
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FLASH-SEARCHER: FAST AND EFFECTIVE WEB AGENTS
VIA DAG-BASED PARALLEL EXECUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable capabilities in
complex agent reasoning tasks when equipped with external tools. However, cur-
rent frameworks predominantly rely on sequential processing, leading to ineffi-
cient execution particularly for tasks requiring extensive tool interaction. This
paper introduces FLASH-SEARCHER, a novel parallel agent reasoning framework
that fundamentally reimagines the execution paradigm from sequential chains to
directed acyclic graphs (DAGs). FLASH-SEARCHER decomposes complex tasks
into subtasks with explicit dependencies, enabling concurrent execution of in-
dependent reasoning paths while maintaining logical constraints. Through dy-
namic workflow optimization, our framework continuously refines the execu-
tion graph based on intermediate results, effectively integrating summary mod-
ule. Comprehensive evaluations across multiple benchmarks demonstrate that
FLASH-SEARCHER consistently outperforms existing approaches. Specifically,
it achieves 67.7% accuracy on BrowseComp and 83% on xbench-DeepSearch,
while reducing agent execution steps by up to 35% compared to current frame-
works. Furthermore, when distilling this parallel reasoning pipeline into single
models, we observe substantial performance gains across diverse backbone archi-
tectures, underscoring the generalizability of our methodology. Our work intro-
duces a scalable and efficient paradigm for complex reasoning tasks, advancing
agent architecture design.

1 INTRODUCTION

Recent advances in tool-augmented agents and multi-agent systems (MAS) (Dorri et al., 2018;
Canese et al., 2021; Zhou et al., 2023c; 2024; Zhu et al., 2025a;b; Qiu et al., 2025; Roucher
et al., 2025; Tang et al., 2025; Team, 2025) have demonstrated remarkable capabilities in com-
plex problem-solving tasks, showcasing how collaborative agent frameworks can effectively address
challenges requiring diverse reasoning abilities and tool manipulation. These systems leverage spe-
cialized agents with distinct roles, enabling sophisticated planning, reasoning, and tool utilization
to solve tasks that would be challenging for single-agent approaches. Concurrently, research efforts
have focused on Tool-Integrated Reasoning (TIR) (Jin et al., 2025a; Li et al., 2025c;d; Wu et al.,
2025a; Sun et al., 2025; Zhang et al., 2025a; Zheng et al., 2025; Xue et al., 2025) approaches, which
aim to incorporate the capabilities of tool execution or multi-agent systems into a single model
through specialized training methodologies.

Despite their impressive performance, both MAS and TIR approaches face significant limitations
when addressing general complex tasks. Multi-agent systems suffer from inefficient tool utiliza-
tion, excessively long reasoning chains, and prolonged execution times due to sequential process-
ing and redundant communication, while TIR methods encounter reasoning efficiency bottlenecks
with chains frequently exceeding context window limitations. These issues become even more pro-
nounced in complex scenarios that require deep research capabilities. In such cases, MAS and TIR
systems integrate additional verification mechanisms, such as reflection, self-critique, and iterative
refinement, to enhance reliability. However, these improvements come at the cost of significantly
increased computational overhead when solving complex tasks. Deep research tasks in current agent
frameworks often require more than 20 interaction steps (Wang et al., 2025; Roucher et al., 2025; Hu
et al., 2025), with execution times extending to several hours. This creates a sharp tension between
solution quality and computational efficiency, severely limiting practical viability in user-responsive

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Traditional Agent Framework

Task

Plan

Reasoning

Reflect

Verify

Interaction

Search Calculate Code Crawl

…

Tool/Agent Server

Flash-Searcher Framework (Ours)

Task

DAG-based
Plan

Goal 1: U.S. films (2013–2023), $145–175M domestic
gross.
Path 1.1: Box Office Mojo filter + U.S check
→ Success: 3–15 vetted films …
Goal 2: Films (2013–2023) by Oscar-winning directors
Path 2.1: AMPAS winners → list films, tag

G1

G2

G3

T

U.S./ensemble → Success: Annotated table...

DAG-based Plan Construction
P1

P1

P1

P2

P2

P3

A

Parallel
Execution

Parallel Execution & Tool Orchestration

Progress
Summary

Answer

Adaptive Progress Tracking & Summary

G1

G2

G3

T

P1

P1

P1

P2

P2

P3

A

Goal 1: U.S. films (2013–2023), $145–175M domestic
gross.
Status: In Progress. Path Analysis: 1.1 (Box Office Mojo)
has 3–15 candidates …
Goal 2: Films (2013–2023) by Oscar-winning directors
Status: Finished. Path Analysis: Gravity (2013), directed
by Alfonso Cuarón; Birdman(2014) by Alejandro G; …

...

Figure 1: Overview of FLASH-SEARCHER: Framework and Key Components.

applications. When confronted with complex tasks inducing unavoidable latency, do users deem the
better performance necessary enough to justify tolerating or paying for these delays?

To address these critical challenges, we introduce FLASH-SEARCHER, a novel parallel agent rea-
soning framework that fundamentally reimagines how agents collaborate to solve complex tasks.
Building upon recent empirical advances in reasoning models, our approach leverages these mod-
els’ enhanced capabilities in simultaneously managing multiple cognitive threads. As illustrated
in Figure 1, unlike traditional approaches that adhere to strict sequential processing, FLASH-
SEARCHER decomposes the original task into multiple parallel execution paths, orchestrated via
carefully designed agent workflows. This parallelization allows multiple reasoning paths to progress
simultaneously while intelligently managing tool calls across different execution branches. The
FLASH-SEARCHER framework redefines the efficiency-effectiveness frontier in complex task solv-
ing through key innovations: 1) adaptive decomposition and parallelization of tasks into concurrent
subtasks with dynamic strategy adjustment, 2) dependency-aware reasoning graph management to
model information dependencies and 3) optimize critical paths/information flow, and proactive in-
formation retrieval with knowledge sharing to anticipate downstream needs and reduce redundant
interaction steps.

Our extensive evaluations demonstrate that FLASH-SEARCHER achieves state-of-the-art perfor-
mance across multiple challenging benchmarks. Our FLASH-SEARCHER (with GPT-5-mini) re-
duces the average agent execution steps by 35% (11.2 → 7.4 steps on GAIA) and shortens the
overall execution time by ~65% (27.4 → 9.6 mins on BrowseComp) compared to OAgents (Zhu
et al., 2025a). Despite this dramatic efficiency improvement, FLASH-SEARCHER (with GPT-5)
achieves an impressive average performance of 82.5% on GAIA benchmark. Furthermore, on more
challenging benchmarks such as xbench, HLE and BrowseComp, FLASH-SEARCHER achieves per-
formance metrics of 83.0, 44.0 and 67.7 respectively, surpassing current state-of-the-art methods.
Furthermore, to validate the generalizability of our approach, we constructed FLASH-SEARCHER
execution trajectories based on collected web agent data and conducted post-training on the Qwen-
2.5 family of open-source models. This lightweight adaptation achieves a performance score of 68.0
on the xbench-DeepSearch benchmark, representing a 29.3 improvement over WebDancer. This
demonstrates the effective transfer of the parallel agent paradigm to open-source models with mini-
mal additional training.

In summary, our contributions are as follows:

• We present a novel parallel agent reasoning framework that substantially reduces execution steps
while achieving SOTA performance across various benchmarks.

• High-quality parallel reasoning trajectories, systematically curated and constructed for model
post-training, significantly boost performance on complex evaluation tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Experimental results demonstrate the effectiveness of lightweight post-training in propagating
parallel agent strategies to open-source models, achieving comparable results to multi-agent
systems.

• We fully open-source pipeline and datasets of FLASH-SEARCHER to catalyze research on search
agents and models.

2 RELATED WORK

2.1 MULTI-AGENT SYSTEM

Recent research has highlighted the effectiveness of multi-agent systems in addressing complex
real-world challenges through collaborative agent frameworks. These systems typically employ
multiple specialized agents with distinct roles, thereby supporting advanced planning, multi-turn
reasoning, tool utilization, and environment interaction (Zhou et al., 2023c; 2024; Jin et al., 2025b;
Zhu et al., 2025a;b; Mai et al., 2025; Hu et al., 2024; Tang et al., 2025; Shi et al., 2025; Tang
et al., 2025; Zhou et al., 2023b). Early multi-agent systems such as CAMEL (Li et al., 2023)
showed that dialog between agents can elicit stepwise reasoning through role-playing. Subsequent
frameworks, including MetaGPT (Hong et al., 2024) and ChatDev (Qian et al., 2023), formalized
this approach by implementing structured execution pipelines with dedicated roles such as man-
ager, designer, and coder. Other approaches, like Magnetic-One (Fourney et al., 2024) and Smo-
lagents (Roucher et al., 2025), incorporate a central planner that dynamically delegates subtasks to
specialized tool-based agents. AgentVerse (Chen et al., 2023) refines collaborative reasoning via
a recruitment–decision–execution–evaluation cycle, enhancing reflection and coordination. Work-
force (Hu et al., 2025) decouples planning, coordination, and execution into modular agents, en-
abling efficient domain transfer through plug-and-play workers. Alita (Qiu et al., 2025) proposes
autonomous tool exploration via iterative trial-and-error, expanding capabilities by transforming
multi-attempt tasks into single-attempt ones. However, beyond performance, the latency in these
complex multi-agent frameworks remains understudied.

2.2 EFFICIENT FRAMEWORK

To address the efficiency bottlenecks inherent in existing agent frameworks, Tool-Integrated Reason-
ing (TIR) has recently emerged as a prominent research direction. Early efforts primarily adopted
prompt-based strategies, such as Search-o1 (Li et al., 2025c), which employ static templates to in-
stantiate fixed Thought–Action–Observation loops, thereby enabling rudimentary tool-augmented
reasoning. More recent work has pivoted toward post-training paradigms (Jin et al., 2025a; Li et al.,
2025d; Wu et al., 2025a; Li et al., 2025a; Tao et al., 2025; Sun et al., 2025; Xue et al., 2025; Li
et al., 2025b; Nguyen et al., 2025), where agents are refined via task-specific fine-tuning to enhance
performance. Despite their empirical gains, these approaches typically enforce narrowly scoped exe-
cution workflows, which severely limit their adaptability and scalability in open-domain, real-world
environments. These challenges have motivated a broader effort to improve the efficiency and scala-
bility of reasoning-enabled agents. Recent advances have focused on two key directions: optimizing
agent pipelines and parallelizing search processes. Efficient Agents (Wang et al., 2025) conducts
a comprehensive analysis of core agent modules (workflow design, tool invocation, and memory
architecture) to systematically balance performance and cost. Similarly, ParallelSearch (Zhao et al.,
2025) trains models to detect parallelizable query structures, decomposing complex queries into in-
dependent sub-queries for retrieval tasks, resulting in significant performance gains in search-based
tasks. However, existing systems remain constrained by isolated reasoning-execution loops or and
the prolonged cycles introduced by multi-step verification, highlighting the need for more efficient
approaches to agent.

3 METHOD

3.1 PRELIMINARIES

Tool-Augmented Agents. Tool-augmented agents enhance the capabilities of LLMs by seamlessly
integrating external tools to perform actions such as information retrieval, mathematical computa-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Tasks DAG-based Plan

Task -> Sub-Goals

Goal 1: Path …
Goal 2: Path …
Goal 3: Path …
Goal 4: Path …

Parallel Execution

Model
Reasoning

For goal 1, we
should use web
search tool to …

For goal 2, we
need to use web
search tool to …

For goal 3, we
should use crawl
page tool to …

For goal 4, we
need to use crawl
page tool to …

P1

P1

P1

P1

G1

G2

G3

G4

T

Loop
Execution

Progress Summary

Goal 1: (finished) …
Goal 2: (In process) …
Goal 3: (In process) …
Goal 4: (finished) …

Adaptive Progress
Tracking & Summary

Answer

Goal 1 Goal 2

Goal 3 Goal 4

Task

Final
Answer

Figure 2: The pipeline of FLASH-SEARCHER.

tion, and code execution. This paradigm mitigates the inherent limitations of parametric knowledge
through a structured tool-calling pipeline. Formally, the agent–environment interaction is modeled
as a Markov decision process, wherein each tool invocation induces a state transition driven by envi-
ronmental feedback. At timestep t, the agent selects a tool-calling action at ∈ A, where A denotes
the action space comprising available tools based on the current state st, and receives an observation
ot ∼ P(· | st, at) from the tool environment. The state transition function is defined as:

st+1 = g(st, at, ot) , (1)

where g : S ×A×O → S represents a state update function incorporating task, action history, and
structured tool outputs into the new state representation st+1 ∈ S.

Multi-Agent Systems. Consider a set of agents indexed by I, where each agent is denoted as
ai for i ∈ I. Each agent maintains a local state sit and possesses specialized capabilities. The
global system state at time t is defined as St = {s1t , s2t , . . . , snt , ct}, which aggregates all local states
along with a shared context ct. Agents coordinate through inter-agent communication protocols to
optimize a common objective function U(St). The evolution of the global state follows:

St+1 = f
(
{ait}i∈I , St, Ot

)
, (2)

where ait ∈ A denotes the action executed by agent i at timestep t, Ot = {oit}i∈I represents the
collection of observations from all agents, and f integrates individual actions, the current global
state, and observations to produce the next global state.

Existing approaches often adopt sequential execution with reflection and verification, prolonging
task completion. Complex tasks may require 40+ interactions, introducing substantial latency. This
sequential dependency creates a fundamental quality–efficiency trade-off, hindering real-world de-
ployment.

3.2 FLASH-SEARCHER: PARALLEL AGENT REASONING FRAMEWORK

To overcome the inherent inefficiencies of sequential execution in conventional agent frameworks,
we introduce FLASH-SEARCHER, a novel parallel reasoning framework that reformulates complex
task solving as structured concurrency. Our approach transcodes the traditional linear workflow into
a dynamic directed acyclic graph (DAG) plan, achieving substantial efficiency gains while preserv-
ing execution coherence. The full pipeline of FLASH-SEARCHER is illustrated in Figure 2.

DAG-based Plan Construction. Given a composite task T , FLASH-SEARCHER employs a de-
composition function D that identifies constituent subtasks and their interdependencies, yielding a
DAG-based plan:

D(T) = Gplan = (V,E), (3)

where V = {t1, t2, . . . , tn} denotes subtasks and E ⊆ V × V captures prerequisite relations. Each
directed edge (ti, tj) ∈ E encodes that ti must precede tj .

Parallel Inferential Execution & Tool Orchestration. At execution step t, FLASH-SEARCHER
selects candidate subtasks from the pending set Pt ⊆ V :

E(Gt,Pt) = {vi ∈ Pt | φ(vi, Gt, st) = 1}, (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where φ(·) is a readiness predicate. Unlike strict topological scheduling, φ permits aggressive
parallelization: a subtask vi may be scheduled if either (i) all its prerequisites are complete, or
(ii) partial execution can provide auxiliary signals for dependency verification. Thus, φ formalizes
cross-validation as a hybrid criterion, blending dependency satisfaction and heuristic consistency
checks. During execution, multiple subtasks E(Gt,Pt) are processed in parallel via tool or agent
invocations. The system integrates observations into the reasoning state:

st+1 = F
(
st, {a(k)t }mk=1, {o

(k)
t }mk=1

)
, (5)

where a
(k)
t and o

(k)
t denote the action and observation of the k-th parallel execution, and F inte-

grates the results via structured aggregation and performs state transitions based on the aggregated
information.

Adaptive Progress Tracking & Summarization. To reflect execution progress, FLASH-
SEARCHER periodically updates the DAG-based plan every ∆ steps:

Gt+∆
plan = R

(
Gt

plan, Ct,Pt, st
)
, (6)

where Ct is the set of completed subtasks. The refinement rule R eliminates resolved nodes, reval-
idates unresolved dependencies based on cross-validation outcomes, and dynamically inserts new
decomposition nodes if needed. The interval ∆ can be flexibly specified: a smaller ∆ increases the
frequency of plan updates, ensuring faster task adaptation and responsiveness; a larger ∆ suppresses
excessive optimization, reducing computational overhead in complex or stable tasks.

By integrating DAG-based decomposition, controlled aggressive parallelization, and periodic DAG
optimization, FLASH-SEARCHER mitigates the sequential bottleneck of existing reasoning architec-
tures. This design provides a scalable and efficient alternative to sequential reasoning architectures,
maintaining logical coherence through its structured, parallel approach. The full FLASH-SEARCHER
pipeline is formally presented in Algorithm 1.

Algorithm 1 FLASH-SEARCHER Framework

Require: Composite task T
1: Gplan ← D(T)
2: Initialize s0, P0 ← V , C0 ← ∅
3: t← 0
4: while Pt ̸= ∅ do
5: Et ← {v ∈ Pt | φ(v,Gt, st) = 1}
6: Execute subtasks in Et in parallel
7: Collect results {o(k)t } and update st+1 = F(st, {a(k)t }, {o

(k)
t })

8: Ct+1 ← Ct ∪ completed subtasks
9: Pt+1 ← Pt \ Ct+1

10: if t mod ∆ = 0 then
11: Gt+1 ← R(Gt, Ct+1,Pt+1, st+1)
12: end if
13: t← t+ 1
14: end while
15: return Final state sT

4 EXPERIMENT

4.1 FLASH-SEARCHER FRAMEWORK

4.1.1 SETUP

Benchmarks. We evaluate FLASH-SEARCHER on four challenging benchmarks for information
retrieval and reasoning:

• GAIA (Mialon et al., 2023): A comprehensive benchmark for evaluating complex task-solving
capabilities. For this benchmark, we mainly use the text-only validation set (103 tasks), which

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0

10

20

30

40

50

25.9 26.6 26.9

41.6
44.0

HLE

OAgents
0

10

20

30

40

50

60

70

Sc
or

e
(P

as
s@

1)

13.7

30.0

51.5

BrowseComp xbench-DeepSearch GAIA

Sea
rch

er

OpenAI D
R

Manus
Alita

SkyWork D

Fla
sh-

R

Fla
sh-S

ear
che

r

67.7 68.9

30

40

50

60

70

80

90

100

67.4
73.3 75.2

82.4 83.0

30

40

50

60

70

80

90

100

47

64 66
69

83

Closed-Source

Open-Source
Flash-Searcher

Skywork DR

BrowseM
aste

r
OAgents

Metaso DR

Kimi Researcher

OpenAI D
R

BrowseM
aste

r

Fla
sh-S

ear
che

r

ChatGPT Agent

OpenAI D
R

ChatGPT Agent

Kimi Researcher

Fla
sh-S

ear
che

r

[GP
T-4

.1]

[De
epS

eek
-R1

]

[GP
T-4

.1]

[GP
T-5

]
[GP

T-5
]

[GP
T-5

]

[GP
T-5

]
[Cla

ude
-4-s

onn
et]

[De
epS

eek
-R1

]

Figure 3: Performance comparison of agent frameworks on BrowseComp, xbench-DeepSearch,
GAIA and HLE benchmarks. All results are reported using Pass@1 metric.

requires deep information retrieval and complex reasoning. Notably, the full validation set is
solely used in Figure 3 for fair comparison; all other evaluations are based on the text-only
validation subset.

• BrowseComp (Wei et al., 2025): Large-scale benchmark comprising 1,266 tasks designed to
test internet-scale information retrieval with hard-to-find information needs and sophisticated
browsing strategies.

• xbench-DeepSearch (Xbench-Team, 2025): Professional benchmark with 100 tasks simulating
real-world search scenarios, emphasizing multi-round refinement and cross-source information
integration.

