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Abstract

Large language models (LLMs) excel in many001
tasks but struggle to accurately quantify un-002
certainty in their generated responses. This003
limitation makes it challenging to detect misin-004
formation and ensure reliable decision-making.005
Existing uncertainty quantification (UQ) meth-006
ods for LLMs are primarily prompt-wise rather007
than response-wise, often requiring multiple008
response samples, which leads to inefficiency.009
Moreover, LLMs have been shown to be over-010
confident, particularly when using reasoning011
steps to derive their answers. In this work, we012
introduce a novel approach to quantify response-013
wise uncertainty by integrating LLMs’ inher-014
ent reasoning capabilities through Chain-of-015
Thought (CoT) into the UQ process. Our CoT-016
UQ framework captures critical information017
during inference by extracting keywords from018
each reasoning step and assessing their impor-019
tance to the final answer. The uncertainty scores020
of keywords are then aggregated based on their021
significance to produce a final uncertainty esti-022
mate. We conduct extensive experiments based023
on LLaMA Family with model sizes varying024
from 8B to 13B across logical and mathematical025
reasoning tasks. Experimental results demon-026
strate that CoT-UQ significantly outperforms027
existing UQ methods, achieving an average028
improvement of 5.9% AUROC compared to029
current UQ methods.030

1 Introduction031

Large language models (LLMs) have demonstrated032

groundbreaking capabilities across a variety of ap-033

plications (Ouyang et al., 2022; Chowdhery et al.,034

2023; OpenAI, 2024b). Particularly, prompting035

techniques like Chain-of-Thought (CoT) (Wei et al.,036

2022) have significantly enhanced LLMs reasoning037

capabilities, ranging from multi-round conversation038

(Long, 2023; Chen et al., 2023), logical reasoning039

(Creswell et al., 2022; Duan et al., 2024b) and040

mathematical reasoning (Yao et al., 2024; Shao041

Question: Jack had $100. Sophia gave him 1/5 of her $100. 
How many dollars does Jack have now?
Ground Truth: $120

Answer: $80 

LLM

CoT

Reasoning: 
Step 1: Sophia has $100.
Step 2: Sophia gave Jack 
1/5 x $100 = $20.
Step 3: Jack now has $100 - 
$20 = $80.
Answer: $80 

Cotrectness

Cotrectness

$80 Conf(          ) = 75%

$80 Conf(          ) = 85%

Conf (                                                   ) = 20%
Reasoning Keywords: $100; 1/5 x $100 = $20; 
$100 - $20 = $80
Importance Scores: 3; 8; 10
Answer: $80 

Common UQ

UQ with CoT

Figure 1: Comparison of existing UQ strategies with
ours. Directly estimating the uncertainty of a generated
incorrect answer leads to overconfidence, which is exac-
erbated by using CoT to derive the answer. We tackle
this challenge by integrating CoT into the UQ process
with keywords extraction and importance scores.

et al., 2024). However, LLMs often unpredictably 042

hallucinate (Manakul et al., 2023), i.e., making 043

plausible but incorrect statements (Ji et al., 2023), 044

limiting their deployment in safety-critical applica- 045

tions (Clusmann et al., 2023). 046

To improve the reliability of LLMs, uncertainty 047

quantification (UQ) has emerged as a key strat- 048

egy for determining when humans can trust LLM- 049

generated outputs. However, existing UQ methods 050

for LLMs are primarily prompt-wise (Malinin and 051

Gales, 2021; Kuhn et al., 2023; Ling et al., 2024). 052

That is, uncertainty is calculated at the prompt level 053

rather than for each individual response. These 054

methods require multiple response samples per 055

prompt, leading to additional computational costs 056

and inefficiency. Besides, some studies (Kadavath 057

et al., 2022; Miao et al., 2023) propose leveraging 058

an LLM’s own ability to evaluate the uncertainty of 059

its responses without relying on external knowledge. 060

However, these approaches suffer from overconfi- 061

dence issues, particularly when reasoning steps, 062
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such as Chain-of-Thought (CoT), are used before063

