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Abstract

The sparse additive model (SpAM) offers a trade-off between interpretability and
flexibility, and hence is a powerful model for high-dimensional research. This pa-
per focuses on the variable selection, i.e., the univariate function selection problem
in SpAM. We establish the minimax separation rates from both the perspectives of
sparse multiple testing (FDR + FNR control) and support recovery (wrong recov-
ery probability control). We further study how adaptation to unknown smoothness
affects the minimax separation rate, and propose an adaptive selection procedure.
Finally, we discuss the difference between estimation and selection in SpAM: Pro-
cedures achieving optimal function estimation may fail to achieve optimal univari-
ate function selection.

1 Introduction

The Sparse Additive Model (SpAM) is a pivotal topic of recent statistical research [Raviknmar ef all,
20089, Meier et all, 200Y, Koltchinskn and Yuan, P00, Raskutti et all, P01, Dalalyan et all, 2014,
Yuan_and Zhon, POTA, [Iyagl et all, 016, [Tan and Zhang, 2019, Haris_ef all, 7.(,)’),’)]. It extends the
generalized additive model [Hasfie_and Tibshirani, T987], balancing interpretability and flexibility
while avoiding the curse of dimensionality and adapting to high-dimensional settings.

In this paper, we focus on the variable selection, i.e., univariate function selection problem of the
SpAM, which is a fundamental problem with broad implications in multi-channel detection [[ngstef
and Lepski, Z003], multi-task learning [Wang et all, 2020], sparse neural network [Xu efall, PO73],
and so on. We consider a Gaussian white noise (GWN) model with p covariates x = (z1,--- ,x,) €
XP, which takes the form as

p
dY, = f(z)de + 0dB, = Y _ f;(x;)dz; + 0dB,,
j=1

where X is the domain of each covariate x;, B, is a standard Wiener process on X?, and o > 0
measures the intensity of the white noise. We assume f; is the univariate function corresponding
to variable x;. Under the setting of sparsity, the response Y, is influenced by no more than s
covariates, and hence f can be expressed as f(z) = Zjesf fi(z;), where Sy C {1,--- ,p}is the
index set of these support covariates. In this continuous-time SpAM framework, our main goal is
to recover the index set Sy, i.e., to select which f; # 0. This paper studies the univariate function
selection in SpAMs from two perspectives—namely, as a sparse multiple testing problem and as a
support recovery problem. We employ the truncated procedures and establish the non-asymptotic
minimax separation rates, delivering, to our knowledge, the first optimal finite-sample guarantees
for univariate function selection in SpAMs.
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1.1 Related work

Background of variable selection The variable selection problem has attracted significant interest
recently [Bufucea ef all, POTR, Rabinovich_ef all, D020, Belifser and Nurmshev, 20727, Song and
Cheng, 2073, Bufucea ef all, 20234, Abraham ef all, 2074]. The general assumption is that the
response depends on only a few covariates, and the main aim is to find them. This problem can be
framed as either a sparse multiple testing problem (controlling False Discovery Rate (FDR), False
Negative Rate (FNR), etc.) [Rabinovich’efall, P(170], Song and Cheng, 073, Abraham ef-all, P(074],
or a support recovery problem (controlling Hamming loss) [Wainwright, P00, Bufuceaef all, POTE,
(Gao_and Sfoev, D020, Bufucea ef all, P07734], based on different setting of the loss function. Much
of the existing studies concentrated on the sparse sequence model X; = 5; +¢;, ¢ = 1,--- ,p
independently, with assuming >, 1(3; # 0) < s and each ¢; drawn from distributions like
Gaussian [Bufiiceaef-all, POTR, Song and Cheng, P073] or generalized Gaussian [(Gao_and_Sfoev,
D020, Rabmovich ef all, 2020, Abraham ef all, 2074]]. Though these studies demonstrated interesting
phase-transition phenomena and established the asymptotically sharp minimax separation rate, they
cannot be directly applied to the univariate function selection in SpAM.

Background of univariate function selection in SpAM  Univariate function selection in SpAM
stands as a pivotal problem in statistical learning [Lin and Zhang, P00f, Raviknmar_ef all, 2009,
Huang et all, 2010, Chonldechova and Hastie, PO1Y, Xu et all, 2016, Wood et all, 2015, Bntncea and
Stepanova, 2017, Daief-all, PO73]. Most existing studies firstly provided minimax-optimal estima-
tors for the function f via M-estimation with group-lasso-type penalties on each f;. Then, by utiliz-
ing the estimation results, the selection performances were often established as by-products [Ravikii
mar ef all, P009, Huang et all, P0T0, Daiefall, 2073]. Although these methods ensured asymptotic
variable selection consistency [Ravikumar ef all, 2009, Huang et all, ?010] or FDR control [Daref all,
2073], they did not guarantee minimax optimality for the univariate function selection problem. This
implies that their minimum signal conditions, typically quantified by “min;ecs, | ;|3 > some rate”,
are sufficient but not necessary: Their signal strength assumptions may be overly restrictive.

Existing optimal univariate function selection in SpAM From the viewpoint of support recov-
ery with Hamming loss, [ngster and Stepanovd [2014] and Butucea and Stepanova [Z0T7] provided
the minimax optimal (i.e., necessary and sufficient) signal condition for exact support recovery and
almost-full support recovery, respectively. Comminges and Dalalyar [Z0T2] analyzed support recov-
ery in a p-dimensional nonparametric regression with an intrinsic s-variate underlying function. In
an additive model allowing k-dimensional interaction effects, Stepanova and Turcicova [20725, P024]
provided the optimal signal condition for exact support recovery. These studies offered asymptot-
ically minimax optimal results in some specific function classes, but may not be persuasive in the
general function space with a finite sample size. For instance, they rely on certain additional as-
sumptions, like logp = 0(0’2/ (2a+1)) and 0 — 0, in the Sobolev space with smoothness parameter
o.

Inspiration from cutting-edge work Building on the monotone likelihood ratio property, Bufucea
ef-all [Z0734] recently established rate-optimal signal conditions for support recovery under group
sparsity, improving upon conclusions from Conniciefall [PZOTT]. Kofekal'and Gad [2074] extended
the hard-thresholding estimator of Collier_ef all [ZOI7] to develop a minimax optimal goodness-
of-fit test for SpAM (i.e., testing whether f = > jes; f; = 0). These advances motivate the
development of a non-asymptotic minimax optimal univariate function selector within a generalized
SpAM framework, covering Sobolev-smooth, analytic, and other function classes.

1.2 Main contributions and organization

This paper answers the following questions:
In a generalized SpAM framework, can we achieve non-asymptotic and minimax
optimal univariate function selection? What is the difference between function

estimation and univariate function selection?

