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ABSTRACT

Variational autoencoders (VAEs) are a popular class of deep generative models
with many variants and a wide range of applications. Improvements upon the
standard VAE mostly focus on the modelling of the posterior distribution over the
latent space and the properties of the neural network decoder. In contrast, improv-
ing the model for the observational distribution is rarely considered and typically
defaults to a pixel-wise independent categorical or normal distribution. In image
synthesis, sampling from such distributions produces spatially-incoherent results
with uncorrelated pixel noise, resulting in only the sample mean being somewhat
useful as an output prediction. In this paper, we aim to stay true to VAE the-
ory by improving the samples from the observational distribution. We propose
an alternative model for the observation space, encoding spatial dependencies via
a low-rank parameterisation. We demonstrate that this new observational distri-
bution has the ability to capture relevant covariance between pixels, resulting in
spatially-coherent samples. In contrast to pixel-wise independent distributions,
our samples seem to contain semantically meaningful variations from the mean
allowing the prediction of multiple plausible outputs with a single forward pass.

1 INTRODUCTION

Figure 1: Top: Samples gener-
ated with a standard VAE exhibit-
ing pixel-wise independent noise.
Bottom: Samples with our struc-
tured observation space VAE are
realistic and spatially coherent.

Generative modelling is one of the cornerstones of modern ma-
chine learning. One of the most used and widespread classes
of generative models is the Variational Autoencoder (VAE)
(Kingma & Welling, 2014; 2019). VAEs explicitly model
the distribution of observations by assuming a latent variable
model with low-dimensional latent space and using a simple
parametric distribution in observation space. Using a neural
network, VAEs decode the latent space into arbitrarily com-
plex observational distributions.

Despite many improvements on the VAE model, one often-
overlooked aspect is the choice of observational distribution.
As an explicit likelihood model, the VAE assumes a distribu-
tion in observation space – using a delta distribution would not
allow gradient based optimisation. Most current implemen-
tations, however, employ only simple models, such as pixel-
wise independent normal distributions, which eases optimisa-
tion but limits expressivity. Else, the likelihood term is of-
ten replaced by a reconstruction loss – which, in the case of
an L2 loss, implicitly assumes an independent normal distri-
bution. Following this implicit assumption, samples are then
generated by only predicting the mean, rather than sampling in
observation space.

An application where this disconnect becomes apparent is im-
age synthesis. The common choices for observational distri-
butions are pixel-wise independent categorical or normal distributions. For pixel-wise independent
distributions, regardless of other model choices, sampling from the joint distribution over pixels will
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result in spatially-incoherent samples due to independent pixel noise (cf. Figure 1). To address
this problem, researchers use the predicted distributions to calculate the log-likelihood in the objec-
tive but then discard them in favour of the mean when generating samples or reconstructing inputs.
However, this solution is akin to ignoring the issue rather than attempting to solve it.

In this work, we explore what happens when we strictly follow VAE theory and sample from the
predicted observational distributions. We illustrate the problem of spatial incoherence that arises
from using pixel-wise independent distributions. We propose using a spatially dependent joint dis-
tribution over the observation space and compare it to the previous scenario. We further compare
the samples to the mean of the predicted observational distribution, which is typically used when
synthesising images. We note that, in this work, we are not focusing on absolute image quality.
Instead, we aim to point to an issue often overlooked in VAE theory and application, which affects
most state-of-the-art methods. Thus we analyse the relative difference between using and not using
a joint pixel dependent observational distribution for a basic VAE. Yet, our findings are of broad
relevance and our proposed model can be used in more advanced VAE variants.

2 RELATED WORK

Modern generative models can be divided into two classes, implicit likelihood models, such as
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and diffusion models (Song &
Durkan, 2021), and explicit likelihood models, such as VAEs (Kingma & Welling, 2014; Rezende
et al., 2014; Kingma & Welling, 2019), flow models (Dinh et al., 2017; Kingma & Dhariwal, 2018;
Dinh et al., 2015) and auto-regressive models (Van Den Oord et al., 2016a;b; Salimans et al., 2017).
Despite implicit likelihood models having achieved impressive results in terms of sample quality
without the need for explicitly modelling the observation space (Karras et al., 2020; Brock et al.,
2019), interest in explicit likelihood models have prevailed due to their appealing properties, such
as ease of likelihood estimation.

