
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROBUST BACKDOOR REMOVAL BY RECONSTRUCTING
TRIGGER-ACTIVATED CHANGES IN LATENT REPRE-
SENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Backdoor attacks pose a critical threat to machine learning models, causing them
to behave normally on clean data but misclassify poisoned data into a poisoned
class. Existing defenses often attempt to identify and remove backdoor neurons
based on Trigger-Activated Changes (TAC) which is the activation differences
between clean and poisoned data. These methods suffer from low precision in
identifying true backdoor neurons due to inaccurate estimation of TAC values.
In this work, we propose a novel backdoor removal method by accurately recon-
structing TAC values in the latent representation. Specifically, we formulate the
minimal perturbation that forces clean data to be classified into a specific class
as a convex quadratic optimization problem, whose optimal solution serves as a
surrogate for TAC. We then identify the poisoned class by statistical test based
on extreme selection bias of the class with the smallest norm of perturbations,
and leverage the perturbation of the poisoned class in fine-tuning to remove back-
doors. Experiments on CIFAR-10, GTSRB, and TinyImageNet demonstrated that
our approach consistently achieves superior backdoor suppression with high clean
accuracy across different attack types, datasets, and architectures, outperforming
existing defense methods.

1 INTRODUCTION

While machine learning provides significant benefits in many applications, the threat of backdoor
attacks that compromise machine learning models has been pointed out (Gu et al., 2019; Chen et al.,
2017; Nguyen & Tran, 2021). The compromised model behaves normally on clean data, but when a
trigger known only to the adversary is embedded into the data (poisoned data), the model is forced to
misclassify it as the attacker-specified target class. One of the most critical challenges in backdoor
defenses is to develop backdoor removal methods that effectively eliminate the influence of backdoor
attacks from a compromised model while preserving its original accuracy (Liu et al., 2018a; Zheng
et al., 2022; Lin et al., 2024).

To minimize accuracy degradation, most backdoor removal methods first identify backdoor neurons
that strongly respond to the trigger and are thus thought to be less essential for normal predictions
but critical for backdoor success. Once identified, the influence (impact) of these neurons is mit-
igated through pruning, fine-tuning or both (Liu et al., 2018a; Zheng et al., 2022; Wu & Wang,
2021; Li et al., 2023; Lin et al., 2024). A key metric to measure the degree of their contribution
is Trigger-Activated Changes (TAC) (Zheng et al., 2022), defined as the difference in neuron ac-
tivations between clean and poisoned data. Removing neurons exhibiting higher TAC values can
eliminate backdoors while minimizing the impact on accuracy (Zheng et al., 2022; Lin et al., 2024).

However, since poisoned data is not available in practice, the ideal values of TAC cannot be obtained.
Due to this limitation, existing methods (Liu et al., 2018a; Zheng et al., 2022; Wu & Wang, 2021;
Li et al., 2023; Lin et al., 2024) compute the contribution of neurons to the success of backdoor
attacks using their own approaches, but their results often show low consistency with TAC, leading
to ineffective backdoor removal.

To address this problem, we propose a novel backdoor removal method by accurately reconstructing
the effects of TAC in the latent representation with an overview provided in Figure 1. Among

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Phase 1:
Reconstructing TAC in the Latent Representation

Computing a Minimal
Perturbation for Each Class

Phase 2:
Fine-tuning with the Perturbation
in the Poisoned Class

||𝒔!∗||

||𝒔#∗ ||

・
・
・ Selecting the

Class with the
Smallest NormLatent

Representation

𝜙𝜽𝒃𝒅

Reference
Dataset

𝒔$∗

Each Correct ClassClass 𝑡

𝒔$∗

Any Class

𝜽𝒇𝒕∗

Class 𝑘

𝒔%∗

Any Class

Fine-tuning

𝒙$&

Sampling

Subset

Repeat 𝑇'(& times

𝑘 Count Lists
𝑁!⋯𝑁#

Statistical Test
Via Extreme

Selection Bias

Poisoned Class 𝑡

Figure 1: Overview of our proposed method. Our method consists of two stages: (1) reconstructing
TAC in the latent representation, which involves computing the minimal perturbation that forces any
clean data to be classified into each class and then identifying the poisoned class with statistical test
via extreme selection bias for the class with the smallest norm, and (2) removing the backdoor by
fine-tuning with the optimized perturbation of the poisoned class.

0.00 0.25 0.50 0.75 1.00 1.25
TAC

0.00

0.25

0.50

0.75

1.00

1.25

M
in

im
al

P
er

tu
rb

at
io

n

Cosine Similarity: 0.922
Correlation Coefficient: 0.936

(a) BadNets

0.00 0.25 0.50 0.75 1.00
TAC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
al

P
er

tu
rb

at
io

n

Cosine Similarity: 0.893
Correlation Coefficient: 0.906

(b) Trojan

0.0 0.5 1.0 1.5
TAC

0.00

0.25

0.50

0.75

1.00

1.25
M

in
im

al
P

er
tu

rb
at

io
n

Cosine Similarity: 0.881
Correlation Coefficient: 0.900

(c) Blend

0.0 0.5 1.0 1.5 2.0 2.5
TAC

0.00

0.25

0.50

0.75

1.00

1.25

M
in

im
al

P
er

tu
rb

at
io

n

Cosine Similarity: 0.667
Correlation Coefficient: 0.738

(d) WaNet

Figure 2: The perturbations obtained by our method and TAC in the latent representation for CIFAR-
10 on ResNet-18. For each neuron in the latent representation, we plot the TAC value on the hori-
zontal axis and the minimal perturbation of the poisoned class on the vertical axis.

intermediate layers, TAC in the latent representation, i.e, the output of the layer just before the
classification layer, can be critical for the success of backdoor attacks because the effects of TAC
in earlier layers propagate and accumulate in the latent representation, which then directly affects
misclassification through the classification layer. If the effects of TAC in the latent representation
can be inferred solely from clean data, defenders can approximate the model’s outputs on poisoned
data without them and eliminate their influence from the model. Thus, reconstructing TAC in the
latent representation enables robust backdoor removal.

Specifically, we first reconstruct TAC in the latent representation by computing a minimal pertur-
bation in that representation required to misclassify any clean data into the poisoned class. This is
motivated by two key properties of TAC in the latent representation: (i) because triggers are realized
through minimal modifications to clean data in order to remain undetectable, the resulting changes
(i.e., TAC) in the latent representation between clean and poisoned inputs are necessarily small; and
(ii) despite being minimal, these changes are sufficient to induce misclassification into the poisoned
class. Actually, Figure 2 shows that the minimal perturbation obtained in this way is strongly similar
and correlated with TAC in the latent representation. We then apply the obtained perturbation for
model fine-tuning, which effectively removes the backdoor while preserving clean accuracy.

Our main contributions are summarized as follows:

1. Method to Reconstruct TAC in the Latent Representation. We propose a method to recon-
struct TAC in the latent representation by computing the minimal perturbation that forces any clean
data to be misclassified into a specific class and identifying the poisoned class from the perturbations
in all classes. First, we formulate the optimization problem of finding such a perturbation as a con-
vex quadratic program. We then clarify the conditions under which such a perturbation exists and
derive the analytical solution. For the poisoned class, the perturbation obtained by solving the opti-
mization can be regarded as a surrogate that reproduces the effect of TAC. Therefore, reconstructing

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

TAC in the latent representation requires identifying the poisoned class, even though in practice the
defender typically does not know it in advance.

2. Statistical Identification of the Poisoned Class via Extreme Selection Bias. We propose a
statistical method for identifying the poisoned class based on the frequency of the class with the
smallest norm among the perturbations of all class. Backdoor training forces data with triggers to be
classified into the poisoned class by effectively shifting its decision boundary toward the region of
clean data so the perturbation norm of the poisoned class is smaller than that of other classes. Due to
this property, the poisoned class tends to be extremely selected as the class with the smallest norm,
whereas this does not occur in clean models. By formulating this phenomenon as a statistical test,
we obtain a statistically reliable method.

3. Backdoor Removal Method from the Optimized Perturbation. We propose a backdoor re-
moval method that leverages the TAC effects estimated by our method of the poisoned class. Con-
cretely, we fine-tune the model using a loss that enforces clean data in the latent representation, even
when perturbed toward the poisoned class, to be classified into their original clean classes, together
with the cross-entropy loss for the clean task. This process yields a compromised model that si-
multaneously preserves high accuracy and enhances backdoor removal performance. Experimental
results demonstrate that our method can successfully eliminate the impact of backdoor attacks while
maintaining high accuracy, even against several representative attack methods. Furthermore, we
confirm that our approach achieves greater robustness compared to existing defense methods.

2 RELATED WORKS

2.1 BACKDOOR ATTACKS

A backdoor attack compromises a model so that it behaves normally on clean data but misclassifies
poisoned data into an attacker-specified class. Representative methods include BadNets (Gu et al.,
2019), Blend (Chen et al., 2017), and Trojan (Liu et al., 2018b). Although these approaches achieve
high attack success rates, they are relatively easy to detect because of their easily visible triggers. To
reduce the detectability of visible triggers, several studies design imperceptible triggers such that the
difference between clean and poisoned data cannot be distinguished by humans or detectors (Nguyen
& Tran, 2020; 2021; Doan et al., 2021b). More recently, techniques have also been developed to
improve stealthiness not only at the input level but also in the internal feature space of the model (Tan
& Shokri, 2020; Zhong et al., 2022; Doan et al., 2021a; Xu et al., 2025). In this way, backdoor attacks
continue to evolve toward greater stealthiness in both input and internal space, thereby increasing
the difficulty of effective defense.

2.2 BACKDOOR REMOVAL

Existing backdoor removal methods can broadly be categorized into two groups: (i) those that iden-
tify backdoor neurons and then prune or fine-tune them (Liu et al., 2018a; Zheng et al., 2022; Wu &
Wang, 2021; Li et al., 2023; Lin et al., 2024), and (ii) those that neutralize backdoors via advanced
fine-tuning strategies without explicit neuron identification (Zhu et al., 2023; Min et al., 2023; Wei
et al., 2023; Karim et al., 2024). Details of the latter related works are provided in Appendix B.1.

To identify backdoor neurons, various methods have been proposed. Fine-Pruning (FP) (Liu et al.,
2018a) regards neurons inactive on clean data as backdoor neurons, while Adversarial Neuron Prun-
ing (ANP) (Wu & Wang, 2021) regards neurons sensitive to adversarial noise as backdoor neurons.
As an oracle metric, Channel Lipschitzness Pruning (CLP) (Zheng et al., 2022) introduced Trigger-
Activated Changes (TAC), defined as the activation difference between clean and poisoned data.
CLP further approximates neurons with large weight values as those with large TAC. However, be-
cause TAC computation requires access to poisoned data, it is impossible to obtain the ideal values
of TAC. More recently, unlearning-based methods using only clean data (Li et al., 2023; Lin et al.,
2024) have been proposed, but the identification rate of neurons with high TAC values still remains
limited. If TAC could be computed more precisely, it would enable approximate the model outputs of
poisoned data without them and thus achieve robust backdoor removal. However, in the absence of
poisoned data, directly leveraging TAC is infeasible, leaving the construction of practical surrogates
of TAC for defenders as an open challenge. To address this challenge, our approach reconstructs
TAC in the latent representation via optimizing a minimal perturbation that forces any clean data

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

to be misclassified into a specific class, providing a feasible and accurate method for defenders to
neutralize backdoor effects.

3 PROBLEM SETTING

In this section, we first describe the threat model in this work, focusing on the goals and capabili-
ties of the adversary and the defender. We then present the formalization of backdoor attacks and
introduce Trigger-Activated Changes (TAC) (Zheng et al., 2022).

3.1 THREAT MODEL

Adversary. The adversary’s goal is to obtain a compromised model that, with high probability,
misclassifies poisoned data into the target class while still correctly classifying clean data. In the
data collection scenario (Gu et al., 2019; Chen et al., 2017; Liu et al., 2020), the adversary has access
only to the training dataset. In the supply-chain scenario (Doan et al., 2021b; Nguyen & Tran, 2021;
Xu et al., 2025), where the model is distributed through external sources, the adversary may have
full access to the training process.