The main contributions are threefold:



1. Minimax separation rates From both the viewpoints of sparse multiple testing
(FDR+FNR control) and support recovery (wrong recovery probability control), we es-
tablish the non-asymptotic minimax separation rates for univariate function selection in a
generalized SpAM framework. This result is, to our knowledge, the first optimal finite-
sample guarantees. We also develop truncated-type selectors to achieve the minimax rate-
optimality, respectively.

2. Minimax adaptation We provide a rate-optimal selection procedure that adapts to the
smoothness parameter of the Sobolev spaces. We show that an additional log (log(a_z))
term in the signal condition is required for this adaptation.

3. Difference between estimation and selection Within the class of truncated-type estima-
tors, we demonstrate that the optimal function estimations can not yield optimal univariate
function selection in some cases. This gap underscores the necessity to proceed differently
in selection versus estimation, a finding with deep statistical implications.

The rest of the paper is organized as follows: Section [ establishes the notation used throughout the
paper. Section D introduces the model setup and the background of our problem. Section O estab-
lishes the minimax separation rates for univariate function selection from two viewpoints. Section @
provides a rate-optimal selector adaptive to the smoothness parameter in the Sobolev space. Section
B offers an in-depth discussion about the difference between estimation and selection in SpAMs.
The limitations, future directions, numerical experiments, and all technical proofs are provided in
the appendices.

1.3 Notation

For the given sequences a,, and b,,, we write that a,, = O(b,,) and a,, < b, (resp. a, = Q(b,)
and a,, 2 by) if a, < cby, (resp. a, > cby,) for some absolute positive constant ¢. We write that
an < by if a, = O(b,) and b, = O(a,). Denote by [m] the set {1,2,--- ,m}, and 1(-) the
indicator function. Denote by = V y the maximum of x and y, and z A y the minimum of x and y.

Denote by Sy = {j € [p] : f; # 0} C [p] the support univariate function set of a SpAM function

. . . 1/2 .
f. For a square intergral function f with support X, denote by [|f[2 = ([, f*(z)dz) " its Lo
norm. Let C,Cy,C1,--- denote absolute positive constants whose values may change from one
occurrence to the next.

2 Preliminary and problem setup

Let us recall that we observe Y, and z € x? such that

JESy

To ensure the identifiability of univariate functions, we assume | + fi(x;)dz; = 0 for each j € [p].
In theoretical research, the GWN model and nonparametric regression model are asymptotically
equivalent, as shown by Brown and Tow [[996], Reil} [200%]". Moreover, the GWN model sim-
plifies the analysis by avoiding unnecessary technical complexities while keeping the focus on the
statistical essence [Kofekal'and Gaq, 2024]. Consequently, many foundational nonparametric statis-
tics theories are developed based on the GWN model [Fan, 1991, Donoho and Tohnsfone, T998,
Barand, D002, [[sybakov, P00Y, Comminges and Dalalyan, P0172, Iohnsfand, POT7, Han“ef all, PO20].
Therefore, to maintain this theory-driven tradition, we conduct our analysis based on the GWN
model ().

2.1 Function settings

We propose a general smoothness assumption based on the series expansion of univariate functions.
For each j € [p], assume that f; : ¥ — R can be decomposed from an orthonormal basis {1; };en+,

as fi(x;) = D2, 0ijbi(x;), where 055 = 05 (f;) := [ ¥i(x;)fj(x;)dx; is the coefficient of 1;

'Also see Section 1.10 of [[Sybakoy| [Z009] for the connection between the GWN and nonparametric regres-
sion.



for each i € NT. Define 6.; = 0.;(f;) := {0s; };en+. We assume that each f; is sufficiently smooth
and belongs to the ellipsoid class

&= {szzeiﬂ/}ilzu_ﬁl}7 )
i=1

i=1 "

where {y;}32, is a non-increasing sequence of positive numbers, i.e., 11 > pg > ---, and we
assume 17 < 1 to ensure f; has finite Ly norm. This ellipsoid setting is a broad smoothness assump-
tion that renders our theoretical results applicable to Reproducing Kernel Hilbert Space (RKHS)
[Raskutfi-ef-all, ZOT7, [Ynan-and Zhoi, 2016, Kofekal_and Gad, 20724, Fourier basis [Comminges
and Dalalyan, P0T?, [ngster and Stepanova, 20014, Butucea and Stepanova, 2(117], etc. The function
space of SpAM is defined as

P P
For=S f@) =) filw;): Y 1(f; #0) <, f; € Eforall j € [p] p . A3)
j=1 j=1

Each f € F; corresponds uniquely to a © = O(f) := (0.1(f1), -+ ,0.,(fp)) € RN"XP_ Therefore,
f € Fs and © € F, will be used interchangeably in the subsequent text. For every f € F, and
every i € NT,j ¢ [p], based on the continuous process Y, in model (), we have access to the
following random variables

Xij = / 'l/)l(.’ﬂ])dY$ = Gij +/ wl(LJ)O'dBI ~ N(Gij,az).
xP xP

By orthogonality, the set X = {X;;} is a collection of independent random observations.

i€NT,j€[p]
2.2 Problem setup

Within the SpAM space F;, our primary task is to establish a minimax optimal (i.e., necessary and
sufficient) signal condition of each support f;, for the univariate function selection. Before delving
into our analysis, we revisit the function estimation problem in SpAM, where Raskuffi ef-all [20T7]
established the minimax rate as:

. 2
inf sup Ey (Hf(X) - fH ) = s X o?log(ep/s) +5 X max ((0%k) A ) ,
[ fexs 2 ~—— S

High-dimensional selection error —
infz supy es By, 155 (xX.5)—F; ||§

“

which is composed of s times the "high-dimensional selection error" and s times the "minimax

estimation rate of a single univariate function", with no interplay between these two parts. This

result shows that the first term 02s log(ep/s) is independent of the univariate function space £, and

the estimation term (the second term) is dimension-free (p-free) [Kofekal'and GGad, 2024l]. Therefore,

it is natural to speculate that the univariate function selection shares a similar property, with its
optimal signal condition, quantified by the squared Lo norm, of the rate:

o log(ep/s) + max ((02 VEk) A Mk) , Q)
~— keN+t
High-dimensional selection error

where the second term is the minimax separation rate for the goodness-of-fit test of a single univari-
ate function in £ [Barand, 2O07].

However, in Section B we prove that this is not the case. In univariate function selection, there is an
interplay between the high-dimensional sparse structure (selection error) and the ellipsoid space £,
complicating the form of its minimax rate.

3 Main result: optimal univariate function selection

In this section, we demonstrate that the truncated-type selectors lead to minimax optimal re-
sults. Define the decoder n; = n;(f;) = 1(f; # 0), and the corresponding vector n =



n(f) == (m(fr), - ,np(fp)) € {0,1}P. We also define the selector, i.e., the estimation of 7,
as ) = NX) = (mX), - ,5p(X)) € {0,1},and S = {j € [p] : 7j; = 1} as the estimated
support set corresponding to 7). Define the SpAM space with the signal strength condition as

Fo(r®) =3 f =" fi € Fa: | fjll3 = r* forall f; £0 ¢, ©
J€[p]

2

indicating that each support f; has a signal separated from 0. Here 7“ is a positive value and we

.- . 02,
additionally assume r? < gy to ensure Fy(r?) # 0 (since ||f;[|3 < p1 Y, 25 < pa based on
f;i € £). In the next two subsections, we derive the minimax separation rates from two viewpoints,
sparse multiple testing and support recovery, respectively.

