base route) to a target hijack route. It demon-
strates a successful hijack where we make a vehicle otherwise turning right at
an intersection, to turn left.

g

o

s

b

t

t

t

t

i

d

p

t

l

l

t

(

t

t

t

t

i

w

r

s

v

s

t

s

e

o

a

e

t

a

Table 3

Success rate of Hijacking Attacks for six scenarios.

Hijack Success Rates % Successful % Unsuccessful

Straight → Right 14.8 85.2

Straight → Left 0.0 100.0

Left → Straight 23.7 76.3

Left → Right 14.3 85.7

Right → Left 1.4 98.6

Right → Straight 25.9 74.1

m

t

i

6

t

r

c

w

s

a

F

t

u

r

s

t

c

i

a

i

c

n

fi

b

v

n

d

i

m

t

f

a

t

u

g

t

a

a

a

t

2

l

t

e

d

S

a

t

i

i
When attacking the IL model, previous experiments have only tar-
eted the Lane Follow branch of this model. Now, we focus our attacks
n three different branches of the IL Model: Right Intersection, Left Inter-

ection, and Straight Intersection . Here, we define a successful attack to
e an adversary that 1) causes no infractions or collisions and 2) causes
he agent to make a turn chosen by the attacker rather than the ground
ruth at a particular intersection (e.g. the attacker creates an adversary
o make the agent turn left instead of go straight through an intersec-
ion). With this definition, an attack that causes the agent to incur an
nfraction is not considered to be a successful attack. In order to pro-
uce such attacks, we modify our experimental setup. After choosing a
articular intersection, we run the simulation with no attack to record
he baseline steering angles over the course of the episode. The high-
evel command provided by CARLA directs the agent to take a particu-
ar action at that intersection (for example, go straight). We then modify
he CARLA high-level command to the direction desired by the attacker
for example, take a right turn). After running the simulation, we store
hese target steering angles over the entire episode. Finally, we revert
he CARLA high-level command to the original command provided to
he agent during the baseline simulation run and begin generating at-
acks at the intersection. We modify our optimization problem to min-
mize the difference in the steering angles recorded during an episode
ith an attack (⃗Θ𝛿 as defined in 3.1) and the steering angles of the target

un (defined as Θ⃗target):

min
𝑙,𝛿

||Θ⃗𝛿 − Θ⃗target ||1 (11a)

ubject to ∶ 𝑙 ∈ 𝐿, 𝛿 ∈ 𝑆. (11b)

CARLA (v0.8.2) does not include a four-way intersection in their pro-
ided maps, which constrain our experiments to a three-way junction as
hown in Fig. 8 . Of the six possible hijacking configurations, we are able
o generate adversaries that successfully hijacked the car to take a de-
ired route rather than the baseline route for five configurations. For
xample, Fig. 8 shows the car being hijacked to take a right turn instead
f going straight. While we are able to produce attacks that incurred
n infraction in each scenario shown in Fig. 8 (the gray paths), these
pisodes did not count as successful hijacks as the car did not take the
arget route. Table 3 shows the rate of successful attacks for the six avail-
ble hijacking scenarios in CARLA v0.8.2. To conclude, we are able to
odify our optimization problem and generate adversaries at intersec-
ions which caused the agent to take a hijacking route, rather than the
ntended route.

.5. Interpretation of Attacks using DeConvNet

In this section, our goal is to better understand what makes the at-
acks effective. We begin by quantitatively analyzing the range of pa-
ameters of attacks that will generate the most robust attacks in the
ontext of right turns. For simplicity, we analyze the Double Line attack
hose parameters include rotation angle, position, and gap size. Fig. 9

hows a histogram of the collision incidence rates versus the pattern IDs,
nd its corresponding parameters for an experiment with 375 iterations.
ig. 9 (b), in particular, shows that some parameters play a stronger role
han others in generating a successful attack. For example, in this partic-
lar setting Double Line attacks, successful adversaries have a narrow
ange of rotation angles (90 - 115 degrees). Fig. 9 (b) also shows that
maller gap sizes perform slightly better than larger ones.