Defender. The defender’s goal is to detect whether a given model has been compromised and to
remove the backdoor if present. The defender is assumed to have access to the model parameter
and a small dataset (reference dataset) sampled from the same distribution as the model’s training
data (Zhu et al., 2023; Lin et al., 2024).

3.2 FORMULATION OF BACKDOOR ATTACKS

For any a ∈ N, let [a] = {1, 2, · · · , a}. Given an input dimension din and the number of classes
C, we denote by ei ∈ {0, 1}C the standard basis vector whose i-th element is 1. A neural net-
work f : Rdin → [0, 1]C outputs the probability of belonging to each class for an input x ∈ Rdin .
Let θ be a model parameter, ℓ a loss function, and ϕθ : Rdin → Rdemb the mapping to the latent
representation layer (i.e., the layer just before the final linear layer) of dimension demb. This yields
the latent representation x̂ = ϕθ(x) ∈ Rdemb . The final (L-th) linear layer is parameterized by
weight matrix WL = [w1,w2, · · · ,wC] ∈ Rdemb×C , where each column vector is wj ∈ Rdemb

and a bias vector is b ∈ RC . Using the softmax function, the network output is expressed as
f(x;θ) = Softmax(W⊤

L x̂+ b).

Furthermore, let δ ∈ Rdin be the trigger required for a backdoor attack and t ∈ [C] be a poisoned
class. Then, the compromised model parameter θbd is obtained as

θbd = argmin
θ

1

n

n∑
i=1

[
ℓ(f(xi;θ),yi) + ℓ(f(xi + δ;θ), et)

]
, (1)

where the training dataset is D = {(xi,yi)}ni=1 and yi ∈ {e1, e2, · · · , eC}. The parameter θbd
is optimized such that the model behaves normally on clean data x, while poisoned data x + δ are
misclassified into the poisoned class t.

3.3 TRIGGER-ACTIVATED CHANGES

In a compromised model, when poisoned data x + δ is provided, certain neurons are strongly acti-
vated. This excessive activation causes x+δ to be misclassified into the poisoned class t. Therefore,
if the contribution of each neuron to the success of the backdoor attack can be quantified, its influ-
ence can be suppressed, enabling backdoor removal from the model.

In this paper, we focus on Trigger-Activated Changes (TAC) (Zheng et al., 2022), which are defined
as the difference in activations between clean and poisoned data and serve as an oracle metric to
quantify each neuron’s contribution to the success of backdoor attacks. Specifically, for the i-th
neuron in the l-th layer fl,i(·), TAC is computed as

TACl,i(x;θ) = fl,i(x+ δ;θ)− fl,i(x;θ). (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The i-th neuron’s importance in the intermediate layers for the success to backdoor attack is calcu-
lated as the average value, TACl,i(θ) = Ex[TACl,i(x;θ)], because applying the same trigger to
different data tends to activate similar neurons in the intermediate layers (Zheng et al., 2022).

However, the computation of TAC requires poisoned data x + δ, and since defenders typically do
not know the trigger δ, it is infeasible to calculate the ideal values of TACl,i(θ).

4 PROPOSED METHOD

In this paper, we aim to reconstruct TAC in the latent representation of a compromised model instead
of reconstructing TAC in arbitrary intermediate layers. The rationale is that although backdoor neu-
rons may appear in arbitrary intermediate layers, their effects are aggregated through the network and
ultimately reflected in the latent representation. Thus, if TAC in the latent representation can be re-
constructed, the output of poisoned data can be approximately computed using the subsequent linear
layer as follows: f(x+ δ;θ) ≒ Softmax(WL(x̂+TACL−1(θ)) + b), where TACL−1(θ) ∈ Rdemb

denotes the vector of TAC values in the latent representation. This allows us to remove backdoors
by fine-tuning the model so that the misclassification of poisoned data is restored into the correct
class.

Based on this idea, we propose a method to reconstruct TAC in the latent representation and a
defense mechanism that leverages the reconstructed TAC for backdoor removal. As illustrated in
Figure 1, our method consists of two stages: (1) reconstructing TAC in the latent representation,
which involves computing the minimal perturbation that forces any clean data to be classified into
each class and then identifying the poisoned class with statistical test via extreme selection bias for
the class with the smallest norm, and (2) removing the backdoor using the optimized perturbation of
the poisoned class. The details of each stage are described below.

4.1 COMPUTING PERTURBATIONS IN THE LATENT REPRESENTATION

To reconstruct TAC in the latent representation, we focus on the following two properties of TAC in
the latent representation: it takes minimal values since the trigger is minimized to be indistinguish-
able from the original data, and it induces misclassification into the poisoned class. Based on these
observations, we first introduce an optimization problem to compute the minimal perturbation in the
latent representation of clean data that forces it to be misclassified into a specific class.

Optimization Problem. Our goal is to find the minimal perturbation s∗k that guarantees all inputs
are classified into class k. This leads to the following formulation: the objective is defined by a
quadratic term 1

2∥sk∥
2
2 for analytical convenience, such that the logits sk + x̂i of class k dominate

those of all other classes. The resulting primal optimization problem can be formulated as the
following convex quadratic program:

s∗k = argmin
sk

1

2
∥sk∥22 s.t. (wk −wj)

⊤(sk + x̂i) ≥ 0, ∀j ∈ [C] \ {k}, ∀i ∈ [n]. (3)

Here, (wk−wj)
⊤(sk+ x̂i) denotes the margin of class k against class j for sample i after applying

the perturbation sk. An example xi is classified into class k if and only if these margins are nonneg-
ative for all j ̸= k. Therefore, the constraints enforce nonnegative margins for every example and
every j ̸= k, and the single perturbation sk is chosen to lift the margins of class k simultaneously
across all examples. To remove redundancy and improve computational efficiency, the n(C − 1)
constraints in equation 3 are compressed into C − 1 constraints by considering only the worst-case
margin for each class j ̸= k across the dataset. That is, the constraint in equation 3 can be equiva-
lently written as (wk −wj)

⊤sk ≥ −(wk −wj)
⊤x̂i, ∀j ∈ [C] \ {k}, ∀i ∈ [n] and it suffices

to consider only the worst case ∀j ∈ [C] \ {k} : max
i
{−(wk − wj)

⊤x̂i}. The problem therefore

reduces to the following convex quadratic program:

s∗k = argmin
sk

1

2
||sk||22 s.t. UkW

⊤
L sk ≥m, (4)

where the inequality between vectors is understood element-wise, Uk := [u1,u2, · · · ,uC−1] ∈
R(C−1)×C , ∀j ∈ [C] \ {k} : uj = (ek − ej)

⊤ ∈ RC and m ∈ RC−1 is the vector of worst-case
margins, with each component given by ∀j ∈ [C] \ {k} : mj = max

i
{−(wk −wj)

⊤x̂i}.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The reduced problem is also convex by construction but its feasibility is not always guaranteed.
Thus, we provide sufficient conditions under which feasibility is guaranteed from Theorem 1. That
is, if C − 1 < demb and UkW

⊤
L has full row rank, the optimal solution s∗k is guaranteed to exist.

Solution via Dual Problem. To obtain the optimal solution for sk, we introduce the dual problem of
equation 4 because the dual problem involves fewer variables, which makes the problem more stable
compared to the primal problem. Let λ ∈ RC−1 be the dual variable vector and Vk := UkW

⊤
L ∈

R(C−1)×demb . The final form of the dual problem can be written as follows, with the derivation
process provided in Appendix D.2:

λ∗ = argmax
λ

λ⊤m− 1

2
∥V ⊤

k λ∥22 s.t. λ ≥ 0. (5)

In general, the dual problem provides a lower bound on the optimal value of the primal problem.
When the primal problem is convex and satisfies suitable regularity conditions (e.g., Slater’s con-
dition (Boyd & Vandenberghe, 2004)), strong duality holds, and the optimal values of the primal
and dual problems coincide. The proof that strong duality for the derived primal and dual problems
in equation 4 and equation 5 is given in Appendix D.4. When strong duality holds, the following
Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient for optimality of the primal
problem (Boyd & Vandenberghe, 2004):

(i) Stationarity: s∗k − V ⊤λ∗ = 0,

(ii) Primal and Dual Feasibility: V ⊤s∗k ≥m, λ∗ ≥ 0,

(iii) Complementary Slackness: λ∗ ⊙ (V ⊤s∗k −m) = 0.

The conditions of primal and dual feasibility together with complementary slackness ensure that s∗k
necessarily induces misclassification into class k. As a result, the minimal perturbation s∗k can be
obtained from the stationarity condition, i.e., s∗k = V ⊤λ∗, which shows that the primal optimal
solution can be obtained from the dual optimal solution. In practice, we solve the dual problem with
a convex optimization solver CVXPY (Diamond & Boyd, 2016) to obtain λ∗ reliably.

4.2 IDENTIFYING THE POISONED CLASS VIA EXTREME SELECTION BIAS

Using the perturbations for each class obtained in Section 4.1, we propose a method to identify the
poisoned class. Since TAC in the latent representation is reconstructed as the perturbation s∗t for the
poisoned class t ∈ [C], it is necessary to identify the poisoned class.

To this end, we first focus on the perspective of L2 minimization of the perturbations. The mini-
mal displacement required to switch class is proportional to the margin to the decision boundary.
Backdoor training tends to pull the poisoned decision boundary closer to the data space with clean
classes, which causes the perturbation of the poisoned class to become smaller than those of the other
classes. Additionally, we leverage a key empirical property: in compromised models, the poisoned
class almost always appears as the class with the smallest perturbation norm ∥s∗k∥2, even when the
computation of s∗1, s

∗
2, · · · , s∗C is repeated many times. In contrast, clean models may show small

selection bias across classes, but they never exhibit such extreme selection bias on a single class
such as compromised models.

Concretely, we first calculate the latent representations x̂1, x̂2, · · · , x̂n of the entire reference dataset
which a defender has in advance. Then, we randomly sample a subset of them at a sampling rate
r, and obtain s∗1, s

∗
2, · · · , s∗C by solving the optimized problem as described in 4.1. This process is

repeated Tpci times and we record which class attains the minimum norm in each process. Let Nk be
the number of times class k is selected, N∗ = max

1≤k≤C
Nk, and pmax = N∗/Tpci. We then formulate

a hypothesis test on this maximum selection ratio. A clean model is defined as one whose maximum
selection probability does not exceed a tolerance level η; a compromised model violates this bound.
Formally, we consider the one-sided test

H0 : pmax ≤ η vs H1 : pmax > η. (6)

Since H0 is a composite hypothesis, we evaluate the p-value under the least favorable clean case,
where one class has selection probability exactly η and the others are ignored. In this case, N∗ is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

stochastically dominated by a binomial random variable X ∼ Binomial(Tpci, η), and we define the
p-value as pval = Pr[X ≥ N∗]. In other words, we deliberately consider the clean model in which
a large value of N∗ is most likely to occur, and ask how plausible the observed value is under the
clean model. In this way, the p-value quantifies how natural it would be, under H0, for a clean model
to select the same class as the smallest norm class as many times as we observed. We then declare
the model compromised if pval < α, and identify the poisoned class as the one with the largest
Nk. Otherwise, we regard the observed bias as consistent with a clean model. After identifying the
poisoned class, we compute the minimal perturbation s∗t using the entire reference dataset.

4.3 BACKDOOR REMOVAL WITH THE PERTURBATION OF THE POISONED CLASS

Using the perturbation of the poisoned class obtained in Section 4.2, we propose a backdoor removal
method, as shown in equation 7:

θ∗ft = argmin
θbd

1

n

n∑
i=1

[
ℓ(f(xi;θbd),yi) + β ℓ

(
Softmax(W⊤

L (x̂i + s∗t) + b),yi

)]
, (7)

where β is a hyperparameter that balances clean accuracy and backdoor removal performance.
Specifically, the model is fine-tuned so that even if the latent representation shifts in the direction of
s∗t , the perturbed latent representation x̂i + s∗t is still recognized as its correct class. This ensures
that poisoned data are classified into their correct clean classes. In addition, to maintain performance
on the original clean task, a loss that enforces correct classification of clean data into their correct
classes is also included.