deriving the final answer (Fu et al., 2025). Overcon-064

fidence has been attributed to the model’s inherent065

bias toward trusting its own outputs (Mielke et al.,066

2022; Lin et al., 2022).067

To enable response-wise reliable UQ, we propose068

leveraging reasoning steps not only for deriving fi-069

nal answers but also for UQ itself. Our motivation070

comes from an intuitive insight: providing access071

to the reasoning path allows the model to incorpo-072

rate additional context for confidence calibration,073

leading to a more informed assessment of the final074

answer. As illustrated in Figure 1, while LLMs tend075

to be overconfident in their generated answers, and076

CoT can further amplify this issue, we believe in-077

corporating key reasoning information into the UQ078

process can effectively mitigate inflated confidence079

scores, resulting in better-calibrated uncertainty080

estimates. This naturally leads to a critical research081

question: How to utilize the LLM reasoning path to082

estimate the uncertainty of its generations?083

To answer this question, we propose a new084

framework, namely, Chain-of-Thought enhanced085

Uncertainty Quantification (CoT-UQ). At a high086

level, CoT-UQ follows the principle of one response087

→ one uncertainty score, integrating inference steps088

from CoT into the UQ process to mitigate overconfi-089

dence. In detail, as illustrated in Figure 2, CoT-UQ090

leverages the LLM’s own reasoning process to ex-091

tract keywords from each inference step and assess092

their importance in determining the final answer.093

By incorporating this critical information, CoT-UQ094

achieves better-calibrated uncertainty estimation, ei-095

ther by aggregating token probabilities of extracted096

keywords at intermediate steps or by integrating the097

reasoning path into the self-evaluation process.098

We conducted extensive experiments to verify099

the effectiveness of our proposed framework. Un-100

der extensive evaluations, our CoT-UQ achieves101

superior performance compared with different base-102

lines, which reveals that LLMs have the potential103

to use their own reasoning to better express the104

trustworthiness of their generations. We also con-105

duct a range of ablation studies of the proposed106

framework and provide detailed further discussions107

from different perspectives. Our contributions can108

be summarized as the following:109

• Conceptually, we introduce a novel perspective110

to quantify the response-wise uncertainty for111

LLMs by considering LLM’s internal knowl-112

edge from the reasoning path.113

• Technically, we propose a new UQ frame- 114

work, namely, Chain-of-Thought enhanced 115

Uncertainty Quantification (CoT-UQ), which 116

integrates the inference knowledge into the 117

UQ process through extracting keywords and 118

evaluating corresponding importance scores. 119

• Empirically, we conduct extensive experi- 120

ments on the LLaMA family across five 121

datasets in two tasks and show that CoT-UQ 122

achieves an average AUROC improvement of 123

approximately 5.9% compared to baselines, 124

which verifies the effectiveness of our method. 125

2 Related Works 126

2.1 Uncertainty Quantification in LLMs 127

Prior efforts to quantify uncertainty and confidence 128

in LLMs can be categorized into four main ap- 129

proaches. The first approach is to derive cali- 130

brated confidence by examining agreement across 131

multiple sampled responses (Malinin and Gales, 132

2021; Kuhn et al., 2023; Manakul et al., 2023; Tian 133

et al., 2023a). However, as Qiu and Miikkulainen 134

(2024) recently pointed out, these methods primar- 135

ily quantify prompt-wise rather than response-wise 136

uncertainty. While Qiu and Miikkulainen (2024) 137

provides a method for response-wise uncertainty, 138

it still relies on generating multiple response sam- 139

ples, making it computationally inefficient. The 140

second approach is to leverage LLM’s own ability 141

to evaluate the confidence of its responses, often 142

through self-probing techniques (Kadavath et al., 143

2022; Tian et al., 2023b; Xiong et al., 2023). The 144

third approach is to aggregate token probabilities 145

of its generated response, which includes adopt- 146

ing traditional UQ methods (Xiao et al., 2022; Ye 147

et al., 2024) and assigning importance weights to 148

tokens (Duan et al., 2024a; Bakman et al., 2024). 149

However, the above two approaches still suffer from 150

overconfidence due to the model’s inherent bias 151

to trust its own outputs (Mielke et al., 2022; Lin 152

et al., 2022). The fourth approach is to fine-tune the 153

original LLM to calibrate its confidence (Lin et al., 154

2022; Kapoor et al., 2024). However, the model- 155

specific tuning has limited their applications to new 156

scenarios. In contrast to these four approaches, the 157

proposed CoT-UQ is a response-wise uncertainty 158

quantification method that does not require addi- 159

tional response sampling or model-specific tuning. 160

Instead, it leverages the LLM’s inherent knowledge 161
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Over
Confident

Traditional UQ Strategy

The Dream AcademyQuestion: Which band has more members, "We Are the Ocean" or "The Dream Academy"?

Step 1: Reasoning Extraction

My Confidence is 100% My Confidence is 80%

Aggregated Probability Self-Evaluation

<The> <Dream> <Academy>

1.0 1.0 1.0

Token:

Probability:
Is the proposed answer correct?

Yes?

No?

80%

20%

CoT-UQ Framework

Step-by-Step Reasoning:
Let’s think step by step!
Step 1: "We Are the Ocean" has 4 members.
Step 2: "The Dream Academy" has 6 members.
Step 3: 6 is greater than 4.
Step 4: Therefore, ”The Dream Academy" has 
more members.
Final Answer: The Dream Academy

Step 2: Keywords Extraction

Step-wise Keywords:
Step 1: We Are the Ocean; 4
Step 2: The Dream Academy; 6
Step 3: greater
Step 4: The Dream Academy

Step 3: Importance Scoring

We Are the Ocean
4

The Dream Academy
6

greater

The Dream Academy Score: 8 

Score: 9 

Score: 5 

Score: 10 

Score: 5 

Score: 10 Step 1 

Step 2 

Step 3 

Step 4 

Well
Calibrated

Step 4: Reasoning Enhanced UQ Strategy

My Confidence is 30% My Confidence is 25%

Aggregated Probability Self-Evaluation

Yes?

No?

25%

75%

<We> <Are> <The>

0.4 0.7 1.0

Keyword Token:

Probability:

<4>

0.1

···
···

<6> <greater> <The>

0.05 1.0 1.0

Keyword Token:

Probability:

<Dream>

1.0

<Academy>

1.0

Importance-weighted
Average

Is the proposed answer correct?

We Are the 
Ocean

<Ocean>

1.0
4

6

The Dream 
Academy

greater

Consider Reasoning Path

Figure 2: Illustration of our framework, CoT-UQ. Given a question and an incorrect response generated by an LLM,
the top of the figure shows two common UQ strategies, which suffer from overconfidence issues. The bottom shows
the four-step process of CoT-UQ: performing the reasoning process, extracting step-wise keywords, scoring the
importance of keywords relative to the final answer, and leveraging reasoning information to enhance common UQ
strategies. CoT-UQ leads to a better-calibrated response-wise uncertainty estimate.

and reasoning process to calibrate uncertainty/con-162

fidence scores, making it readily generalizable to163

new tasks and models.164

2.2 Chain of Thought Reasoning in LLMs165

To equip LLMs with capabilities to solve more com-166

plex and reasoning tasks, Wei et al. (2022) extended167

in-context learning by introducing the concept of168

Chain of Thought (CoT) through a step-by-step169

reasoning process. Kojima et al. (2022) found that170

simply adding a leading sentence “Let’s think step171

by step” to a cue allowed LLMs to perform zero-172

shot logical reasoning without any additional human173

prompts (Chu et al., 2023). Subsequently, CoT-SC174

(Wang et al., 2022) introduces a self-consistency175

strategy to replace the greedy decoding strategy.176

Feng et al. (2024) further reveals the underlying177

mechanisms behind CoT through a theoretical per-178

spective. Liu et al. (2024) refines CoT by capturing179

relationships between entities to aid LLMs in under-180

standing context. Although these studies highlight181

the importance of CoT in enhancing LLMs’ reason- 182

ing abilities in various situations, a recent study (Fu 183

et al., 2025) observes that CoT can exacerbate the 184

overconfident issues in LLMs when only measur- 185

ing the final answer. To the best of our knowledge, 186

CoT-UQ is the first approach to integrate reasoning 187

knowledge into the UQ process for LLMs. 188

3 Preliminaries 189

In this section, we briefly introduce the prelim- 190

inaries of response-wise uncertainty quantifica- 191

tion (UQ) in LLMs, including problem settings 192

and two popular UQ strategies, namely aggregated 193

probabilities and self-evaluation. Further details on 194

these two strategies can be found in Appendix A.2. 195

Problem Setups. Given an LLM M , an in- 196

put prompt p, and the output sequence ŷ = 197

[y1, y2, ..., yL], where L is the number of tokens 198

generated by LLM, the task is to obtain a confidence 199

score for users representing the probability that ŷ 200

is correct. In the following, we illustrate the exist- 201
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ing two paradigms for response-wise uncertainty202