3.1 From sparse multiple testing: FDR + FNR control

Preliminary setup From the viewpoint of testing, the selection can be realized as a multiple-
testing problem

Hojlszo, Hljlfjfo, foralljé[p],
under the exactly s-sparse function space

FeF_(r?) == fieF(?): > 1f; #0)=s

J€lp] JE[p]

We consider the multiple testing risk combined with the false discovery rate (FDR) plus the false
negative rate (FNR), which is of the form

R(f.7) = By ( Zesesy ¥ 2jes; (1 —ﬁj)> |

LV e s 5

This combined risk balances the proportion of type I and type II errors, and is frequently used in the
sparse testing [[Atias-Casfra and Chen, DT, Rabinavich ef all, D020, Ahraham ef-all, 2074].

Definition 1 (Minimax separation rate of sparse multiple testing) We say €2, is the non-
asymptotic minimax separation rate of the sparse multiple testing problem for () if:

(1) Forall 6 € (0,1), there exists c5 > 0 depending only on § such that for all 0 < ¢ < cs,
inf  sup  R(f.9)>1-4.
i fe}—:S (cegest)
(2) Forall 6 € (0,1), there exists Cs > 0 depending only on § such that for all C > Cs,
inf  sup  R(f,7) <4,

T feF_s(Ce,,)

where inf;; denotes the infimum over all selector 7j(X) : RN xp 5 {0, 1}7.

K-truncated selector For each sequence X ;, we truncate by the first K entries and construct the
corresponding selector

K
’f];eSt(XAj) =1 <Z ij Z 02K+ /\Q(K)> ) ] S [p]v (7)
=1

where the truncation K := min {k € NT : yy < 0? klog(p/s)}, and the parameter \?(K) will

be determined in Theorem . Denote by 7°“** = (7{***,--- ,771¢**) € {0,1}” the corresponding
selector vector. The following theorem employs an analysis to control the combined risk at a low
level.



Theorem 1 (Upper bound for sparse multiple testing) Let & be an arbitrary number in (0,1),

and assume that =2 > 0“1;7%(;;/5), p/s > Cs., and s > Cjs 3. Then, assuming

6
r? > (\/S (\/10+ 2) + \@) max ( Vklog(p/s) /\uk) —a 2log(p/s) (8)
and taking

NH(K) = 202 ( 5K log (S%) +5log (;)) :

sup  R(f,7'*") <6,
fe]:=5(7‘2)

where Cs 1, Cs 2, Cs 3 are positive constants only determined by 6.

we have

The next theorem shows that the rate in (B) is also necessary for controlling the testing risk.

Theorem 2 (Lower bound for sparse multiple testing) Ler 6 be an arbitrary number in (0, 1),

and assume that 0~2 > C“lgif(p/s), p/s > Cso, and s > Cj 3. Then, for all r* satisfies

0<7r?<csq {(T log(p/s) +max( Vv klog(p/s) /\,uk)}

we have
H}f sup R(fa 77) Z 1- 5;
N feF=s(r?)

where Cs1,Cs,2,Cs 3 and cs 4 are four positive constants only determined by 0.

Therefore, combining Theorem [ and B, we establish the minimax separation rate for the sparse
multiple testing in the SpAM (M) as

h.ue = 0 10g(p/s) + mas (o7 /KTog(p/5) A pe) ©)

We also illustrate that a truncated-type selector possesses such minimax optimality.

Remark 1 (Truncation) So far, the equation (B) reveals that our initial speculation (B), in the end of
Section I, is inaccurate: The high-dimensional sparsity structure influences both terms in the min-
imax separation rate. This is because the selection problem is related to the chi-squared distribution,

whose heavy tail leads to the selection error of the rate o {log(p/s) + /Klog(p/s) } Therefore,
we have to choose an appropriate truncation level K to balance the residual signal strength py

with this composite error bound, i.e., px =< o {1og(p/s) + w/Klog(p/s)}. Consequently, the

high-dimensional structure affects the choice of truncation, revealing an interplay that is not only
sufficient but also necessary.

Remark 2 (SpAM and GSM) The Gaussian sequence model (GSM, mentioned in Section 1) can
be seen as a simplified SpAM, where 61; = 1 and 0;; = 0 for each i > 2 and j € S¢. Therefore, in
GSM, we can just choose truncation K = 1, and analyze the selection error caused by the Gaussian
distribution [Buftucea et all, 2018, Song and Cheng, P023]. In contrast, to get an optimal truncation
K in general SpAM space, our selector () requires trading off the truncation bias against sub-
exponential error. Both the analysis and outcome demonstrate that univariate function selection in
SpAM is more challenging than variable selection in GSM.

Additionally, our theoretical results can be extended to the following specific cases.
Corollary 1 Assume that all assumptions in Theorem B and Theorem [l hold. Then we have:

* Sobolev Take j1; =< i~ 2“ with smoothness parameter o, the minimax separation rate for
multiple testing is

E?est = g2 log(p/s) + (a log(p/s)) e .



* Finite dimension Take p11 = -+ = [ > Umt1 = Pm+2 = -+ - = 0 for some positive
integer m, the minimax separation rate for multiple testing is

o = 02 l0g(p/s) + (o2v/mlog(p/s) A ) -

* Exponential decay Take u; =< exp(—c1i?), where c; is a positive constant and v > 0,
the minimax separation rate for multiple testing is

—4
€y =< 0210g(p/s) + 02+/log(p/s) - log?i ()

log(p/s)

Remark 3 (Finite dimension case) We now give a further discussion of the finite dimension case.
—2 > log(p/s)

Under the assumption o o

, the minimax separation rate exhibits two regimes:

Vmlog(p/s) ~ -2 > log(p/s)
751 M1

1. If i < 02y\/mlog(p/s), then we derive that

m 2 o~ 2uy. In this case €2, < 02 log(p/s) + p1 < p1.

, leading

~ ~

2. If py = o%y/mlog(p/s), then we get €3, ,, < 0% log(p/s) +o2+/mlog(p/s), which aligns
with the minimax separation rate in the group sparsity setting [Bufiicea et all, PO73d].

Combining these cases gives a more intuitive separation rate
€rest = TN {02 (log(p/ s) + mlog(p/S)) ; ul} :

Here the minimum reflects our ellipsoid space constraint: by definition of £ and F(r?) in Section
2

02, .
-2 < uq, leading its Lo norm

70, every active univariate function f; obeys || f;]13 < p1 > e+ ul

upper bounded by 111.