While pruning-based approaches via the perturbation of the poisoned class are also possible, we
found that our fine-tuning method is more effective performance as shown in Appendix F.4.

5 EXPERIMENTS

In this section, we conduct experimental evaluations to verify the effectiveness of our proposed
method described in Section 4.

5.1 EXPERIMENTAL SETUP

Datasets and Neural Network Architecture. We conducted experiments on three image classifi-
cation datasets: CIFAR-10, GTSRB, and TinyImageNet. CIFAR-10 and GTSRB contain 10 and 43
classes of 32 × 32 pixels, respectively. TinyImageNet includes 200 classes with images resized to
64× 64 pixels. For all datasets, we primarily used ResNet-18 as the neural network architecture.

Backdoor Attacks. We evaluate the effectiveness of our proposed method against six backdoor
attack methods: BadNets (Gu et al., 2019), Trojan (Liu et al., 2018b), Blend (Chen et al., 2017),
IAB (Nguyen & Tran, 2020), Lira (Doan et al., 2021b), and WaNet (Nguyen & Tran, 2021). The
training configuration for all attacks consisted of 100 epochs, stochastic gradient descent (SGD)
as the optimizer, a learning rate of 0.1, and cosine annealing as the learning rate scheduler. For
the standard backdoor attack configuration, we adopted a poisoning rate of 10.0% and fixed the
poisoned class as 1, following the all-to-one setting in which poisoned data from all other classes
is misclassified into a poisoned class. We remark that although datasets such as CIFAR-10 index
classes starting from 0, we align with the notation in this paper where classes are indexed from 1.
Accordingly, class 1 in our notation corresponds to class 0 in CIFAR-10. Further details of each
attack and the hyperparameters used are provided in Appendix C.1.

Backdoor Defenses. For comparison, we evaluate our proposed method against five defense meth-
ods to identify backdoor neurons, FP (Liu et al., 2018a), CLP (Zheng et al., 2022), ANP (Wu &
Wang, 2021), RNP (Li et al., 2023) and TSBD (Lin et al., 2024) as well as three advanced fine-
tuning defenses without identifying backdoor neurons, FT-SAM (Zhu et al., 2023), SAU (Wei et al.,
2023) and FST (Min et al., 2023). Details of the defense methods and hyperparameters are provided
in Appendix C.2. Following previous works (Zhu et al., 2023; Lin et al., 2024), we assume that
the defender has access to 5% of the training dataset as a reference dataset and the effect of the
reference dataset size on defense performance is presented in Appendix F.5. For our poisoned class
identification method, the hyperparameters are α = 0.01, η = 0.7, r = 0.4 and Tpci for all datasets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Clean
Target 1

Target 2
Target 3

Target 4
Target 5

Target 6
Target 7

Target 8
Target 9

Target 10

Poisoned Class

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

Class 1
0

Cl
as

s

13 30 0 0 0 0 0 0 0 0 0

0 0 30 0 0 0 0 0 0 0 0

14 0 0 30 0 0 0 0 0 0 0

0 0 0 0 30 0 0 0 0 0 0

3 0 0 0 0 30 0 0 0 0 0

0 0 0 0 0 0 30 0 0 0 0

0 0 0 0 0 0 0 30 0 0 0

0 0 0 0 0 0 0 0 30 0 0

0 0 0 0 0 0 0 0 0 30 0

0 0 0 0 0 0 0 0 0 0 30
0

5

10

15

20

25

30

(a) BadNets

Clean
Target 1

Target 2
Target 3

Target 4
Target 5

Target 6
Target 7

Target 8
Target 9

Target 10

Poisoned Class

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

Class 1
0

Cl
as

s

13 30 0 0 0 0 0 0 0 0 0

0 0 30 0 0 0 0 0 0 0 0

14 0 0 30 0 0 0 0 0 0 0

0 0 0 0 30 0 0 0 0 0 0

3 0 0 0 0 30 0 0 0 0 0

0 0 0 0 0 0 30 0 0 0 0

0 0 0 0 0 0 0 30 0 0 0

0 0 0 0 0 0 0 0 30 0 0

0 0 0 0 0 0 0 0 0 30 0

0 0 0 0 0 0 0 0 0 0 30
0

5

10

15

20

25

30

(b) WaNet

Figure 3: Total number of times the class with the smallest norm is counted for each poisoned class
on CIFAR-10. The horizontal axis shows the poisoned class, while the vertical axis shows each
class.

For our fine-tuning method, we used SGD with a learning rate of 0.01 for 50 epochs, with β set to
0.5 for CIFAR-10, 2.0 for GTSRB, and 0.1 for TinyImageNet. The effect of tuning β value on ACC
and ASR is discussed in Appendix F.6.

5.2 RECONSTRUCTING TAC IN THE LATENT REPRESENTATION

As shown in Figure 2 and Appendix F.2, the perturbation of the poisoned class computed by our
method exhibits a high similarity with TAC in the latent representation and identifies backdoor
neurons more accurately than existing approaches. Therefore, it is crucial to accurately identify the
poisoned class by our poisoned class identification method described in Section 4.2.

Table 1: Results for our poisoned class identification method. “Clean” shows the result of the clean
model without any attack.

CIFAR-10 GTSRB TinyImageNet
pval N∗ Poisoned Class pval N∗ Poisoned Class pval N∗ Poisoned Class

Clean 0.998 14 - 0.589 21 - 0.841 19 -
BadNets 0.0000226 30 1 0.0000226 30 1 0.0000226 30 1
Trojan 0.0000226 30 1 0.0000226 30 1 0.0000226 30 1
Blend 0.0000226 30 1 0.0000226 30 1 0.0000226 30 1
WaNet 0.0000226 30 1 0.0000226 30 1 0.0000226 30 1
IAB 0.0000226 30 1 0.0000226 30 1 0.0000226 30 1
Lira 0.0000226 30 1 0.0000226 30 1 0.0000226 30 1

Main Results. Table 1 shows the clean model exhibits only N∗ = 20 for CIFAR-10, resulting in
an extremely large pval and thus is not rejected under H0. In contrast, differing trigger types and
injection mechanisms show perfect concentration (N∗ = 30) in all datasets, yielding highly signifi-
cant p-values (< 0.001). These results confirm that the proposed method consistently identifies the
poisoned class and clearly separates compromised models from clean ones.

Different Poisoned Classes. To examine the robustness of our poisoned class identification method,
we further evaluate whether our proposed method can detect any poisoned class as shown in Figure 3.
As a result, we confirmed that regardless of which class was poisoned, the poisoned class was
selected as the one with the smallest norm across all trials.

5.3 EFFECTIVENESS OF BACKDOOR REMOVAL

Evaluation Metrics. Following previous works (Zhu et al., 2023; Lin et al., 2024), we introduce
three evaluation metrics for backdoor attacks. Accuracy (ACC), which measures the classification
accuracy on clean data; Attack Success Rate (ASR), which denotes the percentage of triggered inputs
classified into the poisoned class; and Defense Efficacy Rate (DER), which evaluates how effectively
the backdoor is removed while maintaining accuracy. DER is defined as DER = (max(0,∆ACC)−

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of the backdoor removal results. “Average” denotes the mean of each metric
across attack methods. “No Defense” refers to a model to which no defense method is applied so
DER is marked as “−”.

CIFAR-10

No Defense FP CLP ANP RNP
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets 93.81 100.00 – 93.68 100.00 49.94 91.30 33.10 82.19 87.89 2.67 95.46 93.17 6.90 95.98
Trojan 94.00 100.00 – 93.47 2.11 98.68 83.97 1.19 94.39 88.98 100.00 47.35 93.97 99.93 49.86
Blend 93.29 99.91 – 93.11 13.96 92.89 90.09 30.46 83.13 89.72 91.12 52.14 93.43 89.07 55.03
WaNet 93.41 99.59 – 93.35 0.79 99.37 10.23 100.00 8.41 92.73 1.48 98.47 93.40 87.78 55.66

IAB 93.57 98.81 – 93.40 0.32 99.16 90.18 7.39 94.02 89.13 0.83 96.99 93.57 1.27 99.00
Lira 94.29 99.98 – 93.88 0.24 99.66 88.61 3.86 95.22 90.82 99.93 48.29 93.82 90.98 54.27

Average 93.73 99.71 – 93.48 19.57 89.95 75.73 29.33 76.23 89.88 49.34 73.12 93.56 62.65 68.30
TSBD FT-SAM SAU FST Ours

ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑
BadNets 29.22 91.38 22.02 92.85 2.78 98.13 85.84 1.29 95.37 93.53 100.00 49.86 92.03 10.88 93.67
Trojan 90.12 3.57 96.28 92.88 2.06 98.41 90.65 1.71 97.47 93.53 80.29 59.62 92.01 0.98 98.52
Blend 88.76 3.66 95.86 92.71 4.50 97.42 90.65 0.84 98.21 93.11 36.19 81.77 91.84 1.69 98.39
WaNet 88.14 83.56 55.38 92.57 1.28 98.74 91.48 1.57 98.05 93.33 2.23 98.64 92.39 0.52 99.02

IAB 90.21 8.37 93.54 93.01 1.01 98.62 90.23 0.58 97.45 93.24 0.98 98.75 92.37 0.38 98.62
Lira 92.10 93.77 52.01 93.12 0.50 99.15 90.93 0.86 97.88 93.88 19.88 89.84 92.80 0.11 99.19

Average 79.76 47.38 69.18 92.86 2.02 98.41 89.96 1.14 97.40 93.44 39.93 79.75 92.24 2.43 97.90

GTSRB

No Defense FP CLP ANP RNP
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets 95.08 100.00 – 95.31 100.00 50.00 93.74 92.98 52.84 89.53 100.00 47.78 80.69 2.96 91.83
Trojan 94.39 100.00 – 94.81 99.99 50.00 92.98 0.18 99.21 87.00 99.82 46.56 85.92 0.00 95.93
Blend 93.85 99.50 – 94.68 97.84 50.83 92.26 99.41 49.25 82.53 96.87 45.80 93.45 83.75 57.82
WaNet 93.99 97.07 – 95.76 10.79 93.14 20.59 100.00 13.30 84.39 0.00 95.16 87.75 0.00 96.84

IAB 94.09 97.22 – 94.25 75.58 60.82 92.76 7.85 94.02 81.78 33.72 77.00 92.28 0.00 99.11
Lira 93.97 99.91 – 94.18 7.99 95.96 92.16 11.32 93.39 79.94 25.95 79.96 85.52 0.00 95.73

Average 94.23 98.95 – 94.83 65.36 66.79 80.75 51.96 67.00 84.20 59.39 65.38 87.60 14.45 89.54
TSBD FT-SAM SAU FST Ours

ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑
BadNets 94.81 100.00 49.86 95.15 100.00 50.00 94.37 0.00 99.64 89.49 100.00 47.20 94.27 6.78 96.20
Trojan 93.44 99.99 49.53 94.25 43.53 78.17 92.26 0.09 98.89 90.04 95.40 50.13 93.40 0.49 99.27
Blend 93.47 78.62 60.25 94.57 60.78 69.36 94.03 0.40 99.55 89.45 17.73 88.68 93.39 7.06 95.99
WaNet 91.82 94.20 50.35 95.36 0.01 98.53 95.04 0.03 98.52 89.81 0.01 96.44 95.60 0.00 98.54

IAB 94.24 6.96 95.13 94.48 0.23 98.50 94.30 0.02 98.60 90.47 0.00 96.80 94.21 0.00 98.61
Lira 91.34 70.18 63.55 93.60 0.00 99.77 87.08 0.01 96.50 88.84 0.01 97.39 92.79 0.00 99.37

Average 93.18 74.99 61.44 94.57 34.09 82.39 92.85 0.09 98.62 89.68 35.53 79.44 93.94 2.39 98.00

TinyImageNet

No Defense FP CLP ANP RNP
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets 61.98 99.97 – 58.26 99.94 48.16 35.09 0.25 86.41 43.78 91.76 44.91 61.19 0.09 99.45
Trojan 61.58 100.00 – 58.07 99.12 48.69 59.59 0.22 98.89 36.96 100.00 37.39 59.85 0.00 98.82
Blend 62.28 99.97 – 57.68 0.43 97.47 54.29 9.52 91.23 28.03 93.91 35.96 60.91 0.01 99.35
WaNet 62.37 99.58 – 58.80 0.17 97.92 48.17 0.63 92.37 36.74 99.05 37.75 36.42 51.66 61.28