One of the most popular and successful explicit likelihood models is the VAE (Kingma & Welling,
2014; Rezende et al., 2014; Kingma & Welling, 2019). Since its introduction, there have been
numerous extensions. For example, Van Den Oord et al. (2017); Razavi et al. (2019) quantize
the latent space to achieve better image quality; Higgins et al. (2017); Chen et al. (2017) modify
the latent posterior to obtain disentangled and interpretable representations; and Vahdat & Kautz
(2020); Sønderby et al. (2016) use hierarchical architectures to improve sample quality.

Like most other explicit likelihood models, the VAE requires the choice of a parametric observa-
tional distribution. This choice is often pixel-wise independent. As a result, practitioners use the
distribution to calculate the likelihood but use its expected value when sampling, as the samples
themselves, are noisy and of limited use in most applications. However, according to the theory
and as previously pointed out by Stirn & Knowles (2020) and Detlefsen et al. (2019), a latent space
sample should entail a distribution over observations and not a single point. Despite attempts to
enforce spatial dependencies in the decoder architecture (Miladinovic et al., 2021), without a pixel-
dependent joint likelihood, the observation samples will remain noisy. Notable exceptions are auto-
regressive models and auto-regressive VAE decoders (Van Den Oord et al., 2017; Razavi et al., 2019;
Gulrajani et al., 2017; Nash et al., 2021). Unlike other explicit likelihood models, auto-regressive
models jointly model the observational distribution by sequentially decoding pixels while condi-
tioning on previously decoded values. While this sampling procedure results in spatially coherent
samples, it is computationally expensive and uncertainty estimation is not trivial.

In the context of non-auto-regressive VAE decoders, work focusing on modelling a joint obser-
vational distribution that accounts for pixel dependencies is limited. Monteiro et al. (2020) use a
low-rank multivariate normal distribution to produce spatially consistent samples in a segmenta-
tion setting. However, they focus on discriminative models only. For generative models, a notable
exception is a work by Dorta et al. (2018) which, similarly to our proposed method, employs a
non-diagonal multivariate normal distribution over observation space. The key difference is the
choice of parameterisation used for the covariance matrix. Dorta et al. (2018) predict the Cholesky-
decomposed precision matrix, which grows quadratically with the size of the image. To address
this computational constraint, the authors use a sparse decomposition. This decomposition con-
siders only a local neighbourhood of pixels, which limits its ability to capture long-range spatial
dependencies. In contrast, our approach uses a global parameterisation.
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3 METHODS

3.1 VARIATIONAL AUTOENCODERS

We briefly revisit the theory of standard VAEs as proposed by Kingma & Welling (2014); Rezende
et al. (2014). We assume a prior distribution over the latent variables, p(z), a probabilistic encoder
of the posterior, pθ(z|x), and a probabilistic decoder of the likelihood, pθ(x|z). In practice, the
probabilistic encoder describes an intractable posterior. Using variational inference, we approximate
this posterior with a distribution, qφ(z|x) given parameters φ. Here, VAEs provide the algorithm
to jointly learn the parameters θ and φ (Kingma & Welling, 2014). Considering some dataset
X = {x(i)}Ni=1, the VAE objective is given by maximising the evidence lower bound with respect
to the parameters θ and φ (Bank et al., 2020; Kingma & Welling, 2014):

L(θ,φ;x(i)) = −DKL

[
qφ(z|x(i))||pθ(z)

]
+ Eqφ(z|x(i))

[
log pθ(x

(i)|z)
]

(1)

Since the derivative of the lower bound w.r.t φ is problematic due to the stochastic expectation
operator, the re-parameterisation trick is used to yield the Stochastic Gradient Variational Bayes
(SGVB) estimator (Kingma & Welling, 2014).

Note, from the second term in equation 1, that the optimisation objective requires the choice of an
observational distribution to calculate the likelihood that the data comes from the predicted distri-
bution: pθ(x|z). Hence, it follows that a latent sample entails a distribution over observations. The
predicted distribution should be as close as possible to the observed distribution. Its samples should
look like real observations. However, in the case of highly structured data such as images, this will
not be the case when using the commonly-employed pixel-independent joint distribution.

3.2 STRUCTURED OBSERVATION SPACE VARIATIONAL AUTOENCODERS

With the commonly assumed model for the observation space, where the predicted joint distribution
is pixel-wise independent, samples can only add noise to the predicted mean, as shown in the exam-
ples in section 4.1. By incorporating spatial dependencies in the predicted distribution, we aim to
overcome this limitation and generate more realistic samples under the observed distribution.