• HLE (Phan et al., 2025): A frontier benchmark covering over a hundred subjects, designed to
address the limited difficulty of existing benchmarks. We follow the setting in AFM (Li et al.,
2025b) and use HLE-500 for evaluations.

Framework Configuration. FLASH-SEARCHER employs a minimalist yet powerful tool configura-
tion optimized for parallel execution. Our framework integrates two core components: a Search Tool
implemented with the Serper API (Serper, 2025) for retrieving structured search results, and a Crawl
Tool leveraging the Jina Reader (Jina, 2025) for content extraction. The crawl tool incorporates au-
tomatic summarization using the same backbone language model, ensuring consistent information
representation while significantly reducing cognitive load. This streamlined design enables efficient
parallel tool orchestration across reasoning branches while maintaining trajectory simplicity and
operational coherence. More details can be found in Appendix E.

Metrics. We employ the LLM-as-Judge paradigm (Zheng et al., 2023; Wu et al., 2025a) for auto-
mated evaluation, utilizing GPT-4.1-mini as the judge model. Each agent output of different bench-
marks receives a binary correctness assessment from the judge model. We report Pass@1 results,
which measure the proportion of tasks solved correctly on the first attempt, based on these binary
correctness scores. The standardized prompt for judgment is detailed in Appendix I.1. The stan-
dardized prompt for judgment is detailed in Appendix I.1.

4.1.2 MAIN RESULTS

OAgents

BrowseMaster

OpenAI DR

Flash-Searcher

OpenAI Agent0

10

20

30

40

50

60

70

80

Sc
or

e
(P

as
s@

1)

13.7

30.0

51.5

67.7 68.9

BrowseComp

Closed-Source
Open-Source
OurMethod

OAgents

Metaso DR

BrowseMaster

Kimi Researcher

Flash-Searcher30

40

50

60

70

80

90

100

Sc
or

e
(P

as
s@

1)

47.0

64.0 66.0
69.0

83.0

xbench

OpenAI DR
Manus

Alita

Skywork DR

Flash-Searcher30

40

50

60

70

80

90

100

Sc
or

e
(P

as
s@

1)

67.4

73.3 75.2

82.4 82.5

GAIA

0

20

40

60

80

100

Sc
or

e
(P

as
s@

1)

GPT
-5

GPT
-5-m

ini
GPT

-4.1

Dee
pSe

ek-V
3.1

BrowseComp

xbench
GAIA

HLE

Figure 4: Performance of FLASH-
SEARCHER with different backbones.

We present a comprehensive evaluation of FLASH-
SEARCHER against state-of-the-art closed-source and
open-source agent frameworks across four challenging
benchmarks: BrowseComp, xbench-DeepSearch, GAIA,
and HLE. As illustrated in Figure 3, our method achieves
highly competitive performance, matching or exceeding
existing approaches while demonstrating superior effi-
ciency and scalability. These results underscore the ef-
fectiveness of our DAG-based architecture in handling di-
verse task complexities.

In Figure 4, our FLASH-SEARCHER when integrated with
GPT-5 achieves a competitive performance of 67.7%
on the BrowseComp benchmark. This result not only

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

demonstrates a substantial advantage over state-of-the-art
open-source frameworks (e.g., BrowseMaster (Pang et al., 2025), which attains 30.0%) but also
approaches the performance of the leading closed-source solution, specifically the OpenAI Chat-
GPT agent (68.9%). Even with less powerful backbone models such as GPT-5-mini, our frame-
work achieves 35.3%, demonstrating the effectiveness of our parallel reasoning approach regard-
less of the underlying model. For xbench-DeepSearch, FLASH-SEARCHER also shows remarkable
performance, with our GPT-5 variant achieving 83%, surpassing both BrowseMaster (66%) and
Metaso DeepResearch (64%). This substantial improvement highlights the particular strength of
our approach in deep research scenarios that demand extensive information gathering and com-
plex reasoning. Besides, On the GAIA benchmark, FLASH-SEARCHER with lightweight, resource-
efficient GPT-5-mini backbone achieves 80.6%, exceeding even strong closed-source systems like
Alita (75.2%) and Manus (73.3%). Additionally, our method demonstrates exceptional capability
on the HLE benchmark, achieving a state-of-the-art 44.0% with GPT-5, substantially outperforming
all other frameworks. These results demonstrate that our parallel reasoning framework effectively
handles diverse information retrieval challenges. The framework’s consistent performance across
different backbone models validates the robustness of our approach.

4.2 FLASH-SEARCHER LEARNING

4.2.1 SETUP

Dataset. To train our parallel reasoning agent, we construct a high-quality dataset derived from
multiple sources including WebWalker (Wu et al., 2025b), ASearcher (Gao et al., 2025), Web-
Shaper (Tao et al., 2025), and CoA (Li et al., 2025b). Our final dataset consists of 3354 effective
DAG-based reasoning trajectories. Each trajectory incorporates periodic DAG workflow reviews
and is formatted as a multi-turn dialogue, enabling effective context window extrapolation and long-
range dependency modeling. This format specifically enhances the model’s ability to manage com-
plex reasoning graphs while maintaining coherent conversation flow. More details can be found
in Appendix G.1

Training Configurations. We maintain consistent evaluation metrics and benchmarks with the
framework experiments in Section 4.1.1. All training is implemented using the Llama-Factory
framework (Zheng et al., 2024). We employ supervised fine-tuning to develop robust parallel rea-
soning capabilities. Specifically, for all trained models, the maximum dialogue length is set to
131,072 tokens, the learning rate is set to 10−5, and training is conducted for four epochs. The full
training parameters and detailed data formatting specifications are comprehensively documented
in Appendix G.2.

4.2.2 AGENT MODEL RESULTS

To validate the effectiveness of our parallel reasoning approach beyond framework implementa-
tion, we distilled FLASH-SEARCHER’s parallel reasoning capabilities into standalone agent models
through lightweight supervised fine-tuning. Table 1 presents a comprehensive comparison of these
agent models against existing state-of-the-art methods across four challenging benchmarks.

Our experimental analysis demonstrates that lightweight supervised fine-tuning effectively facili-
tates the transfer of FLASH-SEARCHER’s parallel reasoning capabilities to standalone agent models,
consistently achieving state-of-the-art (SOTA) performance across diverse benchmarks and model
backbone scales. Specifically, on the Qwen-2.5-32B backbone, FLASH-SEARCHER establishes a
new performance ceiling. It outperforms the strongest prior method by 3.3% on BrowseComp,
5.0% on xBench-DeepSearch, and 2.0% on GAIA. Despite forgoing code interpreter tools, FLASH-
SEARCHER achieves state-of-the-art performance at 19.4% on HLE, surpassing tool-augmented
baselines and affirming the general effectiveness of FLASH-SEARCHER in handling general com-
plex tasks. This result underscores FLASH-SEARCHER’s inherent reasoning robustness, as it delivers
strong performance without relying on extensive tools.

Scaling FLASH-SEARCHER to 72B yields consistent and meaningful performance gains across all
benchmarks, demonstrating that our parallel reasoning framework scales gracefully with model ca-
pacity. Notably, the most substantial improvements occur on complex, multi-step reasoning tasks
such as BrowseComp and xbench-DeepSearch, with 5% gains, suggesting that increased parame-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of agent models on BrowseComp, xbench-DeepSearch, and
GAIA benchmarks. All results are reported using Pass@1 metric. Gray-font values correspond
to results reported in the associated reports.

Method Backbone BrowseComp xbench-DeepSearch GAIA HLE

Cognitive Kernel-Pro Qwen-3-8B - - 43.7 -

WebDancer

QwQ-32B

3.8 39.0 50.5 7.2
WebThinker-RL 2.8 24.0 48.5 -
SimpleDeepSearcher - - 50.5 -
WebShaper - - 53.3 12.2
SFR-DR - - 52.4 17.1

WebDancer

Qwen-2.5-32B

2.5 38.7 40.7 -
SimpleDeepSearcher - - 40.8 -
WebShaper - - 52.4 -
WebSailor 10.5 53.3 53.2 10.8
AFM-RL 11.1 58.0 55.3 18.0
FLASH-SEARCHER 14.4 63.0 57.3 19.4

WebSailor
Qwen-2.5-72B

12.0 55.0 55.4 -
WebShaper - - 60.1 -
FLASH-SEARCHER 18.9 68.0 61.2 20.2

ter scale enhances the model’s ability to coordinate and refine reasoning steps. Even on HLE, the
performance affirms that FLASH-SEARCHER internalizes structured reasoning without relying on
external tools. This behavior confirms that our lightweight fine-tuning paradigm not only trans-
fers reasoning capabilities effectively but also unlocks deeper potential as backbone capacity grows,
making it suited for scalable, general-purpose agent deployment.

Notably, these results are achieved through lightweight supervised fine-tuning without RL or tool
reliance. This confirms that parallel reasoning is a learnable and scalable inductive bias, efficiently
transferred via minimal supervision. FLASH-SEARCHER thus emerges as a simple, robust, and
parameter-efficient solution for real-world agents.

5 EFFICIENCY ANALYSIS

We present a comprehensive efficiency analysis of FLASH-SEARCHER using the GPT-5-mini back-
bone, evaluating its execution efficiency and framework improvements compared to existing agent
systems. The distribution plot in Figure 5a demonstrates BrowseComp benchmark requiring the
highest number of both metrics. This reflects the varying complexity demands across different
benchmark types. Figure 5b reveals FLASH-SEARCHER’s operational efficiency through tool calls
per execution step. The tight interquartile range, particularly evident in the GAIA benchmark, indi-
cates consistent and predictable tool utilization patterns.These results support our core claim that the
DAG-based architecture optimizes tool efficiency and reduces execution steps. By invoking com-
plementary tools in parallel, our approach eliminates the sequential bottlenecks that cause redundant
steps in linear pipelines.

To fairly evaluate the execution efficiency of FLASH-SEARCHER, we compare FLASH-SEARCHER
against OAgents (Zhu et al., 2025a) and OWL-Roleplaying (Hu et al., 2025) with their original
configurations (Details in Appendix H). The experimental results are presented in Figure 6, which
demonstrates significant efficiency improvements of our approach across four benchmarks.

As shown in Figure 6a, FLASH-SEARCHER outperforms OAgents on all four benchmarks, achiev-
ing higher task success rates and efficiency gains, with this advantage growing more pronounced
as task complexity increases (BrowseComp > xbench-DeepSearch > HLE > GAIA). This validates
FLASH-SEARCHER’s adaptability to complex scenarios, laying the foundation for subsequent effi-
ciency analysis. Figure 6b further demonstrates that FLASH-SEARCHER (with GPT-5-mini back-
bone) reduces agent steps by 35% versus OAgents and 30% versus OWL-Roleplaying on GAIA
benchmark, enabled by its parallel reasoning architecture. This efficiency gain stems from the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 10 20 30 40

0

50

100

150

200

250

300 BrowseComp

GAIA
HLE

Execution Steps

To
ol

 C
al

ls

xbench

(a) Tool calls vs. execution steps.

HLE

1

2

3

4

5

6

7

8

BrowseComp xbench GAIA

To
ol

 C
al

ls
 /

Ex
ec

ut
io

n
St

ep
s

(b) Tool calls per execution step of FLASH-SEARCHER.

Figure 5: Efficiency analysis of FLASH-SEARCHER on four benchmarks: (a) shows the correlation
between tool calls and steps; (b) characterizes the distribution of tool calls per step.

DAG-based workflow’s ability to execute concurrent reasoning paths, which effectively mitigates
the sequential bottleneck of traditional methods. Figure 5 illustrates the distribution of tool calls and
steps for FLASH-SEARCHER: despite fewer total steps, our approach maintains higher per-step tool
utilization efficiency (average 3.00 tool calls per step, compared to 0.83 for OAgents and 0.85 for
OWL-Roleplaying), confirming more productive and effective reasoning iterations.

20

30

40

50

60

70

80

10

20

30

40

50

20

40

60

80

100

120

Performance Execution steps Tool calls

FS (GPT-4.1) FS (DeepSeek-V3.1) OAgents (GPT-4.1) FS (GPT-5) FS (GPT-5-mini)

xbench BrowseComp HLEGAIA

C
ou

nt
s

Sc
or

e

GAIA xbench BrowseComp HLE GAIA xbench BrowseComp HLE

(a) Execution steps and tool calls comparison.

Sc
or
e

80.6

58.3 59.2

Performance

C
ou

nt
s

Execution steps Tool calls

Flash-Searcher OAgents OWL-Roleplaying

8.99.3

22.2

7.4

11.2 10.5

(b) Efficiency comparison of frameworks on GAIA.

Figure 6: Efficiency comparison of agent frameworks on four benchmarks.

The core innovation lies in our DAG-based parallel execution mechanism, which directly addresses
the fundamental limitation of redundant tool invocation cycles in sequential reasoning approaches.
By coordinating information needs across parallel branches, we eliminate duplicate searches while
maintaining reasoning diversity. As in Figure 6a, our framework simultaneously enhances both
efficiency and performance, effectively resolving the longstanding efficiency-effectiveness trade-off
in agent systems.

Although agent execution duration is inherently influenced by external factors such as API rate
limits, FLASH-SEARCHER consistently achieves a 35% reduction in execution steps under com-
parable environmental conditions. This reduction directly translates into lower end-to-end latency
and improved throughput, offering a significant efficiency advantage. This efficiency is critical for
applications requiring low latency and high throughput, where sequential agents often face scalabil-
ity bottlenecks. More detailed analysis of execution steps, time, and cost overheads can be found
in Appendix F.3.

6 CONCLUSION

In this work, we introduce FLASH-SEARCHER, a novel parallel agent reasoning framework that
overcomes the sequential bottlenecks of conventional tool-augmented agents through structured
concurrency. By reformulating task solving as dynamic scheduling over DAGs, FLASH-SEARCHER
enables fine-grained parallel execution while rigorously preserving logical coherence and correct-
ness. Extensive experiments across BrowseComp, xbench-DeepResearch, GAIA, and HLE demon-
strate that FLASH-SEARCHER achieves state-of-the-art performance, attaining a score of 67.7% on
BrowseComp, alongside substantial gains in computational efficiency through reduced latency and
improved resource utilization. Our results, further corroborated by distilled agent variants, establish
parallel reasoning as a foundational paradigm for building efficient, scalable, and robust AI systems
capable of mastering complex real-world tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

Our research focuses on the development of agent frameworks and model architectures for web-
based autonomous agents, aiming to create more effective systems that can assist users in completing
complex tasks. We conduct rigorous evaluation on controlled benchmarks and ensure transparency
in our experimental procedures. This work does not involve any risks related to ethics issues and is
intended to advance research in web agent systems.

8 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of FLASH-SEARCHER:

• Training Dataset: The complete FLASH-SEARCHER training dataset will be made publicly
available upon publication. Detailed information about data collection, annotation guidelines,
and quality control measures are provided in Appendix G.1.

• Code: We provide a comprehensive codebase including implementations of our framework,
data generation procedures, and evaluation metrics in the supplementary materials.

• Experimental Configuration: We provide detailed experimental specifications, hyperparame-
ter configurations, and procedural details are documented in Appendix E.

• Limitations: We note that exact reproduction of results for FLASH-SEARCHER frameworks and
models may be challenging due to potential API changes or Inference uncertainty.

By providing these resources, we aim to facilitate reproduction of our results and encourage further
research.

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, 2024.

Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco
Re, and Sergio Spanò. Multi-agent reinforcement learning: A review of challenges and applica-
tions. Applied Sciences, 11(11):4948, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4):6, 2023.

Ali Dorri, Salil S Kanhere, and Raja Jurdak. Multi-agent systems: A survey. Ieee Access, 6:28573–
28593, 2018.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedt-
ner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A gener-
alist multi-agent system for solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous rl. arXiv
preprint arXiv:2508.07976, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a
multi-agent collaborative framework. In International Conference on Learning Representations,
ICLR, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan
Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard Ghanem, Ping
Luo, and Guohao Li. Owl: Optimized workforce learning for general multi-agent assistance in
real-world task automation, 2025. URL https://arxiv.org/abs/2505.23885.

Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao,
Xiangxin Zhou, Ziyu Zhao, et al. Os agents: A survey on mllm-based agents for computer, phone
and browser use, 2024.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025a.

Yiyang Jin, Kunzhao Xu, Hang Li, Xueting Han, Yanmin Zhou, Cheng Li, and Jing Bai. Reveal:
Self-evolving code agents via iterative generation-verification, 2025b. URL https://arxiv.
org/abs/2506.11442.

Inc. Jina. Jina reader, 2025. URL https://jina.ai/reader/.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for "mind" exploration of large language model society. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
uan Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu,
Yong Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. Websailor: Navigating super-
human reasoning for web agent, 2025a. URL https://arxiv.org/abs/2507.02592.

Weizhen Li, Jianbo Lin, Zhuosong Jiang, Jingyi Cao, Xinpeng Liu, Jiayu Zhang, Zhenqiang Huang,
Qianben Chen, Weichen Sun, Qiexiang Wang, et al. Chain-of-agents: End-to-end agent founda-
tion models via multi-agent distillation and agentic rl. arXiv preprint arXiv:2508.13167, 2025b.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025c.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
arXiv preprint arXiv:2504.21776, 2025d.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Xinji Mai, Haotian Xu, Weinong Wang, Yingying Zhang, Wenqiang Zhang, et al. Agent rl scaling
law: Agent rl with spontaneous code execution for mathematical problem solving. arXiv preprint
arXiv:2505.07773, 2025.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Xuan-Phi Nguyen, Shrey Pandit, Revanth Gangi Reddy, Austin Xu, Silvio Savarese, Caiming Xiong,
and Shafiq Joty. Sfr-deepresearch: Towards effective reinforcement learning for autonomously
reasoning single agents. arXiv preprint arXiv:2509.06283, 2025.

Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt Keutzer,
and Alane Suhr. Learning adaptive parallel reasoning with language models. Conference on
Language Modeling, 2025.

Xianghe Pang, Shuo Tang, Rui Ye, Yuwen Du, Yaxin Du, and Siheng Chen. Browsemaster:
Towards scalable web browsing via tool-augmented programmatic agent pair. arXiv preprint
arXiv:2508.09129, 2025.

11

https://arxiv.org/abs/2505.23885
https://arxiv.org/abs/2506.11442
https://arxiv.org/abs/2506.11442
https://jina.ai/reader/
https://arxiv.org/abs/2507.02592

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 5687–5711, 2023.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. arXiv
preprint arXiv:2307.07924, 2023.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
Yao, Qihan Ren, Xun Jiang, et al. Alita: Generalist agent enabling scalable agentic reasoning
with minimal predefinition and maximal self-evolution. arXiv preprint arXiv:2505.20286, 2025.

Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kau-
nismäki. ‘smolagents‘: a smol library to build great agentic systems. https://github.com/
huggingface/smolagents, 2025.

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Ruoxi Jia, and Ming Jin. Algorithm of thoughts:
Enhancing exploration of ideas in large language models. arXiv preprint arXiv:2308.10379, 2023.

Inc. Serper. Serper api, 2025. URL https://serper.dev/.

Dingfeng Shi, Jingyi Cao, Qianben Chen, Weichen Sun, Weizhen Li, Hongxuan Lu, Fangchen Dong,
Tianrui Qin, King Zhu, Minghao Yang, et al. Taskcraft: Automated generation of agentic tasks.
arXiv preprint arXiv:2506.10055, 2025.

Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia
Deng, Wayne Xin Zhao, Zheng Liu, et al. Simpledeepsearcher: Deep information seeking via
web-powered reasoning trajectory synthesis. arXiv preprint arXiv:2505.16834, 2025.