quantification and analyze their limitations.203

Aggregated Probabilities (AP). Previous works204

(Kadavath et al., 2022; Huang et al., 2023; Varsh-205

ney et al., 2023) based on aggregated probabilities206

generally aggregate output token probabilities of207

the generated text tokens ŷ = [y1, y2, ..., yL] to208

measure the LLM’s confidence for each response.209

For the type of aggregation techniques, we consider210

several methods following Orgad et al. (2024), in-211

cluding the mean and the minimum of these values.212

Formally, given an aggregation function Aggr(·),213

the confidence score c can be abstracted as,214

c =
N

Aggr
i=1

(P(yi|p, y1, ..., yi−1)). (1)215

Self-Evaluation (SE). Self-evaluation strate-216

gies (Kadavath et al., 2022; Xiong et al., 2023)217

usually contain a two-stage process to elicit the218

confidence score from LLMs: 1) Using an input219

comprising of the question q combined with the220

prompt p to generate the text response ŷ. 2) Com-221

bining q and ŷ through a well-designed prompt pt to222

instruct LLM to self-evaluate the correctness of ŷ.223

Among them, one representative baseline is P(True)224

(Kadavath et al., 2022). P(True) is straightforward225

yet effective by directly asking LLM whether the226

predicted ŷ is true or false to q via pt and using227

the probability of “True” as confidence c, which is228

defined as follows,229

c = P(o = True), where o = M(pt(q, ŷ)). (2)230

Although previous UQ methods using AP and231

SE have shown promising results, they often suf-232

fer from overconfidence, particularly when using233

Chain-of-Thought reasoning for complex tasks. In234

this work, we explore how to leverage the intrinsic235

reasoning capabilities of LLMs to mitigate over-236

confidence. Specifically, we propose extracting237

step-wise keywords from the model’s inference pro-238

cess and integrating this knowledge into AP and239

SE strategies to better assess the trustworthiness of240

LLM-generated outputs.241

4 Methodology242

In this section, we introduce our new framework,243

i.e., Chain-of-Thought enhanced Uncertainty Quan-244

tification (CoT-UQ), as illustrated in Figure 2. Com-245

pared to common UQ strategies implemented di-246

rectly on the generated answer, CoT-UQ is a two-247

stage paradigm containing four specific steps dur-248

ing inference time. The first three steps focus on249

refining the multi-step inference by extracting key- 250

words and their corresponding importance scores 251

to the final answer (Section 4.1). The fourth step 252

illustrates how to integrate this crucial reasoning 253

information into the two common UQ strategies, 254

respectively (Section 4.2). 255

4.1 Stage 1: LLM Inference Refining 256

Step 1: Reasoning Extraction. We first instruct 257

LLM to derive the reasoning for each response. 258

Before inference, we add the step-wise Chain-of- 259

Thought (CoT) prefix for prompting, i.e., "Let’s think 260

step by step. Step 1:". This ensures the model’s 261

inference results are structured into multiple rea- 262

soning steps, with each step explicitly starting with 263

"Step i:". Upon completion of inference, we obtain 264

a response ŷ for the question q, which contains a 265

step-by-step reasoning s1∼k = s1, ..., sk and a final 266

answer a labeled with “Final Answer:”. 267

Step 2: Keywords Extraction. After obtaining 268

the step-by-step inference s1∼k for each question- 269

answer pair (q, a), we choose to extract keywords 270

from each step. Prior works generally consider the 271

sum or average of all generated tokens (Slobodkin 272

et al., 2023) to aggregate token-level uncertainty. 273

However, these strategies potentially introduce re- 274

dundant tokens, which can significantly compro- 275

mise the accuracy of uncertainty scores.(Gupta 276

et al., 2024). This motivates us to consider tokens 277

from keywords, which better represent the most 278

meaningful part of an inference step. Specifically, 279

we request the LLM itself to complete the extraction, 280

as (Ashok and Lipton, 2023; Orgad et al., 2024) 281

have demonstrated LLMs’ information extraction 282

capability. Formally, we extract ni ≥ 0 keywords 283

from each reasoning step si ∈ s1∼k (noted ni = 0 284

means no effective keywords in a specific step, we 285

explain this situation in Appendix B). The keywords 286

set K extracted from all steps can be formulated as, 287

K =
k⋃

i=1

{wi
j}

ni
j=1. (3) 288

Step 3: Importance Scoring. Relying on the self- 289

evaluation (Ren et al., 2023) capability, we instruct 290

the LLM to rate the importance of the keywords 291

in deriving the final answer in a few-shot learning 292

setup. We provide the context (question q, multi- 293

step reasoning s1∼k, and final answer a) combined 294

with the keywords K extracted in Step 2 to the LLM. 295

Each keyword will be scored by the LLM, ranging 296

4



from 1 to 10, where 1 denotes the least critical and297

10 is the most. For keywords that are more critical298

in the inference time, i.e., require exact reasoning or299

imply vital elements to the final answer, we assign300

a higher score to this keyword. For instance, as301

shown in Figure 2, keywords that reveal the specific302

number of members in each band will get a higher303

importance score, even to 10, as they explicitly304

require reasoning and are crucially contributing305

to the final answer. After integrating with the306

corresponding importance indicator t, keywords set307

K can be updated as,308

K =
k⋃

i=1

{(wi
j , t

i
j)}

ni
j=1. (4)309

In the first three steps, we deconstructed the redun-310

dant reasoning steps into keywords containing the311

most meaningful and critical information and eval-312

uated their respective importance towards reaching313

the final answer, formalizing them as a keywords314

set containing dualist formulation. In the next step,315

we will use these keywords to help enhance existing316

uncertainty quantification strategies.317

4.2 Stage 2 / Step 4: Reasoning Enhanced318

Uncertainty Quantification Strategy319

Given the extracted reasoning path s1∼k and key-320

words set K defined in Section 4.1, we aim to elicit321

the confidence c and mitigate overconfidence issues322

generally exist in common UQ strategies, aggre-323

gated probabilities (AP) and self-evaluation (SE).324

We propose an integration method for each strategy325

to utilize the information provided by s1∼k and K.326

Reasoning Enhanced Aggregated Probabilities327

(AP) Strategy. Compared to directly combin-328

ing the token probabilities from output tokens, we329

choose to aggregate those from the extracted key-330

words to integrate the inference knowledge into331

the uncertainty quantification process. Since the332

keywords are generally short in token length, and333

for the sake of comparison, we use the same ag-334

gregation techniques Aggr(·) introduced in Section335

3 to aggregate the token probabilities of a single336

keyword into its prediction probability. Formally,337

given a single keyword w (text) with its correspond-338

ing token sequence ŵ = [w1, w2, ..., wl] of length l,339

the probability of the keyword w can be formulated340

as,341

p(ŵ) =
l

Aggr
m=1

(P(wm | p, w1, . . . , wm−1)). (5)342

To consider their contributions to the final con- 343

fidence, we propose to average the probabilities 344

of keywords weighted by their importance scores. 345

This ensures that more significant keywords have a 346

greater influence on the final confidence estimation. 347

The procedure can be formalized as follows: 348

c =

∑k
i=1

∑ni
j=1 t

i
j · p(ŵi

j)∑k
i=1

∑ni
j=1 t

i
j

. (6) 349

Reasoning Enhanced Self-Evaluation (SE) Strat- 350

egy. We provide four approaches to instruct the 351

LLM to consider the reasoning information during 352

the self-evaluation of uncertainty. The first two 353

methods, namely, ALLSteps and ALLKeywords, di- 354

rectly add the extracted reasoning steps s1∼k or 355

keywords set K to the self-evaluation process. To 356

highlight the role of relevant importance of ex- 357

tracted keywords, we further introduce KEYStep 358

and KEYKeywords strategies. KEYStep proposes 359

to consider the most important step, where the 360

importance is calculated from the average of the im- 361

portance scores from each reasoning step. KEYStep 362

can be abstracted as follows, 363

s∗ = arg max
1≤i≤k

(
1

ni

ni∑
j=1

tij

)
. (7) 364

Meanwhile, the goal of KEYKeywords is to exclude 365

redundant keywords and shortlist the most critical 366

ones based on their importance. We formulate it 367

as, 368

K∗ =
k⋃

i=1

{
(wi

j , t
i
j) | tij ≥ τ

}ni

j=1
, (8) 369

where τ is a threshold to filter the sub-critical 370

keywords during self-evaluation. We discuss the 371

sensitivity to this hyper-parameter in Section 5.3. 372

We include the above information in the self- 373

evaluation prompt pt through an additional instruc- 374

tion, termed Considering <reasoning type> as 375

additional information (See Appendix B.2 for the 376

concrete realization). Formally, given a type of 377

reasoning knowledge z ∈
{
s1∼k, s

∗, K, K∗}, the 378

self-evaluation process can be updated by the re- 379

fined prompt pr as, 380

c = P(o = True), where o = M
(
pr(q, ŷ, z)