IAB 62.56 99.39 – 59.03 0.09 97.88 59.41 0.19 98.02 34.74 0.84 85.85 50.05 15.66 86.10
Lira 62.19 99.99 – 58.87 0.32 98.17 58.79 0.24 98.17 41.04 99.99 39.42 54.19 0.00 95.99

Average 62.16 99.82 – 58.45 33.35 81.38 52.56 1.84 94.18 36.88 80.92 46.88 53.77 11.24 90.17
TSBD FT-SAM SAU FST Ours

ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑
BadNets 50.58 29.31 79.63 52.96 0.23 95.36 52.95 0.54 95.20 53.58 30.51 80.53 56.33 0.00 97.16
Trojan 50.58 0.22 94.39 52.29 0.26 95.22 52.07 0.35 95.07 51.37 0.14 94.82 56.71 0.01 97.56
Blend 51.48 0.05 94.56 53.50 0.17 95.51 53.29 6.77 92.10 54.04 0.48 95.62 57.97 0.01 97.82
WaNet 50.41 99.88 44.02 55.18 0.39 96.00 57.43 3.90 95.37 53.89 0.12 95.49 61.37 0.02 99.28

IAB 51.69 83.85 52.33 55.91 0.36 96.19 55.36 1.73 95.23 54.57 0.04 95.68 61.12 2.39 97.78
Lira 50.56 1.42 93.47 54.28 0.29 95.89 55.19 0.51 96.24 52.58 0.39 94.99 59.78 0.02 98.78

Average 50.88 35.79 76.40 54.02 0.28 95.70 54.38 2.30 94.87 53.34 5.28 92.86 58.88 0.41 98.06

Table 3: Comparison of the backdoor removal results for CIFAR-10 on ResNet-50.

No Defense FP CLP ANP RNP
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets 91.48 100.00 – 91.02 58.88 70.33 63.83 9.33 81.51 15.44 4.40 59.82 91.10 100.00 49.85
Trojan 92.69 100.00 – 91.83 2.70 98.22 50.80 3.24 77.43 89.84 78.10 60.17 87.51 13.18 91.47
Blend 92.11 99.59 – 91.16 17.68 90.48 47.62 5.68 74.71 16.25 21.52 51.66 42.84 15.06 68.19
WaNet 92.83 98.92 – 91.99 0.90 98.59 59.54 0.14 82.74 12.36 0.00 60.48 68.84 90.16 43.64

IAB 92.68 98.71 – 91.93 1.28 98.34 56.43 20.67 70.90 15.08 16.37 53.66 18.18 26.02 50.38
Lira 91.40 100.00 – 90.42 0.33 99.34 24.27 19.53 56.67 53.88 29.34 66.57 37.11 1.76 71.98

Average 92.20 99.54 – 91.39 13.63 92.55 50.41 9.77 73.99 33.81 24.96 58.73 57.60 41.03 62.58
TSBD FT-SAM SAU FST Ours

ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑
BadNets 81.41 4.74 92.59 89.77 26.27 86.01 87.51 8.76 93.64 90.97 84.20 57.65 88.97 4.68 96.41
Trojan 87.27 2.24 96.17 91.10 3.21 97.60 88.22 1.16 97.19 92.07 15.66 91.86 90.01 1.10 98.11
Blend 83.42 5.07 92.92 90.00 6.08 95.70 88.60 1.36 97.36 91.18 15.83 91.41 89.19 3.10 96.78
WaNet 83.80 71.51 59.19 90.66 1.57 97.59 89.48 1.86 96.86 92.30 1.58 98.41 90.05 0.69 97.73

IAB 82.83 76.14 56.36 90.74 1.10 97.84 88.51 1.58 96.48 92.35 1.47 98.46 89.57 0.69 97.46
Lira 68.79 5.21 86.09 89.23 0.53 98.65 86.59 0.82 97.18 90.67 10.01 94.63 88.63 0.12 98.55

Average 81.25 27.49 80.55 90.25 6.46 95.56 88.15 2.59 96.45 91.59 21.46 88.74 89.40 1.73 97.51

max(0,∆ASR + 1))/2, which takes values in [0, 1]. A DER closer to 1 indicates that the backdoor
is more effectively removed while preserving clean accuracy.

Main Results. Table 2 presents the backdoor removal results for various attack and defense methods
on ResNet-18. Overall, our method achieves consistently superior DER across datasets. On Tiny-
ImageNet, it attains the highest DER of 98.06%, with competitive ACC and ASR. On GTSRB, our
approach yields a DER substantially higher than competing defenses, reflecting both strong attack
suppression and accuracy preservation. On CIFAR-10, it achieves the best DER of 98.39% on Blend
and remains competitive across other attacks. In addition, the results on CIFAR-10 with ResNet-50

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

are reported in Table 3. On ResNet-50, our method outperforms all defenses, including FT-SAM and
SAU, which performed well on ResNet-18, in terms of both ACC and ASR. These results indicate
that our approach suppresses backdoor success to near-zero while preserving high clean accuracy
across diverse attack types, architectures, and datasets compared to the state-of-the-art existing de-
fense methods.

6 CONCLUSION

In this work, we introduced a novel backdoor removal framework that reconstructs Trigger-Activated
Changes (TAC) in the latent representation and leverages the reconstructed TAC for effective back-
door removal. Our method consists of two stages: recontructing TAC in the latent representation by
computing minimal perturbations which misclassify any clean data into a target class for all classes
and identifying the poisoned class via statistical test of extreme selection bias, and fine-tuning the
model using the optimized perturbation of the poisoned class. Our experiments demonstrated that
our method achieves superior backdoor suppression while maintaining high clean accuracy in any
attack type, dataset, and architecture. As future work, we aim to extend our method to settings with
multiple poisoned classes, since the current poisoned identification method assumes the perturbation
norm of the single poisoned class is smaller than that of all other clean classes.

ETHICS STATEMENT

Our work does not involve human participants, sensitive personal data, or experiments with potential
risks to individuals or communities. We relied on publicly available datasets that are widely recog-
nized in the research community, and we ensured ethical use of data by citing sources appropriately
and complying with dataset licenses.

REPRODUCIBILITY STATEMENT

The experimental configurations used for reproduction are described in Section 5.1 and Appendix C.

REFERENCES

Bilal Hussain Abbasi, Yanjun Zhang, Leo Zhang, and Shang Gao. Backdoor attacks and defenses
in computer vision domain: A survey. arXiv preprint arXiv:2509.07504, 2025.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Yiming Chen, Haiwei Wu, and Jiantao Zhou. Progressive poisoned data isolation for training-time
backdoor defense. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 11425–11433, 2024.

Yukun Chen, Shuo Shao, Enhao Huang, Yiming Li, Pin-Yu Chen, Zhan Qin, and Kui Ren. Re-
fine: Inversion-free backdoor defense via model reprogramming. In The Thirteenth International
Conference on Learning Representations, 2025.

Edward Chou, Florian Tramèr, and Giancarlo Pellegrino. Sentinet: Detecting localized universal
attacks against deep learning systems. In Proc. of the Deep Learning and Security Workshop
(DLS) 2020, 2020.

Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Bao Gia Doan, Ehsan Abbasnejad, and Damith C. Ranasinghe. Februus: Input purification de-
fense against trojan attacks on deep neural network systems. In 36th Annual Computer Security
Applications Conference (ACSAC 2020), pp. 897–912. ACM, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Khoa Doan, Yingjie Lao, and Ping Li. Backdoor attack with imperceptible input and latent modifi-
cation. Advances in Neural Information Processing Systems, 34:18944–18957, 2021a.

Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust
backdoor attacks. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11966–11976, 2021b.

Kuofeng Gao, Yang Bai, Jindong Gu, Yong Yang, and Shu-Tao Xia. Backdoor defense via adaptively
splitting poisoned dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4005–4014, 2023.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th
annual computer security applications conference, pp. 113–125, 2019.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. Ieee Access, 7:47230–47244, 2019.

Mengxuan Hu, Zihan Guan, Yi Zeng, Junfeng Guo, Zhongliang Zhou, Jielu Zhang, Ruoxi Jia,
Anil Kumar Vullikanti, and Sheng Li. Mind control through causal inference: Predicting clean
images from poisoned data. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=ho4mNiwr2n.

Nazmul Karim, Abdullah Al Arafat, Adnan Siraj Rakin, Zhishan Guo, and Nazanin Rahnavard.
Fisher information guided purification against backdoor attacks. In Proceedings of the 2024 on
ACM SIGSAC Conference on Computer and Communications Security, pp. 4435–4449, 2024.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learn-
ing: Training clean models on poisoned data. Advances in Neural Information Processing Sys-
tems, 34:14900–14912, 2021.

Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-Gang Jiang. Recon-
structive neuron pruning for backdoor defense. In International Conference on Machine Learning,
pp. 19837–19854. PMLR, 2023.

Weilin Lin, Li Liu, Shaokui Wei, Jianze Li, and Hui Xiong. Unveiling and mitigating backdoor
vulnerabilities based on unlearning weight changes and backdoor activeness. Advances in Neural
Information Processing Systems, 37:42097–42122, 2024.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against back-
dooring attacks on deep neural networks. In International symposium on research in attacks,
intrusions, and defenses, pp. 273–294. Springer, 2018a.

Xiaogeng Liu, Minghui Li, Haoyu Wang, Shengshan Hu, Dengpan Ye, Hai Jin, Libing Wu, and
Chaowei Xiao. Detecting backdoors during the inference stage based on corruption robustness
consistency (teco). In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) 2023, pp. 16363–16372, 2023.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. In 25th Annual Network And Distributed System
Security Symposium (NDSS 2018). Internet Soc, 2018b.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor
attack on deep neural networks. In European Conference on Computer Vision, pp. 182–199.
Springer, 2020.

Rui Min, Zeyu Qin, Li Shen, and Minhao Cheng. Towards stable backdoor purification through
feature shift tuning. Advances in Neural Information Processing Systems, 36:75286–75306, 2023.

Xiaoxing Mo, Yechao Zhang, Leo Yu Zhang, Wei Luo, Nan Sun, Shengshan Hu, Shang Gao, and
Yang Xiang. Robust backdoor detection for deep learning via topological evolution dynamics
(ted). arXiv preprint arXiv:2312.02673, 2023.

11

https://openreview.net/forum?id=ho4mNiwr2n

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. Advances in Neural
Information Processing Systems, 33:3454–3464, 2020.

Tuan Anh Nguyen and Anh Tuan Tran. Wanet-imperceptible warping-based backdoor attack. In
International Conference on Learning Representations, 2021.

Te Juin Lester Tan and Reza Shokri. Bypassing backdoor detection algorithms in deep learning. In
2020 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 175–183, 2020. doi:
10.1109/EuroSP48549.2020.00019.

Shaokui Wei, Mingda Zhang, Hongyuan Zha, and Baoyuan Wu. Shared adversarial unlearning:
Backdoor mitigation by unlearning shared adversarial examples. Advances in Neural Information
Processing Systems, 36:25876–25909, 2023.

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao
Shen. Backdoorbench: A comprehensive benchmark of backdoor learning. Advances in Neural
Information Processing Systems, 35:10546–10559, 2022.

Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models. Ad-
vances in Neural Information Processing Systems, 34:16913–16925, 2021.

Zhen Xiang, Zidi Xiong, and Bo Li. Cbd: A certified backdoor detector based on local dominant
probability. arXiv preprint arXiv:2310.17498, 2023.

Tinghao Xie, Xiangyu Qi, Ping He, Yiming Li, Jiachen T. Wang, and Prateek Mittal. Badex-
pert: Extracting backdoor functionality for accurate backdoor input detection. arXiv preprint
arXiv:2308.12439, 2023.

Xiaoyun Xu, Zhuoran Liu, Stefanos Koffas, and Stjepan Picek. Towards backdoor stealthiness in
model parameter space. arXiv preprint arXiv:2501.05928, 2025.