Xiangru Tang, Tianrui Qin, Tianhao Peng, Ziyang Zhou, Daniel Shao, Tingting Du, Xinming Wei,
Peng Xia, Fang Wu, He Zhu, Ge Zhang, Jiaheng Liu, Xingyao Wang, Sirui Hong, Chenglin Wu,
Hao Cheng, Chi Wang, and Wangchunshu Zhou. Agent kb: Leveraging cross-domain experience
for agentic problem solving. In ICML 2025 Workshop on Collaborative and Federated Agentic
Workflows, 2025.

Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
Liwen Zhang, Xinyu Wang, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Web-
shaper: Agentically data synthesizing via information-seeking formalization, 2025. URL https:
//arxiv.org/abs/2507.15061.

MiroMind AI Team. Miroflow: An open-source agentic framework for deep research. https:
//github.com/MiroMindAI/MiroFlow, 2025.

Ningning Wang, Xavier Hu, Pai Liu, He Zhu, Yue Hou, Heyuan Huang, Shengyu Zhang, Jian Yang,
Jiaheng Liu, Ge Zhang, et al. Efficient agents: Building effective agents while reducing cost.
arXiv preprint arXiv:2508.02694, 2025.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
Zekun Xi, Yong Jiang, Pengjun Xie, et al. Webdancer: Towards autonomous information seeking
agency. arXiv preprint arXiv:2505.22648, 2025a.

Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
Yulan He, Deyu Zhou, Pengjun Xie, et al. Webwalker: Benchmarking llms in web traversal.
arXiv preprint arXiv:2501.07572, 2025b.

Xbench-Team. Xbench-deepsearch, 2025. URL https://xbench.org/agi/aisearch.

12

https://github.com/huggingface/smolagents
https://github.com/huggingface/smolagents
https://serper.dev/
https://arxiv.org/abs/2507.15061
https://arxiv.org/abs/2507.15061
https://github.com/MiroMindAI/MiroFlow
https://github.com/MiroMindAI/MiroFlow
https://xbench.org/agi/aisearch

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Zejun Ma, and Bo An. Simpletir: End-to-end
reinforcement learning for multi-turn tool-integrated reasoning. https://simpletir.notion.
site/report, 2025. Notion Blog.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Dingchu Zhang, Yida Zhao, Jialong Wu, Baixuan Li, Wenbiao Yin, Liwen Zhang, Yong Jiang,
Yufeng Li, Kewei Tu, Pengjun Xie, et al. Evolvesearch: An iterative self-evolving search agent.
arXiv preprint arXiv:2505.22501, 2025a.

Shiqi Zhang, Xinbei Ma, Zouying Cao, Zhuosheng Zhang, and Hai Zhao. Plan-over-graph: Towards
parallelable llm agent schedule. arXiv preprint arXiv:2502.14563, 2025b.

Shu Zhao, Tan Yu, Anbang Xu, Japinder Singh, Aaditya Shukla, and Rama Akkiraju. Parallelsearch:
Train your llms to decompose query and search sub-queries in parallel with reinforcement learn-
ing. arXiv preprint arXiv:2508.09303, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
ments. arXiv preprint arXiv:2504.03160, 2025.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023a.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou,
Ryan Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long
text, 2023b. URL https://arxiv.org/abs/2305.13304.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jin-
tian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. Agents: An open-source framework for
autonomous language agents. arXiv preprint arXiv:2309.07870, 2023c.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024.

He Zhu, Tianrui Qin, King Zhu, Heyuan Huang, Yeyi Guan, Jinxiang Xia, Yi Yao, Hanhao Li,
Ningning Wang, Pai Liu, Tianhao Peng, Xin Gui, Xiaowan Li, Yuhui Liu, Yuchen Eleanor Jiang,
Jun Wang, Changwang Zhang, Xiangru Tang, Ge Zhang, Jian Yang, Minghao Liu, Xitong Gao,
Wangchunshu Zhou, and Jiaheng Liu. Oagents: An empirical study of building effective agents,
2025a. URL https://arxiv.org/abs/2506.15741.

King Zhu, Hanhao Li, Siwei Wu, Tianshun Xing, Dehua Ma, Xiangru Tang, Minghao Liu,
Jian Yang, Jiaheng Liu, Yuchen Eleanor Jiang, Changwang Zhang, Chenghua Lin, Jun Wang,
Ge Zhang, and Wangchunshu Zhou. Scaling test-time compute for llm agents, 2025b. URL
https://arxiv.org/abs/2506.12928.

13

https://simpletir.notion.site/report
https://simpletir.notion.site/report
https://arxiv.org/abs/2305.13304
https://arxiv.org/abs/2506.15741
https://arxiv.org/abs/2506.12928

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

In this paper, we solely used LLMs for auxiliary purposes without participating in research ideation,
experimental design, or conclusion formulation. Specifically, in the Introduction and Related Work
sections, LLMs were employed for text polishing, including semantic logic optimization, grammati-
cal error correction, and typos handling to enhance the clarity of academic expression. In the Method
section, LLMs assisted in optimizing the presentation of mathematical formulas (e.g., standardizing
symbol notation and formatting) to ensure the clarity of mathematical logic. In the Experimental
Results and Analysis section, LLMs were used to refine the narrative logic of experimental findings,
improving the coherence of data interpretation without altering experimental results or analytical
conclusions.

B LIMITATIONS AND FUTURE WORK

While our approach demonstrates significant improvements in agent capabilities, several limitations
should be acknowledged.

Our primary focus in this work has been enhancing the execution efficiency of agents, necessitat-
ing a careful balance between performance and computational resources. To ensure fair compar-
isons under practical deployment constraints, we limited both the FLASH-SEARCHER framework
and its model variants to a maximum of 40 execution steps. These constraints, while necessary
for efficiency considerations, prevented the complete resolution of certain complex queries, particu-
larly evident in approximately 25% (for framework) and 75% (for framework) of the BrowseComp
where additional reasoning steps may yield correct solutions. Furthermore, our crawl tool truncates
retrieved web content before generating a summary, which introduces an additional source of infor-
mation loss that may impact final performance. To further validate this observation, we conducted
additional evaluations of FLASH-SEARCHER with an extended number of reasoning steps; the de-
tailed results are provided in Appendix F.7. It is worth noting that in unconstrained settings where
computational cost is not a primary concern, FLASH-SEARCHER would likely achieve even higher
performance metrics.

Furthermore, we observed suboptimal performance on mathematical reasoning tasks in benchmarks
like HLE, primarily due to the absence of code execution tools. This design choice was deliberate, as
parallel code tool invocations would significantly increase model output volume, severely impacting
the efficiency benefits of our parallel reasoning architecture. The substantial overhead in managing
concurrent code execution environments would counteract the performance gains achieved through
our approach. We believe that mathematical reasoning performance could be substantially improved
with appropriate computational tools, but integrating them required architectural trade-offs beyond
the scope of this work.

Our FLASH-SEARCHER architecture is inherently compatible with supplementary reflection and
verification mechanisms, which could further enhance accuracy and reliability. Such extensions
represent promising directions for future work, particularly in deployment scenarios where resource
efficiency can be traded for increased precision. An especially promising direction involves multi-
agent architectures where specialized code execution agents could be invoked to solve mathematical
sub-tasks while maintaining the efficiency advantages of our parallel reasoning approach. This
hybrid architecture would preserve the computational benefits of our framework while addressing
the current limitations in mathematical reasoning capabilities.

Additionally, while our parallel reasoning approach significantly improves efficiency, there remain
opportunities to develop more sophisticated orchestration mechanisms that could dynamically allo-
cate reasoning resources based on task complexity. Further research could also explore the integra-
tion of our methodology with emerging model architectures and specialized domain knowledge to
address increasingly complex multi-step reasoning challenges.

Despite these limitations, we believe our work represents an important step toward more efficient
and capable agent systems, establishing a foundation for future innovations in this rapidly evolving
field.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C DISCUSSION OF DAG/GRAPH REASONING METHODS

C.1 RELATIONSHIP TO GRAPH/TREE-STRUCTURED REASONING

While our work builds upon recent graph-based reasoning frameworks, key distinctions exist in pur-
pose and implementation. Graph of Thoughts (GoT) (Besta et al., 2024) models reasoning steps as
graph structures but emphasizes symbolic reasoning rather than tool execution. Tree of Thoughts
(ToT) (Yao et al., 2023) explores branching reasoning paths through tree structures but prioritizes
depth-first search over parallelization. Algorithm of Thoughts (AoT) (Sel et al., 2023) provides al-
gorithmic guidance for reasoning, whereas our framework optimizes parallel tool execution specifi-
cally.

C.2 DISTINCTIONS FROM PARALLEL REASONING AND PLANNING FRAMEWORKS

Recent works explore parallel reasoning and planning for LLM-based agents, yet differ significantly
from our approach. Learning Adaptive Parallel Reasoning (LAPR) (Pan et al., 2025) introduces
parallelization for language model reasoning but focuses primarily on model-internal computation
rather than coordinating external tool calls. Plan-over-Graph (PoG) (Zhang et al., 2025b) shares con-
ceptual similarities with our DAG approach but emphasizes strict dependency enforcement, whereas
our framework intentionally relaxes these constraints to maximize parallel execution efficiency while
ensuring result validity through cross-validation.

While Language Agent Tree Search (LATS) (Zhou et al., 2023a) and LLM+P (Liu et al., 2023)
effectively integrate planning and acting through tree search and optimal planning techniques, they
lack explicit mechanisms for parallel tool execution. Our framework complements these efforts by
specializing DAG structures specifically for efficient information retrieval across multiple sources.

C.3 COMPARISON OF VARIOUS FRAMEWORKS

In the context of DAG-based reasoning, several related frameworks offer alternative approaches,
each with distinct characteristics in terms of parallelism, dependency handling, and dynamic refine-
ment:

Table 2: Comparison of DAG/Graph-Based Reasoning Methods.

Method Parallel Execution Dependency Handling Dynamic Refinement

FLASH-SEARCHER Tool-level parallelism Relaxed Yes
ParallelSearch Search parallelism N/A No
Plan-over-Graph (PoG) Limited Strict dependencies No
LATS No Strict No
Graph of Thoughts No Strict No

Our primary contribution is an efficient dynamic DAG-based planning framework that optimizes
execution trajectories in real time. It enables two core capabilities: (1) parallel tool invocation
for faster computation, and (2) cross-validation across dependent subtasks to preserve result
integrity, resolving the key efficiency-accuracy trade-off in complex workflows. Beyond effi-
ciency, the framework addresses a critical LLM limitation: context length constraints. By continu-
ously summarizing intermediate states and refining paths via real-time outcomes, it ensures lengthy
multi-step workflows remain tractable without losing information fidelity.

D RELAXED CONSTRAINTS DETAILS

Auxiliary Signals. In web-agent scenarios, we observe that certain prerequisite information can
often be anticipated before it is formally produced by upstream sub-goal. To exploit this property,
our framework issues an auxiliary early retrieval whenever a subtask requires information that is not
yet available. This early retrieval allows subsequent sub-goal to proceed under relaxed dependency
constraints, thereby reducing idle waiting time and improving overall execution efficiency.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Heuristic Consistency Checks. Once the true prerequisite becomes available, the agent performs
a second retrieval to validate or revise the earlier auxiliary signal. This dual-retrieval mechanism
functions as a heuristic consistency check. If the validated result differs from the auxiliary one,
downstream states dependent on the earlier signal are corrected. This design preserves correctness
while enabling more aggressive parallelization.

Failure Handling. Failure handling is integrated into the Adaptive Progress Tracking & Summa-
rization module. During execution, if the agent detects that its current dependency path is blocked,
inconsistent, or no longer leads toward the task objective, the framework triggers a path update. All
outdated intermediate progress associated with the invalid path is cleared, and a revised plan graph
is reconstructed based on the latest state. This ensures forward progress even under noisy signals or
partially incorrect auxiliary retrievals.

Below, we provide an algorithm of the relaxed-constraint execution process supported by auxiliary-
signal validation and failure handling.

Algorithm 2 Relaxed-Constraint Execution with Auxiliary-Signal Validation and Failure Handling

Require: Composite task T
1: Gplan ← D(T)
2: Initialize state s0; active subtasks P0 ← V ; completed set C0 ← ∅
3: t← 0
4: while Pt ̸= ∅ do
5: Et ← {v ∈ Pt | φ(v,Gt, st) = 1} {Eligible subtasks}
6: For each v ∈ Et, check prerequisite availability
7: if prerequisite missing then
8: Issue early retrieval raux

v {Auxiliary signal}
9: end if

10: Execute all subtasks in Et in parallel and collect outputs {o(k)t }
11: Update state st+1 = F(st, {a(k)t }, {o

(k)
t })

12: Ct+1 ← Ct ∪ completed subtasks
13: Pt+1 ← Pt \ Ct+1

14: for each recently satisfied prerequisite do
15: Issue validation retrieval rchk

v {Heuristic consistency check}
16: if rchk

v ̸= raux
v then

17: Correct downstream state using rchk
v

18: end if
19: end for
20: if Inconsistency or blocked path detected then
21: Clear outdated intermediate progress
22: Gt+1 ← R(Gt, Ct+1,Pt+1, st+1) {Failure handling}
23: end if
24: t← t+ 1
25: end while
26: return Final state sT

E EXPERIMENT DETAILS

E.1 BENCHMARKS.

We evaluate the effectiveness of FLASH-SEARCHER on four challenging benchmarks that require
sophisticated information retrieval and reasoning capabilities:

• GAIA (Mialon et al., 2023): As a milestone benchmark for General AI Assistants, it con-
structs real-world questions that necessitate fundamental capabilities including reasoning, multi-
modality handling, web browsing, and tool-use proficiency. To ensure rigorous and comparable
evaluation, we conduct experiments primarily on the text-only validation subset of GAIA, which
consists of 103 carefully curated cases. This subset specifically highlights the challenges of dis-
ambiguating ambiguous queries and synthesizing multi-source information. Additionally, for

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

fair comparison with existing works, we further evaluate on the full validation set (165 cases) of
GAIA. Following the framework of OAgents (Zhu et al., 2025a), we additionally integrate text,
image, and audio tools into our evaluation pipeline to align with the multi-modality and tool-use
design goals of the full validation set.

• BrowseComp (Wei et al., 2025): A rigorous benchmark comprising 1,266 questions designed
to measure persistent web browsing capabilities for finding hard-to-find, entangled information.
While avoiding challenges like long-form generation, it specifically tests an agent’s ability to
formulate effective queries, navigate search results, extract relevant information, and synthesize
coherent answers through sophisticated browsing strategies.

• xbench-DeepSearch (Xbench-Team, 2025): A professionally curated benchmark focusing
specifically on deep-search capabilities in Chinese contexts, featuring 100 expert-written ques-
tions requiring multi-round search refinement and cross-source integration. Designed to isolate
and evaluate the Planning → Search → Reasoning → Summarization pipeline of agent systems.

• HLE (Phan et al., 2025): To address the saturation of existing benchmarks (e.g.,
MMLU (Hendrycks et al., 2020), where SOTA LLMs now exceed 90% accuracy), HLE is
proposed as a benchmark of 2,500 highly difficult questions across dozens of subjects, serv-
ing as a "final" closed-ended test for broad academic capabilities. Developed by experts via
multi-stage review (pre-filtering, graduate/ expert validation, public feedback), it is multi-modal
(text-only/image-accompanied), supports automated verification (multiple-choice/exact-match),
and its questions are original, lookup-resistant, and emphasize advanced math for deep reason-
ing. Following AFM’s setup (Li et al., 2025b), we use the HLE500 subset to evaluate model
performance on high-difficulty reasoning.

Together, these benchmarks allow for a comprehensive evaluation of our framework’s efficiency and
effectiveness across a variety of complex information retrieval tasks.

E.2 TOOL CONFIGURATIONS.

To ensure streamlined and efficient agent workflows and models, FLASH-SEARCHER employs a
minimalist but powerful tool configuration focused on maximizing information retrieval capabilities
while maintaining trajectory simplicity:

For external tools, we deliberately constrain our framework to just two essential components:

• Search Tool: We implement this tool using the Serper API (Serper, 2025) to support agents in re-
trieving web-based information for knowledge-intensive tasks. By default, each API call returns
5 relevance-ranked results, structured to include core elements: descriptive titles (for rapid rel-
evance screening), concise content snippets (to pre-assess information utility), and direct URLs
(for deep exploration of primary sources). This configuration strikes a balance between com-
prehensiveness, ensuring access to high-value sources, and computational efficiency, avoiding
information overload that could hinder agent decision-making.

• Crawl Tool: Implemented using the Jina Reader (Jina, 2025), this tool enables agents to extract
and process content from specific web pages. To enhance efficiency and maintain trajectory
conciseness, our crawl tool incorporates an automatic summarization mechanism that extracts
and condenses the most relevant information from web pages. Specifically, considering the con-
straints of model context window length and the cost control of API calls in large-scale experi-
ments, we introduce a content truncation strategy for web pages: only the first 60,000 characters
of each web page are selected as the input for the summarization mechanism to perform infor-
mation extraction and condensation. This design balances the trade-off between information
coverage and practical implementation costs, while it should be noted that the truncation may
lead to the loss of potential valuable information in the latter part of long web pages. This ap-
proach significantly reduces cognitive load on the agent by eliminating the need to straightly
process extensive raw HTML content.

The summarization component within the crawl tool utilizes the same language model as our back-
bone agent, ensuring consistency in understanding and representation across the framework. This
architectural decision not only streamlines the information flow but also reduces potential misalign-
ments between different components of the system.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

By adopting this focused tool configuration, FLASH-SEARCHER achieves a balance between ca-
pability and efficiency. The framework provides agents with sufficient tools to tackle complex in-
formation retrieval tasks while avoiding the overhead and complexity associated with managing
numerous specialized tools. This approach is particularly advantageous in our parallel execution
context, where multiple tool calls can be orchestrated simultaneously across different branches of
the reasoning graph.

E.3 MODEL LIST.

In our experiments, we employed a diverse set of state-of-the-art LLMs. The evaluated LLMs
include GPT-5 (Reasoning effort: medium; version: 2025-08-07), GPT-5-mini (Reasoning ef-
fort: medium; version: 2025-08-07), GPT-4.1, DeepSeek-v3.1 (w/o thinking), and GLM-4.5
(Default). In all experiments, we maintained consistent hyperparameters across comparable set-
tings, with temperature set to 1.0. All models were accessed via reliable API endpoints with
consistent system prompts to ensure fair comparison.

E.4 PARAMETERS OF FLASH-SEARCHER.

To ensure the reproducibility and clarity of the FLASH-SEARCHER framework’s implementation,
this section details all key hyperparameters and configuration settings used in its execution. These
parameters collectively govern critical behaviors of the framework, such as the scope of concur-
rent optimization objectives, the granularity of step-wise task execution, the constraints on tool
utilization, and the rules for progress tracking and information retrieval. Specific configurations are
summarized in Table 3 below.

Table 3: Parameter configurations for FLASH-SEARCHER Framework.

Parameter Description Value

Parallel goals Number of concurrent objectives 5
Goal path length Predefined steps per goal 5
Max tool calls per step Maximum tool invocations per step 5/10
Max steps Total step budget for task execution 40
Summary interval Steps between progress summaries 7–9
Search retrievals per query Results returned per search call 5
Max length of extracted content Max characters extracted by crawl_page 60,000

In addition to the framework-level execution parameters detailed above, the inference process of
the FLASH-SEARCHER models, responsible for decision-making (e.g., goal prioritization, tool se-
lection) and content generation (e.g. progress summarization, query formulation), relies on a set of
critical model-specific inference parameters. These parameters directly influence the model’s rea-
soning depth, output stability, and computational efficiency, and are tightly aligned with the frame-
work’s execution constraints (e.g. step budget, tool call limits) to ensure coherent end-to-end perfor-
mance. To support efficient and scalable inference, we adopt the vllm framework (a high-throughput
LLM serving framework optimized for GPU acceleration) and deploy the system on a hardware
cluster consisting of 8 NVIDIA A800 GPUs. Specific inference configurations (model-specific) and
hardware-framework settings are summarized in Table 4 and Table 5 below, respectively.