)
.
(9) 381
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Model Strategy Method Logical Reasoning Mathematical Reasoning

HotpotQA 2WikiMHQA GSM8K SVAMP ASDiv

Llama 3.1-8B

AP

Probas-mean 53.73 56.80 53.17 53.94 58.34
w/ CoT-UQ 62.01 65.22 63.64 59.83 64.52

Probas-min 58.34 56.81 54.95 54.79 58.69
w/ CoT-UQ 64.37 70.02 63.09 60.49 64.84

TOKENSAR 53.57 56.92 54.46 55.01 58.71
w/ CoT-UQ 61.07 65.38 65.10 62.11 66.91

SE

P(True) 62.39 53.56 48.15 51.58 47.23
w/ CoT-UQ 63.10 57.77 52.60 60.00 53.20

Self-Probing 54.33 56.39 49.24 51.63 50.86
w/ CoT-UQ 57.20 58.38 51.89 54.26 53.79

Llama 2-13B

AP

Probas-mean 56.27 51.54 53.96 54.48 57.73
w/ CoT-UQ 66.56 63.29 58.54 57.37 59.44

Probas-min 56.51 51.28 53.84 55.09 57.70
w/ CoT-UQ 67.19 68.10 58.63 58.51 60.74

TOKENSAR 57.33 51.08 54.82 55.06 58.37
w/ CoT-UQ 66.29 64.03 59.61 58.41 61.23

SE

P(True) 51.13 47.52 46.06 46.36 48.02
w/ CoT-UQ 57.10 53.52 52.59 56.87 56.10

Self-Probing 60.63 59.81 52.72 47.27 52.35
w/ CoT-UQ 64.03 62.63 55.14 50.53 57.58

Table 1: AUROC (↑) comparison of Llama 3.1-8B and Llama 2-13B on various benchmarks for logical and
mathematical reasoning tasks, where AP indicates aggregated probabilities and SE denotes self-evaluation.

5 Experiments382

5.1 Experimental Setups383

Datasets and Models. We consider the following384

reasoning scenarios: logical reasoning and math-385

ematical reasoning, where existing UQ strategies386

suffer from overconfidence issues. Specifically, for387

logical reasoning, we use the HotpotQA dataset388

(Yang et al., 2018) and the 2WikiMultiHopQA389

dataset (Ho et al., 2020); for mathematical rea-390

soning, we use the GSM8K dataset (Cobbe et al.,391

2021), the SVAMP dataset (Patel et al., 2021), and392

the ASDiv dataset (Miao et al., 2021). For models,393

we use Llama2-13B and Llama3.1-8B (Touvron394

et al., 2023). Details of dataset statistics and LLMs’395

hyper-parameters are provided in Appendix A.1.396

Evaluation Metric. Following the common eval-397

uation approach in Kuhn et al. (2023), we use the398

Area Under the Receiver Operating Characteristic399

curve (AUROC) (Davis and Goadrich, 2006) to400

evaluate the performance of UQ methods, which401

measures the likelihood that a positive sample will402

receive a higher discriminating score than a neg- 403

ative sample (Fawcett, 2006). A higher AUROC 404

score indicates better performance, while a score 405

of 0.5 implies random guessing. 406

Baseline Methods. We compare the proposed 407

framework with various competitive uncertainty 408

quantification baseline methods. As mentioned 409

in Section 3, common response-wise UQ strate- 410

gies include aggregated probabilities (AP) and self- 411

evaluation (SE). For AP, inspired by (Kadavath 412

et al., 2022; Guerreiro et al., 2022), we first inves- 413

tigate the most common aggregation techniques 414

Probas-mean and Probas-min. We also consider 415

the Toekn-level Shifting Attention to Relevance 416

(TOKENSAR) (Duan et al., 2024a) that evaluates 417

the relevance of each token in the final answer and 418

assigns higher weights to more relevant tokens. For 419

SE, we consider P(True) (Kadavath et al., 2022) and 420

Self-Probing (Xiong et al., 2023) that directly asks 421

LLM to evaluate the correctness of their generation 422

via prompting. Details on the implementations of 423

baseline methods are listed in Appendix A.2. 424
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Figure 3: Comparison of different implementations of CoT-UQ for P(True). KEYKeywords is more effective for
logical reasoning tasks (HotpotQA and 2WikiMultiHopQA), whereas ALLSteps works better for mathematical
reasoning tasks (GSM8K and SVAMP).

Figure 4: Comparison of different implementations of CoT-UQ based on Self-Probing. KEYKeywords consistently
achieves better performance on logical reasoning tasks HotpotQA and 2WikiMultiHopQA), while KEYStep performs
better in mathematical reasoning (GSM8K and SVAMP).

5.2 Main Results425

The overall comparison results are presented in426

Table 1. We evaluate various baseline methods by427

comparing their performance with and without CoT-428

UQ. As shown in Table 1, CoT-UQ consistently429

improves UQ performance across all tasks and430

datasets. This demonstrates that incorporating431

reasoning into uncertainty quantification enables432

LLMs to provide more calibrated assessments of433

the trustworthiness of their generated outputs. In434

general, CoT-UQ achieves greater improvements435

when applied to AP strategies compared to SE436

strategies, particularly for Probas-min, where it437

increases AUROC by up to 16.8%.438

Aggregated Probabilities (AP). When compar-439

ing CoT-UQ with three AP strategies, our framework440

significantly outperforms them on the two logical441

reasoning datasets, HotpotQA and 2WikiMulti-442

HopQA, achieving an average AUROC improve-443

ment of +10.3% across both models. Similarly,444

CoT-UQ improves performance on all three mathe-445

matical reasoning benchmarks. It is worth noting446

that the recent work TOKENSAR gets limited im-447

provements or even worse performance compared448

to Probas-mean on reasoning tasks, which may be 449

caused by the limited length of the generated final 450

answer in these tasks, especially in mathematical 451

reasoning. CoT-UQ addresses this limitation by 452

aggregating keyword token probabilities, mitigat- 453

ing the impact of response length on uncertainty 454

estimation. 455

Self-Evaluation (SE). For the comparison with 456

SE strategies, we suggest different implementations 457

of CoT-UQ across different reasoning tasks and SE 458

strategies. Specifically, we propose KEYKeywords 459

for both two SE strategies in logical reasoning tasks, 460

ALLSteps for P(True) strategy and KEYStep for Self- 461

Probing strategy in mathematical reasoning tasks. 462

These suggestions are based on the observation that 463

keywords extracted from mathematical reasoning 464

tend to be overly simplistic (e.g., single digits) and 465

lack informative content. As a result, step-level 466

strategies, which retain rich contextual information, 467

are more suitable. In contrast, keywords extracted 468

from logical reasoning generally retain meaningful 469

and logical information, while complete reasoning 470

steps may introduce redundant content that harms 471

the model’s judgment. 472
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Figure 5: Effect of Importance scoring in CoT-UQ. (a) Implement the aggregation strategy of Probas-min for
comparison; (b) Implement Self-Probing with suggested realizations for comparison.