To better understand the working mechanisms of the successful at-
ack to the underlying imitation learning algorithm, we use network de-
onvolution, using a state-of-the-art technique, DeConvNet [71] . Specif-
cally, we attach each CONV block (a convolution layer with ReLU and
 batch normalizer) to a DeConv counterpart, since the backbone of the
mitation learning algorithm is a convolutional neural network which
onsists of eight CONV blocks for feature extraction and two fully con-
ected (FC) blocks for regression. Each DeConv block uses the same
lters, batch norm parameters, and activation functions as the CONV
lock, except that the operations are reversed. In this paper, DeCon-
Net is used merely as a probe to the already trained imitation learning
etwork: it provides a continuous path to map high-level feature maps
own to the input image. To interpret the network, the imitation learn-
ng network first processes the input image and computes the feature
aps throughout the network layers. To view selected activations in

he feature maps of a layer, other activations are set to zero, and the
eature maps backtrack through the rectification, reverse-batch norm,
nd transpose layers. Then, activations that contribute to the chosen ac-
ivations in the lower layer are reconstructed. The process is repeated
ntil the input pixel space is reached. Finally, the input pixels which
ive rise to the activations are visualized. In this experiment, we choose
he top-200 strongest/largest activations in the fifth convolution layer
nd mapped these activations down to the input pixel space for visu-
lization. The reasons behind this choice are twofold: 1) The strongest
ctivations stand out and dominate the decision-making in NNs and the
op-200 activations are sufficient to cover the important activations, and
) activations of the fifth CONV layer are more representative than other
ayers, since going deeper would mean that the amount of non-zero ac-
ivations reduces significantly, which invalidates the deconvolution op-
rations, while shallow layers fail to fully capture the relation between
ifferent extracted features.

We conduct a case study to understand why an attack works.
pecifically, we take a deeper look inside the imitation network when
dversaries are attacking the autonomous driving model for the right
urn driving scenario. The baseline case without any attack is depicted
n Fig. 10 (a) while the one with a successful double-line attack is shown
n Fig. 10 (b). In the first row of Fig. 10 , the input images from the

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

Fig. 9. (a) Histogram showing strong adver-
saries. (b) Depiction of range of rotation, po-
sition and gap parameters for the most robust
adversaries.

Fig. 10. Attacks against Right Turn Driving: The top row shows the camera input while the bottom deconvolution images show that the reconstructed inputs from

the strongest activations determine the steering angle. (a) Right Turn Driving without attack, (b) Right Turn Driving with attack and (c) Left Turn Driving without
attack for comparison

f

t

n

a

g

r

f

e

t

b

a

-

r

a

W

c

i

c

w

l

(

l

a

a

e

i

N

s
ront camera mounted on the vehicle are displayed, which are fed to
he imitation learning network. In Fig. 10 (a), the imitation learning
etwork guides the vehicle to turn right at the corner, as the steering
ngle output is set to a positive value (steering +0.58). The highlighted
reen regions in the reconstructed inputs in the corresponding second
ow show the imitation network makes this steering decision mainly
ollowing the curve of the double yellow line. However, when delib-
rate attack patterns are painted on the road as shown in Fig. 10 (b),
he imitation network fails to perceive the painted lines which could
e easily ignored by a human; instead, the network regards the lines
s physical barriers and guides the vehicle to steer left (steering
0.18) to avoid a fictitious collision, leading to an actual collision. The
econstructed image below confirms that the most outstanding features
re the painted adversaries instead of the central double yellow lines.
e speculate that the vehicle recognizes the adversaries as the road
urb. And Fig. 10 (c) confirms our speculations. In this case, the vehicle
s turning left and the corresponding reconstructed image shows the
urb would contribute the strongest activations in the network which
ill make the steering angle a negative value (steering -0.24) to turn

eft. The similarity of the reconstructed inputs between cases (b) and
c) suggests that the painted attacks are misrecognized as a curb which
eads to an unwise driving decision. To summarize, the deliberate
dversaries that mimic important road features are very likely to be
ble to successfully attack the imitation learning algorithm. This also
mphasizes the importance of taking more diverse training samples
nto consideration when designing autonomous driving techniques.
ote that since the imitation learning network makes driving deci-

ions solely based on current camera input, using one frame per case

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

f

s

7

l

d

y

t

p

s

a

e

m

B

e

a

a

r

D

e

h

D

i

t

A

t

n

a

i

N

W

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[
[

[

[

[

[

[

[
[

[

[

or visualization is enough to unravel the root causes of an attack’s
uccess.