Kaiyuan Zhang, Siyuan Cheng, Guangyu Shen, Guanhong Tao, Shengwei An, Anuran Makur,
Shiqing Ma, and Xiangyu Zhang. Exploring the orthogonality and linearity of backdoor at-
tacks. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 225–225, Los Alami-
tos, CA, USA, may 2024. IEEE Computer Society. doi: 10.1109/SP54263.2024.00225. URL
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00225.

Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal based on channel
lipschitzness. In European Conference on Computer Vision, pp. 175–191. Springer, 2022.

Nan Zhong, Zhenxing Qian, and Xinpeng Zhang. Imperceptible backdoor attack: From input space
to feature representation. In Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, pp. 1736–1742. International Joint Conferences on Artificial Intelligence
Organization, 2022.

Mingli Zhu, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Enhancing fine-tuning based
backdoor defense with sharpness-aware minimization. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4466–4477, 2023.

APPENDIX

The Appendix provides additional technical details, extended discussions, and supplementary ex-
perimental results to support the main paper. Its structure is organized as follows:

• Appendix A presents a brief statement regarding the use of large language models during
manuscript preparation.

• Appendix B provides additional related work on backdoor defenses, including fine-tuning–
based approaches, training-stage defenses, and inference-stage detection methods.

• Appendix C summarizes implementation details for all backdoor attacks and defense base-
lines used in our experiments, expanding upon the configurations described in Section 5.

12

https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00225

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• Appendix D offers extended methodological details, including the complete algorithmic
procedure, derivations of the dual optimization problem, feasibility analysis, and proofs of
strong duality.

• Appendix E analyzes the computational complexity of our TAC reconstruction framework
and presents empirical runtime measurements across datasets and model architectures.

• Appendix F contains additional experimental results, such as evaluations on large-scale
datasets and models, further comparisons with prior neuron identification methods, abla-
tion studies on poisoned class identification, pruning-based variants, sensitivity analyses
for hyperparameters, experiments with varying reference dataset sizes, effectiveness under
low poisoning rates, effectiveness against a defense-aware attack, and visualization of the
reconstructed TAC.

A LLM USAGE

While drafting this paper, we used a large language model (e.g., GPT-5) to assist with grammar
correction, readability improvements, and literature searches. The scientific content, original ideas,
and experimental findings are entirely the work of the authors.

B ADDITIONAL RELATED WORKS FOR BACKDOOR DEFENSES

In Section 2.2, we discussed backdoor defenses that aim to remove backdoors by identifying back-
door neurons from compromised models, and here we introduce other defense strategies following
the literature (Abbasi et al., 2025).

B.1 BACKDOOR REMOVAL WITHOUT BACKDOOR NEURON IDENTIFICATION

Several recent defenses avoid explicitly identifying backdoor neurons and instead mitigate back-
doors through fine-tuning and feature regularization. FT-SAM (Zhu et al., 2023) employs sharpness-
aware minimization during fine-tuning to suppress backdoor-sensitive parameters. SAU (Wei et al.,
2023) uses adversarial perturbations to unlearn shared backdoor features across classes, while
FST (Min et al., 2023) adjusts feature distributions to shift poisoned representations away from
decision boundaries. FIP (Karim et al., 2024) leverages Fisher information to purify representations
and reduce the influence of backdoors.

B.2 TRAINING-STAGE DEFENSES

Training-stage defenses aim to prevent the learning of backdoor correlations during model training
by modifying optimization dynamics, restructuring the training process, or limiting the influence of
poisoned data. A key insight is that poisoned data often behave differently from clean data in early
training , e.g., faster loss reduction or more sensitive feature transformations, which can be exploited
to detect and neutralize them.

Representative methods include Anti-Backdoor Learning (ABL) (Li et al., 2021), which isolates
suspicious low-loss data in early epochs and later unlearns them to break trigger–label associations.
Extensions refine this idea: Adaptively Splitting Dataset (ASD) (Gao et al., 2023) adaptively parti-
tions data into clean and poisoned pools; Progressive Isolation (PIPD) (Chen et al., 2024) progres-
sively reduces false positives in isolation; and Mind Control through Causal Inference (MCCI) (Hu
et al., 2025) leverages causal modeling to disentangle triggers from true classes.

B.3 INFERENCE-STAGE DEFENSES

Inference-stage defenses aim to identify or neutralize trigger-bearing inputs during inference, mak-
ing them especially useful when retraining or model inspection is impractical. A representative
approach is perturbation-based detection, where methods such as STRIP (Gao et al., 2019) perturb
incoming inputs and measure the entropy of predictions; consistently low entropy often indicates the
presence of a trigger. Another line focuses on input purification, with Februus (Doan et al., 2020)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 Backdoor Removal via Reconstructing TAC in the Latent Representation

Require: Compromised model parameter θbd, a reference dataset Dref, number of trials Tpci, toler-
ance η, significance level α, hyperparameter β.

Ensure: Fine-tuned model θ∗
ft

1: Phase 1: Reconstructing TAC in the Latent Representation
2: BLR = {ϕθbd(x1), ϕθbd(x2), · · · , ϕθbd(x|Dref|)}
3: Initialization: Set Nk ← 0 for all classes k ∈ [C].
4: for i = 1, . . . , Tpci do
5: Sample a subset B(i) ⊂ BLR.
6: Compute perturbations {s∗(i)k }Ck=1 by solving the optimization in Section 4.1.
7: Let c(i) = argmink ∥s∗(i)k ∥2.
8: Update Nc(i) ← Nc(i) + 1.
9: end for

10: Compute N∗ = max
k

Nk and pmax = N∗

Tpci
.

11: Hypothesis Test:
12: Consider the one-sided test

H0 : pmax ≤ η vs. H1 : pmax > η.

13: Under the least favorable clean case, evaluate

pval = Pr[X ≥ N∗], X ∼ Binomial(Tpci, η).

14: if pval < α then
15: Declare the model compromised.
16: Identify the poisoned class as t = argmax

k
Nk.

17: else
18: Conclude the model is consistent with being clean and return None.
19: end if
20: After detection, compute s∗t using the full reference dataset.
21: Phase 2: Backdoor Removal with the Perturbation in the Poisoned Class
22: Fine-tune the compromised model by solving
23:

θ∗
ft = argmin

θbd

1

|Dref|

|Dref|∑
i=1

[
ℓ(f(xi;θbd),yi) + β ℓ(Softmax(W⊤

L (x̂i + s∗t) + b),yi)
]
.

24: Return θ∗
ft

removing suspicious regions through inpainting to recover benign content and mitigate patch-style
trojans.

Beyond perturbation and purification, interpretability-based defenses such as SentiNet (Chou et al.,
2020) leverage saliency maps to localize highly influential regions and assess their generalization
across inputs, enabling detection of physical-world triggers. Similarly, TeCo (Liu et al., 2023) ex-
ploits robustness discrepancies under common image corruptions, showing that poisoned inputs be-
have inconsistently compared to clean ones, thus allowing detection without soft classes or auxiliary
clean datasets. More recent studies, including CBD (Xiang et al., 2023), TED (Mo et al., 2023), and
BaDExpert (Xie et al., 2023), further enhance detection reliability by leveraging statistical probabil-
ity bounds, topological dynamics, or explicit extraction of backdoor functionality. As another line of
work, REFINE (Chen et al., 2025) introduces a model reprogramming strategy that jointly employs
an input transformation module and an output remapping module. By aggressively transforming in-
puts while simultaneously remapping output classes, REFINE reduces the effectiveness of triggers
without severely degrading clean accuracy.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

We conducted experiments based on the implementation in the
OrthogLinearBackdoor (Zhang et al., 2024) repository 1.

C.1 BACKDOOR ATTACKS

We implemented six representative backdoor attack methods. Default configurations of all attacks
follow the OrthogLinearBackdoor. As described in Section 5.1, all attacks were trained for
100 epochs using stochastic gradient descent (SGD) with a learning rate of 0.1 and cosine annealing
as the learning rate scheduler.

• BadNets (Gu et al., 2019). A patch-based backdoor that stamps a fixed visible pattern onto
inputs to induce a target class; in our experiments we follow existing work (Zhang et al.,
2024) and use the sunflower image as the trigger.

• Trojan (Liu et al., 2018b). A trigger-stamping attack which plants a small image-based
trigger; here the trigger is a small sunflower image with a transparent background.

• Blend (Chen et al., 2017). A blending-style attack that mixes a trigger image into the entire
input with a given transparency; we use a Hello-Kitty image blended at an alpha of 0.2.

• WaNet (Nguyen & Tran, 2021). A warping-based backdoor that applies imperceptible
geometric distortions (image warps) as the trigger, producing stealthy, input-agnostic per-
turbations.

• IAB (Nguyen & Tran, 2020). An input-dependent attack that generates a dynamic trigger
conditioned on each input, making detection and removal more challenging.

• Lira (Doan et al., 2021b). A backdoor attack generating learnable, imperceptible, and
robust triggers, making them hard to detect and defend.

C.2 BACKDOOR DEFENSES

We implemented eight backdoor removal methods. Unless otherwise specified, implementations are
based on the OrthogLinearBackdoor repository, while methods without public implementa-
tions were re-implemented following the authors’ original repositories or BackdoorBench (Wu et al.,
2022) which is another benchmark framework that provides unified implementations of representa-
tive backdoor attacks and defenses for fair and reproducible evaluation.

• Fine-Pruning (FP) (Liu et al., 2018a). This method prunes neurons that are inactive on
clean data, assuming such neurons are likely backdoor-related. We set the pruning ratio as
0.2, fine-tuning epochs as 50, the optimizer as SGD, learning rate as 0.01 and learning rate
scheduler as cosine annealing.

• Channel Lipschitzness Pruning (CLP) (Zheng et al., 2022). CLP removes channels with
abnormally large Lipschitz constants, aiming to suppress backdoor activations. The im-
plementation is not included in the OrthogLinearBackdoor repository, we refer the
implementation in BackdoorBench (Wu et al., 2022). We also set the threshold parameter
as 3.0 following the original paper (Zheng et al., 2022).

• Adversarial Neuron Pruning (ANP) (Wu & Wang, 2021). ANP identifies and prunes neu-
rons that are highly sensitive to adversarial perturbations. In our experiments, for CIFAR-
10 we set ϵ = 0.3, α = 0.2 and the pruning threshold as 0.2; for GTSRB ϵ = 0.4, α = 0.2
and the pruning threshold as 0.4; and for TinyImageNet ϵ = 0.2, α = 0.3 and the pruning
threshold 0.001 where ϵ and α are the hyperparameters introduced in the original paper.

• Reconstructive Neuron Pruning (RNP) (Li et al., 2023). RNP prunes neurons whose
removal minimally affects the reconstruction of clean representations from the unlearned
model. The implementation is not included in the OrthogLinearBackdoor repository,
we refer the implementation in BackdoorBench. We set the pruning threshold as 0.7 for
CIFAR-10, the pruning threshold as 0.95 for GTSRB, and the pruning threshold as 0.1 for
TinyImageNet.

1https://github.com/KaiyuanZh/OrthogLinearBackdoor/blob/main/

15

https://github.com/KaiyuanZh/OrthogLinearBackdoor/blob/main/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Two-Stage Backdoor Defense (TSBD) (Lin et al., 2024). TSBD identifies backdoor neu-
ron based on Neuron Weight Change (NWC) which is the difference between the com-
promised model’s weights and the unlearned model’s weights, and conducts activeness-
aware fine-tuning to mitigate backdoors. The implementation is not included in the
OrthogLinearBackdoor repository, we refer the implementation in the original pa-
per (Lin et al., 2024). Following the original paper, after calculating NWC, we selected
15% of the top-neurons and pruned 70% of the top-subweights within them. In our ex-
periments, we attempted to use activeness-aware fine-tuning following the original paper,
but since the accuracy dropped significantly after fine-tuning, we instead adopted standard
fine-tuning. Fine-tuning configuration in TSBD is the same as that of FP.

• FT-SAM (Zhu et al., 2023). This method leverages sharpness-aware minimization (SAM)
during fine-tuning to suppress backdoor behaviors. The implementation is not included
in the OrthogLinearBackdoor repository, we refer the implementation in Backdoor-
Bench. The training configuration and hyperparameters are followed as BackdoorBench.