We report the results of recommended realiza-473

tions in Table 1 and a detailed explanation and474

analysis for the above suggestions in Section 5.3.475

The results of these five datasets demonstrate an476

average of +4.4% improvement, highlighting the477

effectiveness of CoT-UQ compared to standard SE478

baselines. Notably, CoT-UQ applied to SE strate-479

gies shows a greater performance improvement in480

mathematical reasoning tasks (+5.3%) compared to481

logical reasoning tasks (+3.5%). This suggests that482

incorporating reasoning in UQ allows the model483

to identify critical errors in the thought process484

during self-evaluation, especially in mathematical485

problems where a single misstep can lead to incor-486

rect conclusions. We provide detailed evidence and487

analysis for this observation in Appendix C.2.488

5.3 Ablation and Future Discussions489

In this section, we provide a thorough understanding490

of our CoT-UQ. Additional results and discussions491

(e.g., sensitivity to hyper-parameters and case stud-492

ies) can be found in Appendix C.493

Effect of Different Implementation of CoT-UQ494

in SE Strategies. We observe an interesting495

trend: the transition from step-level implemen-496

tations (ALLSteps and KEYStep) to keywords-level497

implementations (ALLKeywords and KEYKeywords)498

shows opposite trends in logical and mathemat-499

ical reasoning tasks, as demonstrated in Figure500

3 and Figure 4. Specifically, ALLKeywords and501

KEYKeywords perform significantly better than step-502

level techniques on HotpotQA and 2WikiMHQA503

datasets. This suggests that step-level information504

usually contains redundant words in logical reason-505

ing tasks, and the keywords effectively filter out irrel-506

evant information for uncertainty estimation. Con-507

versely, ALLSteps consistently performs well when508

applied to P(True) on GSM8K and SVAMP datasets, 509

and KEYStep performs similarly when applied to 510

Self-Probing. However, keywords-level methods 511

show suboptimal performance, or even worse than 512

the standard SE on mathematical datasets. This 513

may be attributed to the necessity of including suffi- 514

cient context when assessing mathematical answers, 515

rather than relying on a few scattered keywords. 516

Effect of Importance Scoring. The effects of the 517

importance scoring step are summarized in Figure 5, 518

where we employ Probas-min and Self-Probing to 519

represent the AP and SE strategies, respectively. For 520

AP, w/o importance indicates directly calculating 521

the mean of probabilities from keywords. For SE, 522

we use the specific implementations as above sug- 523

gested for different reasoning tasks. For instance, 524

we adopt the KEYKeywords for HotpotQA, and the 525

KEYStep for mathematical reasoning benchmarks. 526

Here, w/o importance in SE demotes the correspond- 527

ing realizations start with ALL, i.e, ALLKeywords 528

and ALLSteps. The results highlight the necessity 529

of evaluating the respective importance metric for 530

each keyword in our method. 531

6 Conclusion 532

In this paper, we introduce Chain-of-Thought en- 533

hanced Uncertainty Quantification (CoT-UQ), a 534

novel perspective for uncertainty quantification that 535

leveraging LLM’s internal knowledge through CoT 536

to calibrate its confidence on each response. CoT- 537

UQ consistently and significantly boosts the per- 538

formance of current aggregated probabilities (AP) 539

and self-evaluation (SE) strategies by using crucial 540

information from the reasoning path. We have 541

conducted extensive experiments to demonstrate 542

the effectiveness of our framework and provided 543

detailed discussions on it from various perspectives. 544
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Ethics Statement545

The datasets we used are sourced from the current546

public datasets. The prompts we used do not collect547

or use personal information or information from548

other individuals. Furthermore, they do not contain549

any sensitive words or oppose any individual or550

group. CoT-UQ has the potential to impact the551

credibility and reliability of LLMs, particularly in552

the context of reducing misinformation. LLMs553

have the potential to generate highly plausible but554

false information. Uncertainty quantification tech-555

niques can help distinguish between accurate and556

misleading outputs. Successfully addressing this557

issue can help prevent the spread of misinformation558

and mitigate its potential societal impact.559

Limitations560

Our methods require access to token logits. Al-561

though commercial LLM providers widely support562

token logits, this still might restrict the potential563

application of our methods in black-box scenar-564

ios. In addition, our framework is limited to the565

closed-ended question-answering domain, where a566

question has an objective ground-truth answer(s) so567

that we can justify the correctness of generated an-568

swer. Extensive analysis of CoT-UQ on open-ended569

question-answering tasks is beyond the scope of the570

current study and is left as future work.571
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A Details about Considered Datasets and814

Baselines815

A.1 Datasets.816

Detailed introductions. We outline here all five817

datasets belonging to two reasoning domains that818

we investigate in our work. For each dataset that819

has been divided into training and test sets, we used820

samples from its test set unless otherwise instructed.821

• HotpotQA (Yang et al., 2018): a dataset de-822

signed for diverse multi-hop question answer-823

ing. Each entry includes Wikipedia documents824

that help answering the questions. We use the825

setting without context, where questions are826

asked directly without additional context.827

• 2WikiMHQA (Ho et al., 2020): a dataset uses828

both structured and unstructured data. The829

dataset also introduces the evidence informa-830

tion containing a reasoning path for multi-hop831

questions. There are four types of questions:832

comparison, inference, compositional, and833

bridge-comparison. In this paper, we use the834

inference type of questions in all experiments.835

• GSM8K (Cobbe et al., 2021): a dataset of836

8.5K high quality linguistically diverse grade837

school math word problems created by hu-838

man problem writers. These problems take839

between 2 and 8 steps to solve, and solutions840

primarily involve performing a sequence of841

elementary calculations using basic arithmetic842

operations to reach the final answer.843

• SVAMP(Patel et al., 2021): a challenge844

dataset for elementary-level Math Word Prob-845

lems (MWP). An MWP consists of a short846

Natural Language narrative that describes a847

state of the world and poses a question about848

some unknown quantities.849

• ASDiv (Miao et al., 2021): a diverse (in terms850

of both language patterns and problem types)851

English math word problem (MWP) corpus852

for evaluating the capability of various MWP853

solvers. Each MWP is annotated with its854

problem type and grade level (for indicating855

the level of difficulty).856

Dataset Statistics Table 2 provides detailed infor-857

mation about the data included in the experiment,858

with a minimum of 1000 samples and a total of859

14563 samples taken.860

Dataset Num. Length Domain

HotpotQA 8447 23.2 Logical Reasoning
2WikiMHQA 1548 14.5 Logical Reasoning

GSM8K 1,319 58.9 Mathematical Reasoning
SVAMP 1000 39.4 Mathematical Reasoning
ASDiv 2249 38.2 Mathematical Reasoning

Table 2: Dataset statistics, where “Num.” represents
the number of sampled datasets, and “Length” is the
number of average tokens in the sampled dataset.