. Conclusion

In this paper, we develop a versatile modeling framework and simu-
ation infrastructure to study adversarial examples on e2e autonomous
riving models. Our model and simulation framework can be applied be-
ond the scope of this paper, providing useful tools for future research
o expose latent flaws in current models with the ultimate goal of im-
roving them. Through comprehensive experiment results, we demon-
trate that simple physical adversarial examples that are easily realiz-
ble, such as mono-colored single-line and multi-line patterns, not only
xist, but can be quite effective under certain driving scenarios, even for
odels that perform robustly without any attacks. We demonstrate that
ayesian Optimization coupled with a strong objective function is an
ffective approach to generating devastating adversarial examples. We
lso show that by modifying the objective function, we are able to hijack
 vehicle where we cause the driverless car to deviate from its original
oute to a route chosen by an attacker. Finally, our analysis using the
eConvNet method offers critical insights to further explore attack gen-
ration and defense mechanisms. Our code repository is available at:
ttps://github.com/xz-group/AdverseDrive .

eclaration of Competing Interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper.

cknowledgements

We would like to thank Dr. Ayan Chakrabarti for his advice on mat-
ers related to computer vision with this research and Dr. Roman Gar-
ett for his suggestions regarding Bayesian Optimization. We would
lso like to thank the CARLA team for their technical support regard-
ng the CARLA simulator. This research was partially supported by
SF awards CNS-1739643, IIS-1905558 and CNS-1640624, ARO grant
911NF1610069 and MURI grant W911NF1810208.

eferences

[1] I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial exam-
ples (2015) arXiv: 1412.6572 .

[2] K. Eykholt , I. Evtimov , E. Fernandes , B. Li , A. Rahmati , C. Xiao , A. Prakash , T. Kohno ,
D. Song , Robust physical-world attacks on deep learning models, 2017 .

[3] R. Fan, J. Jiao, H. Ye, Y. Yu, I. Pitas, M. Liu, Key ingredients of self-driving cars,
2019.

[4] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L.D. Jackel,
U. Muller, Explaining how a deep neural network trained with end-to-end learning
steers a car (2017) arXiv: 1704.07911 .

[5] Y. Vorobeychik , M. Kantarcioglu , Adversarial Machine Learning, Morgan and Clay-
pool, 2018 .

[6] T. Dreossi , S. Jha , S.A. Seshia , Semantic adversarial deep learning, CAV, 2018 .
[7] N. Papernot , P.D. McDaniel , S. Jha , M. Fredrikson , Z.B. Celik , A. Swami , The limi-

tations of deep learning in adversarial settings, 2016 IEEE European Symposium on
Security and Privacy (EuroS&P) (2016) 372–387 .

[8] A. Dosovitskiy , G. Ros , F. Codevilla , A. López , V. Koltun , Carla: An open urban driv-
ing simulator, CoRL, 2017 .

[9] A. Boloor, X. He, C. Gill, Y. Vorobeychik, X. Zhang, Simple physical adversar-
ial examples against end-to-end autonomous driving models, in: 2019 IEEE Inter-
national Conference on Embedded Software and Systems (ICESS), 2019, pp. 1–7,
doi: 10.1109/ICESS.2019.8782514 .

10] C. Papageorgiou , T. Poggio , A trainable system for object detection, International
journal of computer vision 38 (1) (2000) 15–33 .

11] J. Redmon , S. Divvala , R. Girshick , A. Farhadi , You only look once: Unified, real-time
object detection, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 779–788 .

12] G. Prabhakar , B. Kailath , S. Natarajan , R. Kumar , Obstacle detection and classifica-
tion using deep learning for tracking in high-speed autonomous driving, in: 2017
IEEE Region 10 Symposium (TENSYMP), IEEE, 2017, pp. 1–6 .