• Shared Adversarial Unlearning (SAU) (Wei et al., 2023). SAU uses adversarial per-
turbations to unlearn shared backdoor features across classes. The implementation is not
included in the OrthogLinearBackdoor repository, we refer the implementation in
BackdoorBench. The training configuration and hyperparamters are followed as Back-
doorBench.

• Feature Shift Tuning (FST) (Min et al., 2023). FST fine-tunes models by aligning feature
distributions to shift away backdoor-related representations. The implementation is not
included in the OrthogLinearBackdoor repository, we refer the implementation in
the original paper (Min et al., 2023). The hyperparameter that balances the loss terms
(denoted as α in the original paper) is set to 0.2 for CIFAR-10, 0.1 for GTSRB, and 0.001
for TinyImageNet, following the original paper.

D DETAILS OF OUR PROPOSED METHOD

D.1 ALGORITHMS

To clarify our proposed method as described in Section 4, we present the detailed procedure in
Algorithm 1.

D.2 DERIVATION PROCESS FOR DUAL PROBLEM

We describe the derivation process from equation 4 to equation 5.

Lagrangian and dual function. Introduce the dual variable λ ∈ RC−1 with λ ≥ 0 for the inequal-
ity constraints from equation 4. The Lagrangian is

L(sk,λ) =
1

2
∥sk∥22 − λ⊤(Vksk −m) s.t. λ ≥ 0.

The dual function is obtained by minimizing the Lagrangian over the primal variable:

g(λ) = inf
sk

L(sk,λ).

Stationarity (optimality in sk) gives

∇sk
L(sk,λ) = sk − V ⊤

k λ = 0 =⇒ sk = V ⊤
k λ.

Plugging this into L yields

g(λ) = λ⊤m− 1

2
∥V ⊤

k λ∥22.

Therefore, the dual problem is the concave maximization

λ∗ = argmax
λ

λ⊤m− 1

2
∥V ⊤

k λ∥22 s.t. λ ≥ 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.3 FEASIBLE SOLUTION

Theorem 1. If C − 1 < demb and Vk has full row rank, i.e. rank(Vk) = C − 1, then the primal
problem equation 4 has a feasible solution.

Proof. By Farkas’ lemma (Boyd & Vandenberghe, 2004), exactly one of the following two state-
ments holds:

1. There exists sk ∈ Rdemb such that Vksk ≥m.

2. There exists λ ∈ RC−1 such that V ⊤λ = 0, λ ≥ 0, m⊤λ < 0.

If rank(Vk) = C − 1 with C − 1 < demb, then ker(V ⊤
k) = {0}. Hence the only λ satisfying

V ⊤
k λ = 0 is λ = 0, which cannot yield m⊤λ < 0. Thus (2) is impossible, and therefore (1) must

hold. Hence, there exists sk with V ⊤
k sk ≥m, and the primal problem is feasible.

D.4 STRONG DUALITY

Theorem 2. If C − 1 < demb and rank(Vk) = C − 1, then the primal problem equation 4 and
equation 5 satisfy strong duality.

Proof. To establish this result, we show that the primal problem is a convex optimization problem
and that it satisfies Slater’s condition.

1. Convexity. The objective 1
2∥sk∥

2
2 is strongly convex. The feasible region is given by

Z := {sk ∈ Rdemb : V ⊤
k sk ≥m} =

C−1⋂
i=1

{sk : v⊤
i sk ≥ mi},

where each set {sk : v⊤
i sk ≥ mi} is a half-space and therefore convex. Since the feasible set

Z is the intersection of convex sets, it is also convex. Thus, the problem equation 4 is a convex
optimization problem.

2. Slater’s condition. Since Vk has full row rank, we have rank(Vk) = C − 1. This implies that
the linear map

J : Rdemb → RC−1, J(sk) = V ⊤
k sk,

is surjective. Hence, for any ϵ > 0, there exists s̄k ∈ Rdemb such that

V ⊤
k s̄k = m+ ϵ1C−1.

Since ϵ > 0, it follows that
V ⊤
k s̄k = m+ ϵ1C−1 > m,

which means that s̄k strictly satisfies all inequality constraints. In other words, s̄k ∈ relint(Z),
where Z = {sk ∈ Rdemb : V ⊤

k sk ≥ m} and relint(Z) means the relative interior of the set Z.
Therefore, Slater’s condition holds for problem equation 4.

E COMPUTATIONAL COMPLEXITY AND RUNTIME ANALYSIS OF TAC
RECONSTRUCTION

This section provides a detailed analysis of the computational efficiency of the TAC reconstruc-
tion procedure introduced in Section 4.1, together with empirical runtime measurements across
datasets and architectures. The goal is to clarify that the proposed optimization is computationally
lightweight and practical even for large-scale classification settings.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Mean and standard deviation of QP solving time (sec) for one class.

ResNet-18 (demb = 512) ResNet-50 (demb = 2048) ViT-B/32 (demb = 512)
CIFAR-10 0.015388 ± 0.000639 0.032364 ± 0.003099 0.015485 ± 0.000380
GTSRB 0.032178 ± 0.004127 0.104500 ± 0.002913 0.033923 ± 0.003504

TinyImageNet 0.141203 ± 0.002386 0.474484 ± 0.021590 0.142614 ± 0.004958
ImageNet-1K - - 1.170394 ± 0.018746

Table 5: Backdoor removal results for TinyImageNet and ImageNet-1K.

No Defense FT-SAM SAU FST Ours
ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑

TinyImageNet

BadNets 62.76 100.00 – 60.70 100.00 48.97 53.35 6.16 92.21 39.13 2.16 87.10 59.99 7.32 94.96
Trojan 61.87 100.00 – 58.94 100.00 48.54 52.72 0.01 95.42 35.11 38.74 67.25 59.33 0.48 98.49
Blend 62.37 99.99 – 60.04 99.91 48.88 53.92 0.03 95.75 35.54 59.87 56.65 58.22 0.00 97.92
Average 62.33 99.99 – 59.89 99.97 48.79 53.33 2.07 94.46 36.59 33.59 70.33 59.18 2.60 97.12

ImageNet-1K

BadNets 70.52 100.00 – 69.01 99.996 49.25 51.16 0.28 90.18 58.54 0.01 94.00 59.54 0.00 94.51
Trojan 71.33 100.00 – 70.15 99.95 49.43 51.40 0.01 90.03 59.83 0.00 94.25 60.52 0.00 94.59
Blend 71.48 99.98 – 70.11 99.57 49.53 52.36 0.01 90.43 59.38 0.00 93.94 60.42 0.01 94.46
Average 71.11 99.99 – 69.76 99.84 49.40 51.64 0.10 90.21 59.25 0.00 94.06 60.16 0.00 94.52

E.1 COMPUTATIONAL COMPLEXITY

We first describe the computational complexity of the quadratic problem (QP) we solve for per class,
as defined in Equation (4):

λ∗ = argmax
λ

λ⊤m− 1

2
∥V ⊤

k λ∥22 s.t. λ ≥ 0.

The dominant term in evaluating the dual objective is the computation of ∥V ⊤λ∥22 =
λ⊤(V V ⊤)λ = (V ⊤λ)⊤(V ⊤λ), where V ∈ R(C−1)×d∗emb. The matrix vector product V ⊤λ
requires O(dembC) operations, and the linear term λ⊤m adds O(C). Thus, each iteration of
the convex solver costs:O(dembC). If the solver performs Tsolver iterations, the per-class cost
becomes:O(TsolverdembC).

Importantly, this complexity depends only on the dimension demb and the number of classes C; it
does not depend on the size of the dataset or network depth. Moreover, the dimension is typically
modest (e.g., 512 or 2048 for ResNet-based models), which keeps the optimization efficient even
for large-scale classification problems.

E.2 EMPIRICAL RUNTIME MEASUREMENTS

To supplement the complexity analysis, we also report actual time measurements for computing a
minimal perturbation for per class in the following Table 4. Note that only the CPU, not the GPU,
was used when computing the QP.

As a result, we confirmed that the solving time for a single class is very short and practical. Even for
ImageNet-1K, which contains 1,000 classes, the computation runs fast—approximately 1.1 seconds
for demb = 512.

Our poisoned class identification method requires additional computations: specifically, C runs for
the number of classes and Tpci runs for the statistically necessary number of trials. A straightfor-
ward implementation would require CTpci additional computations, but since each computation is
completely independent, they can be executed in parallel.

As a result, both the complexity analysis and the runtime measurements show that the proposed TAC
reconstruction method is computationally lightweight and practical, even when scaling to larger
numbers of classes or higher dimension of the latent representation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTS

F.1 RESULTS FOR LARGE-SCALE MODEL AND DATASET

To confirm the effectiveness of our proposed method on large-scale models datasets, we additionally
conducted experiments on ViT-B/32 using TinyImageNet and ImageNet-1K as shown in Table 5.
For the attack setups, we fine-tune the pre-trained models starting from publicly available pretrained
ViT-B/32 checkpoints for 5 epochs with a learning rate of 0.0001. For our defense setup about
TinyImageNet and ImageNet-1k, we fine-tune the compromised model for 25 epochs with a learning
rate of 0.0005 and β = 0.5. We also compared our backdoor removal results with FT-SAM (Zhu
et al., 2023), SAU (Wei et al., 2023), and FST (Min et al., 2023).

For TinyImageNet, our method consistently achieves a favorable balance between ACC and ASR.
For instance, while SAU and FST achieve low ASR for certain attacks, their ACCs degrade sub-
stantially, dropping to 53% and 36% on average, respectively. In contrast, our method maintains
a high ACC of 59.18% comparable to FT-SAM, while achieving a much lower ASR of 2.60%, far
outperforming FT-SAM whose ASR remains above 99%. These findings indicate that, even in a
large-scale model setting, the proposed method retains its effectiveness.

We further extended our evaluation to ImageNet-1K, which is an order of magnitude more chal-
lenging, involving 1000 classes. Remarkably, our method continues to perform strongly. Across
BadNets, Trojan, and Blend attacks, our method reduces ASR to an average of 0.00%, matching
or improving upon SAU and FST, both of which also achieve low ASR in this setting. Crucially,
however, our method maintains ACC of 60.16%, which is dramatically higher than SAU (51.64%)
and substantially higher than FST (59.25%). Meanwhile, FT-SAM remains ineffective on ViT-B/32,
with ASR exceeding 99% across all three attacks. These ImageNet-1K results demonstrate that our
method scales gracefully even in extremely large-scale dataset settings and remains robust.

Finally, these experiments provide strong evidence that the proposed defense generalizes beyond
ResNet-based models and small datasets. Its effectiveness on ViT-B/32, combined with stable per-
formance on both TinyImageNet and ImageNet-1K, confirms that the TAC reconstruction and fine-
tuning mechanism does not rely on CNN-specific structures and remains robust even when applied
to high-capacity architectures and large, complex datasets. This further reinforces the practicality
and universality of our defense in real-world scenarios where large models and large-scale datasets
are standard.

F.2 COMPARISON WITH PREVIOUS METHODS FOR IDENTIFYING BACKDOOR NEURONS

We compare how accurately the perturbations in the latent representation obtained by our method
can identify TAC-based backdoor neurons relative to existing approaches. Figure 4, Figure 5 and
Figure 6 show the overlap rate with TAC-based backdoor neurons in the latent representation at
the Top-K% for each dataset. These results show that among existing methods, RNP exhibits rel-
atively stable performance, achieving high TAC coverage at small K on CIFAR-10 and GTSRB,
whereas TAC coverage at small K on TinyImageNet shows low. In contrast, our proposed method
consistently attains high TAC coverage at small K across all datasets, demonstrating its stability and
effectiveness in reconstructing TAC in the latent representation.

F.3 EFFECTIVENESS OF POISONED CLASS IDENTIFICATION METHOD ON FINE-TUNING
RESULTS

To verify the effectiveness of the poisoned class identification method, we conduct an ablation study
in which fine-tuning is performed without identifying the poisoned class. Namely, we fine-tune a
compromised model using the perturbations of all classes. Specifically, instead of applying s∗p in
Equation (7) for our method, we randomly select s∗ from the set of perturbations at each training
iteration for fine-tuning. The training configuration is the same as that of our method.