In the case j11 < o%y/mlog(p/s), we have €2,,, < 1. In other words, to control FDR+FNR, we
would need each f; to satisfy ||f_j||_2 > Cui for some large constant C > 0. However, each
support f; obeys ||f_j|l2 < p1. Hence, there are basically no f; that can attain a detectable norm,
and the support recovery problem is essentially trivial in this case.

3.2 From support recovery: wrong recovery probability control

Preliminary setup The univariate function selection can also be viewed as a support recovery

problem We measure the selection error between the estimated support S and the true support S by
using the Hamming loss 1(7(X) # n(f)), where the probability of wrong recovery

Pf(< )#S(f)) (ﬁ(X)#n(f))=E(1(ﬁ(X)#n(f))>

wrigh{, 2007, Bufucea PT2| , 20234].

Definition 2 (Minimax separation rate of support recovery) We say >
minimax separation rate of support recovery for () if:

oc IS the non-asymptotic

(1) Forall 6 € (0,1), there exists cs > 0 depending only on ¢ such that for all 0 < ¢ < cs,

inf sup Py ((X) £n(f) 214

7 fEFs(ce2

rec

(2) Forall 6 € (0,1), there exists Cs > 0 depending only on § such that for all C > Cs,
e s Pr((X) £0() €0

N feFs(Ce

where inf;; denotes the infimum over all selector 7j(X) : RN xp 5 {0, 1}7.



Similar to Section Bl, we next establish the minimax separation rate for the support recovery prob-
lem in SpAM ().

Theorem 3 (Minimax separation rate of support recovery) Let & be an arbitrary number in
(0,1), and assume that c=2 > Cologp, p > Cs0, and s > Cs 3. Then the minimax separation rate

M1
for the support recovery problem with respect to the wrong recovery probability P ;(7(X) # n(f))
is
.. =oc’logp+ max ( VEklogp A Hk) (10)

The minimax separation rate for support recovery in (I) is a little greater than that for sparse multi-
ple testing in (8) (log p versus log(p/s)), showing that controlling the wrong recovery probability is
more demanding than controlling the combined risk (FDR + FNR). Indeed, sparse testing requires
|SAS| = o(s), while exact recovery requires | SAS| = o(1), necessitating a slightly stronger signal
condition. In addition, this discrepancy leads to a higher thresholding level for optimal selection in
support recovery, as detailed in the following.

Remark 4 (Rate-optimal selector) Under assumptions in Theorem B and the signal condition

r2>C’5{0 logp—l-max( v klogp /\,uk)}

the selector
(X -ﬂ-2}W20%¢Mo(vwma%wnkmwwn,jem (11)

controls the wrong recovery probability effectively:

sup Py (77°(X) #(f)) < 6

fEF(r?)

where K' := min {k e Nty <o?Vk logp} and Cys > 0 is a constant only determined by 6.

Remark 5 (Relation to existing work) For the Sobolev space with smoothness parameter o, we
rewrite the minimax separation rate () for exact support recovery as:

8a 2a . —2
9 _ 0‘4a+1 (logp) da+1 l‘f 10gp S O 2a+1 N (12)
ree o?logp ifo=2>logp > o,

5 ,
Therefore, in the case logp = o (0 2aF1 ) we match the rate derived from [[ngster and Stepanovd
[P0T4], Butucea and Stepanovad [PU17]. Additionally, our findings establish the non-asymptotic

—2
minimax separation rate for the case c=2 2 logp > oz+1, which was not provided in previous
studies. In this case, the selection error exhibits sub-Gaussian behavior, resulting in the rate aligning
with that in the Gaussian sequence model [Butucea et all, PUIS, Song and Cheng, 2023].

4 Adaptation to the smoothness

Thus far, our analysis has assumed full knowledge of the smoothness sequence {1;};cn+, which
is often unrealistic. This section investigates how adaptation to unknown smoothness affects the
minimax separation rate. For 51mp11c1ty, We consider the Sobolev space with y; = i2%, « > 0, and
rewrite the original space F(r?) as F,(r?, a). The wrong recovery probability P ;(7(X) # n(f))
is used as the risk function.

A selector adaptive to the unknown o Define the truncation set

Kree == {2,47 t ;2"10g2(%)-| } .



For every § € (0,1) and k € K,.., we denote /%) (X) := (ﬁik)(X), e ,ﬁ,(,k) (X)) € {0,1}7 as

the selector vector with respect to k, where

k

. _ 8plog(o—2 8plog(o—2

n§k) ::1{0 2 E X%2k+2\/l€log<g§()>+210g<g5() .
i=1

Now, we define the adaptive selector

00 = (g 1 g ) € 0.0 "
For each f;, our selector (I3) firstly constructs individual tests for each k € K,.., and then aggre-
gates them by taking the maximum over KC,.... Equivalently, f; is declared supported as soon as it is
identified as nonzero under any candidate k € KC,...; conversely, f; is declared non-supported only
if it is identified as zero for all k& € KC,.... We next establish the sufficient signal condition for the
wrong recovery probability control.

Theorem 4 (Upper bound for adaptation) Let 0 be an arbitrary number in (0, 1), and assume that
o2 > %. Then, for all v? satisfies

13 (o] 1 _2 1 _2
2 (122 1) o gt (SRET)) 4 1sgog (OB,

we have

sup sup Py (ﬁ“d(X) #n) < 6.
a>0 feF,(r?,a)

Compared to (), an additional log (log(a*2)) term in the signal strength condition is required. The
following theorem shows that log (log(a*Q)) is also necessary for the adaptation to the smoothness.

Theorem 5 (Lower bound for adaptation) Ler § be an arbitrary number in (0,1), and assume

that =2 > Csalogp and p > Cs . Then, for all r? satisfies

M1
0<r?< 53 {g% logliiia (p log(cr*Z)) + o2 log (p log(afz))} ,

we have
infsup sup Py (H(X)#n) >1-—0.
T a>0 feFs(r?,a)

Theorem B and B establish the adaptive minimax separation rate as
oTHT 1og% (plog(0™?)) + o log (plog(c™?)). (14)

In the high-dimensional case logp 2 log (log(c=2)), the log (log(c~2)) term becomes negligible
and (I4) achieves the same rate as ([2), indicating that adaptation incurs no additional cost on the
rate. However, when p is a large constant that is much smaller than o~2, (@) indicates that, with
the smoothness unknown, achieving support recovery requires a stronger signal strength compared
to (I2).

5 Discussion: difference between optimal estimation and selection

We finally end this paper by discussing the difference between estimation and selection. For sim-
plicity, we assume s < p'~”, where 3 € (0, 1) is a constant, therefore log(ep/s) =< log p. Next, we
establish a minimax-optimal estimator for f € F; through a truncated hard-thresholding procedure:

Ke
i =Xij - 1(i < K.)-1 (o072 § :ij > K, ++/CK,logp+ Clogp |, (15)
T v /=1
runcation

Hard thresholding

where we define K, := min{k € N* : y, < 0%k}, and C' > 0 is a fixed constant.