13] C. Caraffi, T. Vojíř , J. Trefný, J. Š ochman , J. Matas , A system for real-time detection
and tracking of vehicles from a single car-mounted camera, in: 2012 15th Interna-
tional IEEE Conference on Intelligent Transportation Systems, 2012, pp. 975–982 .
14] X. Chen , K. Kundu , Y. Zhu , A.G. Berneshawi , H. Ma , S. Fidler , R. Urtasun , 3d object
proposals for accurate object class detection, in: C. Cortes, N.D. Lawrence, D.D. Lee,
M. Sugiyama, R. Garnett (Eds.), Advances in Neural Information Processing Systems
28, Curran Associates, Inc., 2015, pp. 424–432 .

15] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep convolu-
tional neural networks, Commun. ACM 60 (2012) 84–90 .

16] J. Deng , W. Dong , R. Socher , L.-J. Li , K. Li , L. Fei-Fei , Imagenet: A large-scale hi-
erarchical image database, 2009 IEEE Conference on Computer Vision and Pattern
Recognition (2009) 248–255 .

17] A. Geiger , P. Lenz , C. Stiller , R. Urtasun , Vision meets robotics: The kitti dataset,
The International Journal of Robotics Research 32 (11) (2013) 1231–1237 .

18] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka,
et al., An empirical evaluation of deep learning on highway driving (2015) arXiv
preprint arXiv: 1504.01716 .

19] J. Li , X. Mei , D. Prokhorov , D. Tao , Deep neural network for structural prediction and
lane detection in traffic scene, IEEE transactions on neural networks and learning
systems 28 (3) (2016) 690–703 .

20] J. Kim , M. Lee , Robust lane detection based on convolutional neural network and
random sample consensus, in: International conference on neural information pro-
cessing, Springer, 2014, pp. 454–461 .

21] A. Gurghian , T. Koduri , S.V. Bailur , K.J. Carey , V.N. Murali , Deeplanes: End–
to-end lane position estimation using deep neural networksa, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016,
pp. 38–45 .

22] V. Badrinarayanan , A. Kendall , R. Cipolla , Segnet: A deep convolutional encoder-de-
coder architecture for image segmentation, IEEE Transactions on Pattern Analysis
and Machine Intelligence 39 (12) (2017) 2481–2495 .

23] D. Levi , N. Garnett , E. Fetaya , I. Herzlyia , Stixelnet: A deep convolutional network
for obstacle detection and road segmentation., BMVC, 2015 . 109–1

24] M. Ren , R.S. Zemel , End-to-end instance segmentation with recurrent attention, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 6656–6664 .

25] G.L. Oliveira , W. Burgard , T. Brox , Efficient deep models for monocular road seg-
mentation, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2016, pp. 4885–4891 .

26] D. Eigen , C. Puhrsch , R. Fergus , Depth map prediction from a single image using a
multi-scale deep network, in: Advances in neural information processing systems,
2014, pp. 2366–2374 .

27] Y. Kuznietsov , J. Stuckler , B. Leibe , Semi-supervised deep learning for monocular
depth map prediction, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 6647–6655 .

28] F. Liu , C. Shen , G. Lin , Deep convolutional neural fields for depth estimation from a
single image, in: Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 5162–5170 .

29] H. Zhan , R. Garg , C. Saroj Weerasekera , K. Li , H. Agarwal , I. Reid , Unsupervised
learning of monocular depth estimation and visual odometry with deep feature re-
construction, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 340–349 .

30] D. Pomerleau , ALVINN: an autonomous land vehicle in a neural network, in:
D.S. Touretzky (Ed.), Advances in Neural Information Processing Systems 1, [NIPS
Conference, Denver, Colorado, USA, 1988], Morgan Kaufmann, 1988, pp. 305–313 .

31] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, B. Boots, Agile au-
tonomous driving using end-to-end deep imitation learning, 2017.

32] A. Amini, G. Rosman, S. Karaman, D. Rus, Variational end-to-end navigation and
localization, 2018.

33] L. George, T. Buhet, E. Wirbel, G. Le-Gall, X. Perrotton, Imitation learning for end
to end vehicle longitudinal control with forward camera, 2018.