Our solution is to replace the joint independent distribution predicted by the decoder with one that
explicitly models dependencies between outputs. Specifically, we modify the final layer of the
decoder to predict a low-rank parameterisation of a fully populated covariance matrix for use in a
multivariate normal distribution, pθ(x|z) ∼ N (µ,Σ). This small modification can be applied to
most existing VAE architectures.

Inspired by a recent discriminative model (Monteiro et al., 2020), we use an efficient parameterisa-
tion, Σ = PPT+D, to model covariance globally, albeit at a low-rank. This yields a compact model
with a covariance factor, P ∈ R(S×C)×R and a covariance diagonal, D = diag(d) ∈ R(S×C)2 , with
diagonal elements, d. Here, S = H ×W is the number of pixels, C is the number of channels, and
R is the rank of the parameterisation. Since we have only modified the distribution of the likelihood,
the SGVB estimator (equation 1) is applicable without modification.

However, we found optimising the SGVB estimator with a non-diagonal covariance to be unsta-
ble regarding the variance. The instability comes from the fact that two routes can optimise the
likelihood: to find the correct mean and appropriate variance around it or to keep increasing the
variance (uncertainty about the mean). The second direction is obviously undesirable and results in
implausible samples (with overly bright colours and high contrast; cf. Appendix A). Monteiro et al.
(2020) observed a similar phenomenon and pre-trained on the mean to avoid it. This problem is not
unique to our implementation; the stability of variance networks has been discussed before (Stirn &
Knowles, 2020; Detlefsen et al., 2019).

In our case, we found pre-training the mean to be beneficial but insufficient. To further mitigate the
problem, our solution includes weight initialisation, fixing the covariance diagonal to a small positive
scalar: D = εI 1, and constraining the entropy of the predicted distribution. Constraining the entropy
constrains the variance indirectly, thus giving preference to low-variance solutions. We compute

1We found 10−5 to yield good results.
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the entropy of the normal distribution in closed form and add it to the objective function. We
employ soft-constraints for the entropy and KL divergence using the modified differential method of
multipliers (Platt & Barr, 1988), for its agreeable convergence and stability properties, which results
in the following Lagrangian formulation:

L̃(θ,φ;x(i)) =
1

M

M∑
m=1

log pθ(x
(i)|z(i,m)) (2)

− β
[
DKL

[
(qφ(z|x(i))||pθ(z))

]
− ξKL

]
− λH

[
H(x(i)|z)− ξH

]
where β and ξKL are the Lagrangian multiplier and the slack variable, respectively, for the β-VAE
constraint; H(x(i)|z) is the entropy of the predicted distribution and λH and ξH are the Lagrangian
multiplier and the slack variable, respectively, for the new constraint.

4 EXPERIMENTS AND RESULTS

4.1 STANDARD VAE VS. STRUCTURED OBSERVATION SPACE VAE

We start by comparing a standard VAE, with a pixel-wise independent normal observational distri-
bution, to the proposed method, with a low-rank multivariate normal observational distribution. We
perform the comparison in two datasets: the CELEBA dataset (Liu et al., 2015) and the UK Biobank
(UKBB) Brain Imaging dataset (Miller et al., 2016). For all models, we use a latent space of dimen-
sion 128. and a target KL loss. For the low-rank model, we use a rank of 25. For the CELEBA
dataset we use a target KL loss , ξKL, of 45 for both models and ξH = −504750 for our model. For
the UKBB dataset we use a target KL loss , ξKL, of 15 for both models and ξH = −198906 for our
model. Figures 2a & 2b and 2c & 2d show the qualitative results for the comparison.

In Figures 2a and 2c, we see that the samples of the standard VAE exhibit uncorrelated pixel noise
around the mean, resulting from the pixel-wise independent joint observational distribution. In
contrast, in Figures 2b and 2d, we see that the samples produced by our method contain semantically
meaningful variations around the mean and are spatially coherent, as illustrated in the difference
(row 3) between the mean (row 1) and the sample (row 2). Looking at the variance of the two
methods (row 4), we see a significant difference in the regions where each model is uncertain,
highlighting the difference in behaviour between the two predicted distributions. The predicted
covariance (rows 5 and 6) for the low-rank model contains a structure that pertains to the image
content. These figure rows represent positive and negative covariance to the central pixel indicating
global covariance can is modelled. This structure results in spatially coherent samples as opposed
to the noisy samples of the standard VAE, which are a consequence of the diagonal covariance.
Interestingly, we observe more variation in the means of the standard VAE, suggesting that as more
variation can be modelled in the observation space, less needs to be modelled in the latent space.