A.2 Baselines. 861

Probas-mean & Probas-min: Based on the 862

preliminaries introduced in Section 3, we exemplify 863

the following formulation for common aggregated 864

probabilities strategies to compute the Probas-mean 865

baseline on the entire generated answer: 866

c =
1

N

N∑
i=1

P (yi | p, y1, . . . , yi−1) (10) 867

Probas-min can be formalized as follows, 868

c = min
i∈{1,...,N}

P (yi | p, y1, . . . , yi−1) (11) 869

TOKENSAR: Token-Level Shifting Attention to 870

Relevance (TOKENSAR) is a component of the com- 871

plete SAR method (Duan et al., 2024a) that corrects 872

generative inequalities by reviewing the relevance 873

of each token and emphasizing uncertainty quantifi- 874

cation attention to those more relevant components. 875

Formally, given a sentence sj regarding prompt x 876

with the normalized relevance score for each token 877

zi termed as R̃T (zi, sj , x), the uncertainty propor- 878

tions of relevant tokens are enlarged by re-weighting 879

token entropy according to their respective R̃T : 880

ET (zi, sj , x) = − log p(zi | s<i, x)R̃T (zi, sj , x).
(12) 881

The token-level shifted (TOKENSAR) predictive en- 882

tropy defined over sj can be formulated as, 883

TOKENSAR(sj , x) =
Nj∑
i

ET (zi, sj , x). (13) 884

P(True): We follow Kadavath et al. (2022) and 885

prompt the LLM to judge whether its answer is cor- 886

rect. Our prompt followed the following template: 887
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P(True)

Question: [Question q]
A student submitted: [LLM Answer]

Is the student’s answer:
(A) True
(B) False

The student’s answer is:
888

Self-Probing: We follow Xiong et al. (2023)889

and prompt the LLM with a question and its answer,890

then asked, "How likely is the above answer to be891

correct"? The procedure involves generating the892

answer in one chat session and obtaining its verbal-893

ized confidence in another independent chat session.894

Our prompt followed the following template:895

Self-Probing

Question: [Question q]
Possible answer: [LLM Answer]

Q: How likely is the above answer to be
correct? Please first show your reasoning
concisely and then answer with the following
format:
Confidence: [the probability of answer
[LLM Answer] to be correct, not the one
you think correct, please only include the
numerical number]%

896

B Implementation Details897

B.1 LLM Hyperparameters.898

For all LLMs, the max length of each generation is899

set to 128 tokens. The temperature of generation900

is respectively set to 1.0 for LlaMA3-8B and 1.2901

for LLaMA2-13B, and other hyperparameters as902

default. Besides, the hyperparameters during the903

P(True) process are set following Kadavath et al.904

(2022), where the max token length is 1 and the905

temperature is followed as above setting.906

B.2 Prompts.907

Prompts in Stage 1 of CoT-UQ. As illustrated908

in Section 4.1 of the main text, Stage 1 of CoT-UQ909

contains three separate steps: Reasoning Extraction,910

Keywords Extraction, and Importance Scoring. To911

minimize the forward times of the LLM for the sake912

of computational efficiency, we merge Keyword913

Extraction and Importance Scoring into the same914

prompt under a one-shot setting. Specifically, the915

prompts for the first three steps are as follows,916

Step 1: Reasoning Extraction

Please reason the following question step by
step. Label each reasoning step as "Step i:",
where "i" is the step number.
You need to ensure that each step builds on
the previous one and contributes meaning-
fully toward reaching the final answer.
Once you finish all steps, put your final
answer on a separate line after the reasoning
steps, starting with "Final Answer:" (do not
label it as a step).

Question: [Question q]
Response: Let’s think step by step.

917

Step 2 & Step 3: Keywords Extractions
and Importance Scoring

You will be provided with a question and
a multi-step response containing reasoning
steps.
For each long reasoning step labeled "Step
i:", extract the keywords, only the relevant
tokens for that specific reasoning step.
You also need to evaluate the importance
of each keyword to the final answer. Please
evaluate the importance score following with
the keyword by (/<importance score>/) on a
scale of 1 to 10, where 1 is the least critical
and 10 is the most critical.
If you find more than one keyword in a
specific step, separate them with “;”.
If a specific step does not contribute mean-
ingfully to deriving the final answer (e.g.,
repeating information already provided in
the question, introducing irrelevant assump-
tions or speculations), return "Step i: NO
ANSWER" for that step. For example:

Q: [Question q]
A: [Multi-Step Response s1∼k]
Keywords for Each Reasoning Step: [Ex-
tracted Keywords and Corresponding Impor-
tance K]

The following is your task:
Q: [Question q]
A: [Multi-Step Response s1∼k]
Keywords for Each Reasoning Step:

918

It is worth noting that if the number of extracted 919

keywords ni = 0 for the i-th step, we will label that 920
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step as "Step i: NO ANSWER", indicating it does921

not contribute meaningfully to deriving the final922

answer. We provide the example introduced in the923

prompt template for each dataset in Table 3.924

Prompts in Stage 2 of CoT-UQ. As illustrated in925

Section 4.2 of the body of the paper, the Stage 2 of926

CoT-UQ is responsible for integrating the extracted927

information from reasoning path into the UQ pro-928

cess, where only the self-evaluation (SE) strategy929

need to re-prompt the LLM. For the variations on930

prompts, we present them based on the four strate-931

gies proposed in the SE phase, namely, ALLSteps,932

KEYStep, ALLKeywords, and KEYKeywords. The933

following is the refined prompt template pr used by934

CoT-UQ in the SE strategy.935

• ALLSteps:936

P(True) w/ ALLSteps

Question: [Question q]
A student submitted: [LLM Answer
a]
The student explained the answer,
which included a step-by-step rea-
soning: [Multi-Step Response s1∼k]

Considering these reasoning steps as
additional information, is the student’s
answer:
(A) True
(B) False

The student’s answer is:
937

Self-Probing w/ ALLSteps

Question: [Question q]
Possible answer: [LLM Answer a]
A step-by-step reasoning to the pos-
sible answer: [Multi-Step Response
s1∼k]