Table 4: Inference parameter configurations for FLASH-SEARCHER Models.

Parameter Description Value

Context length Maximum context tokens 131072 (32B) / 65536 (72B)
Max steps Total conversation length 40
Max output tokens per call Maximum generated tokens per inference step 8192
Temperature, top-k, top-p Probabilistic generation controls Default

Other inference tool parameters are designed to maintain consistency with the framework’s execu-
tion settings. Meanwhile, the inference configurations are tailored to match the model size (32B/72B
parameters) and context length requirements, avoiding memory bottlenecks during long-sequence
reasoning. These cross-parameter alignments are critical for avoiding misalignment between the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

model’s reasoning process and the execution environment, thereby ensuring reproducibility and sta-
bility of the FLASH-SEARCHER system’s performance across different task instances.

Table 5: Configurations for FLASH-SEARCHER inference.

Configuration Description Value

Inference framework Serving framework for inference vllm v0.10.1.1
GPU type Hardware accelerator model NVIDIA A800 (80GB)
Tensor parallelism GPU partitioning strategy 8
RoPE scaling Extending context length Dynamic (factor=4.0 for 32B; factor=2.0 for 72B)
Model of Crawl Tool Model for crawling data summary GPT-5-mini

E.5 DETAILED RESULTS OF FLASH-SEARCHER.

To comprehensively evaluate the effectiveness of the proposed FLASH-SEARCHER framework, we
conduct extensive experiments on four representative benchmarks for agent systems. The perfor-
mance is quantified using the widely adopted Pass@1 metric, which measures the proportion of
tasks successfully completed by the agent in a single attempt. Table 6 and Figure 7 present the
detailed performance comparison between FLASH-SEARCHER and existing state-of-the-art agent
frameworks or models. For fairness and reference, values displayed in gray font are directly quoted
from the original reports of the compared methods.

Table 6: Performance comparison of agent frameworks on BrowseComp, xbench-DeepSearch, and
GAIA benchmarks. All results are reported using Pass@1 metric. Gray-font values correspond
to results reported in the associated reports. Note that FLASH-SEARCHER achieve 83.0 for full
validation set.

Method Backbone BrowseComp xbench-DeepSearch GAIA HLE

Closed-Source Frameworks
OpenAI ChatGPT agent - 68.9 - 41.6
OpenAI DeepResearch - 51.5 - 67.4 26.6
Metaso DeepResearch MetaLLM etc. 12.0 64 - -
Skywork DeepResearch Claude-Sonnet-3-7 etc. - - 82.4 25.9
Kimi Researcher Kimi k-series etc. - 69 - 26.9
Manus Claude etc. - - 73.3 -
Alita Claude-Sonnet-4 - - 75.2 -

Open-Source Frameworks
Smolagents OpenAI-o1 - - 49.7 -
A-World Gemini-2.5-Pro - - 71.0 -
Cognitive Kernel-Pro Claude-Sonnet-3-7 - - 66.1 -
OWL–Workforce Claude-Sonnet-3-7 - - 69.7 -
OAgents GPT-4.1 13.7 47 58.3 15.4
BrowseMaster DeepSeek-R1-0528 30.0 66 68.0 -
MiroFlow GPT-5 33.2 72 82.4 29.5

FLASH-SEARCHER

GPT-5 67.7 83 82.5 44.0
GPT-5-mini 35.3 71 80.6 32.2

GPT-4.1 31.4 57 69.9 39.6
DeepSeek-V3.1 18.6 70 62.1 22.8

GLM-4.5 - 63 63.1 -
GPT-5-nano - 61 54.4 -

F ADDITIONAL ABLATIONS

F.1 MODEL BACKBONES ABLATIONS

To isolate the contribution of the FLASH-SEARCHER framework from that of the underlying model
backbone, we evaluated FLASH-SEARCHER using the same backbone across different agent frame-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

 S
co

re
 (P

as
s@

1)

19.4

63.0
68.0

Flash-Searcher-32B
Flash-Searcher-72B

57.3
61.2

4
18.9 19.4 20.2

20

40

60

80

55.358.0

63.0

SOTA Method
Flash-Searcher-32B

14.4

11.1

57.3

18.0

BrowseComp xbench-DS GAIA HLE BrowseComp xbench-DS GAIA HLE

(a) Performance comparisons.

 S
co

re
 (P

as
s@

1)

19.4
20

40

60

80

63.0
68.0

Flash-Searcher-32B

57.3 61.2

14.4 18.9 19.4 20.2
2

20

40

60

80

55.358.0

63.0

SOTA Method
Flash-Searcher-32B

14.4

11.1

57.3

18.0

BrowseComp xbench-DS GAIA HLE BrowseComp xbench-DS GAIA HLE

 S
co

re
 (P

as
s@

1)

Flash-Searcher-72B

(b) Scaling analysis of FLASH-SEARCHER.
Figure 7: Performance and scaling analysis of FLASH-SEARCHER. (a): FLASH-SEARCHER-32B
consistently outperforms the SOTA method across all four benchmarks with Qwen-2.5-32B. (b):
Scaling FLASH-SEARCHER from 32B to 72B parameters yields consistent gains.

works. The evaluation was conducted using the xbench-Deepsearch and GAIA benchmarks, com-
paring FLASH-SEARCHER with other state-of-the-art agent frameworks. As shown in Table 7,
FLASH-SEARCHER demonstrates improved efficiency in terms of both execution steps and time,
outperforming or matching the performance of existing SOTA frameworks across both benchmarks.

Table 7: Performance comparison on xbench and GAIA benchmarks.

Method Backbone xbench-DeepSearch GAIA
Score Step Score Step

OAgents GPT-4.1 47 37.8 58.3 11.2
FLASH-SEARCHER 57 5.9 69.9 4.4
BrowseMaster DeepSeek-R1-0528 66 – 68.0 –
FLASH-SEARCHER 69 10.6 67.0 9.8

F.2 SEQUENTIAL REACT-STYLE AGENT VS FLASH-SEARCHER

To further validate the benefits of DAG-based parallel execution, we conducted a controlled compar-
ison between a sequential ReAct-style agent and the parallel FLASH-SEARCHER agent. Both agents
were evaluated using the same backbone (GPT-5-mini), the same tools, and the same base prompts.

Table 8: Performance comparison between sequential ReAct-style agent and FLASH-SEARCHER.

Method BrowseComp-100 xbench-DeepSearch GAIA

Score Step Time/mins Score Step Time/mins Score Step Time/mins

Sequential ReAct 31 40.6 14.6 66 18.2 8.5 69.9 12.1 4.7
FLASH-SEARCHER 36 20.8 9.6 71 11.4 4.9 80.6 7.4 3.3

The results shown in Table 8 demonstrate that FLASH-SEARCHER significantly reduces both ex-
ecution steps and time, especially for more complex tasks like BrowseComp-100 and xbench-
DeepSearch. The parallel execution mechanism of FLASH-SEARCHER leads to substantial improve-
ments in efficiency and accuracy compared to the sequential approach.

F.3 DETAILED COST ANALYSIS

We present a detailed cost analysis to evaluate the performance and efficiency of FLASH-SEARCHER
in comparison with existing agent systems. The analysis focuses on both time and computational
costs across xbench-DeepSearch and GAIA benchmarks. Table 9 summarizes the step and time
cost, where FLASH-SEARCHER consistently outperforms OAgents (Zhu et al., 2025a) and Sequen-
tial ReAct (Adapted from FLASH-SEARCHER) in terms of efficiency, despite slight increases in
computational cost due to additional tool invocations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 9: Comparison of step and time cost across different frameworks

Method xbench-DeepSearch GAIA
Step Time/mins Step Time/mins

FLASH-SEARCHER 11.4 4.9 7.4 3.3
OAgents 37.8 12.9 11.2 4.2

As shown in Table 10, we provide a detailed breakdown of token usage and associated costs for the
xbench-DeepSearch and GAIA benchmarks. The results indicate that FLASH-SEARCHER signifi-
cantly outperforms OAgents in terms of efficiency, with a lower cost per query across all configu-
rations. This demonstrates the effectiveness of FLASH-SEARCHER in achieving high performance
while minimizing computational overhead, making it a more cost-efficient option for large-scale
agent-based tasks.

Table 10: Detailed comparison of cost overheads on xbench-DeepSearch and GAIA benchmarks.
Method Plan Summ./Replan Action Crawl Input Tok Output Tok Cost / Query

xbench-DeepSearch
OAgents 3823.4 – 714.6 – 58770.4 40514.6 $0.13
FLASH-SEARCHER 1623.6 3916.7 406.1 205.3 28318.6 9716.8 $0.07

GAIA
OAgents 3014.6 – 631.9 – 17281.8 13137.2 $0.05
FLASH-SEARCHER 1539.4 2469.4 352.4 209.6 10664.4 5685.9 $0.03

F.4 SUMMARY INTERVAL ANALYSIS

We conducted an ablation to analyze the impact of varying the update interval ∆ on the framework’s
performance. As shown in Figure 8, a lower update interval improves the model’s performance but
results in longer execution times. The optimal interval depends on task difficulty and model context
length, as shown by the varying results. The study shows that while reducing ∆ can increase the
model’s accuracy, it also increases computational cost. We recommend adjusting the update interval
based on task complexity to achieve the best balance between performance and efficiency.

70 72 74 76 78
Score (%)

0.02

0.04

0.06

0.08

C
os

t (
$)

6 7 8 9 10 11 12 13
Execution Step

3

4

5

6

7

Ti
m

e
(m

in
)

xbench GAIA

Δ = 4

Δ = 8

Δ = 12

Δ = None

Δ = 4

Δ = 8

Δ = 12

Δ = None

Figure 8: Update Interval ∆ Analysis on xbench-DeepSearch and GAIA benchmarks.

F.5 EVALUATIONS ON SIMPLE TASKS

We compare the performance of FLASH-SEARCHER on Bamboogle (Press et al., 2023) benchmark
with a ReAct sequential agent. For simple tasks, we observe that FLASH-SEARCHER introduces
some overhead, resulting in slightly higher execution times compared to sequential agents, as shown
in Table 11. This overhead is due to the additional steps required for parallelization. Based on these
findings, we recommend dynamically selecting the appropriate approach based on task complexity
to optimize performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 11: Performance Comparison on Bamboogle.
Model Score Step Time/mins

ReAct sequential 91.2 4.8 0.9
FLASH-SEARCHER 91.2 5.4 1.7

F.6 ANALYSIS OF THE CODE TOOL INTEGRATION

We provide a detailed analysis of integrating the code execution tool within the FLASH-SEARCHER
framework. Although code execution can be useful for computation-intensive tasks, our experiments
indicate that its practical utility in web-agent scenarios is very limited. Across benchmarks such as
GAIA, xBench, and HLE, the model rarely invoked the code tool even when it was enabled, reflect-
ing the predominantly retrieval- and reasoning-oriented nature of web tasks. Moreover, enabling the
code tool introduces non-trivial runtime overhead, primarily due to additional execution latency and
increased output tokens. To ensure a fair comparison, we report the results in Table 12. The code-
enabled variant of FLASH-SEARCHER exhibits only a marginal +1.4% improvement on the HLE
benchmark, while incurring a substantial increase in execution time. This cost–benefit imbalance
suggests that, for web-centered tasks, the marginal utility of integrating a code tool is low.

Table 12: Performance comparison of FLASH-SEARCHER w. & w/o code tool.

Model HLE-500
Score Step Time/mins

FLASH-SEARCHER 32.2 9.0 4.0
FLASH-SEARCHER + Code Tool 33.6 9.4 5.9

Based on the findings, while code execution can extend the versatility of FLASH-SEARCHER for
certain task types, our analysis shows that its contribution to web-agent performance is minimal
relative to its runtime cost. Consequently, the default configuration omits the code tool to ensure
maximal efficiency.

F.7 ABLATIONS ON EXECUTION STEP CONSTRAINTS

To validate the observation that execution step limitations constrain the resolution of complex
queries, we conduct ablations on the FLASH-SEARCHER models, focusing on the impact of ex-
tended maximum reasoning steps. Specifically, we evaluate model performance on BrowseComp-
100 (a subset of BrowseComp) under an extended maximum step limit of 80.

Figure 9 summarizes the performance of FLASH-SEARCHER model variants under the two step
limits. Across all FLASH-SEARCHER models, extending the maximum number of steps from 40
to 80 yields consistent and measurable performance gains: FLASH-SEARCHER-32B improves by
5.0 points, while FLASH-SEARCHER-72B achieves a 7.0-point increase. These results confirm that
the performance bottleneck observed in the 40-step setting arises from insufficient reasoning steps
rather than fundamental model limitations.

40 50 60 70 80
Max reasoning steps

15.0

17.5

20.0

22.5

25.0

27.5

Sc
or

e

16.0
17.0 17.0

20.0
21.0

20.0

22.0

25.0

27.0 27.0
Flash-Searcher-32B
Flash-Searcher-72B

Figure 9: Performance of FLASH-SEARCHER models under different reasoning step constraints.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

These results directly verify our initial observation: increasing the number of allowed reasoning
steps enables FLASH-SEARCHER to fully unpack complex task logic, thereby improving solution
accuracy. This supports the feasibility of trading computational resources for precision in resource-
unconstrained deployment scenarios.

G FLASH-SEARCHER MODEL TRAINING

G.1 TRAINING DATASET

Our training dataset is constructed by curating subsets of four well-established public agent-focused
datasets: AFM (Li et al., 2025b)1, ASearcher (Gao et al., 2025)2, WebShaper (Tao et al., 2025)3,
and WebWalkerQA (Wu et al., 2025b)4. The subsets contain 1355, 628, 500, and 2597 examples,
respectively. For AFM, Asearch, and WebWalkerQA-silver datasets, we applied a filtering process
based on the execution trajectory length of baseline ReAct frameworks. Specifically, we selected
only those examples that required more than 8 steps to complete, as these represent more complex
reasoning and action sequences that better demonstrate agent capabilities.

Table 13: Composition of the training dataset after filtering and trajectory generation.

Dataset Original Size Correct Samples

AFM 1,355 1212
Asearch 628 457
WebShaper 500 405
WebWalkerQA 2,597 1767

Total 5080 3354 (Removed data with formatting issues)

We leveraged our FLASH-SEARCHER framework (with GPT-5 as the backbone) to generate tra-
jectories for pre-filtered examples. To ensure training data reliability—critical for effective model
learning—we used a judge model (GPT-4.1-mini) to validate trajectory answer correctness, retaining
only factually accurate ones. This initial filtering yielded 1212, 457, 405, and 1767 candidate trajec-
tories from AFM, ASearcher, WebShaper, and WebWalkerQA, respectively. We further conducted
systematic format inspections to exclude trajectories with structural flaws (e.g., incomplete turn seg-
mentation, invalid dialogue hierarchy, missing action labels), a step to reduce noise in supervised
fine-tuning (SFT). After this two-stage screening (correctness + format), we ultimately retained
3354 valid trajectories for training. Table 13 summarizes the final training dataset composition,
including source dataset and trajectory attribute breakdowns.

These trajectories were formatted into SFT-compatible multi-turn dialogues via the LLaMA-Factory
framework (Zheng et al., 2024). Specifically, the detailed structure of the multi-turn dialogue format
(including role definitions, dialogue turn segmentation, and task-related context embedding) is il-
lustrated in Figure 11, which standardizes the conversion of trajectory data into instruction-response
pairs for SFT training.

G.2 PARAMETERS

We performed supervised fine-tuning (SFT) using the LLaMA-Factory framework with selected hy-
perparameters to optimize model performance. Table 14 presents the key parameters used during
our training process. We employed a cosine learning rate schedule with warmup to stabilize the early
training phase. To address memory constraints while training on the 32B/72B parameter model, we
utilized gradient accumulation and parameter-efficient fine-tuning techniques. The training was con-
ducted on 64 NVIDIA A800 GPUs (80GB each) with DeepSpeed ZeRO-3 optimization to manage
memory usage efficiently.

1AFM Dataset: https://huggingface.co/datasets/PersonalAILab/AFM-WebAgent-SFT-Dataset
2ASearcher Dataset: https://huggingface.co/datasets/inclusionAI/ASearcher-train-data
3WebShaper Dataset: https://github.com/Alibaba-NLP/WebAgent/blob/main/WebShaper
4WebWalkerQA Datasethttps://huggingface.co/datasets/callanwu/WebWalkerQA

23

https://huggingface.co/datasets/PersonalAILab/AFM-WebAgent-SFT-Dataset
https://huggingface.co/datasets/inclusionAI/ASearcher-train-data
https://github.com/Alibaba-NLP/WebAgent/blob/main/WebShaper
https://huggingface.co/datasets/callanwu/WebWalkerQA

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 14: Training hyperparameters for supervised fine-tuning.

Parameter Value

Learning Rate 1e-5
Training Epochs 6
Gradient Accumulation Steps 2
Warmup Ratio 0.1
Gradient Accumulation Steps 2
LR Scheduler Cosine with Warmup
Context length 131072 (for 32B) / 65536 (for 72B)

G.3 MODEL TRAINING CURVES

In this section, we provide detailed training curves for the FLASH-SEARCHER when applied to the
Qwen-2.5-32B-Instruct and Qwen-2.5-72B-Instruct models. These curves illustrate the evolution of
key metrics throughout the training process, validating the stability and convergence properties of
our approach.

0 100 200 300 400

0.4

0.6

0.8

1.0

1.2

Lo
ss

 V
al

ue

Training Steps

 min:0.32

(a) Qwen-2.5-32B.

0 40 80 120 160

0.4

0.6

0.8

1.0

1.2

Lo
ss

 V
al

ue

Training Steps

 min:0.32

(b) Qwen-2.5-72B.
Figure 10: Training curves for FLASH-SEARCHER models. Both models demonstrate stable con-
vergence without signs of overfitting.

G.4 EXAMPLE OF TRAINING DATA

We present a multi-turn dialogue format exampes for SFT training, explicitly illustrating the three
core components of each dialogue unit: system prompt (task constraints), user instruction (task-
specific requirement), and agent response (standardized output).

H OTHER FRAMEWORK SETUPS

For our comparative analysis, we employ two state-of-the-art agent frameworks: OAgents (Zhu
et al., 2025a) and OWL-Roleplaying (Hu et al., 2025). We maintain their original configurations to
ensure fair comparison with our approach.

For OAgents, both the Code-Agent and Search-Agent components utilize GPT-4.1 as their back-
bone model. Similarly, OWL-Roleplaying is implemented with two backbone variants: GPT-4.1 and
OpenAI-o3. All other parameters, prompting strategies, and execution workflows for both frame-
works are kept identical to their original implementations. Our experiments are conducted using the
official repositories 5 of these frameworks to ensure reproducibility and consistency with published
results.

5OAgents: https://github.com/OPPO-PersonalAI/OAgents; OWL: https://github.com/
camel-ai/owl

24

https://github.com/OPPO-PersonalAI/OAgents
https://github.com/camel-ai/owl
https://github.com/camel-ai/owl

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

System Prompt
You are an expert assistant who solves tasks through
structured tool calls, following a step-by-step process. Each
step (action) involves analyzing needs, selecting tools, and
executing calls to achieve the task goal…

DAG-based
Plan Construction

<think>…</think>
<plan>
Goal 1: … Path 1.1: … - Approach: … - Success: … Path 1.2: … -
Approach: … - Success: …
</plan >

Instruction
Based on the plan/summary and previous conversations,
continue solving the task!…

<think>…</think>
<tools>[{tool1}, {tool2}, {tool3},…, {tooln}]</tools>

Tool ResponsesResults for tool call tool1 with arguments tool["arguments"]: ….
Results for tool call tool1 with arguments tool["arguments"]: ….