34] Z. Yang, Y. Zhang, J. Yu, J. Cai, J. Luo, End-to-end multi-modal multi-task vehicle
control for self-driving cars with visual perception, 2018.

35] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, A.M. López, Multimodal end-to-end
autonomous driving, 2019.

36] Baidu, Apollo, (http://apollo.auto/).
37] TierIV, autoware, 2019, (https://www.autoware.ai/).
38] S. Alvarez, Research group demos why tesla autopilot could crash into a sta-

tionary vehicle, 2018, (https://www.teslarati.com/tesla-research-group-autopilot-
crash-demo/).

39] T.S., Why uber’s self-driving car killed a pedestrian, 2018, (https://www.economist.
com/the-economist-explains/2018/05/29/why-ubers-self-driving-car-killed-a-
pedestrian).

40] T. Lee, Driverless car from gms cruise and motorcycle collide in san francisco,
2017, (https://arstechnica.com/cars/2017/12/driverless-car-from-gms-cruise-and-
motorcycle-collide-in-san-francisco/).

41] A. Davies, Google’s self-driving car caused its first crash, 2016, (https://www.
wired.com/2016/02/googles-self-driving-car-may-caused-first-crash/).

42] A. Chernikova, A. Oprea, C. Nita-Rotaru, B. Kim, Are self-driving cars secure? eva-
sion attacks against deep neural networks for steering angle prediction, 2019.

43] N. Akhtar, A. Mian, Threat of adversarial attacks on deep learning in computer vi-
sion: A survey, 2018.

44] D. Lowd , C. Meek , Adversarial learning, KDD, 2005 .
45] I.J. Goodfellow , J. Pouget-Abadie , M. Mirza , B. Xu , D. Warde-Farley , S. Ozair ,

A.C. Courville , Y. Bengio , Generative adversarial nets, NIPS, 2014 .
46] J. Lu, H. Sibai, E. Fabry, D.A. Forsyth, No need to worry about adversarial examples

in object detection in autonomous vehicles (2017) arXiv: 1707.03501 .
47] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q.A. Chen, K. Fu, Z.M. Mao,

Adversarial sensor attack on lidar-based perception in autonomous driving (2019)
arXiv: 1907.06826 .

https://github.com/xz-group/AdverseDrive
arxiv:http://1412.6572
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0002
arxiv:http://1704.07911
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0004
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0004
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0004
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0007
https://doi.org/10.1109/ICESS.2019.8782514
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0016
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0016
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0016
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0016
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0016
arxiv:http://1504.01716
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0019
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0019
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0019
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0024
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0024
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0024
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0024
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0025
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0025
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0025
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0025
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0026
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0026
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0026
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0026
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0027
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0027
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0027
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0027
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0029
http://apollo.auto/
https://www.autoware.ai/
https://www.teslarati.com/tesla-research-group-autopilot-crash-demo/
https://www.economist.com/the-economist-explains/2018/05/29/why-ubers-self-driving-car-killed-a-pedestrian
https://arstechnica.com/cars/2017/12/driverless-car-from-gms-cruise-and-motorcycle-collide-in-san-francisco/
https://www.wired.com/2016/02/googles-self-driving-car-may-caused-first-crash/
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0030
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0030
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0030
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0031
arxiv:http://1707.03501
arxiv:http://1907.06826

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

[

[

[

[

[

[
[
[

[

[
[

[

[

[

[

[

[
[
[
[

[
[

[

[

48] Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu, B. Li, Adversarial objects against
lidar-based autonomous driving systems (2019) arXiv: 1907.05418 .

49] H. Shin, D. Kim, Y. Kwon, Y. Kim, Illusion and dazzle: Adversarial optical channel
exploits against lidars for automotive applications, 2017. https://eprint.iacr.org/
2017/613

50] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, A.L. Yuille, Adversarial examples for
semantic segmentation and object detection (2017) arXiv: 1703.08603 .

51] T.K.S. Lab, Tencent keen security lab: Experimental security research of
tesla autopilot, 2019, (https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-
Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/).

52] E. Brochu, V.M. Cora, N. de Freitas, A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforce-
ment learning, 2010.