Quantitative evaluation of generative modelling is an inherently difficult task due to its subjective
nature. While measuring the log-likelihood is the obvious choice, it is often not indicative of sample
quality (Theis et al., 2016; Borji, 2019). The Fréchet Inception Distance (FID) (Heusel et al., 2017)
is the current standard choice of metric due to its consistency with human perception (Borji, 2019).
We note this metric is not without its criticisms (Borji, 2019; Razavi et al., 2019), regardless, we use
it to evaluate our generative models and report the results in Table 1. The results do not represent
the absolute performance of the proposed method, but rather the relative difference when compared
to a standard VAE with a pixel-wise independent observational distribution while everything else
is constant. We emphasise, the proposed method is compatible with generative models from other
works. We observe that, for both datasets, the proposed method achieves a lower FID score than
the standard VAE. Notably, the samples from the model with a low-rank multivariate normal obser-
vational distribution outperform the means of a standard model, indicating that sampling from the
observational distribution, as theory entails, does not reduce image quality.
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(a) Standard VAE on CELEBA (b) Structured Observation Space VAE on CELEBA

(c) Standard VAE on UKBB Brain Scans (d) Structured Observation Space VAE on UKBB

Figure 2: Qualitative results comparing a standard VAE (2a) and the proposed VAE (2b) on the
CELEBA dataset. Same comparison on the UKBB dataset (2c & 2d). The rows from top to bottom:
the mean of the observational distribution, a sample from the observational distribution, the differ-
ence between the mean and the given sample, the pixel-wise independent variance per pixel, a slice
of the covariance matrix: positive covariance and negative covariance to the central pixel.

Table 1: FID metric results for a standard VAE with a pixel-wise independent observational distri-
bution and our modified VAE. Lower FID scores represent better performance.

Method Dataset FID ↓
Standard VAE (means)

CELEBA

121.65
Standard VAE (samples) 196.40
Our VAE (means) 132.93
Our VAE (samples) 104.62
Standard VAE (means)

UKBB

211.24
Standard VAE (samples) 332.89
Our VAE (means) 141.87
Our VAE (samples) 79.712

4.2 INTERPOLATION IN THE OBSERVATION SPACE

To explore the expressiveness of the representations captured in the observation space, we visualise
a continuous range of samples from the proposed method. We perform spherical linear interpola-
tion over the observation space to capture a range of plausible images between two initial samples,
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Figure 3: Spherical linear interpolation between auxiliary noise variables ωp. The four corners
are random samples from a predicted distribution with all intermediate steps as interpolations be-
tween them. The two images represent interpolations in the observation space for two observational
distributions predicted from different latent codes

ya and yb. This is shown in equation 3, where ωp ∈ RR and ωd ∈ R(S×C) are both auxiliary
noise variables, slerp is the spherical interpolation function (see appendix D) and t ∈ [0, 1] is the
interpolation factor.

yt = µ+ Pωpt
+
√
εωd (3)

where ωpt = slerp(ωpa ,ωpb
, t)

It is important to note that we only interpolate over ωp because it restricts the dimensionality of the
hyper-sphere to size R; the

√
εωd term only adds a small amount of uncorrelated noise, so setting it

as a constant has negligible effect. Figure 3 uses this technique to visualise the variation contained
in the observation space, demonstrating that the distribution captures semantically relevant features,
such as hair colour, skin tone and background colour for the CELEBA dataset. Interpolation between
differences in such features would typically entail interpolating latent variables and a forward pass
through the decoder for each interval, which is not required here.

4.3 INTERACTIVE SAMPLING FROM THE OBSERVATION SPACE

We have demonstrated that a low-rank multivariate normal observational distribution can model a
range of features. However, it would be useful if we could synthesise images with semantically
meaningful human input. A step in this direction entails fixing the auxiliary noise variables asso-
ciated with each sample and scaling the principal components of our covariance factor, P. This is
demonstrated in equation 4: using the singular value decomposition (SVD) of P and introducing a
diagonal matrix of scaling coefficients, A ∈ R(R×R).