As shown in Table 6, even without poisoned class identification, ASR generally decreases to a level
comparable to our proposed method although ASR of 17.26% remains for IAB on TinyImageNet and
ASR of 20.23% for Blend on GTSRB. This is likely because, during training, the randomly selected
s∗ occasionally corresponds to s∗p. On the other hand, in terms of ACC, our method achieves higher

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(a) BadNets

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(b) Trojan

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(c) Blend

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(d) WaNet

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(e) IAB

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(f) Lira

Figure 4: TAC coverage, defined as the overlap ratio between TAC-based backdoor neurons and
those identified by each defense method on CIFAR-10.

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(a) BadNets

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(b) Trojan

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(c) Blend

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(d) WaNet

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(e) IAB

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(f) Lira

Figure 5: TAC coverage on GTSRB.

performance on CIFAR-10 and TinyImageNet. These results indicate that by leveraging only the
perturbation of the poisoned class through the poisoned class identification method, our method is
able to maintain higher accuracy while effectively removing backdoors.

F.4 COMPARISON WITH PRUNING-BASED METHODS VIA RECONSTRUCTING TAC IN THE
LATENT REPRESENTATION

As described in Section 4.3, we removed backdoors by reconstructing TAC with fine-tuning. Al-
ternatively, pruning-based methods can provide another approach that leverages the reconstructed
TAC for backdoor removal. Therefore, we further compare our method with pruning-based ap-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(a) BadNets

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(b) Trojan

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(c) Blend

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(d) WaNet

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(e) IAB

1 5 10 20 30 40 50 60 70 80 90 10
0

TOP-K(%)

0.0

0.2

0.4

0.6

0.8

1.0

T
A

C
C

ov
er

ag
e

FP

CLP

ANP

RNP

TSBD

Ours

(f) Lira

Figure 6: TAC coverage on TinyImageNet.

Table 6: Comparison of backdoor removal results between fine-tuning with the perturbations for all
classes and fine-tuning with the perturbation of the poisoned class (Ours). “No PCI” means fine-
tuning without the poisoned class identification (PCI) method.

No Defense No PCI Ours
ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑

CIFAR-10

BadNets 93.81 100.00 - 90.91 16.13 90.48 92.03 10.88 93.67
Trojan 94.00 100.00 - 90.36 2.67 96.85 92.01 0.98 98.52
Blend 93.29 99.91 - 90.11 4.81 95.96 91.84 1.69 98.39
WaNet 93.41 99.59 - 91.23 2.18 97.62 92.39 0.52 99.02

IAB 93.57 98.81 - 90.38 1.89 96.87 92.37 0.38 98.62
Lira 94.29 99.98 - 90.72 0.68 97.86 92.80 0.11 99.19

Average 93.73 99.71 - 90.62 4.73 95.94 92.24 2.43 97.90

GTSRB

BadNets 95.08 100.00 - 94.89 7.68 96.07 94.27 6.78 96.20
Trojan 94.39 100.00 - 93.08 0.41 99.14 93.40 0.49 99.27
Blend 93.85 99.50 - 92.99 17.26 90.69 93.39 7.06 95.99
WaNet 93.99 97.07 - 95.65 0.03 98.52 95.60 0.00 98.54

IAB 94.09 97.22 - 94.36 0.02 98.60 94.21 0.00 98.61
Lira 93.97 99.91 - 92.44 0.06 99.16 92.79 0.00 99.37

Average 94.23 98.95 - 93.90 4.24 97.03 93.94 2.39 98.00

TinyImageNet

BadNets 61.98 99.97 - 53.17 0.25 95.45 56.33 0.00 97.16
Trojan 61.58 100.00 - 52.09 0.28 95.11 56.71 0.01 97.56
Blend 62.28 99.97 - 53.19 0.16 95.36 57.97 0.01 97.82
WaNet 62.37 99.58 - 54.82 2.43 94.80 61.37 0.02 99.28

IAB 62.56 99.39 - 55.57 20.23 86.08 61.12 2.39 97.78
Lira 62.19 99.99 - 54.00 0.26 95.77 59.78 0.02 98.78

Average 62.16 99.82 - 53.81 3.94 93.76 58.88 0.41 98.06

proaches by reconstructing TAC in the latent representation. As shown in Table 7, pruning alone
can partially reduce ASR, but a considerable portion of backdoors remains (e.g., ASR of 69.89% for
Trojan on CIFAR-10 and 56.08% for Blend on GTSRB), indicating that pruning itself is insufficient
to completely eliminate the attacks. When combined with fine-tuning (Pruning+FT), the accuracy
can be preserved, but the fine-tuning process often revives backdoors, leading to higher ASR in
several cases (e.g., BadNets on CIFAR-10 where ASR returns to 100%). In contrast, our method
consistently decreases ASR across all attack settings while preserving high accuracy. These results
highlight that our approach overcomes the limitations of pruning-based methods and provides a
more reliable defense against backdoor attacks.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 7: Comparison of backdoor removal results between pruning-based methods and fine-tuning-
based method (Ours). Pruning ratio and fine-tuning configuration are set to be the same as those of
FP.

No Defense Pruning Pruning+FT Ours
ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑

CIFAR-10

BadNets 93.81 100.00 - 88.87 37.74 78.66 93.66 100.00 49.92 92.03 10.88 93.67
Trojan 94.00 100.00 - 90.26 69.89 63.19 93.55 97.86 50.85 92.01 0.98 98.52
Blend 93.29 99.91 - 89.00 43.56 76.03 93.32 41.59 79.16 91.84 1.69 98.39
WaNet 93.41 99.59 - 92.43 36.99 80.81 93.37 20.22 89.66 92.39 0.52 99.02

IAB 93.57 98.81 - 93.30 0.32 99.11 93.40 1.54 98.55 92.37 0.38 98.62
Lira 94.29 99.98 - 90.28 87.60 54.18 93.84 26.02 86.75 92.80 0.11 99.19

Average 93.73 99.71 - 90.69 46.02 75.33 93.52 47.87 75.82 92.24 2.43 97.90

GTSRB

BadNets 95.08 100.00 - 94.51 0.30 99.56 95.08 98.81 50.59 94.27 6.78 96.20
Trojan 94.39 100.00 - 93.62 45.74 76.75 94.61 99.20 50.40 93.40 0.49 99.27
Blend 93.85 99.50 - 93.70 56.08 71.64 94.71 81.07 59.22 93.39 7.06 95.99
WaNet 93.99 97.07 - 95.05 69.98 63.54 95.67 47.00 75.04 95.60 0.00 98.54

IAB 94.09 97.22 - 93.17 31.11 82.59 94.42 11.85 92.68 94.21 0.00 98.61
Lira 93.97 99.91 - 93.43 6.49 96.44 94.13 14.04 92.94 92.79 0.00 99.37

Average 94.23 98.95 - 93.91 34.95 81.75 94.77 58.66 70.14 93.94 2.39 98.00

TinyImageNet

BadNets 61.98 99.97 - 59.38 0.00 98.68 58.03 0.34 97.84 56.33 0.00 97.16
Trojan 61.58 100.00 - 58.05 0.06 98.20 56.95 0.16 97.60 56.71 0.01 97.56
Blend 62.28 99.97 - 59.55 32.61 82.31 59.00 0.11 98.29 57.97 0.01 97.82
WaNet 62.37 99.58 - 58.15 0.00 97.68 60.78 0.22 98.88 61.37 0.02 99.28

IAB 62.56 99.39 - 59.20 0.00 98.01 60.40 0.03 98.60 61.12 2.39 97.78
Lira 62.19 99.99 - 56.15 68.37 62.79 58.45 0.15 98.05 59.78 0.02 98.78

Average 62.16 99.82 - 58.41 16.84 89.61 58.94 0.17 98.21 58.88 0.41 98.06

Table 8: Backdoor removal results of our proposed method for each size of the reference dataset.

No Defense Ours (1.0%) Ours (5.0%) Ours (10.0%)
ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑

CIFAR-10

BadNets 93.81 100.00 - 91.55 3.53 97.10 92.03 10.88 93.67 92.57 14.18 92.29
Trojan 94.00 100.00 - 91.09 1.13 97.98 92.01 0.98 98.52 92.57 1.30 98.64
Blend 93.29 99.91 - 90.61 0.52 98.35 91.84 1.69 98.39 92.11 1.08 98.83
WaNet 93.41 99.59 - 89.38 0.19 97.69 92.39 0.52 99.02 92.61 0.37 99.21

IAB 93.57 98.81 - 90.06 0.23 97.53 92.37 0.38 98.62 92.60 0.66 98.59
Lira 94.29 99.98 - 91.15 0.16 98.34 92.80 0.11 99.19 92.83 0.11 99.20

Average 93.73 99.71 - 90.64 0.96 97.83 92.24 2.43 97.90 92.55 2.95 97.79

GTSRB

BadNets 95.08 100.00 - 71.01 0.00 87.97 94.27 6.78 96.20 94.71 1.88 98.88
Trojan 94.39 100.00 - 63.97 0.00 84.79 93.40 0.49 99.27 93.82 5.26 97.09
Blend 93.85 99.50 - 68.18 0.00 86.91 93.39 7.06 95.99 94.24 2.82 98.34
WaNet 93.99 97.07 - 80.58 0.00 91.83 95.60 0.00 98.54 95.44 0.00 98.54

IAB 94.09 97.22 - 72.51 0.00 87.82 94.21 0.00 98.61 94.44 0.02 98.60
Lira 93.97 99.91 - 64.78 0.00 85.36 92.79 0.00 99.37 93.40 0.00 99.67

Average 94.23 98.95 - 70.17 0.00 87.45 93.94 2.39 98.00 94.34 1.66 98.52

TinyImageNet

BadNets 61.98 99.97 - 55.96 0.02 96.96 56.33 0.00 97.16 53.84 0.04 95.89
Trojan 61.58 100.00 - 56.11 0.01 97.26 56.71 0.01 97.56 54.25 0.07 96.30
Blend 62.28 99.97 - 55.12 0.00 96.40 57.97 0.01 97.82 53.62 0.01 95.65
WaNet 62.37 99.58 - 57.67 0.00 97.44 61.37 0.02 99.28 56.87 0.03 97.02

IAB 62.56 99.39 - 58.18 0.00 97.50 61.12 2.39 97.78 55.94 0.04 96.36
Lira 62.19 99.99 - 57.34 0.00 97.57 59.78 0.02 98.78 55.98 0.07 96.85

Average 62.16 99.82 - 56.73 0.01 97.19 58.88 0.41 98.06 55.08 0.04 96.35

F.5 RESULTS FOR DIFFERENT REFERENCE DATASET SIZES

To investigate the dependency of our method on the size of the reference dataset, we further con-
ducted experiments by varying the reference set at 1.0%, 5.0% and 10.0% of the training dataset.
As shown in Table 8, our method consistently reduces ASR to nearly 0.0% across all dataset sizes,
demonstrating that even a small reference set can effectively eliminate backdoors. Regarding clean
accuracy, we observe that using 5.0% of the reference dataset already provides stable performance
that is almost identical to using 10.0%, indicating that 5.0% is sufficient in practice.

However, we note that on GTSRB, using only 1.0% of the reference dataset significantly decreases
accuracy (from 94.23% to 70.17%), although ASR is still effectively reduced to 0.0%. This result
suggests that for datasets with complex distributions such as GTSRB, a slightly larger reference
dataset (e.g., ≥ 5.0%) is required to preserve clean accuracy while maintaining strong defense effi-
cacy.

F.6 EFFECTIVENESS OF HYPERPARAMETER β

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(a) BadNets

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(b) Trojan

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(c) Blend

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(d) WaNet

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(e) IAB

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(f) Lira

Figure 7: Effectiveness of the hyperparameter β for CIFAR-10.

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(a) BadNets

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(b) Trojan

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(c) Blend

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(d) WaNet

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC
ASR

(e) IAB

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(f) Lira

Figure 8: Effectiveness of the hyperparameter β for GTSRB.

Since the hyperparameter β is a crucial parameter that balances ACC and ASR, the parameter tuning
for β is very important process. Here, we present the tuning results obtained when β is tuned
manually and when they is tuned automatically.