Theorem 6 (Optimal truncation for function estimation) Assume o2 > % and the
canstant C' in () satisfies C > 4. Then the estimator (D) is rate-optimal:

sup E¢[|f(©) — f[13 = sup E4[|© — O(f)[3 < o?slogp + s x max ((0%k) A i) -
fE€Fs feFs €N+

Combined with (B), Theorem B implies that by only using the first K. entries in each observation
sequence (i.e., only using X(rc,|xp) = {Xij}<;< k. 1<j<,)> ONE can achieve a minimax optimal
function estimation. However, it may fail to guarantee optimal univariate function selection by only
using these truncated observations, as shown below.

Theorem 7 (Suboptimal selection) Assume 02 > % and p > Cy. Then, for all r* satisfies

0<r?<csy {02 logp + km[alt(x] (02\/klogp/\ Mk) + MKE-H} , (16)
c[Ke
we have a lower bound as

1
inf sup P (n(X > -,
WX e ) €0} feF, (r2) 7 (N Xrcaxm) #1) 2 5

where the infimum inf a(x takes over all restricted selectors that only use observations

(Kelx1p] ) E{0,1}P
XK. x[p) and C1,C2, c3 > 0 are absolute constants.

This theorem demonstrates that in the family of truncation estimators, optimal estimation sometimes
leads to a suboptimal univariate function selection. For example, consider the Sobolev space with

. __2 .
Wi =i~ 2% in the case logp = o (a T+2a ) To exactly recover the support set, the necessary signal

strength (I8) (by only using X, x[p)) is of the rate aliﬁ, which exceeds the minimax separation

8a 2a . . . . . . . .
rate o 7+7 (log p) T=+1 , as illustrated in (I2). This gap directly shows that optimal univariate function
selection cannot be treated as a byproduct of optimal SpAM function estimation.

Appendix A discusses some future directions for this paper, and Appendix B provides the numerical
experiment to confirm our theoretical findings.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [Yes] The abstract of this paper precisely outlines our contributions in terms
of minimax separation rates for univariate function selection in sparse additive models.
We also discuss the adaptation to the smoothness and the difference between the optimal
function estimation and univariate function selection. Section [l and & also present the main
contributions and assumptions in this paper.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: [Yes] This paper sets certain limitations on the model. Our analysis is
based on the Gaussian white noise model instead of the empirical nonparametric regres-
sion model, which means our results cannot be directly used in a real application. However,
as we point up in Section I, the Gaussian white noise model simplifies the analysis by avoid-
ing unnecessary technical complexities while keeping the focus on the statistical essence,
and our results are asymptotically applied to the nonparametric regression model. We also
provide an in-depth discussion of our limitations and future directions in Appendix Al.
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* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.
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model well-specification, asymptotic approximations only holding locally). The au-
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the implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: [Yes] Each theorem in this paper comes with detailed assumptions. All formal
proofs of all theorems are provided in Appendix O-I, and the formal proofs of auxiliary
lemmas are provided in Appendix K.
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* The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [Yes] This paper provides rate-optimal selectors and an adaptive selection
procedure. We thoroughly outline the experimental parameter settings and simulation pro-
cedures in Appendix B. Additionally, we upload all the R code required for the experiments
in the supplementary material.
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» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: [Yes] The supplementary material includes all code used in our experiments,
covering data generation, preprocessing, truncation selection, effectiveness analysis, and so
on. The code provides specific parameter settings and random seeds to ensure the complete
reproducibility of all results shown in Appendix Bl.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: [Yes] In Appendix B, we present comprehensive introductions to our proce-
dure and data, covering data generation, preprocessing, truncation selection, performance
metrics, and so on. Furthermore, the supplementary material includes all the code used in
our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.
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» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: [Yes] The simulation results in this paper report 1-sigma error bars based
on standard errors from 300 Monte Carlo simulations (see figures in Appendix H). The
variability of error bars arises from the randomness of error terms in simulations.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

 Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: [Yes] We provide the information on the computer resources in Appendix Bl.
All simulations are conducted using R and executed on a personal laptop equipped with an
AMD Ryzen 7 5800H processor operating at 3.20 GHz and 16.00GB of RAM.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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10.

11.

Answer: [Yes]

Justification: [Yes] This paper consists solely of theoretical analysis and simulation ex-
periments, with all data being randomly generated. It does not engage human subjects or
participants, nor does it raise data security concerns such as personal privacy. Additionally,
the supplemental material contains all the code for our experiments, ensuring the repro-
ducibility of our results. Therefore, the research presented in this paper adheres to the
NeurIPS Code of Ethics in all respects.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: [NA] In this paper, we purely discuss the theoretical minimax separation
rates of univariate function selection in sparse additive models. It belongs to the domain of
statistical theory research, and therefore does not involve societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA] In this paper, we purely discuss the theoretical minimax separation
rates of univariate function selection in sparse additive models. Therefore, it belongs to the
domain of statistical theory research and poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: [Yes] We cite all the papers that inspired this work, and also provide citations
for the techniques used in the proofs.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: [Yes] We upload all the code in the supplementary materials as a zipped file,
covering data generation, pre-processing and so on. The code provides specific hyperpa-
rameter settings and random seeds to ensure the complete reproducibility of all results.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
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Answer: [NA]

Justification: [NA] This paper purely discusses the theoretical minimax separation rates
of univariate function selection in sparse additive models. Therefore, it does not involve
crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA] This paper purely discusses the theoretical minimax separation rates
of univariate function selection in sparse additive models. Therefore, it does not involve
crowdsourcing nor research with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: [NA] This paper purely discusses the theoretical minimax separation rates
of univariate function selection in sparse additive models. Therefore, it does not involve
LLMs as any important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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These appendices provide the future directions, numerical experiments and the technical proofs of
the main manuscript. For notational convenience, throughout all appendices we define n := o2 to
represent the noise intensity.

A Limitations and future directions

Besov ball or L, ball One key direction for future work is to extend our univariate function se-
lection results from the Lo-ellipsoid (P) to richer nonparametric classes such as Besov balls B,‘?’ q OF
more generally, L -ellipsoids. These spaces naturally align with wavelet bases and are foundational
to practical methods in signal processing and denoising. However, under the high-dimensional set-
ting, the techniques in Barand [P007] may not be useful anymore. Perhaps a more viable approach is
to construct selectors based on the nonquadratic estimation procedure in Carand ow [2003, 2O06],
which may also lead to a minimax adaptation result simultaneously.