Q: Considering these reasoning steps
as additional information, how likely is
the above answer to be correct? Please
first show your reasoning concisely and
then answer with the following format:
Confidence: [the probability of an-
swer [LLM Answer] to be correct, not
the one you think correct, please only
include the numerical number]%

938

• KEYStep:939

P(True) w/ KEYStep

Question: [Question q]
A student submitted: [LLM Answer
a]
The student explained the answer,
where the most critical step is: [Key
Step s∗]

Considering this critical reasoning step
as additional information, is the stu-
dent’s answer:
(A) True
(B) False

The student’s answer is:
940

Self-Probing w/ KEYStep

Question: [Question q]
Possible answer: [LLM Answer a]
The most critical step in reasoning
to the possible answer: [Key Step s∗]

Q: Considering this critical reasoning
step as additional information, how
likely is the above answer to be cor-
rect? Please first show your reasoning
concisely and then answer with the fol-
lowing format:
Confidence: [the probability of an-
swer [LLM Answer] to be correct, not
the one you think correct, please only
include the numerical number]%

941

• ALLKeywords & KEYKeywords: Prompts for 942

keywords share the same template, except for 943

the specific keywords content. 944

P(True) w/ Keywords

Question: [Question q]
A student submitted: [LLM Answer
a]
The student explained the answer,
which included the following key-
words: [Keywords set K/K∗]

Considering these keywords as addi-
tional information, is the student’s an-
swer:
(A) True
(B) False

The student’s answer is:
945
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Self-Probing w/ Keywords

Question: [Question q]
Possible answer: [LLM Answer a]
Keywords during reasoning to the
possible answer: [Keywords set
K/K∗]

Q: Considering these keywords as ad-
ditional information, how likely is the
above answer to be correct? Please first
show your reasoning concisely and then
answer with the following format:
Confidence: [the probability of an-
swer [LLM Answer] to be correct, not
the one you think correct, please only
include the numerical number]%

946

B.3 Computational Costs Analysis947

CoT-UQ is more generation-efficient compared to948

previous methods based on response sampling. We949

have counted the time consumed for each step in the950

overall uncertainty quantification pipeline, which951

takes about 12 seconds per sample and a total of952

approximately 50 GPU hours to derive all reported953

results for 14653 samples. All the experiments are954

conducted on a server with an Intel(R) Xeon(R)955

Gold 5218R CPU and 8 NVIDIA A6000 GPUs.956

C Additional Experimental Results and957

Further Discussion958

C.1 Sensitivity to Keywords Filtering959

threshold in SE.960

To study how the KEYKeywords is affected by the961

importance filtering threshold τ , we conducted962

experiments for τ ranging from 1 to 10 on log-963

ical reasoning tasks that we have suggested us-964

ing KEYKeywords before. To ensure that the965

KEYKeywords set K∗ is not empty, we apply the966

following strategy: if the number of keywords with967

an importance score above the threshold τ is fewer968

than three, we select the top three keywords in de-969

scending order of importance as KEYKeywords set970

K∗. Figure 6 presents the correlations between the971

performance of KEYKeywords and τ . It is shown972

that our KEYKeywords method is not particularly973

sensitive to τ , but performs favorably when τ takes974

an intermediate value, and the results consistently975

outperform the ALLKeywords and baseline P(True)976

methods in the logical reasoning task.977

2 4 6 8 10
Importance Filtering Threshold

62.0

62.2

62.4

62.6

62.8

63.0

63.2

63.4

AU
RO

C

KEYKeywords
ALLKeywords
P(True)

Figure 6: Analysis of the sensitivity to the importance
filtering threshold τ on the HotpotQA benchmark. The
experiments are based on LLaMA3-8B.

C.2 Case Study 978

How can CoT benefit UQ in AP? We first provide 979

a case study on the HotpotQA dataset to visual- 980

ize the effect of CoT-UQ on AP strategies. Table 981

4 shows an example using Probas-mean. In the 982

standard Probas-mean method, the model assigns a 983

probability of 1.0 to the incorrect answer, leading 984

to an uncalibrated and misleading over-confidence 985

score. However, by incorporating keyword-level 986

probability adjustments, our approach assigns more 987

nuanced confidence scores to key reasoning com- 988

ponents (e.g., "France: 0.066", "Spain: 0.073", 989

"located further east: 0.444"). This recalibration 990

mitigates overconfidence in incorrect predictions 991

and ensures a more reliable confidence estimation 992

with a confidence of 0.387, demonstrating the effec- 993

tiveness of our method in refining uncertainty quan- 994

tification through reasoning-aware adjustments. 995

How can CoT benefit UQ in SE? In Section 5.2, 996

we noted that CoT-UQ applied to Self-Evaluation 997

(SE) strategies achieves a greater performance im- 998

provement in mathematical reasoning tasks. We 999

also hypothesized that this improvement is due to 1000

the model’s ability to identify critical errors in its 1001

original thought process. Here, we provide detailed 1002

evidence supporting this assumption. First, we start 1003

the analysis with the following question: 1004

Why is access to the reasoning path beneficial for 1005

UQ in self-evaluation, especially for mathematical 1006

problems? 1007

To answer this question, we investigate the Self- 1008
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Probing strategy, which self-evaluates the credibil-1009

ity of an LLM’s generated answers. As demon-1010

strated in a case from GSM8K (Table 5), given a1011

math question, the LLM initially generates a multi-1012

step response that leads to an incorrect final answer.1013

When applying the standard Self-Probing strategy,1014

which assesses only the correctness of the final an-1015

swer, the model exhibits overconfidence, assigning1016

an 80% certainty to its response.1017

However, when Self-Probing incorporates the1018

reasoning path, it successfully calibrates its confi-1019

dence to 10%, as it identifies problematic areas in1020

the original thought process (highlighted in blue in1021

Table 5). In this case, the incorrect response misin-1022

terpreted the problem by confusing monthly salary1023

after promotion with total annual salary. By ac-1024

cessing its reasoning, the model correctly identifies1025

this mistake, clarifying the key misunderstanding.1026

This step-by-step breakdown helps pinpoint the1027

exact logical misstep, making it easier to adjust1028

confidence accordingly. Furthermore, access to1029

the reasoning path allows the LLM to distinguish1030

between calculation errors and conceptual errors.1031

If the mistake were a simple arithmetic error, the1032

model’s confidence might remain relatively high, as1033

the reasoning itself would still be sound. However,1034

in this case, the mistake is conceptual, requiring1035

significantly adjusting the confidence.1036

Thus, incorporating the reasoning path into un-1037

certainty quantification leads to more precise confi-1038

dence calibration, enabling the model to differen-1039

tiate between minor computational mistakes and1040

fundamental conceptual misunderstandings.1041

A complete procedure of CoT-UQ. To clarify1042

each component of our approach, we present a case1043

from the HotpotQA dataset in Table 6, illustrating1044

the complete CoT-UQ process.1045
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Table 3: Provided Examples in Step 2 & Step 3 prompt template (Appendix B.2) for different datasets across the
two reasoning domains.