… …

Tool Responses
and Summary

Results for tool call tool1 with arguments tool["arguments"]: ….
Results for tool call tool1 with arguments tool["arguments"]: ….
Now, you should analyze the task completion status and
provide recommendations for next steps.

Adaptive Progress
Tracking

Summarization

<think>…</think>
<summary>
Plan Summary: xxx - Goal 1: xx - Path 1.1: xx - Path 1.2: xx
</summary >

InstructionBased on the plan/summary and previous conversations,
continue solving the task!…

Parallel Execution
Tool Orchestration

<think>…</think>
<tools>[{tool1}, {tool2}, {tool3},…, {tooln}]</tools>

First Turn

Next Turn

Parallel Execution
Tool Orchestration

Figure 11: Example of the multi-turn dialogue format for SFT training. Each dialogue unit consists
of three core components: (1) System prompt (task constraints), (2) User instruction (task-specific
requirement), and (3) Agent response (standardized output).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

I PROMPTS

I.1 LLM-AS-JUDGE PROMPT

8 LLM-AS-JUDGE PROMPT

Please determine if the predicted answer is equivalent to the labeled answer.
Question: question
Labeled Answer: gt_answer
Predicted Answer: pred_answer
Are these answers equivalent?
The output should in the following json format:
{{

"rationale": "your rationale for the judgement, as a text",
"judgement": "your judgement result, can only be ’correct’ or ’incorrect’"

}}

I.2 FLASH-SEARCHER FRAMEWORK

I.2.1 SYSTEM PROMPT

Ó SYSTEM PROMPT

You are an expert assistant who solves tasks through structured tool calls, following a step-by-step process. Each step (action)
involves analyzing needs, selecting tools, and executing calls to achieve the task goal. Each action you take should include a
reasoning process and tool calls. After executing the tools, you will receive "observations" (results of tool calls), which can be used
as input for subsequent actions. This Action/Observation cycle may repeat as needed.

Action Structure

Each action must contain:
- "think": A detailed reasoning in English, explaining the analysis of user needs, tool selection logic, and execution plan.
- "tools": An array of tool calls, where each tool is specified with "name" and "arguments" (matching the tool’s required inputs).
Multiple tools can be included here for parallel execution if tasks are independent.

Task Instructions:

1. Parse the structured plan:
Parse the plan or summary to understand the parallel execution requirements.
**CRITICAL: All goals MUST be advanced simultaneously in parallel. Each goal’s paths MUST be executed sequentially (one
path at a time per goal).**
2. Execute parallel tool calls:
For each goal in the plan, execute the specified tools in parallel according to the paths defined.
**MANDATORY: Advance ALL goals concurrently. Within each goal, execute paths sequentially (never parallelize paths within a
single goal).**
3. Handle path diversity:
For each goal, if multiple paths are provided, execute them sequentially as fallback options if the primary path fails.
**ABSOLUTE REQUIREMENT: NEVER prematurely assume a goal is achieved. Continue advancing ALL other goals in parallel
while handling fallback paths for any individual goal.**
4. Process results:
Synthesize information from all tool outputs to generate comprehensive responses that address all goals.
**ESSENTIAL: Do NOT consider any goal achieved until explicitly verified. Maintain parallel advancement of ALL goals through-
out synthesis.**
5. Final answer:
Once all goals are addressed, consolidate their results, and ensure that the consolidated outcome can accurately and correctly answer
the original task, then call the ’final_answer’ tool with such consolidated results.
**FINAL CONDITION: Only proceed when ALL goals are resolved. NO early termination of individual sub-goals, and the
consolidated results must be capable of accurately and correctly answering the original task.**

Examples

Task: "How far is the Earth from the Moon"
Action:
{

"think": "The user is asking for the distance between Earth and the Moon, a factual question requiring specific data retrieval. The
’web_search’ tool is suitable for fetching this information.",

"tools": [
{

"name": "web_search",
"arguments": "query": "Distance between Earth and the Moon"

}
]

}
Observation: "The average distance between the Earth and the Moon is approximately 384,400 kilometers"

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Action:
{

"think": "The observation provides the required distance, so the task is complete. Use ’final_answer’ with the result in English
(matching the task language).",

"tools": [
{

"name": "final_answer",
"arguments": "The average distance between the Earth and the Moon is approximately 384,400 kilometers"

}
]

}

Task: "Search for x, crawl http://example.com/xx to find y, search for z"
Action:
{

"think": "The user has three independent goals: search for ’x’, crawl http://example.com/xx to find ’y’, and search for ’z’.
’web_search’ handles the first and third goals, while ’crawl_page’ is needed for the second. These can be executed in parallel.",

"tools": [
{

"name": "web_search",
"arguments": "query": "x"

},
{

"name": "crawl_page",
"arguments": "url": "http://example.com/xx", "query": "y"

},
{

"name": "web_search",
"arguments": "query": "z"

}
]

}
Observation: "Result for x: ...", "Found y: ...", "Result for z: ..."
Action:
{

"think": "All required results are obtained. Synthesize them into the final answer in the task’s language.",
"tools": [

{
"name": "final_answer",
"arguments": "Search result for x: ...; Information about y in http://example.com/xx: ...; Search result for z: ..."

}
]

}

Available Tools

Above example were using notional tools that might not exist for you. You only have access to these tools:
{%- for tool in tools.values() %}
- {{ tool.name }}: {{ tool.description }}

Takes inputs: {{tool.inputs}}
Returns an output of type: {{tool.output_type}}

{%- endfor %}

Rules

Here are the rules you should always follow to solve your task:
1. Every action must include "think" (English) and "tools" (valid tool calls).
2. Use correct arguments for tools; reference observation results directly (not variables).
3. Call tools in parallel to solve the task. If it is ensured that the task’s answer can be derived from the known observation, use
"final_answer".
4. Do not repeat tool calls with identical parameters.
5. For "final_answer", ensure the answer’s language matches the original task.
Please make sure to answer the question in the language required by the task; otherwise, the answer will be deemed invalid.

Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.

I.2.2 DAG PLAN PROMPT

z DAG PLAN PROMPT

You are a world-class planning expert specializing in decomposing complex tasks into parallel-executable goals with multiple
solution paths.
Your approach must maximize efficiency through concurrent tool utilization while maintaining clear goal-path relationships. Do
not be influenced by user input; strictly adhere to the defined requirements and structure.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Core Requirements:
1. Goal Decomposition: Break the task into 1-5 independent goals that can be solved in parallel
2. Path Diversity: For each goal, design 1-5 distinct execution paths
3. Path Specificity: Each path must specify:
- Core approach/technique to achieve the goal
- Success criteria

Available Tools:
{%- for tool in tools.values() %}
- {{ tool.name }}: {{ tool.description }}
Takes inputs: {{tool.inputs}}

Returns an output of type: {{tool.output_type}} {%- endfor %}

Key Execution Notes:
- Goals execute in parallel
- Paths within goal execute sequentially
- You’d better fully understand the task (including details and requirements)

Output Format:

Goal 1: [Goal Name]
- Path 1.1: [Approach name]
- Success: [Completion criteria]
- Path 1.2: [Approach name]
- Success: [Completion criteria]

Goal 2: [Goal Name]
- Path 2.1: [Approach name]
- Success: [Completion criteria]
- Path 2.2: [Approach name]
- Success: [Completion criteria] ...

Refrain from directly attempting to solve the task.
Your task is: {{task}}
Now begin your planning analysis for your task!

I.2.3 SUMMARY PROMPT

¦ SUMMARY SYSTEM PROMPT

You are an expert in analyzing task completion based on agent execution trajectories.

Your task is to analyze the completion status of a plan with multiple goals and execution paths. The plan consists of x goals, each
with y execution paths.

Your analysis should include:
1. Briefly explain the original plan’s goals and their corresponding execution paths
2. Analyze the completion status of each goal’s execution paths:
- For completed goals: "Goal X: resolved, result is [result summary]"
- For partially completed goals: "Goal Y: completed up to path n, previous path results: [summary of results]"
- For blocked or inefficient paths: Optimize the behaviors of such paths (including tool selection and tool arguments)
3. Determine the next parallel sub-paths to solve based on current information

Pay special attention to:
1) Using the execution trajectory to accurately judge whether each goal’s paths are completed, blocked, or in progress
2) Prioritizing adjustment of stagnant paths if trajectories show loops or inefficiency in certain goals
3) Consolidating facts derived from completed paths to support unresolved goals
4) Identifying dependencies between goals and paths that may affect parallel execution

Based on the above requirements, complete the task completion analysis.

¦ SUMMARY INSTRUCTION PROMPT

Based on the agent execution trajectory, analyze the task completion status and provide recommendations for next steps.

Special Notes :
1) If a goal is completed, mark as "completed" and summarize the result
2) If a path of a goal is blocked or inefficient, update this path and conclude the past paths
3) Ensure the next parallel paths are directly derived from unresolved goals in the execution trajectory
4) Consider dependencies between goals when suggesting parallel paths

Output Format :

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Plan Summary
Provide a brief summary of the original planś goals and their execution paths

Execution Status Analysis
Goal 1: [Goal Name]
- Status: [Completed/In Progress/Blocked]
- Path Analysis: [Analyze each path’s status and results]

Goal 2: [Goal Name]
- Status: [Completed/In Progress/Blocked]
- Path Analysis: [Analyze each path’s status and results]

[Continue for all goals]

Next Parallel Sub-Paths
Based on the current execution status, the following sub-paths should be solved in parallel:
- Goal 1: [Specific sub-path to solve]
- Goal 2: [Specific sub-path to solve]
- Goal 3: [Specific sub-path to solve]
Add more as needed ...

Now complete your analysis!

I.2.4 EXECUTION PROMPT

D EXECUTION PROMPT

Based on the plan/summary and execution steps from previous conversations, analyze and call tools to continue solving the original
task:

Tool List:
{{tool_functions_json}}

Your original task:
{{task}}

Plan Execution Guidelines:
- Each goal should be processed independently and in parallel with other goals
- Within each goal, paths should be executed sequentially (Path 1.1, then Path 1.2 if needed, etc.)
- Tools within a path should be executed in the specified sequence
- If a path fails to meet its success criteria, proceed to the next path for that goal - Consolidate results from all successfully
completed goals

Example ouput (You must strictly adhere to the following output format):
{

"think": "I’ve received a structured plan with three independent goals that can be executed in parallel. Each goal has a single path
using web search with different topics. I’ll execute all three web searches in parallel to maximize efficiency.",

"tools":
[

{
"name": "web_search",
"arguments": {

"query": "latest AI developments"
},
},

{
"name": "web_search",
"arguments": {

"query": "climate change data"
},

},
{

"name": "web_search",
"arguments": {

"query": "space missions current"
},

}
]

}
Note that you may invoke up to 5 tools, but must invoke at least one. If any tool chosen is ’final_answer’, the language of your
answer text should be the SAME as the original task.
Now continue to solve the task!

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

I.3 FLASH-SEARCHER MODEL

I.3.1 TRAINING AND INFERENCE PROMPTS

_ TRAINING AND INFERENCE PROMPT

You are an expert assistant who solves tasks through structured tool calls, following a step-by-step process. Each step (action)
involves analyzing needs, selecting tools, and executing calls to achieve the task goal. Each action you take should include a
reasoning process and tool calls. After executing the tools, you will receive the results of tool calls, which can be used as input for
subsequent actions. This Action/Observation cycle may repeat as needed.

Task Instructions:

1. Parse the plan or summary:
To address the problem of understanding parallel execution requirements, follow these steps centered on parsing <plan></plan> or
<summary></summary>:
CRITICAL: All goals MUST be advanced simultaneously in parallel. Each goal’s paths MUST be executed sequentially (one path
at a time per goal).
2. Execute parallel tool calls:
For each goal in the plan, execute the specified tools in parallel according to the paths defined.
MANDATORY: Advance ALL goals concurrently. Within each goal, execute paths sequentially (never parallelize paths within a
single goal).
3. Handle path diversity:
For each goal, if multiple paths are provided, execute them sequentially as fallback options if the primary path fails.
ABSOLUTE REQUIREMENT: NEVER prematurely assume a goal is achieved. Continue advancing ALL other goals in parallel
while handling fallback paths for any individual goal.
4. Process results:
Synthesize information from all tool outputs to generate comprehensive responses that address all goals.
ESSENTIAL: Do NOT consider any goal achieved until explicitly verified. Maintain parallel advancement of ALL goals throughout
synthesis.
5. Final answer:
Once all goals are addressed, consolidate their results, and ensure that the consolidated outcome can accurately and correctly answer
the original task, then call the ’final_answer’ tool with such consolidated results.
**FINAL CONDITION: Only proceed when ALL goals are resolved. NO early termination of individual sub-goals, and the con-
solidated results must be capable of accurately and correctly answering the original task.**
Available Tools

You have access to these tools:
- web_search: Perform a web search query and return the search results.
Takes inputs: ’query’: ’type’: ’string’, ’description’: ’The web search query to perform.’
Returns an output of type: string
- crawl_page: Access webpage using the provided URL and extract relevant content.
Please make full use of this tool to verify the accuracy of the searched content.
Takes inputs: ’url’: ’type’: ’string’, ’description’: ’The URL of the webpage to visit.’, ’query’: ’type’: ’string’, ’description’: ’The
specific information to extract from the webpage.’
Returns an output of type: string
- final_answer: Gives a clear, accurate final answer to the given task.

Takes inputs: ’answer’: ’type’: ’string’, ’description’: ’The clear, accurate final answer to the task’
Returns an output of type: string

Rules

Here are the rules you should always follow to solve your task:
1. Use correct arguments for tools; reference observation results directly.
2. Call tools to solve the task. If it is ensured that the task’s answer can be derived from the known observation, use "final_answer".
3. Do not repeat tool calls with identical parameters.
4. For "final_answer", ensure the answer’s language matches the original task.
5. You can invoke up to 5 tools.

Answer Format

Each answer has one of 3 functions, with "tools" embedded in reasoning and execution:
- think: Reason about which tools to use, tool call order, and execution paths to reach the goal. Start with <think>, end with </think>.
- plan: Break down the question into detailed, tool-executable sub-questions. Start with <plan>, end with </plan>.
- summary: Analyze if the plan’s sub-goals/paths are completed. Start with <summary>, end with </summary>.

Examples

1. <plan>...</plan><tools>..</tools>
2. <think>...</think><tools>..</tools>
3. <summary>...</summary><tools>..</tools>

Please make sure to answer the question in the language required by the task;
otherwise, the answer will be deemed invalid.
Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

J CASE STUDY

[CASE TRAJECTORY OF FLASH-SEARCHER-32B ON GAIA.

System Prompt

You are an expert assistant who solves tasks through structured tool calls, following a step-by-step process. Each step (action)
involves analyzing needs, selecting tools, and executing calls to achieve the task goal. Each action you take should include a
reasoning process and tool calls. After executing the tools, you will receive the results of tool calls, which can be used as input for
subsequent actions. This Action/Observation cycle may repeat as needed.

Task Instructions:
1. Parse the plan or summary:
To address the problem of understanding parallel execution requirements, follow these steps centered on parsing <plan></plan>
or <summary></summary>: **CRITICAL: All goals MUST be advanced simultaneously in parallel. Each goal’s paths MUST be
executed sequentially (one path at a time per goal).**
2. Execute parallel tool calls:
For each goal in the plan, execute the specified tools in parallel according to the paths defined.
**MANDATORY: Advance ALL goals concurrently. Within each goal, execute paths sequentially (never parallelize paths within a
single goal).**
3. Handle path diversity:
For each goal, if multiple paths are provided, execute them sequentially as fallback options if the primary path fails.
**ABSOLUTE REQUIREMENT: NEVER prematurely assume a goal is achieved. Continue advancing ALL other goals in parallel
while handling fallback paths for any individual goal.**
4. Process results:
Synthesize information from all tool outputs to generate comprehensive responses that address all goals.
**ESSENTIAL: Do NOT consider any goal achieved until explicitly verified. Maintain parallel advancement of ALL goals through-
out synthesis.**
5. Final answer:
Once all goals are addressed, consolidate their results, and ensure that the consolidated outcome can accurately and correctly answer
the original task, then call the ’final_answer’ tool with such consolidated results.
**FINAL CONDITION: Only proceed when ALL goals are resolved. NO early termination of individual sub-goals, and the
consolidated results must be capable of accurately and correctly answering the original task.**

Available Tools
You have access to these tools:
- web_search: Perform a web search query and return the search results.

Takes inputs: ’query’: ’type’: ’string’, ’description’: ’The web search query to perform.’
Returns an output of type: string

- crawl_page: Access webpage using the provided URL and extract relevant content. Please make full use of this tool to verify the
accuracy of the searched content.

Takes inputs: ’url’: ’type’: ’string’, ’description’: ’The URL of the webpage to visit.’, ’query’: ’type’: ’string’, ’description’: ’The
specific information to extract from the webpage.’

Returns an output of type: string
- final_answer: Gives a clear, accurate final answer to the given task.

Takes inputs: ’answer’: ’type’: ’string’, ’description’: ’The clear, accurate final answer to the task’
Returns an output of type: string

Rules
Here are the rules you should always follow to solve your task:
1. Use correct arguments for tools; reference observation results directly.
2. Call tools to solve the task. If it is ensured that the task’s answer can be derived from the known observation, use f̈inal_answer.̈
3. Do not repeat tool calls with identical parameters.
4. For f̈inal_answer,̈ ensure the answer’s language matches the original task.
5. You can invoke up to 5 tools.

Answer Format
Each answer has one of 3 functions, with ẗoolsëmbedded in reasoning and execution:
- think: Reason about which tools to use, tool call order, and execution paths to reach the goal. Start with <think>, end with </think>.
- plan: Break down the question into detailed, tool-executable sub-questions. Start with <plan>, end with </plan>.
- summary: Analyze if the plan’s sub-goals/paths are completed. Start with <summary>, end with </summary>.

Examples
1. <plan>...</plan><tools>..</tools>
2. <think>...</think><tools>..</tools>
3. <summary>...</summary><tools>..</tools>

Please make sure to answer the question in the language required by the task; otherwise, the answer will be deemed invalid.
Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.

Step 1 - User

Your task is: What is the first name of the only Malko Competition recipient from the 20th Century (after 1977) whose nationality
on record is a country that no longer exists?.
Now Begin! Solve the task!

Step 1 - Assistant

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

<think>Now, Let’s break down this problem into manageable goals and identify multiple solution paths for each goal.</think>
<plan> ## Goal 1: Identify authoritative lists of Malko Competition recipients (post-1977) with nationalities
- Path 1.1: Wikipedia + verification crawl

- Approach: Use web_search to find the Wikipedia page for “Malko Competition” and/or “List of Malko Competition for Young
Conductors winners”; then use crawl_page to extract the winners list and any nationality/country-of-origin fields for recipients after
1977.

- Success: A verified list of post-1977 recipients with associated nationalities extracted from the crawled Wikipedia page (with
links/sources cited on that page).
- Path 1.2: Official competition/archival sources

- Approach: Use web_search to locate the official competition site or archived official pages (e.g., concoursmalko.org, Wayback
Machine snapshots); use crawl_page to extract winner lists and biographical details including nationality/country.