Univariate function selection under local differential privacy Integrating the differential pri-
vacy (DP) mechanism into univariate function selection for SpAM represents a direction for future
research. DP ensures rigorous protection of individual data while allowing valid statistical infer-
ence; therefore is welcomed by the computer science, machine learning, and statistics communities
recently. In the local DP setting, Bufiicea ef all [Z023R] established phase transitions for support
recovery in the sparse mean model, deriving minimax separation rates for exact recovery and for
almost-full recovery. Bufucea ef all [Z020, 2023d] studied the function estimation and the quadratic
functional estimation in the nonparametric univariate function, respectively, where the latter plays
an important role in goodness-of-fit testing. All these works demonstrated that DP leads to some
markedly different minimax rates compared to non-private benchmarks.

Consequently, when extending univariate function selection in SpAM to local DP constraints, one
should expect that the minimax separation rates will differ from the results in this paper: the optimal
truncation should be recalibrated to account for the additional privacy-induced noise. Designing
and analyzing such privacy-preserving selectors for SpAMs remains an important and challenging
problem.

A general conclusion about estimation and selection Another significant extension lies in gen-
eralizing the minimax lower bound in Theorem [, which currently restricts the infimum to selectors
relying solely on truncated observations X|x, jx[p].- To this end, we define the minimax optimal
estimation class

Eopt = {f . RNJrX[p] — RNJrX[ZI’]

~ 2
EHX—H<21 x 2k) A .
sup By J(X) = f||, S o%slogp+s ggﬁ;((a ) A )

The general version of Theorem [ should focus on the necessary signal condition for selectors in-
duced by estimation class

cinf  inf  sup Py {ﬁ(f)#n(f)}zc
feEopt ﬁ:ﬁ(f) fe]:s(T2)

Ideally, this lower bound could quantify how the minimax optimal estimations perform in the support
recovery problem. It could also lead to a more comprehensive realization of the difference between
estimation and selection.

Establishing such a result will likely require some new analytic tools, and we think the techniques in
Song and Cheng [P073] may give some help. We leave this interesting problem for future research.

B Numerical experiment

We conduct three simulation studies to evaluate the performance of our truncated-type selectors in
sparse additive models. For ease of display, we define n = o~2.

1. Compare the performance of our proposed method across varying dimension p and signal
strength 2.

2. Compare the performance of different selection methods across varying variance 1/n.
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3. Compare the performance of different selection methods across varying smoothness param-

eters.
In all experiments, we take X = [0, 1], s = 5, and let the support covariates be j = 1,...,5, with
centered functions
fi(z) =2*(2°7" — (z — 0.5)%)e” — 0.5424,
fa(z) = 12(x — 0.5)% — 12,
f3(z) = 322 2% cos(152) — 0.1002,
f4($) =2z — 17
fs(x) = 8(z — 0.7)> 4 0.4640,

which all belong to the Sobolev space with v = 1/2.

Performance is measured by the Hamming loss

1(7(X) # n(f)).
and the combined FDR plus FNR loss
Dies, i Djes, (1 —1;)
— + .
LV jew i §

For each simulation, we execute 300 repetitions, with 1-sigma error bars provided in the figures. All
simulations are conducted using R and executed on a personal laptop equipped with an AMD Ryzen
7 5800H processor operating at 3.20 GHz and 16.00GB of RAM.

B.1 Simulation 1: dimension and signal strength

We fix n = 300, and vary p € {10,100, 1000, 10000}. We take a - f; as the support function, for
j=1,---,5, where a > 0 quantifies the effect of the signal strength.

Figure [ shows that, as the signal strength a increases, the selection errors (both Hamming loss and
FDR plus FNR loss) for each p decay toward a relatively low level, but larger p demands higher a
to reach the same error level. Moreover, controlling FDR + FNR requires weaker signal strengths:
at p = 10000, a = 0.5 suffices to keep FDR + FNR = 0.5, whereas the Hamming loss drops below
0.5 until @ = 0.7. This behavior reflects the fundamental difference between sparse multiple testing
and exact support recovery, as we discussed after Theorem B.

Support Recovery Sparse Multiple Testing
1.25
1.00
1.00
0 0.75 @
8 S
En' = 0.75
a)
g 0.50 T
£ + 0.50
g g
T 025 w
0.25
0.00 0.00
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Signal Strength a Signal Strength a

Dimension =e= p=10 =~ p=100 p=1000 = p=10000

Figure 1: Selection performance with different dimensions and signal strength.
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B.2 Simulation 2: noise variance 1/n
We fix p = 500 and vary n from 20 to 300. Four types of selectors are considered in this simulation:

1. Optimal The rate-optimal selector (ICT).
2. Adaptation The adaptive selector (I3).

3. Univariate The selector that takes truncation at K,, = min {k eENT:puy < %}
4. Suboptimal  The selector that takes truncation at K, = min {k € N* : y, < £}

Figure O illustrates that, as n grows, all methods see error decay, but the Optimal and Adapta-
tion methods maintain the lowest selection errors across most regimes. Additionally, as we dis-
cussed in Remark B, for n < (logp)!*2%, the minimax separation rate is log p/n, under which
the K.-truncation remains rate-optimal, giving the Suboptimal selector a temporary advantage (for
n < 100). Once n = (logp)'*22, the minimax separation rate becomes n~ Tt (log p)ﬁ, and
truncation at K, cannot be optimal anymore.
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Method === Adaptation =+ Optimal Suboptimal == Univariate

Figure 2: Selection performance of the four methods with different noise level n.

B.3 Simulation 3: smoothness parameter (5

We fix p = 500 and n = 300, and assess the effect of smoothness on univariate function selection.
First, for j = 1,...,5, we compute the original basis coefficients of each f;, denoted by {6;; };en+.
We next reweight these coefficients and get the new functions

1ENT

so that each f;ﬁ ) lies in the Sobolev ball with smoothness parameter 3. We vary 8 € [0.2,1] and
compare the performance of the four methods.

As shown in Figure B, only the Adaptation method consistently achieves low error across all 3,
demonstrating its optimality and robustness to unknown smoothness and verifying our theoretical
guarantees in Section H.

C Proof of Theorem 3

We first introduce the proof of the lower bound and upper bound in Theorem B. These proofs are
instructive and lead to clearer proofs of Theorem 0 and Theorem D.
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Figure 3: Selection performance of the four methods with different smoothness parameter 3.

We first define the Hamming distance

which can upper-bound the wrong classification probability

Ef(H(,n) = Y wPp(H(,n) =w) > Ps(7 #n). (17)

w=1

For notational convenience, throughout all proofs we set n = o2 to represent the noise intensity.
C.1 The lower bound

To better clarify the truncation construction, we define

T Vk

The SPAM function set induced by £*) (r2) is:

EW(r2) = {0 eRY g, forall 1 <i <k, 6; =0 foralli > k} cé&.