P = U(SA)V
T (4)

Adjusting the scaling coefficients in A allows us to tune spatially correlated features in the sam-
ple image. The use of SVD often makes the effect of each coefficient separable and semantically
relevant to the image domain. Images generated through this method for CELEBA are shown in
Figure 4, where each row demonstrates the effect of scaling a different principal component. This
figure shows the effect on the first ten principal components. The effect on all components and addi-
tional results on the UKBB data are given in the Appendix B. Since this manipulation is using only
the observational distribution, manipulation of these samples can be achieved without performing
additional forward passes on the model.
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Figure 4: The effect of scaling each of the ten most principal components (each row), from top to
bottom for a fixed auxiliary noise variable. The scale factor for each component ranges from −5 to
+5 with intervals of 0.5.

4.4 INTERACTIVE EDITING OF PREDICTIONS

One of the benefits of modelling spatial correlations in the observational distribution is that this
information can be leveraged to interactively edit predictions. This involves manually editing part
of the prediction and calculating the conditional distribution of the remaining pixels; for an arbitrary
multivariate normal distribution, this is expressed in equations 5 and 6, where the edited pixels are
modelled by y2 and the remaining pixels are modelled by y1. We use the mean of the conditional
distribution (µ̃) as the corrected image. The updated covariance matrix (Σ̃) is not needed, so we
avoid evaluating it to reduce the computational cost of this process.

y =

[
y1

y2

]
, µ =

[
µ1
µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(5)

p(y1|y2 = b) ∼ N (µ̃, Σ̃) (6)

where µ̃ = µ1 + Σ12Σ
−1
22 (b− µ2)

and Σ̃ = Σ11 −Σ12Σ
−1
22 Σ21

Interactive editing is demonstrated in Figure 5 (with additional examples in Appendix C), where a
prediction from our model, trained on the CELEBA dataset, is sequentially edited to alter the hair
colour and skin tone. This demonstrates the power of the method: we can manually edit a small
number of pixels and automatically update the remainder of the image coherently with the manual
edit.

4.5 OBSERVATIONAL DISTRIBUTION WITHOUT DEEP LEARNING

Typical VAEs rely on their deep learning components to model the features for their output. In
contrast, since we use a low-rank parameterisation of a full covariance matrix, our observational
distribution can model spatially-correlated features on its own. As a result, the ability to model
these features is not solely left to the deep learning components of the VAE; it is shared with the
linear transformations that compose the low-rank multivariate normal distribution.

To understand the expressiveness of our observation space model, we carried out an experiment in
which the VAE architecture is replaced with the parameters for the low-rank multivariate normal
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Figure 5: Sequentially editing hair colour and skin tone interactively. From left to right: a predicted
image with a small coloured edit made to the hair, the image after the conditional distribution has
been calculated, the image with a further edit to the skin tone, the image after the conditional distri-
bution has been recalculated. N.B: The red circles highlighting the manual edits are for illustration
purposes only and serve no computational purpose.

Figure 6: A qualitative comparison between 100 samples from the learnt observation space at rank
= 25 with no deep learning components (left) and 100 samples from a linear PCA model with 25
features (right). In both cases, the data used for fitting is the same random subset of 10000 images
from the CELEBA dataset.

distribution with no deep learning layers or latent space representation involved. We then train this
simple model as described in section 3.2. This allows us to examine the capability of the model to
capture the observational distribution over the dataset, without deep learning.

This modelling is reminiscent of principal component analysis (PCA), particularly given that we
use a low-rank parameterisation, akin to the dimensionality reduction of PCA. Figure 6 compares
samples from the distribution alongside samples from a linear PCA model of equivalent feature
reduction after fitting to the CELEBA dataset (Liu et al., 2015).

There is little perceivable difference between the samples of the two methods, so we conclude that
our low-rank multivariate normal distribution is comparably expressive to PCA for feature reduction.
Furthermore, this experiment confirms the ability to learn the parameters of our distribution through
backpropagation.
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5 DISCUSSION

This paper highlights an often-overlooked aspect of the VAE architecture - the observational distri-
bution. We have confirmed that pixel-wise independent observational distributions produce samples
with uncorrelated pixel noise. We have introduced a low-rank multivariate normal distribution as
a choice for the observational distribution of a VAE, able to model covariance between pixels and
produce multiple spatially coherent samples with a single forward pass of the decoder. Our method
introduces stability issues that are otherwise not present, but that we are able to resolve with an en-
tropy constraint. Our results indicate that our choice of observational distribution is beneficial when
compared to a pixel-wise independent distribution, as well as allowing sampling to be the primary
method of image synthesis without reduction in quality, as theory would entail. Our method is com-
patible with many VAE architectures and may be applied to state-of-the-art models. We find that a
low-rank multivariate observational distribution can be interpolated within, and allows for semantic,
interactive manipulation of samples with a single decoder forward pass from a single latent variable.