Dataset Provided Example

HotpotQA Q: Which band has more members, "We Are the Ocean" or "The Dream Academy"?
A: Let’s think step by step.
Step 1: The question is asking which band has more members.
Step 2: "We Are the Ocean" has 5 members.
Step 3: "The Dream Academy" has 3 members.
Step 4: 5 is greater than 3.
Step 5: Therefore, "We Are the Ocean" has more members.
Final Answer: We Are the Ocean
Keywords for Each Reasoning Step:
Step 1: NO ANSWER
Step 2: We Are the Ocean(/5/); 5(/10/)
Step 3: The Dream Academy(/5/); 3(/10/)
Step 4: greater(/7/)
Step 5: We Are the Ocean(/5/)

2WikiMHQA Q: Who is the paternal grandmother of Joseph Ferdinand Of Bavaria?
A: Let’s think step by step.
Step 1: Joseph Ferdinand’s father was Maximilian II Emanuel, Elector of Bavaria.
Step 2: Maximilian II Emanuel was the son of Ferdinand Maria, Elector of Bavaria, and his wife,
Henriette Adelaide of Savoy.
Step 3: As the mother of Maximilian II Emanuel, Henriette Adelaide of Savoy is the paternal
grandmother of Joseph Ferdinand of Bavaria.
Final Answer: Henriette Adelaide of Savoy
Keywords for Each Reasoning Step:
Step 1: father (/8/); Maximilian II Emanuel, Elector of Bavaria (/8/)
Step 2: son (/8/); Ferdinand Maria, Elector of Bavaria (/5/); Henriette Adelaide of Savoy (/9/)
Step 3: mother (/10/)

GSM8K
SVAMP
ASDiv

Q: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?
A: Let’s think step by step.
Step 1: Identify the amount of blue fiber needed. The robe requires 2 bolts of blue fiber.
Step 2: Determine the amount of white fiber needed. It is half the amount of blue fiber, which is
2 ÷ 2 = 1 bolt.
Step 3: Compute the total number of bolts. Add the bolts of blue fiber (2) and white fiber (1) to
get 3 bolts.
Final Answer: 3
Keywords for Each Reasoning Step:
Step 1: 2 bolts (/3/)
Step 2: 1 bolt (/10/)
Step 3: 3 bolts (/7/)
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Question: Which involved a country farther east, In Search of the Second Amendment or Without
the King?
Response:
Step 1: In Search of the Second Amendment took place in France.
Step 2: Without the King took place in Spain.
Step 3: France is located further east than Spain.
Step 4: Therefore, In Search of the Second Amendment involved a country farther east.
Final Answer: In Search of the Second Amendment
Correct Answer: Without the King

Common Probas-mean: In Search of the Second Amendment
1.000

Keywords for Each Reasoning Step:
Step 1: In Search of the Second Amendment(/5/); France(/10/)
Step 2: Without the King(/5/); Spain(/10/)
Step 3: located further east(/7/)
Step 4: In Search of the Second Amendment(/5/)
Keywords Probabilities based on Probas-mean:
In Search of the Second Amendment France Without the King Spain located further east

0.955 0.066 1.000 0.073 0.444
In Search of the Second Amendment

0.966
Probas-mean with CoT-UQ: 0.387

Table 4: A case study on HotpotQA demonstrating the effectiveness of CoT in AP strategy.

Question: Tim gets a promotion that offers him a 5% raise on his $20000 a month salary. It also
gives him a bonus worth half a month’s salary. How much money will he make in a year?
Response: Step 1: Determine the amount of Tim’s new salary per month. His monthly salary goes
up by 5% (0.05 × 20000 = 1000) to 21000 per month.
Step 2: Compute the amount of Tim’s bonus per month. The bonus is half a month’s salary, which is
10500.
Step 3: Calculate the total amount Tim earns in a year. Add the monthly salary (21000) and bonus
(10500) to get 31500 per year.
Final Answer: 31500
Correct Answer: 262500

Common Self-Probing: 100%.

Self-Probing with Reasoning Path: 10%.
You are confused between "Tim’s new salary per month" and "Tim’s total annual salary".
This may seem like a trivial confusion, but reasoning is about critical reasoning. In the problem,
there are two important numbers:
Tim’s monthly salary = 20000
Tim’s monthly salary after promotion = 21000
You are given 5% more than his monthly salary, which means he will get an additional 1000 a
month. The problem asks about "Tim’s total annual salary", not "Tim’s monthly salary after
promotion".
A possible answer is therefore 21000 × 12 + 10500 = 262500

Table 5: A case study on GSM8K demonstrating the effectiveness of CoT in SE strategy.
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Question: Which of these board games was released earlier: Lord of the Rings or Finance?
Correct Answer: Finance

Reasoning Extraction:
Please reason the following question step by step. Label each reasoning step as "Step i:", where "i" is the step
number.
You need to ensure that each step builds on the previous one and contributes meaningfully toward reaching the
final answer.
Once you finish all steps, put your final answer on a separate line after the reasoning steps, starting with "Final
Answer:" (do not label it as a step)
Response: Step 1: Lord of the Rings was released in 2017.
Step 2: Finance was released in 2018.
Step 3: 2017 is earlier than 2018.
Step 4: Therefore, Lord of the Rings was released earlier.
Final Answer: Lord of the Rings

Keywords Extractions and Importance Scoring:
You will be provided with a question and a multi-step response containing reasoning steps.
For each long reasoning step labeled "Step i:", extract the keywords, only the relevant tokens for that specific
reasoning step.
You also need to evaluate the importance of each keyword to the final answer. Please evaluate the importance
score following with the keyword by (/<importance score>/) on a scale of 1 to 10, where 1 is the least critical
and 10 is the most critical.
If you find more than one keyword in a specific step, separate them with “;”.
If a specific step does not contribute meaningfully to deriving the final answer (e.g., repeating information
already provided in the question, introducing irrelevant assumptions or speculations), return "Step i: NO
ANSWER" for that step.
Question: Which of these board games was released earlier: Lord of the Rings or Finance?
Multi-Step Response: Step 1: Lord of the Rings was released in 2017.
Step 2: Finance was released in 2018.
Step 3: 2017 is earlier than 2018.
Step 4: Therefore, Lord of the Rings was released earlier.
Final Answer: Lord of the Rings
Keywords for Each Reasoning Step: Step 1: Lord of the Rings(/7/); 2017(/10/)
Step 2: Finance(/5/); 2018(/10/)
Step 3: earlier(/9/)
Step 4: Lord of the Rings(/8/)

Reasoning Enhanced Uncertainty Quantification Strategy (Exemplified by P(True) w/ KEYKeywords):
Question: Which of these board games was released earlier: Lord of the Rings or Finance?
A student submitted: Lord of the Rings
The student explained the answer, where the most critical step is: [2017, 2018, earlier]
Considering this critical reasoning step as additional information, is the student’s answer:
(A) True
(B) False
The student’s answer is:

Table 6: A case on HotpotQA demonstrates the complete procedure of CoT-UQ.
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