- Success: An official or archived official listing confirming recipients and their nationalities for the relevant years.
- Path 1.3: Reputable music databases and encyclopedias

- Approach: Use web_search to find entries on Britannica, Oxford Reference, or dedicated music directories; use crawl_page to
capture entries that include Malko winners and stated nationalities.

- Success: At least one reputable non-Wikipedia source corroborating the names and nationalities of post-1977 recipients.
- Path 1.4: News/features aggregation

- Approach: Use web_search to gather major media profiles/interviews with Malko winners that state their nationality; compile a
cross-checked list via crawl_page extraction.

- Success: A compiled list with at least two independent media sources aligning on nationality for each named recipient.

Goal 2: Determine which recipient(s) after 1977 have nationalities tied to a country that no longer exists
- Path 2.1: Cross-reference nationalities against lists of defunct countries

- Approach: From Goal 1’s extracted nationalities, compare each country against established lists of former sovereign states (e.g.,
CIA World Factbook “Former Countries”, Wikipedia “List of former countries”) using web_search and crawl_page.

- Success: A definitive mapping showing which recipient’s recorded nationality matches a country explicitly listed as no longer
existing.
- Path 2.2: Historical sovereignty check for ambiguous cases

- Approach: For borderline entries (e.g., nationalities stated as historical entities), use web_search and crawl_page on historical
summaries to confirm the state’s existence status at the time of the award.

- Success: Clear determination supported by authoritative historical sources indicating the state’s non-existence in the modern
era.
- Path 2.3: Edge-case validation (regions vs. countries)

- Approach: Validate that any candidate is not misclassified (e.g., a region or autonomous republic presented as a country);
confirm the exact phrasing used in the recipient’s recorded nationality.

- Success: Verified that the recorded nationality is indeed a sovereign state at the time of its common usage, and that this state is
now defunct.

Goal 3: Confirm uniqueness (only one such recipient after 1977) and extract the first name
- Path 3.1: Exhaustive post-1977 sweep and counting

- Approach: Enumerate all recipients year-by-year from 1978 onward from Goal 1 sources; for each, record nationality and run
Path 2.1 checks; tally how many match the “defunct country” criterion.

- Success: Exactly one recipient meets the condition; all others are documented as not meeting it.
- Path 3.2: Independent corroboration of the unique candidate’s nationality

- Approach: Use web_search to find 2–3 independent authoritative bios for the identified candidate (official biography, reputable
concert hall/agency page, press releases) and crawl_page to confirm the same nationality wording.

- Success: Multiple independent sources agree on the nationality phrasing that corresponds to a defunct country.
- Path 3.3: First-name extraction and consistency check

- Approach: Extract the candidate’s full name from at least two sources; normalize capitalization; confirm the first name as
recorded (including diacritics if applicable).

- Success: The first name is consistently present across sources and ready to report exactly as standardized.

Goal 4: Resolve discrepancies and document evidence trail
- Path 4.1: Source prioritization and conflict resolution - Approach: If sources disagree on nationality or existence status, prioritize
official competition records and widely recognized references; document rationale.

- Success: A resolved, justified conclusion where conflicts are addressed and the chosen interpretation is defensible.
- Path 4.2: Evidence packaging for auditability

- Approach: Record URLs, quoted snippets, and access dates from crawl_page outputs for all key assertions (recipient list,
nationality, defunct-country status).

- Success: A complete set of citations enabling an independent reviewer to verify each step without additional searches.</plan>

Step 2 - User

Based on the plan/summary and previous conversations, continue solving the task!

Step 2 - Assistant

<think>We have four goals to advance in parallel. For Goal 1 (identify authoritative lists of Malko Competition recipients with
nationalities), we’ll begin with Path 1.1 by locating the Wikipedia page and any direct list page via web_search. For Goal 2
(determine which recipient(s) after 1977 have nationalities tied to defunct countries), we’ll prepare by identifying a reliable list of
former countries to cross-check later. Goals 3 and 4 depend on data from Goals 1 and 2, so we’ll start gathering those foundational
sources now. We’ll execute web searches in parallel to retrieve the relevant pages efficiently.</think>
<tools>["name": "web_search", "arguments": "query": "Malko Competition Wikipedia", "name": "web_search", "argu-
ments": "query": "List of Malko Competition for Young Conductors winners", "name": "web_search", "arguments": "query":
"site:wikipedia.org M̈alko Competition"̈, "name": "web_search", "arguments": "query": "list of former countries"]</tools>

Step 3 - User

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Results for tool call web_search with arguments ’query’: ’Malko Competition Wikipedia’: 1. [Malko Competi-
tion](https://en.wikipedia.org/wiki/Malko_Competition) Source: Unknown source The Malko Competition is an international com-
petition for young conductors. It is held every three years by the Danish Radio Symphony Orchestra, to commemorate ...
2. [Category:Conducting competitions](https://en.wikipedia.org/wiki/Category:Conducting_competitions) Source: Unknown
source Lopez Cobos International Opera Conductors Competition. M. Maazel-Vilar Conductor’s Competition · Malko Competi-
tion. S. Sir Georg Solti International Conductors ...
3. [Malko Competition: The Malko Way – The competition that ...](https://malkocompetition.dk/) Source: Unknown source Com-
petition. Home · Participants · Schedule · Performances · Articles · Videos · Photos · Repertoire · Prizes · Jury · Jury Rules ...
4. [All Winners](https://malkocompetition.dk/winners/all) Source: Unknown source All Winners ; Samuel Seungwon Lee. South
Korea ; Dmitry Matvienko. Belarus ; Ryan Bancroft. United States ; Tung-Chieh Chuang. Taiwan ; Rafael Payare. Venezuela.
5. [List of classical music competitions](https://en.wikipedia.org/wiki/List_of_classical_music_competitions) Source: Unknown
source Jorma Panula Conducting Competition (Finland); Leeds Conductors Competition (UK); Nicolai Malko Competition For
Young Conductors (Denmark); Sir Georg ...
Results for tool call web_search with arguments ’query’: ’List of Malko Competition for Young Conductors winners’: 1. [All Win-
ners](https://malkocompetition.dk/winners/all) Source: Unknown source All Winners · Samuel Seungwon Lee · Dmitry Matvienko
· Ryan Bancroft · Tung-Chieh Chuang · Rafael Payare · Joshua Weilerstein · Mei-Ann Chen · Seikyo Kim.
2. [Malko Competition](https://en.wikipedia.org/wiki/Malko_Competition) Source: Unknown source Recipients ; 2012, Rafael
Payare, b. 1980 ; 2015, Tung-Chieh Chuang, b. 1982 ; 2018, Ryan Bancroft, b. 1989 ; 2021, Dmitry Matvienko, b. 1990.
3. [Malko Competition: The Malko Way – The competition that ...](https://malkocompetition.dk/) Source: Unknown source Skip
to main content. Malko. Competition. for. Young. Conductors. The Malko Way ... Winners · Participants · Performances · Video ·
Articles · All Winners ...
4. [Malko Competition for Young Conductors 2024 - Finals](https://www.mezzo.tv/en/Classical/Malko-Competition-for-Young-
Conductors-2024-Finals-14839) Source: Unknown source Danish National Symphony Orchestra ; Ana María Patiño Osorio (Con-
ductor) : 2ème prix / 2nd prize ; Samuel Seungwon Lee (Conductor) : 1er prix / 1st prize ; Dong ...
5. [Malko Competition for Young Conductors 2024]
(https://www.youtube.com/playlist?list=PLysPxrQwj2YedaO2z4qxLTW8qHle4Edtb) Source: Unknown source Samuel Seungwon
Lee: Winner of the Malko Competition for Young Conductors 2024 · Malko Competition 2024, Grand Finale: Samuel Seungwon
Lee · Malko Competition ...
Results for tool call web_search with arguments ’query’: ’site:wikipedia.org "Malko Competition"’: 1. [Malko Competi-
tion](https://en.wikipedia.org/wiki/Malko_Competition) Source: Unknown source The Malko Competition is an international com-
petition for young conductors. It is held every three years by the Danish Radio Symphony Orchestra, ...
2. [Category:Conducting competitions](https://en.wikipedia.org/wiki/Category:Conducting_competitions) Source: Unknown
source M. Maazel-Vilar Conductor’s Competition · Malko Competition. S. Sir Georg Solti International Conductors’ Competi-
tion · Last edited 12 years ago by KLBot2 ...
3. [List of classical music competitions](https://en.wikipedia.org/wiki/List_of_classical_music_competitions) Source: Unknown
source Leeds Conductors Competition (UK); Nicolai Malko Competition For Young Conductors (Denmark); Sir Georg Solti Inter-
national Conductors’ Competition ...
4. [Nikolai-Malko-Wettbewerb](https://de.wikipedia.org/wiki/Nikolai-Malko-Wettbewerb) Source: Unknown source Der Nikolai-
Malko-Wettbewerb (Nicolai Malko Competition for Young Conductors) ist ein renommierter internationaler Wettbewerb für Nach-
wuchsdirigenten.
5. [Malko-konkurrencen - Wikipedia, den frie encyklopædi](https://da.wikipedia.org/wiki/Malko-konkurrencen) Source: Unknown
source "Dmitry Matvienko from Belarus wins the Malko Competition 2021" dr.dk 15.6.21 · Musik. Spire. Denne musikartikel er en
spire som bør udbygges. Du er velkommen ...
Results for tool call web_search with arguments ’query’: ’list of former countries’: 1. [List of former sovereign
states](https://en.wikipedia.org/wiki/List_of_former_sovereign_states) Source: Unknown source This page lists sovereign states,
countries, nations, or empires that ceased to exist as political entities sometime after 1453, grouped geographically and by ...
2. [Category:Former countries](https://en.wikipedia.org/wiki/Category:Former_countries) Source: Unknown source Wikimedia
Commons has media related to Former countries. The main article for this category is List of former sovereign states.
3. [An A to Z List of Countries That No Longer Exist](https://www.thoughtco.com/missing-countries-1435425) Date published:
May 13, 2025 Source: Unknown source Countries That No Longer Exist · Abyssinia · Austria-Hungary · Bengal · Burma · Catalonia
· Ceylon · Corsica · Czechoslovakia.
4. [List of former countries - The Countries Wiki - Fandom](https://countries.fandom.com/wiki/List_of_former_countries) Source:
Unknown source This is the list of all former countries. The list is uncomplete. List of Former Countries. Period, Name, Capital,
Flag, Area, Population, Notes. January 26, ...
5. [List of former Trust and Non-Self-Governing Territories](https://www.un.org/dppa/decolonization/en/history/former-trust-and-
nsgts) Source: Unknown source List of former Trust and Non-Self-Governing Territories ; Australia. Cocos (Keeling) Islands ;
Australia · Papua/Papua New Guinea ; Australia · Trust Territory of ...

Step 3 - Assistant

<think>We have four goals to advance in parallel. For Goal 1 (compile authoritative lists of post-1977 Malko recipients with
nationalities), I’ll execute Path 1.1 by crawling the English Wikipedia page for the Malko Competition to extract the ’Recipients’
section and any nationality cues, and Path 1.2 by crawling the official ’All Winners’ page to get the list and any country labels. For
Goal 2 (determine which recipient(s) after 1977 have nationalities tied to a defunct country), I’ll execute Path 2.1 by crawling the
Wikipedia ’List of former sovereign states’ page to have an authoritative list of defunct countries ready for cross-referencing once
we extract nationalities. For Goal 3 (confirm uniqueness and extract the first name), I’ll begin Path 3.2 in parallel by searching
for an authoritative biography for the prime historical-candidate ’Joshua Weilerstein’ to confirm nationality phrasing (e.g., ’United
States’ vs. ’USA’ vs. ’American’), which will help verify whether his recorded nationality could correspond to a defunct country
(e.g., ’U.S.S.R./Russia’ vs. ’United States’). For Goal 4 (evidence packaging), I will rely on the crawled outputs from these pages
to assemble citations in the next step. Executing these five tool calls in parallel advances all goals concurrently while keeping paths
sequential within each goal.</think>
<tools>["name": "crawl_page", "arguments": "url": "https://en.wikipedia.org/wiki/Malko_Competition", "query": "Extract the
’Recipients’ section listing winners and years after 1977, including any nationality or country information for each winner.",
"name": "crawl_page", "arguments": "url": "https://malkocompetition.dk/winners/all", "query": "Extract the list of winners
with years and any country/nationality labels shown for recipients after 1977.", "name": "crawl_page", "arguments": "url":
"https://en.wikipedia.org/wiki/List_of_former_sovereign_states", "query": "Provide a machine-readable list of sovereign states that
no longer exist (country names only) for quick cross-reference.", "name": "web_search", "arguments": "query": "Joshua Weilerstein
biography nationality site:aspace.org OR site:heifetzmusic.org OR site:gramophone.co.uk OR site:nytimes.com",

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

"name": "web_search", "arguments": "query": "Mei-Ann Chen biography nationality site:grantps.org OR site:chicagobach.org OR
site:gramophone.co.uk OR site:nytimes.com"]</tools>

Step 4 - User

Results for tool call crawl_page with arguments ’url’: ’https://en.wikipedia.org/wiki/Malko_Competition’, ’query’: "Extract the
’Recipients’ section listing winners and years after 1977, including any nationality or country information for each winner.": - 1980
— Maximiano Valdés — Chile - 1983 — Claus Peter Flor — East Germany - 1986 — Kazufumi Yamashita — Japan - 1989 —
Fabio Mechetti — Brazil - 1992 — Jin Wang — Austria - 1995 — Jan Wagner — Venezuela - 1998 — Seikyo Kim — Japan -
2001 — Josep Caballé Domenech — Spain (note: no first prize was awarded in 2001; Caballé-Domenech was appointed the highest
(2nd) prize) - 2005 — Mei-Ann Chen — United States - 2009 — Joshua Weilerstein — United States - 2012 — Rafael Payare —
Venezuela - 2015 — Tung-Chieh Chuang — Taiwan - 2018 — Ryan Bancroft — United States - 2021 — Dmitry Matvienko —
Belarus - 2024 — Samuel Seungwon Lee — South Korea
Results for tool call crawl_page with arguments ’url’: ’https://malkocompetition.dk/winners/all’, ’query’: ’Extract the list of winners
with years and any country/nationality labels shown for recipients after 1977.’: - 1980 — Maximiano Valdes — Chile - 1983 —
Claus Peter Flor — Germany - 1986 — Kazufumi Yamashita — Japan - 1989 — Fabio Mechetti — Brasil - 1992 — Jin Wang —
Austria - 1995 — Jan Wagner — Venezuela - 1998 — Seikyo Kim — Japan - 2005 — Mei-Ann Chen — United States - 2009 —
Joshua Weilerstein — United States - 2012 — Rafael Payare — Venezuela - 2015 — Tung-Chieh Chuang — Taiwan - 2018 —
Ryan Bancroft — United States - 2021 — Dmitry Matvienko — Belarus - 2024 — Samuel Seungwon Lee — South Korea
Results for tool call crawl_page with arguments ’url’: ’https://en.wikipedia.org/wiki/List_of_former_sovereign_states’, ’query’:
’Provide a machine-readable list of sovereign states that no longer exist (country names only) for quick cross-reference.’: I extracted
the former sovereign states (names only) found in the provided Wikipedia excerpt. There are about 340–360 entries in the excerpt
(I can produce an exact count and full export on request). Below is a machine-readable sample (comma-separated). If you want the
complete list I can return it as a CSV, JSON array, or plain newline-separated text.
Sample (first 60 names): Marinid Sultanate, Principality of Debdou, Wattasid dynasty, Saadi Sultanate, Naqsid Principality of
Tetouan, Kingdom of Tazeroualt, Republic of Salé, ’Alawi dynasty, Zawiya Dila’iya, Sharifian Sultanate, Republic of the Rif,
Makuria, Emirate of Banu Talis, Alodia, Kingdom of al-Abwab, Mamluk Sultanate, Shilluk Kingdom, Egypt Eyalet, Kingdom of
Fazughli, Sultanate of Sennar, Fezzan Sultanate, Sultanate of Darfur, Taqali, Mamluk beylicate, Mahdist State, Tripolitanian Re-
public, Emirate of Cyrenaica, United Arab Republic, Kel Ahaggar, Hafsid dynasty, Hafsid Emirate of Béjaïa, Kingdom of Tlemcen,
Kingdom of Kuku, Beylik of Constantine, Kingdom of Beni Abbas, Sultanate of Tuggurt, Regency of Algiers, Emirate of Ab-
delkader, Ali Soilih Regime, State of Anjouan, Kingdom of Antankarana, Kingdom of Antongil, Kingdom of Boina, Kingdom of
Menabe, Kingdom of Imerina, Kingdom of Tamatave, Kingdom of Tanibe, Bornu Empire, Wadai Empire, Kingdom of Baguirmi,
Medri Bahri, Welayta Kingdom, Hadiya Sultanate, Ajuran Sultanate, Ethiopian Empire, Ennarea, Kingdom of Kaffa
If you want the full extracted list (all names present in the provided excerpt) in machine-ready form, tell me which format you
prefer: CSV, JSON array, or newline-separated text.
Results for tool call web_search with arguments ’query’: ’Joshua Weilerstein biography nationality site:aspace.org OR
site:heifetzmusic.org OR site:gramophone.co.uk OR site:nytimes.com’: 1. [Your First Classical Music Crush - The New York
...](https://www.nytimes.com/2013/07/18/arts/your-first-crush.html) Date published: Jul 17, 2013 Source: Unknown source Joshua
Weilerstein, assistant conductor, New York Philharmonic. I come from a very musical family, but I was never interested in perform-
ing ...
2. [Familiar Pianist at Caramoor, and Beethoven’s ...](https://www.nytimes.com/2016/07/10/nyregion/familiar-pianist-at-caramoor-
and-beethovens-gravitational-pull.html) Date published: Jul 8, 2016 Source: Unknown source Mr. Weilerstein will be the first
American to conduct the work, which has been performed in Belfast, Ireland, as well as Saint Paul, Minn. Mr. ...
3. [A Luminous ’Aria Code’ Joins a Meager Field of Classical ...](https://www.nytimes.com/2018/12/30/arts/music/aria-code-
classical-music-podcasts.html) Date published: Dec 30, 2018 Source: Unknown source With endless enthusiasm and a curious
mind, Mr. Weilerstein offers historical context and musical analysis (rarely too technical for outsiders), ...
4. [Alisa Weilerstein](https://www.nytimes.com/topic/alisa-weilerstein) Source: Unknown source Alisa Weilerstein, the young
cellist and recent recipient of a MacArthur Foundation grant, played Dvorak and Ives with her parents at Bargemusic. By Zachary
...
5. [Classical Fall Preview: Debuts, Premieres, a ...](https://www.nytimes.com/2018/09/12/arts/music/fall-classical-calendar.html)
Date published: Sep 12, 2018 Source: Unknown source ... Joshua Weilerstein, that includes Milhaud, Gershwin, Stravinsky and
Florence Price’s Piano Concerto: a work from a composer being gradually ...
Results for tool call web_search with arguments ’query’: ’Mei-Ann Chen biography nationality site:grantps.org OR
site:chicagobach.org OR site:gramophone.co.uk OR site:nytimes.com’: 1. [At a Chicago Orchestra, Diversity Is on the Program -
The New York ...](https://artsbeat.blogs.nytimes.com/2010/08/06/at-a-chicago-orchestra-diversity-is-on-the-program/) Source: Un-
known source Their answer is Mei-Ann Chen, 37, a Taiwan-born conductor who has been an assistant conductor at the Atlanta and
Baltimore symphonies and was recently ...
2. [Asians Are Represented in Classical Music. But Are They ...](https://www.nytimes.com/2021/07/21/arts/music/asians-classical-
music.html) Date published: Jul 30, 2564 BE Source: Unknown source A Dearth of Asian Artists “I try to accept rejections as part
of my reality,” said the conductor Mei-Ann Chen, the music director of the ...
3. [A Fall in Virus Cases](https://www.nytimes.com/2021/01/28/briefing/gamestop-stock-tesla-biden-climate.html) Date published:
Apr 22, 2564 BE Source: Unknown source Mei-Ann Chen, right, leading the Chicago Sinfonietta in a performance with the bassist
Victor Wooten.Credit...Chris Ocken. Diversity in ...
4. [Your Thursday Briefing](https://www.nytimes.com/2021/07/21/briefing/your-thursday-briefing.html) Date published: Jul 21,
2564 BE Source: Unknown source The conductor Mei-Ann Chen said people had canceled meetings and withdrawn performance
opportunities after learning that she is Asian.Credit ...
5. [Review: In ’Skinfolk,’ the Joys of Blackness Burst From ...](https://www.nytimes.com/2020/03/06/theater/skinfolk-review.html)
Date published: Mar 6, 2563 BE Source: Unknown source The director Mei Ann Teo cleverly balances the varying moods: When
Walker recounts the brutalities of slavery and segregation, she conveys a ...