Introducing an expressive observational distribution that is able to model features on its own, as
we have, promotes a discussion comparing the features modelled in the observation space to those
modelled in the latent space. In section 4.5, we observe our observational distribution’s ability to
model features on its own and in section 4.1 we observe a decrease in variation of the predicted
means for our model compared to a standard VAE. Assuming a dataset containing finite uncertainty,
we deduce that the modelling of this uncertainty is split between the latent space and the observation
space. Understanding where this split lies and what influences this is an open question left for future
work.

ETHICS STATEMENT

Generative modelling is subject to dataset-inherited bias and our contributions are also susceptible.
Whilst methods such as our own allow us to explore the biases that exist within a dataset, which in
some cases is a desirable tool, typical usage may expose an undesired bias, particularly after training
on the CELEBA dataset, which has a larger societal impact. We acknowledge that these biases, such
as lack of diversity, are present but state these as artefacts of the chosen dataset and not of our own
design, opinions or beliefs. There is a clear need for more diverse and representative datasets that
would allow a more complete picture of the abilities and limitations of generative models to be
obtained.

Our method allows for the synthesis of multiple plausible samples as well as manipulation of sam-
ples with a single forward pass of the model, where other methods require multiple forward passes.
This reduction in computational burden could provide access to machine learning models for those
with low-powered devices as well as reducing energy consumption and computational costs.

REPRODUCIBILITY

All our code will be made publicly available in a dedicated GitHub repository. The CELEBA data
is publicly available and we will ensure that these results are fully reproducible with the provided
code. Access to the brain imaging data can be requested via a data access application to the UK
Biobank Study (https://www.ukbiobank.ac.uk/).
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A OUT-OF-THE-BOX SAMPLES WITHOUT STABILISING

Figure 7: The results after training with a pre-training phase and weight initialisation, but without
the fixed component, D = εI, or the entropy constraint. The first row represents the predicted means
and all other rows represent samples from the predicted distribution outputted from the probabilistic
decoder. Each column is a new sample from the latent prior decoded to predict distributions over
the observation space. Model trained for 100 epochs on a random subset of 10000 images from the
CELEBA dataset. Latent dimensionality: l = 128, rank: R = 25, target KL loss: ξKL = 45.
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B SCALING OF ALL INDIVIDUAL PCA COMPONENTS FOR CELEBA AND
UKBB

Figure 8: The effect of scaling each of the principal components (each row), from top to bottom for
a fixed auxiliary noise variable and a rank 25 parameterisation. The scale factor for each component
ranges from −5 to +5 with intervals of 0.5. Observational distribution predicted by our VAE after
training on the CELEBA dataset.
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Figure 9: The effect of scaling each of the principal components (each row), from top to bottom for
a fixed auxiliary noise variable and a rank 25 parameterisation. The scale factor for each component
ranges from −5 to +5 with intervals of 0.5. Observational distribution predicted by our VAE after
training on the UKBB dataset.
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C ADDITIONAL EXAMPLES FOR INTERACTIVE EDITING

Figure 10: Sequential interactive editing. From left to right: predicted image with a small coloured
edit made to the hair, the image after the conditional distribution has been calculated, the image
with a further edit to the skin tone, the image after the conditional distribution has been recalculated.
N.B: The red circles highlighting the manual edits are for illustration purposes only and serve no
computational purpose.

Figure 11: Interactive editing. Left: predicted image with a single-pixel manual coloured edit over
the hair. Right: the mean of the calculated conditional distribution. N.B: The red circle highlighting
the manual edit is for illustration purposes only and serves no computational purpose.

Figure 12: Interactive editing. Left: predicted image with a manual coloured edit over the skin.
Right: the mean of the calculated conditional distribution. N.B: The red circle highlighting the
manual edit is for illustration purposes only and serves no computational purpose.

Figure 13: Interactive editing. Left: predicted image with a manual coloured edit over the back-
ground. Right: the mean of the calculated conditional distribution.
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D SPHERICAL INTERPOLATION

For completeness, we include the spherical interpolation formula used in section 4.2.

slerp(a,b, t) =
sin((1− t)ω)

sinω
a +

sin(tω)

sinω
b (7)

where ω = cos−1(|a| · |b|)
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