FR () =S f = ij € Fo(r?) . f; € EW(r?) forall f; # 0

j=1
Now we consider:

inf sup Pf(ﬁ(X) + n(f)) > inf sup Py (ﬁ(X) # n(f))

AR XD {0,1)P fEF, (r?) AR P {0137 e 5 () (2

sup Py (ﬁ(kap) # n(f)),
FeF (r2)
(18)

which means that in F{*) (r?), we only need to consider those selectors 7) based on the first k obser-
vations in each univariate function f;,j € [p].

inf
7:REXP—5{0,1}P

Now, for some fixed k¥ € NT, we set a least favorable subset of fﬁk) (r2), and then derive its lower
bound of the minimax separation rate.
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C.1.1 The least favorable subset

n

For every fixed § € (0,1), k& € N* which satisfy p > (%2 A1) max (log(z_s), v klog(ps))

(where ¢y > 0 is a constant defined in Lemma [), consider the subset:

p
FR () =30 FPr?) ) 1( =sp. (19)

Jj=1
Therefore, for each f € ]:'S(k)(rz), if its j-th univariate function f; = 0, the random variable

anZl ij follows from a central x?-distribution with k degrees of freedom (note that X;; ~
N(0i,1/n). I f; # 0, n 35, X7, follows from a non-central x*-distribution with k degrees

of freedom and with non-centrality parameter nr2. Let fy and f; be the densities of these two
distributions with respect to the Lebesgue measure:

Sk/2=1 g—2/2

fo(z) = T (k/2) z >0,

i ) 20
(rﬁ) Sk/24i=1 p—2/2 (20)

1 k/2 _ 2/2 > 4
fl(z):(2) ¢ 2 O ED

=0

Once the positive integer k is fixed, by Lemma [l we only need to consider the selector based on the
norm || X1.x,j||2, which we call them the norm selectors. Then we conclude

inf sup P (A Xk f )
ﬁ:kap*}{o’l}pfefgm(T% f 77( kxp)#n( )

sup Py (il(Xip) £ (f))

> inf
#:RFXP 5{0,1}»

FeF ()
@ . .
> inf sup Py (77 (I X1k lly s 1 X kplly) # ﬂ(f)) (21
7): norm selector feﬁb(k)(rz)

@) fi fi )
> Pe s 1 X1 2 < X 1.1 2
Z Fe(s) (j—nll,l{-l,s fo (n|| 1‘k,g||2) = j:sHJrlElL,)-(-.,p o (n|| 1.k,]||2)

(#i3)
TPem( min n”XlkJHz _max nlleck,jH%)a
j=s+1,---,p

where inequality (i) follows from Lemma [, inequality (ii) follows from Theorem 6 in Bufiicea
et all [Z01734a], where we denote by P, a probability measure in which only the first s univariate
functions are non-zero, i.e., f; = 0 < j ¢ [s]. Equality (iii) follows from the monotonic increasing

property of the likelihood ratio 41 (=) on z € R*.

C.1.2 The tail probabilities

With the fixed § € (0, 1),k € N* which satisfy 1 > (2 A 1) max <1°g<55>, Y% ’“l(’g(”‘s)), we

n
aim to prove that the last probability in (I0) is greater than 1—§ if log(p—s) > (i—? + log %) v
1
(21 M) Vv % and 12 < (% A 1) max <1°g(z_s)7 v Klog(p_s)), where ¢; > 0 and ¢y €

n

(0, 1) are two positive constants defined in Lemma D.. Firstly, by taking x = log lcjg(é /f;g > 0, we
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conclude

Pes) (j_srgfyﬁ_ X

s

p—s
2> k—i—qx—i—qka) =1- {1 -P (Xi(O) > k+clx+clvkx)}

I\/~

(1 coe ””)

<1 log 2/5 )
§
(22)

where inequality (i) follows from (B9) in Lemma B, inequality (ii) follows from the assumption
2 .
p—s> <logi/5)) > logz/é) > 1.

(i)
>1-—

Besides, by taking 2 < 02156 max (log(ZS)’ \/kloi(p—3)> and log(p — s) > 2log 10gg/5)’ we

conclude z > Llog(p — s) > Zlog(p — s) and

nr2+2\/m<22€51(x+%)+2\/2 2051 (x+f)<—(m+\ﬁ) 23)

where the last inequality follows from c; (x + kx) > 4 led by log(p — s) > 8/¢;. Then, by
assuming s > log(2/d) and log(p — s) > % + log %, we conclude z > 16/c2, therefore
1
log(2/6 2log(2 5
m’2+2\/(k+2nr2) 08(2/ ) og( /%) 72 + 2k + 2nr2 + 2
s
<nr? 4+ 2vV2onr2 + 2 (\/E + 1)

(Z<)%1 (x+x/%)+%\/5(\/%+1)

<c1 (x-l-\/a),

where inequality (i) follows from (Z3). Therefore, we conclude

Pes) ( min 7 Xy gll3 <k + ez + clx/ﬁ)
J=1 s

=1- {P (X%(nr2) >k+cx+ 01\/E)}S

Y

0g(2/9) , 210g<2/6>> } @)

S

1- {P (Xi(nTZ) >k+nr® 4+ 2\/(k + 2nr2)

(o) -t

where inequality (i) follows from (&) in Lemma D with non-centrality parameter B = nr2. Com-
bining (1), (Z2) and (24)), we conclude that

it s Py (iC0 £ 000) 2P (pin [Xuslf < _max 1%0013)
N feF,(r2) j=s+1.p
>Pe(s) ( I{lln nHXl kg||2 <k+cix+ecVv k:a:>

X Pe(sy | . max n||X1:k,j||§ >k+cix+ clx/ﬁ
j=s+1ep

5 2
> 1—-= 1—o.
>(1-5) »1-0
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C.1.3 The optimal truncation K

By the definition of 1" (r2), 7 (r2) and 4 (r2), the minimax separation rate is lower bounded
by the constrained maximum:

log(p —s) +/klog(p — 8)>

max : ¢y max ( ,

log(p —s) +/klog(p—s) (25)
n n > < M

subject to : cs max ( ,

ke Nt

where c5s = %5 A1 € (0,1]. For ease of display, we define

cs\/klog(p — s) }

K() .— min {k eNT:p <
n

(26)

v

n

cs\/klog(p — s) }

L) .= max {k e Nt : Lok

By assuming n > %ﬁp—s), we derive that 1 < L(¢8) < K(¢s) < [(¢5) 4+ 1. Then we analyze the
maximum into two cases:

cs4/og(p—s)] log(p—s) .
* Case A: When fi[105(p—s)] = — og(e nﬂl %) We derive that L(%s) > [log(p — s)]
hence C5W > & logrgp =5)  Then the maximum of (Z3) is @.

n

« Case B: When ji[jo5(p—5)] < — “Og(p*nsﬂ 8(0=3)  We derive that 1 < L(¢) <

|log(p — )] hence >V L(C(S;log(pfs) < 2 logép_s). Then the maximum of (Z3) is
cs log(p—s)

Therefore, we establish the lower bound of the minimax separation rate as:

- (cs) — i - (cs) —
C(s.max{log(p s) /L) log(p 8)}<> X{log(p s) /K()log(p 8)}

, = ma ,
n n n n

ii I — k1 —

@ {Og@s) - (uk . 0g<p>> }
n kENT n
I — k1 —
_log(p —5) 4 max (um og(p — ) ’
n kEN+ n

@7)

where equality (i) follows from 1 < L(¢) < K(¢) < L(¢) 4 1 and equality (ii) follows from
Lemma 8. By (72), we derive the lower bound of the minimax separation rate.