Step 4 - Assistant

<think>We have four goals to advance in parallel. Goal 1 (authoritative recipient list with nationalities) already has strong coverage
from Wikipedia and the official site; to strengthen verification, I’ll cross-check with the German Wikipedia page. Goal 2 (identify
which recipient(s) after 1977 have nationalities tied to defunct countries) requires confirming that ’East Germany’ is treated as a
country on record and verifying it is now defunct; I’ll fetch authoritative pages for both the DDR’s existence and its inclusion on
the ’list of former sovereign states’. Goal 3 (confirm uniqueness and extract first name) will be supported by those same sources; no
separate tool is strictly necessary beyond confirming that only the 1983 entry (Maximiano Valdés excepted due to Chile still

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

existing) maps to a defunct state. Goal 4 (discrepancy resolution and evidence) will be supported by the crawled authoritative pages.
I will execute these crawls/searches in parallel now.</think>
<tools>["name": "crawl_page", "arguments": "url": "https://de.wikipedia.org/wiki/Nikolai-Malko-Wettbewerb", "query": "Extract
the list of recipients and years after 1977, noting any country/nationality labels, especially for 1983 (Claus Peter Flor) and con-
firm how the nationality is recorded.", "name": "crawl_page", "arguments": "url": "https://en.wikipedia.org/wiki/East_Germany",
"query": "Confirm that the German Democratic Republic (East Germany) existed as a sovereign state and ceased
to exist in 1990; extract a clear statement of its former status.", "name": "crawl_page", "arguments": "url":
"https://en.wikipedia.org/wiki/List_of_former_sovereign_states", "query": "Verify that ’German Democratic Republic (East Ger-
many)’ appears in the list of former sovereign states; extract the exact listing line if present."]</tools>

Step 5 - User

Results for tool call crawl_page with arguments ’url’: ’https://de.wikipedia.org/wiki/Nikolai-Malko-Wettbewerb’, ’query’: ’Extract
the list of recipients and years after 1977, noting any country/nationality labels, especially for 1983 (Claus Peter Flor) and confirm
how the nationality is recorded.’: No relevant information
Results for tool call crawl_page with arguments ’url’: ’https://en.wikipedia.org/wiki/East_Germany’, ’query’: ’Confirm that the
German Democratic Republic (East Germany) existed as a sovereign state and ceased to exist in 1990; extract a clear statement of
its former status.’: - Title/period: "Country in Central Europe (1949–1990)" (infobox header). - Clear statement of former status:
"East Germany, officially known as the German Democratic Republic (GDR), was a country in Central Europe from its formation
on 7 October 1949 until its reunification with West Germany (FRG) on 3 October 1990." - Cessation: "The GDR ceased to exist
when its five states (’Länder’) joined the Federal Republic of Germany under Article 23 of the Basic Law, and its capital East Berlin
united with West Berlin on 3 October 1990." - Sovereignty and international recognition: - "Sovereignty recognized by the USSR:
20 September 1955." - "Admitted to the UN: 18 September 1973." - Stated status/political character: listed as "Satellite state of the
Soviet Union and member of the Warsaw Pact"; described as a "communist state" that called itself a socialist "workers’ and peasants’
state." - Infobox closure: "Preceded by: Soviet occupation zone in Germany. Succeeded by: Federal Republic of Germany. Today
part of: Germany."
These excerpts confirm the GDR existed as a sovereign state from 1949 and ceased to exist through reunification on 3 October 1990.
Results for tool call crawl_page with arguments ’url’: ’https://en.wikipedia.org/wiki/List_of_former_sovereign_states’, ’query’:
"Verify that ’German Democratic Republic (East Germany)’ appears in the list of former sovereign states; extract the exact listing
line if present.": No relevant information

Step 5 - Assistant

<think>We have four goals to advance in parallel. Goal 1 (authoritative recipient list with nationalities) is largely satisfied by prior
observations: Wikipedia and the official Malko site list winners post-1977 with nationalities. To solidify Goal 2 (which recipient(s)
after 1977 have nationalities tied to a defunct country), we need to verify that 1983 winner Claus Peter Flor’s recorded nationality is
East Germany (a former country). We’ll crawl the English Wikipedia page for Claus Peter Flor to confirm nationality and birthplace.
In parallel, for Goal 3 (uniqueness and first name), we will independently corroborate the nationality of the other potential ambiguous
case, Mei-Ann Chen (2005), to ensure her recorded nationality is not a defunct country; we’ll crawl a reputable profile/interview
(Chicago Sinfonietta) to confirm she is Taiwan-born/US-based. These two crawls advance Goals 2 and 3 concurrently while Goal 1
remains satisfied by earlier verified lists. We will synthesize after these observations to confirm that only the 1983 recipient matches
the defunct-country criterion and extract the first name.</think>
<tools>["name": "crawl_page", "arguments": "url": "https://en.wikipedia.org/wiki/Claus_Peter_Flor", "query": "Extract nationality
and birthplace; confirm whether he is described as East German or German, and note any mention of the German Democratic Repub-
lic.", "name": "crawl_page", "arguments": "url": "https://chicago.s infonietta .org/meiann-chen/", "query": "Extract biographical
summary focusing on birthplace and nationality descriptors (e.g., Taiwan-born American conductor) to confirm that her recorded
nationality is not a defunct country."]</tools>

Step 6 - User

Results for tool call crawl_page with arguments ’url’: ’https://en.wikipedia.org/wiki/Claus_Peter_Flor’, ’query’: ’Extract nationality
and birthplace; confirm whether he is described as East German or German, and note any mention of the German Democratic
Republic.’: - Exact quoted identification: "Claus Peter Flor (born 16 March 1953, Leipzig) is a German conductor." (page header
also labels him "German conductor".) - Nationality (as given): German. - Birthplace (as given): Leipzig; birth date 16 March 1953.
- Is he described as "East German" or "German"? — Described as "German" (not "East German"). - Any mention of the "German
Democratic Republic"? — No. The page content provided contains no mention of the "German Democratic Republic" (or the phrase
"East German").
Results for tool call crawl_page with arguments ’url’: ’https://chicago.s infonietta .org/meiann-chen/’, ’query’: ’Extract bi-
ographical summary focusing on birthplace and nationality descriptors (e.g., Taiwan-born American conductor) to confirm
that her recorded nationality is not a defunct country.’: Error reading page: 400 Client Error: Bad Request for url:
https://r.jina.ai/https://chicago.s%20infonietta%20.org/meiann-chen/

Step 6 - Assistant

<think>We have four goals to advance in parallel. Goal 1 (authoritative recipient list with nationalities) is partially satisfied: we have
Wikipedia and the official Malko site lists. To strengthen verification, I’ll crawl the official ’All Winners’ page again with a different
query to capture explicit country labels for post-1977 winners. Goal 2 (identify which recipient(s) after 1977 have nationalities
tied to a defunct country) requires confirming that East Germany (GDR) is listed as a former sovereign state; I’ll crawl the specific
section on the Wikipedia list page for Europe to extract the GDR entry. Goal 3 (confirm uniqueness and extract the first name)
needs independent corroboration that the 1983 winner is Claus Peter Flor; I’ll run a web search targeting authoritative bios. Goal 4
(resolve discrepancies and document evidence) will be supported by capturing explicit lines from the official winners page and the
former states list. Executing these in parallel advances all goals concurrently while keeping each goal’s path sequential.</think>
<tools>["name": "crawl_page", "arguments": "url": "https://malkocompetition.dk/winners/all", "query": "Extract each winner en-
try after 1977 with their listed country/nationality labels verbatim (e.g., ’Germany’ for 1983, ’Japan’ for 1980, etc.).", "name":
"crawl_page", "arguments": "url": "https://en.wikipedia.org/wiki/List_of_former_sovereign_states", "query": "From the Europe
section, extract the exact line listing ’German Democratic Republic’ (East Germany) as a former sovereign state.", "name":
"web_search", "arguments": "query": "Claus Peter Flor biography Born Leipzig conductor", "name": "web_search", "arguments":
"query": "1983 Malko Competition Claus Peter Flor winner"]</tools>

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Step 7 - User

Results for tool call crawl_page with arguments ’url’: ’https://malkocompetition.dk/winners/all’, ’query’: "Extract each winner
entry after 1977 with their listed country/nationality labels verbatim (e.g., ’Germany’ for 1983, ’Japan’ for 1980, etc.).": - 2024
Samuel Seungwon Lee — South Korea - 2021 Dmitry Matvienko — Belarus - 2018 Ryan Bancroft — United States - 2015 Tung-
Chieh Chuang — Taiwan - 2012 Rafael Payare — Venezuela - 2009 Joshua Weilerstein — United States - 2005 Mei-Ann Chen —
United States - 1998 Seikyo Kim — Japan - 1995 Jan Wagner — Venezuela - 1992 Jin Wang — Austria - 1989 Fabio Mechetti —
Brasil - 1986 Kazufumi Yamashita — Japan - 1983 Claus Peter Flor — Germany - 1980 Maximiano Valdes — Chile
Results for tool call crawl_page with arguments ’url’: ’https://en.wikipedia.org/wiki/List_of_former_sovereign_states’, ’query’:
"From the Europe section, extract the exact line listing ’German Democratic Republic’ (East Germany) as a former sovereign
state.": No relevant information
Results for tool call web_search with arguments ’query’: ’Claus Peter Flor biography Born Leipzig conductor’: 1. [Claus Peter
Flor](https://en.wikipedia.org/wiki/Claus_Peter_Flor) Source: Unknown source Claus Peter Flor (born 16 March 1953, Leipzig) is
a German conductor. ... Flor was chief conductor of the Suhl Philharmonic Orchestra from 1981 to 1984.
2. [Claus Peter Flor](https://www.felsnerartists.com/claus-peter-flor) Source: Unknown source Claus Peter Flor was born in Leipzig
in 1953. After completing his studies of the violin and clarinet in Weimar und Leipzig, taking his violin exam at ...
3. [Claus Peter Flor – Sofia Philharmonic](https://sofiaphilharmonic.com/en/artists/claus-peter-flor/) Source: Unknown source ...
Conductor of the Malaysian Philharmonic Orchestra. Born in Leipzig in 1953, Maestro Flor began his musical career with violin
tuition in Weimar and Leipzig ...
4. [***Claus Peter Flor*** (1953-) is a German conductor born ...]
(https://www.facebook.com/groups/1418016324890470/posts/9936076203084397/) Date published: 2 years ago Source: Unknown
source Claus Peter Flor (1953-) is a German conductor born in Leipzig. Flor studied violin and clarinet at the Robert Schumann
Conservatory in Zwickau ...
5. [Claus Peter Flor](https://artsandculture.google.com/entity/claus-peter-flor/m0bhs6n?hl=en) Source: Unknown source Born Mar
16, 1953 ... Claus Peter Flor is a German conductor. Flor studied violin and clarinet at the Robert Schumann Conservatory in
Zwickau. He continued his ...
Results for tool call web_search with arguments ’query’: ’1983 Malko Competition Claus Peter Flor winner’: 1. [All Win-
ners](https://malkocompetition.dk/winners/all) Source: Unknown source ... 1983. Claus Peter Flor. Germany. 1980. Maximiano
Valdes. Chile. 1977. Philip Greenberg. United States. 1974. Gotthard Lienicke. 1971. Winston Dan Vogel. United ...
2. [Malko Competition](https://en.wikipedia.org/wiki/Malko_Competition) Source: Unknown source Recipients ; 1983, Claus Peter
Flor, b. 1953 ; 1986, Kazufumi Yamashita, b. 1961 ; 1989, Fabio Mechetti, b. 1957 ; 1992, Jin Wang, b. 1960.
3. [In a Battle of the Batons, a Barely Visible Alchemy](https://www.nytimes.com/2014/12/11/arts/music/elim-chans-flick-
conducting-prize-is-rare-win-for-a-woman.html) Date published: Dec 10, 2014 Source: Unknown source The Malko in Copen-
hagen, which began in 1965, produced Claus Peter Flor in 1983 and Rafael Payare in 2012, but few others of real note.
4. [Flor, Claus Peter](https://www.encyclopedia.com/arts/dictionaries-thesauruses-pictures-and-press-releases/flor-claus-peter-0)
Source: Unknown source ... Competition in Katowice, and subsequently took prizes in the Kubelik Competition in Lucerne (1982)
and in the Malko Competition in Copenhagen (1983). From ...
5. [Malko Competition](https://www.facebook.com/malkocompetition/) Source: Unknown source ... Claus Peter Flor, David
Robertson, Mikael Beier Rie Koch, Christina Åstrand, George Malko and of course the faboulous DR Symfoniorkestret. Natalia ...

Step 7 - Assistant

<think>We have four goals to advance in parallel. Goal 1 (authoritative recipient list with nationalities) is satisfied by the crawled
Wikipedia page and the official Malko site, which list winners post-1977 with countries. Goal 2 (identify which recipient(s) after
1977 have nationalities tied to a defunct country) requires confirming that the listed country for a winner corresponds to a former
sovereign state; the strongest candidate is 1983 winner Claus Peter Flor listed as Germany, which could reflect GDR (East Germany).
We will verify the official listing shows ’Germany’ for 1983 and confirm GDR is listed as a former sovereign state. Goal 3 (confirm
uniqueness and extract first name) will be validated by scanning all post-1977 winners and ensuring no other winner’s listed country
is a defunct state; we will also corroborate the 1983 entry via an independent source. Goal 4 (resolve discrepancies and document
evidence) will be supported by capturing explicit lines from authoritative pages. We’ll execute the following in parallel: (a) crawl
the official winners page to extract the 1983 line verbatim; (b) crawl the list of former sovereign states to extract the GDR line;
(c) web search for an independent confirmation of the 1983 Malko winner; (d) web search for an official/press DR (Danish Radio)
confirmation of Claus Peter Flor as 1983 winner.</think>
<tools>["name": "crawl_page", "arguments": "url": "https://malkocompetition.dk/winners/all", "query": "Return the exact winner
line for 1983 verbatim, including the winner’s name and the country label as displayed.", "name": "crawl_page", "arguments": "url":
"https://en.wikipedia.org/wiki/List_of_former_sovereign_states", "query": "Find and extract the exact line listing ’German Demo-
cratic Republic’ in the Europe section.", "name": "web_search", "arguments": "query": "Claus Peter Flor 1983 Malko Competition
winner", "name": "web_search", "arguments": "query": "site:dr.dk C̈laus Peter FlorM̈alko 1983"]</tools>

Step 8 - User

Results for tool call crawl_page with arguments ’url’: ’https://malkocompetition.dk/winners/all’, ’query’: "Return the exact winner
line for 1983 verbatim, including the winner’s name and the country label as displayed.": - 1983 Claus Peter Flor —————-
Germany
Results for tool call crawl_page with arguments ’url’: ’https://en.wikipedia.org/wiki/List_of_former_sovereign_states’, ’query’:
"Find and extract the exact line listing ’German Democratic Republic’ in the Europe section.": No relevant information
Results for tool call web_search with arguments ’query’: ’Claus Peter Flor 1983 Malko Competition winner’: 1. [All Win-
ners](https://malkocompetition.dk/winners/all) Source: Unknown source ... 1983. Claus Peter Flor. Germany. 1980. Maximiano
Valdes. Chile. 1977. Philip Greenberg. United States. 1974. Gotthard Lienicke. 1971. Winston Dan Vogel. United ...
2. [Malko Competition](https://en.wikipedia.org/wiki/Malko_Competition) Source: Unknown source Recipients ; 1983, Claus Peter
Flor, b. 1953 ; 1986, Kazufumi Yamashita, b. 1961 ; 1989, Fabio Mechetti, b. 1957 ; 1992, Jin Wang, b. 1960.
3. [In a Battle of the Batons, a Barely Visible Alchemy](https://www.nytimes.com/2014/12/11/arts/music/elim-chans-flick-
conducting-prize-is-rare-win-for-a-woman.html) Date published: Dec 10, 2014 Source: Unknown source The Malko in Copen-
hagen, which began in 1965, produced Claus Peter Flor in 1983 and Rafael Payare in 2012, but few others of real note.
4. [Malko Competition](https://www.facebook.com/malkocompetition/) Source: Unknown source ... Claus Peter Flor, David
Robertson, Mikael Beier Rie Koch, Christina ... CONGRATULATIONS TO THE WINNER OF MALKO COMPETITION 2024!
"I am going to tell ...

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

5. [Flor, Claus Peter](https://www.encyclopedia.com/arts/dictionaries-thesauruses-pictures-and-press-releases/flor-claus-peter-0)
Source: Unknown source ... Competition in Katowice, and subsequently took prizes in the Kubelik Competition in Lucerne (1982)
and in the Malko Competition in Copenhagen (1983). From ...
Results for tool call web_search with arguments ’query’: ’site:dr.dk "Claus Peter Flor" Malko 1983’: 1. [Alle tiders
programoversigter](https://www.dr.dk/alletidersprogramoversigter/?from=1989-01-01&to=1989-01-31&date=1989-01-29) Source:
Unknown source Dirigent er Malko-prisvinderen fra 1983, Claus Peter Flor. Produceret af Fernsehen der DDR. TVTeater- og
Musikafdelingen. (30-505684-50) Balletmusik af ...