53] P.I. Frazier, A tutorial on bayesian optimization, 2018.
54] M.O. R. Garnett, S. Roberts., Bayesian optimization for sensor set selection, 2010.
55] J.C. Barsce, J.A. Palombarini, E.C. Martínez, Towards autonomous reinforcement

learning: Automatic setting of hyper-parameters using bayesian optimization, 2018.
56] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M.M.A. Patwary,

Prabhat, R.P. Adams, Scalable bayesian optimization using deep neural networks,
2015.

57] C.E. Rasmussen , Gaussian processes for machine learning, MIT Press, 2006 .
58] R. Moriconi, M.P. Deisenroth, K.S.S. Kumar, High-dimensional bayesian optimiza-

tion using low-dimensional feature spaces, 2019.
59] S. Shah , D. Dey , C. Lovett , A. Kapoor , Airsim: High-fidelity visual and physical sim-

ulation for autonomous vehicles, FSR, 2017 .
60] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu, H. Li, Q. Kong,

Baidu apollo em motion planner (2018) arXiv: 1807.08048 .
61] Y. Tian , K. Pei , S. Jana , B. Ray , Deeptest: Automated testing of deep-neural-net-

work-driven autonomous cars, 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE) (2018) 303–314 .

62] C.E. Tuncali, G. Fainekos, D. Prokhorov, H. Ito, J. Kapinski, Requirements-driven
test generation for autonomous vehicles with machine learning components, 2019.

63] C. Quiter, M. Ernst, deepdrive/deepdrive: 2.0, 2018, (https://doi.org/10.5281/
zenodo.1248998). 10.5281/zenodo.1248998

64] NVIDIA, Driveworks, (https://developer.nvidia.com/drive/drive-software).
65] Microsoft, Microsoft airsim, 2018, (https://github.com/microsoft/AirSim).
66] Epic Games Inc., What is unreal engine?, 2019, (https://www.unrealengine.com).
67] F. Codevilla , M. Miiller , A. López , V. Koltun , A. Dosovitskiy , End-to-end driving via

conditional imitation learning, 2018 IEEE International Conference on Robotics and
Automation (ICRA) (2018) 1–9 .

68] A. Attia, S. Dayan, Global overview of imitation learning, 2018.
69] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W.

Zaremba, Openai gym, 2016.
70] NVIDIA Corporation, What is geforce rtx?, 2019, (https://www.nvidia.com/en-us/

geforce/20-series/rtx/).
71] M.D. Zeiler , R. Fergus , Visualizing and understanding convolutional networks,

ECCV, 2014 .

Adith Boloor is a PhD student in Computer Science at Wash-
ington University in St. Louis. He has a Master’s degree in
Robotics from Washington University, and a Bachelor’s de-
gree in Mechanical Engineering from Purdue University. He
has worked on mutli-agent systems, additive manufacturing,
humanoid robots, autonomous vehicles and deep learning. His
research interests include adversarial machine learning in the
context of self-driving vehicles. He was invited to give a talk
at CVPR 2019 for his work on creating end-to-end self driving
agents.

Karthik Garimella is a MSc student in Computer Engineering
at Washington University in St. Louis. Before starting there, he
completed his undergraduate degree in Physics from Hendrix
College. He has worked as a scientific software developer for
several NASA sites, including Oak Ridge National Lab, God-
dard Space Flight Center, and the Jet Propulsion Laboratory.
His research interests include machine learning and artificial
intelligence for autonomous systems.
Xin He (M’17) is a postdoctoral research fellow at the Uni-
versity of Michigan, Ann Arbor. He received the PhD degree
in computer science from the Institute of Computing Technol-
ogy (ICT), Chinese Academy of Sciences (CAS), Beijing, China,
in 2017. His research interests include computer architecture,
especially on application specific acceleration, deep learning,
neural network accelerator, and approximate computing. He
is a member of the IEEE.