Manual Tuning. Figure 7, Figure 8, and Figure 9 show how ACC and ASR vary with different
values of β for each dataset. We observe that as β increases, both ACC and ASR decrease for all
datasets. For CIFAR-10, we set β = 0.5 as it provides a good trade-off between ACC and ASR. For
GTSRB, the ASR does not decrease unless β is set to 2.0 in some cases (e.g., BadNets and Blend).
However, since the clean accuracy does not drop significantly, we set β = 2.0. For TinyImageNet,
while ACC decreases substantially as β increases, the ASR is reduced to nearly zero already at
β = 0.1, and thus we set β = 0.1.

Automatic Tuning. To imshow the usability and robustness of our proposed method, we present
the simple automatic tuning method where β can be treated as a learnable scalar parameter and op-
timized jointly with the model parameters during the fine-tuning stage. Specifically, we initialize

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(a) BadNets

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(b) Trojan

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(c) Blend

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(d) WaNet

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(e) IAB

0.1 0.5 1.0 1.5 2.00

20

40

60

80

100

AC
C

/ A
SR

 (%
) ACC

ASR

(f) Lira

Figure 9: Effectiveness of the hyperparameter β for TinyImageNet.

Table 9: Backdoor removal results for CIFAR-10 on ResNet-18 by manual and automatic tuning.

No Defense Ours (Manual) Ours (Auto)
ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑ ACC↑ ASR↓ DER↑

CIFAR-10

BadNets 93.81 100.00 - 92.03 10.88 93.67 91.28 1.34 98.27
Trojan 94.00 100.00 - 92.01 0.98 98.52 91.41 1.29 98.06
Blend 93.29 99.91 - 91.84 1.69 98.39 91.13 0.87 98.44
WaNet 93.41 99.59 - 92.39 0.52 99.02 91.88 0.69 98.69

IAB 93.57 98.81 - 92.37 0.38 98.62 91.83 0.46 98.31
Lira 94.29 99.98 - 92.80 0.11 99.19 91.82 0.19 98.66

Average 93.73 99.72 - 92.24 2.09 98.57 91.55 0.81 98.41

GTSRB

BadNets 95.08 100.00 - 94.27 6.78 96.20 94.89 47.03 76.39
Trojan 94.39 100.00 - 93.40 0.49 99.27 93.84 0.00 99.73
Blend 93.85 99.50 - 93.39 7.06 95.99 94.70 3.40 98.05
WaNet 93.99 97.07 - 95.60 0.00 98.54 95.66 0.00 98.54

IAB 94.09 97.22 - 94.21 0.00 98.61 94.37 0.00 98.61
Lira 93.97 99.91 - 92.79 0.00 99.37 94.32 0.00 99.96

Average 94.23 99.62 - 93.94 2.39 98.33 94.63 8.08 95.88

TinyImageNet

BadNets 61.98 99.97 - 56.33 0.00 97.16 50.35 0.00 94.17
Trojan 61.58 100.00 - 56.71 0.01 97.56 51.38 0.00 94.90
Blend 62.28 99.97 - 57.97 0.01 97.82 52.29 0.01 94.98
WaNet 62.37 99.57 - 61.37 0.02 99.28 58.66 0.02 97.92

IAB 62.56 99.39 - 61.12 2.39 97.78 57.54 0.00 97.18
Lira 62.19 99.99 - 59.78 0.02 98.78 55.22 0.02 96.50

Average 62.16 99.82 - 58.55 0.41 97.89 54.91 0.01 95.74

β with a reasonable default value and update it through gradient-based optimization along with the
model weights. In Table 9, we show the experimental results for CIFAR-10, GTSRB, and TinyIma-
geNet on ResNet-18. We use the initial β = log(1 + eu) with u = 3.0, so that a softplus function
is applied to prevent β from taking negative values. Here, we directly update u, which serves as an
input to the softplus function. For manual tuning, we follow the original experimental settings and
set the values to 0.5, 2.0, and 0.1 for CIFAR-10, GTSRB, and TinyImageNet, respectively.

Although the initial value of β or u must be specified, our experimental results indicate β rapidly
converges to a stable range regardless of its initialization and that the resulting performance is com-
parable to that obtained with manually tuned β. Here, we confirmed that each final value of β does
not collapse to 0 and remains meaningful. It is possible that, during training, the loss term multiplied
by β became quite small and eventually received almost no updates. In summary, our results of the

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Our poisoned class identification results for low poisoning rates (PR) for CIFAR-10 on
ResNet-18.

PR = 1.0% PR = 5.0%
pval N∗ Poisoned Class pval N∗ Poisoned Class

Clean 0.998 14 - 0.998 14 -
BadNets 0.0000226 30 1 0.000312 29 1
Trojan 0.7304 24 - 0.00211 28 1
Blend 0.0000226 30 1 0.0000226 30 1

Table 11: Backdoor removal results under low poisoning rates for CIFAR-10 on ResNet-18.

No Defense Ours
ACC↑ ASR ↓ DER↑ ACC↑ ASR ↓ DER↑

BadNets (PR = 1.0%) 93.92 100.00 - 91.69 1.48 98.15
BadNets (PR = 5.0%) 93.91 100.00 - 91.62 20.27 88.72
Trojan (PR = 1.0%) 93.96 99.97 - 91.62 1.07 98.28
Trojan (PR = 5.0%) 93.78 100.00 - 90.92 1.30 97.92
Blend (PR = 1.0%) 93.91 97.53 - 91.50 1.00 97.06
Blend (PR = 5.0%) 93.67 99.78 - 91.00 0.58 98.27

simple automatic tuning indicate that a large portion of the tuning effort can be automated without
requiring dataset- or model-specific heuristics.

F.7 EFFECTIVENESS FOR LOW POISONING RATES

To exhibit the validity of our proposed method under low poisoning rates because when the poi-
soning rate becomes very small, the influence of the backdoor on the latent representation naturally
diminishes, which may make it difficult to detect the poisoned class and our fine-tuning method may
not work well.

First, we show our poisoned class identification results under low poisoning rates of 1.0% and 5.0%
in Table 10.

For 5.0% poisoning rate, our method reliably identifies the poisoned class for all three attacks, with
pval ≈ 0.0 and the minimal-norm class consistently selected N∗ ≈ 30. This shows our method
remains robust at moderately low poisoning rates. At the 1.0% poisoning rate, Trojan yields a
higher pval = 0.7304, above the significance threshold, indicating its perturbation norms become
indistinguishable from clean classes. This is expected, as Trojan triggers become more subtle and
cause weaker shifts in the latent representation, and very low poisoning rates further reduce their
effect on the compromised model.

We further show the backdoor removal results in Table 11. Our results indicate that the proposed
method is generally effective even under low poisoning rates, the poisoned class is reliably detected
for most of attacks, and the subsequent fine-tuning stage substantially suppresses the backdoor while
preserving clean accuracy. Moreover, even in the rare cases where poisoned class identification
becomes unreliable at extremely low poisoning rates (e.g., Trojan at PR = 1.0%), the fine-tuning
step still remains highly effective, consistently reducing ASR. This indicates that the final defense
stage is robust enough to mitigate backdoor behavior even when the identification component is
challenged.

F.8 EFFECTIVENESS AGAINST DEFENSE-AWARE ATTACK

An adaptive adversary with access to the model training process could deliberately enforce smaller
trigger-activated changes (TAC) for the poisoned class. Such an adversary may attempt to directly
minimize the L2 norm of the perturbations associated with the poisoned class during training. A

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 12: Backdoor removal results against the defense-aware attack on ResNet-18.

No Defense Ours
ACC↑ ASR ↓ DER↑ ACC↑ ASR ↓ DER↑

CIFAR-10 91.90 100.00 - 91.35 1.09 99.18
GTSRB 94.38 100.00 - 94.68 0.01 100.00

TinyImageNet 41.32 99.34 - 60.22 0.15 99.59

representative defense-aware objective can be formulated as follows:

θbd = argmin
θ

1

n

n∑
i=1

[
ℓ(f(xi;θ),yi) + ℓ(f(xi + δ;θ), et) + λ ∥ϕθ(x+ δ)− ϕθ(x)∥2︸ ︷︷ ︸

minimize TAC

]
. (8)

This loss explicitly encourages the adversary to train a model whose latent representations are close
between clean data and poisoned data, thereby minimizing the TAC in the latent representation.

To verify the effectiveness of our proposed method against the defense-aware attack, we conducted
defense experiments agaisnt the compromised model which is trained by the objective as shown
in Equation (8) using the BadNets trigger.

First, when we tested the poisoned class identification method, we confirmed that the poisoned class
was correctly identified in all datasets, showing pval = 0.000023 and N∗ = 30. Furthermore, the
backdoor removal results for CIFAR-10, GTSRB, and TinyImageNet are also shown in Table 12.

Across all datasets, we find that our defense remains highly effective, reducing ASR to 1.09%,
0.01%, and 0.15%, respectively, while maintaining clean accuracy almost unchanged and increased
for GTSRB and TinyImageNet. This is because adding the term that minimizes TAC degraded the
clean accuracy of the compromised model, and our fine-tuning subsequently restored the accuracy.

These results demonstrate that even when the adversary explicitly attempts to minimize TAC in the
latent representation, our defense continues to correctly identify the poisoned class and successfully
suppress the backdoor behavior.

F.9 VISUALIZATION FOR RECONSTRUCTED TAC

We show the reconstructed and true TAC values in Figure 10. From the visualization, we can see
that the reconstructed values are very close to the true TAC and are reconstructed accurately.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
Neuron Number

0.0

0.5

1.0

1.5

2.0

T
A

C
V

al
ue

s

Reconstructed TAC

True TAC

(a) BadNets

0 500 1000 1500 2000
Neuron Number

0.0

0.5

1.0

1.5

2.0

T
A

C
V

al
ue

s

Reconstructed TAC

True TAC

(b) Trojan

0 500 1000 1500 2000
Neuron Number

0.0

0.5

1.0

1.5

2.0

T
A

C
V

al
ue

s

Reconstructed TAC

True TAC

(c) Blend

0 500 1000 1500 2000
Neuron Number

0.0

0.5

1.0

1.5

2.0

T
A

C
V

al
ue

s

Reconstructed TAC

True TAC

(d) WaNet

0 100 200 300 400 500
Neuron Number

0.0

0.5

1.0

1.5

2.0

T
A

C
V

al
ue

s

Reconstructed TAC

True TAC

(e) IAB

0 100 200 300 400 500
Neuron Number

0.0

0.5

1.0

1.5

2.0

T
A

C
V

al
ue

s

Reconstructed TAC

True TAC

(f) Lira

Figure 10: Visualization for Reconstructed TAC for CIFAR-10 on ResNet-50.

27

	Introduction
	Related Works
	Backdoor attacks
	Backdoor Removal

	Problem Setting
	Threat Model
	Formulation of Backdoor Attacks
	Trigger-Activated Changes

	Proposed Method
	Computing Perturbations in the Latent Representation
	Identifying the Poisoned Class via Extreme Selection Bias
	Backdoor Removal with the Perturbation of the Poisoned Class

	Experiments
	Experimental Setup
	Reconstructing TAC in the Latent Representation
	Effectiveness of Backdoor Removal

	Conclusion
	LLM Usage
	Additional Related Works for Backdoor Defenses
	Backdoor Removal without Backdoor Neuron Identification
	Training-Stage Defenses
	Inference-Stage Defenses

	Implementation Details
	Backdoor Attacks
	Backdoor Defenses

	Details of Our Proposed Method
	Algorithms
	Derivation Process for Dual Problem
	Feasible Solution
	Strong Duality

	Computational Complexity and Runtime Analysis of TAC Reconstruction
	Computational Complexity
	Empirical Runtime Measurements

	Additional Experiments
	Results for Large-scale Model and Dataset
	Comparison with Previous Methods for Identifying Backdoor Neurons
	Effectiveness of Poisoned Class Identification Method on Fine-tuning Results
	Comparison with Pruning-based Methods via Reconstructing TAC in the Latent Representation
	Results for Different Reference Dataset Sizes
	Effectiveness of Hyperparameter
	Effectiveness for Low Poisoning Rates
	Effectiveness against Defense-aware Attack
	Visualization for Reconstructed TAC