Step 8 - Assistant

<think>We have four goals to advance in parallel. Goal 1 (authoritative recipient list with nationalities) is satisfied by the crawled
Wikipedia page and the official Malko winners page, which list winners post-1977 with countries. Goal 2 (identify which recipient(s)
after 1977 have nationalities tied to a defunct country) points to 1983 winner Claus Peter Flor listed as Germany; to align this with
a country that no longer exists, we must verify that East Germany (German Democratic Republic) is considered a former sovereign
state and that Flor is East German by birth (Leipzig, GDR). We’ll extract an authoritative line from Wikipedia’s list of former
sovereign states and confirm Flor’s Leipzig birth (GDR) from his bio. Goal 3 (confirm uniqueness and extract the first name)
requires ensuring no other post-1977 winner’s recorded nationality corresponds to a defunct country; our earlier crawls show others
are Chile, Japan, Brazil, Austria, Venezuela, Taiwan, United States, Belarus, South Korea—none defunct. We’ll finalize the first
name as ’Claus’. Goal 4 (resolve discrepancies and document evidence) will be supported by capturing explicit lines from the former
states list and Flor’s bio. Executing these tool calls in parallel now.</think>
<tools>["name": "crawl_page", "arguments": "url": "https://en.wikipedia.org/wiki/List_of_former_sovereign_states", "query":
"Extract the exact line containing ’German Democratic Republic’ from the Europe section to confirm it is listed among former
sovereign states.", "name": "crawl_page", "arguments": "url": "https://en.wikipedia.org/wiki/Claus_Peter_Flor", "query": "Extract
the lead sentence including birthplace; confirm he was born in Leipzig and the parenthetical birth date/year.", "name": "crawl_page",
"arguments": "url": "https://malkocompetition.dk/winners/all", "query": "Return the exact line for 1983 showing ’Claus Peter Flor’
and the country label as displayed."]</tools>

Step 9 - User

Results for tool call crawl_page with arguments ’url’: ’https://en.wikipedia.org/wiki/List_of_former_sovereign_states’, ’query’:
"Extract the exact line containing ’German Democratic Republic’ from the Europe section to confirm it is listed among former
sovereign states.": No relevant information
Results for tool call crawl_page with arguments ’url’: ’https://en.wikipedia.org/wiki/Claus_Peter_Flor’, ’query’: ’Extract the lead
sentence including birthplace; confirm he was born in Leipzig and the parenthetical birth date/year.’: - Lead sentence (exact):
"Claus Peter Flor (born 16 March 1953, Leipzig) is a German conductor." - Confirmation: Birthplace — Leipzig; parenthetical birth
date/year — 16 March 1953 (1953). - Supporting metadata on the page: category "1953 births" and "Musicians from Leipzig."
Results for tool call crawl_page with arguments ’url’: ’https://malkocompetition.dk/winners/all’, ’query’: "Return the exact line for
1983 showing ’Claus Peter Flor’ and the country label as displayed.": - 1983 Claus Peter Flor —————- Germany

Step 9 - Assistant

<think>We have four goals to advance in parallel. Goal 1 (authoritative recipient list with nationalities) is satisfied by the crawled
Wikipedia page and the official Malko site, which list winners post-1977 with countries. Goal 2 (identify which recipient(s) after
1977 have nationalities tied to a defunct country) hinges on confirming that East Germany (German Democratic Republic) is a former
sovereign state and that the 1983 winner’s nationality effectively corresponds to that defunct country. We have partial confirmation
(East Germany existed 1949–1990; Claus Peter Flor born in Leipzig, 1953, thus East German by birth), but we still need an explicit
listing of ’German Democratic Republic’ on a former-sovereign-states list. Goal 3 (confirm uniqueness and extract the first name)
requires checking that no other post-1977 winner’s recorded nationality corresponds to a defunct country; our earlier sweep suggests
none do (Chile, Japan, Brazil, Austria, Venezuela, Taiwan, United States, Belarus, South Korea). Goal 4 (resolve discrepancies and
document evidence) will be strengthened by obtaining an explicit citation that ’German Democratic Republic’ is a former sovereign
state. I will therefore: (a) search for an alternative authoritative list explicitly containing ’German Democratic Republic’; (b) attempt
the English Wikipedia list again with a more targeted query; and (c) add a third search variant to maximize chances. These can be
done in parallel as they are independent. Once confirmed, we can confidently conclude the unique case is 1983 winner Claus Peter
Flor and provide the first name ’Claus’.</think>
<tools>["name": "web_search", "arguments": "query": s̈ite:wikipedia.org, List of former sovereign states, German Democratic
Republic, "name": "crawl_page", "arguments": "url": "https://en.wikipedia.org/wiki/List_of_former_sovereign_states", "query":
"Search the page for the exact string ’German Democratic Republic’ and return the surrounding list context or the exact line
indicating it is included.", "name": "web_search", "arguments": "query": "List of former sovereign states German Democratic
Republic"]</tools>

Step 10 - User

Results for tool call web_search with arguments ’query’: ’site:wikipedia.org "List of former sovereign states" "German Demo-
cratic Republic"’: 1. [List of former sovereign states](https://en.wikipedia.org/wiki/List_of_former_sovereign_states) Source: Un-
known source List of former sovereign states. Article · Talk. Language; Loading. . . Download ... German Democratic Republic
(1949–1990) (also known as East Germany or GDR) ...
2. [List of sovereign states by date of formation](https://en.wikipedia.org/wiki/List_of_sovereign_states_by_date_of_formation)
Source: Unknown source German Democratic Republic (commonly referred to at the time as East Germany) ... List of former
sovereign states · List of national constitutions · List of ...
3. [Former countries in Europe after 1815](https://en.wikipedia.org/wiki/Former_countries_in_Europe_after_1815) Source: Un-
known source Sovereign countries ; German Democratic Republic, 1949, 1990 ; Georgia (Democratic Republic), 1918, 1921 ;
German Empire, 1871, 1918 ; Greece (Kingdom), 1832, 1924 ...
4. [File:Flag map of East Germany (1959–1990).svg](https://en.m.wikipedia.org/wiki/File:Flag_map_of_East_Germany_(1959Source:
Unknown source List of former sovereign states · User:AridCeption. Usage on es.wikipedia.org ... SVG maps of the German
Democratic Republic · SVG national flags of East ...
5. [Country](https://en.wikipedia.org/wiki/Country) Source: Unknown source World portal · Country (identity) · Lists by country ·
List of former sovereign states ... German Democratic Republic, Federal Republic of Germany (but Germany) ...
Results for tool call crawl_page with arguments ’url’: ’https://en.wikipedia.org/wiki/List_of_former_sovereign_states’, ’query’:
"Search the page for the exact string ’German Democratic Republic’ and return the surrounding list context or the exact line indi-
cating it is included.": No relevant information

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Results for tool call web_search with arguments ’query’: ’"List of former sovereign states" "German Democratic Republic"’: 1.
[List of former sovereign states](https://en.wikipedia.org/wiki/List_of_former_sovereign_states) Source: Unknown source List of
former sovereign states. Article · Talk. Language; Loading. . . Download ... German Democratic Republic (1949–1990) (also
known as East Germany or GDR) ...
2. [List of sovereign states by date of formation](https://en.wikipedia.org/wiki/List_of_sovereign_states_by_date_of_formation)
Source: Unknown source German Democratic Republic (commonly referred to at the time as East Germany) ... List of former
sovereign states · List of national constitutions · List of ...
3. [List of former sovereign states](https://en-academic.com/dic.nsf/enwiki/11825029) Source: Unknown source List of former
sovereign states. List of former sovereign states. This page ... the German Democratic Republic (East Germany) in 1990 joined the
Federal ...
4. [Countries that No Longer Exist 2025](https://worldpopulationreview.com/country-rankings/countries-that-no-longer-exist)
Source: Unknown source German Democratic Republic (East Germany), 1949, 1900, Germany. German Empire ... List of Former
Sovereign States - Wiki. Other Categories.
5. [Former countries in Europe after 1815](https://www.wikiwand.com/en/articles/Former_countries_in_Europe_after_1815)
Source: Unknown source German Democratic Republic ... See also. List of historic states of Germany · List of historic states
of Italy. General. List of former sovereign states ...
Note: Now, you should analyze the task completion status and provide recommendations for next steps.

Step 10 - Assistant

<think>Let me analyze the completion status of the plan based on the conversation before.</think>
<summary>## Plan Summary

The original plan had four goals with multiple execution paths:
- Goal 1: Identify authoritative lists of Malko Competition recipients (post-1977) with nationalities

- Path 1.1: Wikipedia + verification crawl
- Path 1.2: Official competition/archival sources
- Path 1.3: Reputable music databases and encyclopedias
- Path 1.4: News/features aggregation

- Goal 2: Determine which recipient(s) after 1977 have nationalities tied to a country that no longer exists
- Path 2.1: Cross-reference nationalities against lists of defunct countries - Path 2.2: Historical sovereignty check for

ambiguous cases - Path 2.3: Edge-case validation (regions vs. countries)

- Goal 3: Confirm uniqueness (only one such recipient after 1977) and extract the first name
- Path 3.1: Exhaustive post-1977 sweep and counting
- Path 3.2: Independent corroboration of the unique candidate’s nationality
- Path 3.3: First-name extraction and consistency check

- Goal 4: Resolve discrepancies and document evidence trail
- Path 4.1: Source prioritization and conflict resolution
- Path 4.2: Evidence packaging for auditability

Execution Status Analysis
Goal 1: Identify authoritative lists of Malko Competition recipients (post-1977) with nationalities
- Status: Completed
- Path Analysis:

- Path 1.1 (Wikipedia + verification crawl): Completed. Crawled the Wikipedia “Malko Competition” page and extracted the
Recipients list post-1977 with implied nationalities/countries (e.g., United States, Venezuela, Taiwan, Japan, Chile, Germany).

- Path 1.2 (Official competition/archival sources): Completed. Crawled the official Malko site “All Winners” page and extracted
the winners list post-1977 with explicit country labels (e.g., “Germany” for 1983 Claus Peter Flor; “United States” for 2005 Mei-Ann
Chen, 2009 Joshua Weilerstein, 2018 Ryan Bancroft).

- Path 1.3 (Reputable music databases/encyclopedias): Partially touched. Found an encyclopedia.com entry confirming Claus
Peter Flor’s 1983 Malko win; not yet systematically applied to all names for nationality corroboration.

- Path 1.4 (News/features aggregation): Not executed beyond incidental NYT hits; not required for core enumeration.

Result consolidation:
- Post-1977 winners and countries (from Wikipedia and official site):

- 1980: Maximiano Valdés — Chile
- 1983: Claus Peter Flor — Germany
- 1986: Kazufumi Yamashita — Japan

- 1989: Fabio Mechetti — Brazil
- 1992: Jin Wang — Austria
- 1995: Jan Wagner — Venezuela
- 1998: Seikyo Kim — Japan
- 2005: Mei-Ann Chen — United States
- 2009: Joshua Weilerstein — United States
- 2012: Rafael Payare — Venezuela
- 2015: Tung-Chieh Chuang — Taiwan
- 2018: Ryan Bancroft — United States
- 2021: Dmitry Matvienko — Belarus
- 2024: Samuel Seungwon Lee — South Korea

Goal 2: Determine which recipient(s) after 1977 have nationalities tied to a country that no longer exists
- Status: In Progress (functionally resolved; documentation could be tightened)
- Path Analysis:

- Path 2.1 (Cross-reference nationalities against lists of defunct countries): Partially completed. We confirmed East Germany
(German Democratic Republic) ceased to exist in 1990 and that Claus Peter Flor was born in Leipzig (1953), i.e., in the GDR.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

However, attempts to extract the exact “German Democratic Republic” line from the Wikipedia “List of former sovereign states”
page via crawl returned no relevant snippet (likely due to dynamic rendering). We did obtain search snippets indicating its presence
on that page.

- Path 2.2 (Historical sovereignty check for ambiguous cases): Completed. Crawled the “East Germany” page confirming it was
a sovereign state (1949–1990) that ceased to exist upon reunification.

- Path 2.3 (Edge-case validation): Completed. Validated that Taiwan is not a sovereign state in the conventional sense and thus
does not qualify; other countries (Chile, Japan, Brazil, Austria, Venezuela, United States, Belarus, South Korea) are extant.
- Interim conclusion:

- Among post-1977 winners, only 1983 winner Claus Peter Flor’s recorded nationality (“Germany”) plausibly maps to a country
that no longer exists in its sovereign form (the German Democratic Republic, East Germany). No other post-1977 winner’s country
of record is defunct.
Blocked/inefficient aspects and optimizations:
- The repeated attempts to extract the exact “German Democratic Republic” line from the “List of former sovereign states” page via
crawl were inefficient and returned no content. Optimize by:

- Using a static mirror (e.g., Wikipedia’s mobile view or the PageContent handler) or an archived snapshot.
- Querying an alternative reputable list (e.g., “Former countries in Europe after 1815”) where the GDR line is easily extractable.
- Searching for the exact string on a text proxy (e.g., r.jina.ai) to return the raw HTML snippet.

Goal 3: Confirm uniqueness (only one such recipient after 1977) and extract the first name
- Status: Completed
- Path Analysis:

- Path 3.1 (Exhaustive post-1977 sweep and counting): Completed. Enumerated all winners post-1977 and checked their coun-
tries; only 1983 (Claus Peter Flor) fits the defunct-country criterion when interpreted as East Germany/GDR.

- Path 3.2 (Independent corroboration of the unique candidate’s nationality): Completed. Wikipedia bio states “(born 16 March
1953, Leipzig) is a German conductor,” and the official Malko winners page lists him under “Germany.” Additional reputable
mentions (NYT, encyclopedia.com) confirm his Malko win in 1983.

- Path 3.3 (First-name extraction and consistency check): Completed. First name consistently “Claus” across sources.

Goal 3 result:
- Unique qualifying recipient (post-1977): Claus Peter Flor.
- First name to report: Claus.

Goal 4: Resolve discrepancies and document evidence trail
- Status: In Progress
- Path Analysis:

- Path 4.1 (Source prioritization and conflict resolution): Completed. Prioritized official Malko site and Wikipedia; resolved
minor labeling differences (e.g., “Germany” vs. “East Germany”) by historical confirmation that Leipzig 1953 = GDR.

- Path 4.2 (Evidence packaging): Partially completed. We have:
- Official winners list (malkocompetition.dk/winners/all) showing 1983 “Claus Peter Flor — Germany.”
- Wikipedia “Malko Competition” page listing 1983 Claus Peter Flor.
- Wikipedia “East Germany” page confirming the GDR existed 1949–1990 and ceased to exist.
- Wikipedia “Claus Peter Flor” page confirming birth in Leipzig (1953).
- Search snippets indicating “German Democratic Republic” is on Wikipedia’s “List of former sovereign states.”
Missing: a directly crawlable, citable line explicitly listing “German Democratic Republic” from a reputable “former

countries” page.

Optimization for evidence packaging:
- Instead of repeatedly querying the standard Wikipedia page, fetch the mobile view or use the raw content endpoint:

- Try: https://en.m.wikipedia.org/wiki/List_of_former_sovereign_states (then search for “German Democratic Republic”).
- Or: https://en.wikipedia.org/w/index.php?title=List_of_former_sovereign_states&action=render (then search for the string).

Dependencies affecting parallel execution:
- Goal 3 depended on Goal 2’s determination that only 1983 fits the defunct-country criterion; this dependency is resolved.
- Goal 4’s evidence packaging can proceed independently of the others but benefits from finalized conclusions of Goals 2 and 3.

Next Parallel Sub-Paths
Based on the current execution status, the following sub-paths should be solved in parallel:
- Goal 2:

- Sub-path: Capture a citable line that “German Democratic Republic (1949–1990)” appears on a reputable “former sovereign
states” list.

- Actions:
- Crawl https://en.m.wikipedia.org/wiki/List_of_former_sovereign_states and extract the exact line containing “German Demo-

cratic Republic.”
- Alternatively, crawl https://en.wikipedia.org/wiki/Former_countries_in_Europe_after_1815 and extract the line “German

Democratic Republic, 1949, 1990.”

- Goal 4:
- Sub-path: Compile a concise evidence bundle with verbatim quotes and URLs: - Official winners entry: “1983 Claus Peter

Flor — Germany.”
- East Germany page: “The GDR . . . ceased to exist . . . on 3 October 1990.”
- Claus Peter Flor bio: “born 16 March 1953, Leipzig.”
- Former states list: “German Democratic Republic (1949–1990).”

- Goal 1 (optional hardening, low priority):
- Sub-path: Add one non-Wikipedia corroboration for at least one post-1977 winner’s nationality (e.g., GRAMOPHONE or

official orchestra bios for Mei-Ann Chen, Joshua Weilerstein) to further validate the “no defunct country” status for others.

Final answer readiness: - The unique qualifying recipient (post-1977) is 1983 winner Claus Peter Flor; his recorded nationality is
Germany, corresponding to the former sovereign state German Democratic Republic (East Germany). Therefore, the first name is

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

“Claus.” All goals necessary to support this conclusion are functionally complete; remaining work is purely on tightening citations
for Goal 4.</summary>

Step 11 - User

Based on the plan/summary and previous conversations, continue solving the task!

Step 11 - Assistant

<think>We have four goals to advance in parallel. Goal 1 (authoritative lists) is already satisfied with Wikipedia and the official
Malko site; no new tool calls are needed there. Goal 2 requires explicit verification that the country tied to the qualifying recipient is
listed as a former sovereign state; our prior attempts to extract the exact line from the desktop Wikipedia page failed, so we’ll use the
mobile version and an alternative reputable list to capture a citable line. Goal 3 (uniqueness and first name) is effectively resolved,
but we will maintain parallel progress toward Goal 4 (evidence packaging) by securing clean citations. Accordingly, in this step we
will: (a) crawl the mobile Wikipedia ’List of former sovereign states’ to extract the ’German Democratic Republic’ line; (b) crawl
the ’Former countries in Europe after 1815’ page to extract the GDR entry as an alternative authoritative source; and (c) reconfirm
the official Malko winners page entry for 1983 to have a clean verbatim line for evidence packaging. These calls are independent
and can run in parallel.</think>
<tools>["name": "crawl_page", "arguments": "url": "https://en.m.wikipedia.org/wiki/List_of_former_sovereign_states",
"query": "Find and return the exact line containing ’German Democratic Republic’ (East Germany or
GDR) to confirm it is listed among former sovereign states.", "name": "crawl_page", "arguments": "url":
"https://en.wikipedia.org/wiki/Former_countries_in_Europe_after_1815", "query": "Extract the line listing ’German
Democratic Republic’ with its years to confirm it is a former country.", "name": "crawl_page", "arguments": "url":
"https://malkocompetition.dk/winners/all", "query": "Return the exact line for 1983 showing ’Claus Peter Flor’ and the country
label as displayed."]</tools>

Step 12 - User

Results for tool call crawl_page with arguments ’url’: ’https://en.m.wikipedia.org/wiki/List_of_former_sovereign_states’, ’query’:
"Find and return the exact line containing ’German Democratic Republic’ (East Germany or GDR) to confirm it is listed among
former sovereign states.": No relevant information
Results for tool call crawl_page with arguments ’url’: ’https://en.wikipedia.org/wiki/Former_countries_in_Europe_after_1815’,
’query’: "Extract the line listing ’German Democratic Republic’ with its years to confirm it is a former country.": - German
Democratic Republic — Establishment: 1949; Dissolution: 1990; Today part of: Germany. Note: Also known as East Germany;
was the Soviet-controlled government of Germany after World War II.
Results for tool call crawl_page with arguments ’url’: ’https://malkocompetition.dk/winners/all’, ’query’: "Return the exact line for
1983 showing ’Claus Peter Flor’ and the country label as displayed.": 1983 Claus Peter Flor —————- Germany

Step 12 - Assistant

<think>We have four goals to advance in parallel. Goal 1 (authoritative lists) is satisfied via the Wikipedia ’Malko Competition’
page and the official Malko ’All Winners’ page, both crawled and listing winners post-1977 with countries. Goal 2 (identify which
recipient(s) after 1977 have nationalities tied to a defunct country) is resolved by confirming that the 1983 winner, Claus Peter
Flor, was born in Leipzig (1953) and thus East German; East Germany (German Democratic Republic) is confirmed as a former
sovereign state via the ’Former countries in Europe after 1815’ page. Other post-1977 winners’ countries (Chile, Japan, Brazil,
Austria, Venezuela, Taiwan, United States, Belarus, South Korea) are extant. Goal 3 (confirm uniqueness and extract the first name)
is satisfied: only 1983 fits the defunct-country criterion; first name is consistently ’Claus’. Goal 4 (evidence packaging) has sufficient
citations: official winners entry (1983 Claus Peter Flor — Germany), Wikipedia East Germany page (ceased 1990), and the former
countries list (German Democratic Republic 1949–1990). All goals are resolved; proceed to final answer.</think>
<tools>["name": "final_answer", "arguments": "answer": "Claus"]</tools>

Final Answer

Answer: Claus

40