Professor Gill ’s research focuses on assuring properties of
real-time and embedded systems in which software complex-
ity, interactions with unpredictable environments, and hetero-
geneous platforms demand novel solutions that are grounded
in sound theory. A major goal of his work is to assure that
constraints on timing, memory footprint, fault-tolerance, and
other system properties can be met across heterogeneous ap-
plications, operating environments and deployment platforms.
He has led or contributed to the development, evaluation,
and open-source release of numerous real-time systems re-
search platforms and artifacts, including the Kokyu real-time
scheduling and dispatching framework that was used in sev-
eral AFRL and DARPA projects and flight demonstrations; the
nORB small-footprint real-time object request broker; the Cy-
berMech platform (collaborative with Purdue University) for
parallel Real-Time Hybrid Simulation; and the RT-Xen real-
time virtualization research platform, from which the RTDS
scheduler was transitioned into the Xen software distribution.

Yevgeniy Vorobeychik joined Washington University in St.
Louis in 2018. He was an assistant professor of computer sci-
ence and biomedical informatics at Vanderbilt University from
2013 until 2018, and a principal research scientist at Sandia
National Laboratories from 2010 until 2013. Between 2008
and 2010 he was a postdoctoral research associate at the Uni-
versity of Pennsylvania Computer and Information Science de-
partment. He received a PhD and MSE in Computer Science
and Engineering from the University of Michigan and a BS de-
gree in Computer Engineering from Northwestern University.
He received an NSF CAREER award in 2017 and was invited to
give an IJCAI-16 early career spotlight talk. He was nominated
for the 2008 ACM Doctoral Dissertation Award and received
honorable mention for the 2008 IFAAMAS Distinguished Dis-
sertation Award.

Dr. Xuan ‘Silvia’ Zhang is an Assistant Professor in the Pre-
ston M. Green Department of Electrical and Systems Engineer-
ing at Washington University in St. Louis. Before joining Wash-
ington University, she was a Postdoctoral Fellow in Computer
Science at Harvard University. She received her B. Eng. degree
in Electrical Engineering in 2006 from Tsinghua University
in China, and her MS and PhD degree in Electrical and Com-
puter Engineering from Cornell University in 2009 and 2012
respectively. She works across the fields of VLSI, computer ar-
chitecture, and cyber physical systems and her research inter-
ests include adaptive power and resource management for au-
tonomous systems, hardware/software co-design for machine
learning and artificial intelligence, and efficient computation
and security primitives in analog and mixed-signal domain.
Dr. Zhang is the recipient of DATE Best Paper Award in 2019
and ISLPED Design Contest Award in 2013, and her work has
also been nominated for Best Paper Award at DATE 2019 and
DAC 2017.

arxiv:http://1907.05418
https://eprint.iacr.org/2017/613
arxiv:http://1703.08603
https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0037
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0037
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0038
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0038
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0038
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0038
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0038
arxiv:http://1807.08048
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0040
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0040
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0040
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0040
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0040
https://doi.org/10.5281/zenodo.1248998
https://developer.nvidia.com/drive/drive-software
https://github.com/microsoft/AirSim
https://www.unrealengine.com
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0041
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0041
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0041
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0041
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0041
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0041
https://www.nvidia.com/en-us/geforce/20-series/rtx/
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0042
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0042
http://refhub.elsevier.com/S1383-7621(20)30060-6/sbref0042

	Attacking vision-based perception in end-to-end autonomous driving models
	1 Introduction
	2 Related work
	2.1 Deep neural networks for perception and control
	2.2 End-to-end self-driving
	2.3 Attacks on autonomous vehicles

	3 Modeling framework
	3.1 Candidate objective functions
	3.1.1 Steering angle summations
	3.1.2 Absolute steering angle differences
	3.1.3 Path deviation

	4 Approaches for generating adversaries
	4.1 Random and grid search
	4.2 Bayesian optimization search policy

	5 Experimental methodology
	5.1 Autonomous vehicle simulator
	5.2 End-to-end driving models
	5.3 Physical adversary generation
	5.3.1 Unreal engine
	5.3.2 Pattern generator library
	5.3.3 OpenAI-gym environment for carla

	5.4 Experiment setup and parallelism

	6 Experimental results
	6.1 Simple physical adversarial examples
	6.1.1 Effectiveness of attacks
	6.1.2 Analysis of attack objectives

	6.2 Exploration of large design spaces
	6.3 Importance of selecting a reliable objective function
	6.4 Vehicle hijacking attacks
	6.5 Interpretation of Attacks using DeConvNet

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References