C.2 The upper bound

By (IC7), we only need to prove that sup ez (,2) Ey (H(ﬁ(X), n(f))) < 6. For ease of display, we

denote A\*(K') = 2 (\/K’ log(2p/d) + 10g(2p/6)).
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C.2.1 Preliminary

For a fixed SPAM [ € F,(r?), we use Sy C [p] as the index set of the support univariate functions
f; # 0. Then we have

By (H(X),n(£) =B > 1 (i (X) # ;1)

>
Zi: ( ) # nJ(fJ))
2P

= sz <—+>\2 + > Py ZXQ z—H?(K')
i=1 JQSf
(28)
Therefore, we will discuss the Hamming loss on the support and non-support separately.
C.2.2 Support
With signal condition
1 vklogp 36logp
113 > 24\/7 2 ——=A
1£:13 > < 5 H V2 ) max (TS A )+ =
holds for all j € S¢ , we have
92
16157 5113 = Z% >(If5l15 — prer Y
i=rc+1 M
@ 2 K'l 1
2 12\[+ . og(p) | 36logp
4] n on (29)
!/
> 12\/7\/1( log(p 3610gp
on
(7,;)12 K'log(2p/0) n 18log(2p/4)
- n n b

where inequality (i) follows from the signal condition and a proof strategy similar to (B3) in Lemma
@, inequality (ii) follows from the definition of K’ and inequality (iii) follows from (2/5)logp >
log(2p/d) when p > 2.
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We decompose Xi; = 0;; + &; with each §;; ~ N(0,1/n) independently. Then we get

ZX2 <—+/\2

K/
1617 5113 + 1101:57 5115 + 2 (€r:xcv 5 Or:kcr ) < T AQ(KI))

K .
{||§1:K,j||§ + 16011, 015 + 2 (1,5, 01k 5) < s )\Q(KI)} n Aj) + Py, (A5)

8log(2p/6)

K/
<Py, <||§1 kM5 + 101k 5015 = 161:50 52 < AQ) + exp (—log(2p/9))

K 1)
v 513 + H16nsesl3 < 2+ m«)) i

(2i1) k)
< Pj, (nna krll3 < K' = 2y/K 1og<2p/6)) to
é
<=,
p’
(30)

2
where in inequality (i) we define event A; = {(51«/7]-, b1.57,5) > 7\/2”9”{"7' I3 tog(2p/9) } where

n

n

(é1:x7,j, 0117 5) ~ N (0 M). Inequality (ii) and (iii) follow from (P9), and the last inequal-
ity follows from (Bd) in Lemma D.

C.2.3 Non-support

We now focus on the Hamming loss on the non-support. For every j ¢ .S, we have n ZZ 1 XG5 2
X% (0), therefore
)
2 2
(ZX”2+A> o €}
where the last inequality follows from (&1l) in Lemma D.

Combining (£8), (Bd), and (ETl), we conclude

B (H@(X),n() = Y Py, ZX2<f+A2 )|+ 2Py, ZX?sz( )
JESy ' J¢Sy
(4) —
215418 (0 =150
D 2p
ICEALTDLI
2p -

where in inequality (i), we use | S| to denote the cardinal number of the support index set S, hence
1<|S f| < s < p. Therefore, we complete the proof of the upper bound and also Theorem B.

D Proof of Theorem [

In the proof of the upper bound, we first recall our signal condition

151 2 (5= (VIO+2) + v2) ma (’“Oj(p/s)wk> + 2 tog(p/s)

and the selector

=1 (nZXQ > K +2+/5K log(p/(s6)) + 1010g(p/(36))> ,

30



where K = min< k € N* : py;, < ”klof(p/s)} and n = 0~2. We assume p/s > 12V /6/4,
s>16V Cs,andn > %fp/s), where Cj is a positive constant solely determined by § € (0, 1).

D.1 FNR control

Similar to (P9) in the proof of Theorem B, we get

61551 = 6 (V5 + v2) YEIEWIEOD 50,0 )

Then for j € S, similar to (BO) we get

. 1-— }

S

SP(X (0) + *Wl&a

2 12 < K +2+/5K log(p/(s0)) + 1010g(p/(56)))
P (20 €. eg) <~y e 0w/ o9) )

2
<Py, (0 < &~ VARl Go)) + (2) 0

which also leads to

2
S| s -2s (8) s.
JESy b
Besides, by Hoeffding’s inequality, we get

S —EY i< st <exp(-2v5),

JESF JESF
yielding
2
Z N <s—2s <S> §— s | <exp (—2v/5) . (33)
‘ p
JESy

D.2 FDR control

By Markov’s inequality, we conclude

Z fj > < p/s Z P nZij > K +2+/5K log(p/(s6)) + 101og(p/(sd))
igs p/s igs
f f
s 2
S () 6)
p
(34)
which yields
Z‘gs 7 s\? s
E{ —I22 — g ﬁj>s—2s(> §—s 1 flj <
LV e M j;:f p j%@:f (p/s)?
@/ (35)

< 5
@iz +5—2s(s/p) § — s3/4

Qo 2

worts 3
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where inequality (i) follows from p/s > /12 and s > 16, and the last inequality follows from
p/s > +/9/(26). Besides, by a similar technique, we have

> i¢S 7 s s\°
E{ —22 =1 > N S() 6, (36)
LV e i j%:f 77 (p/s)? Z ’ P/S P
where the last inequality follows from (B4), and the first inequality holds because szfgis[n]]n <1
j€lp] I
We also get
A 2
E %'1 Zﬁj§5_23<s) 56— -1 Zﬁjﬁ
Yiew i \ o5, p %51
an<s—25() §— s34 (37
p/ s

jGSf

(i) se=2V5 (5>2
S - 5a
= (p/s)? p

where inequality (i) follows from (B3), and the last inequality is based on that the function g(z) =
xe~2V" is monotonically decreasing and tends to 0 on (1, 00), and hence for every § € (0, 1), there
exists a corresponding Cj such that s > Cj yields se=2V* < 4.

D.3 Conclusion
Combining (B2), (BS) (B6), and (1), we get
E{ Zj¢sf j n Zjesf(l — 1) }

1V et i 5
Z'gzs M : S
S D e Zm>s2s() -5t 1 M <
; = 2
lv ZJG[P] JESy JESs (n/s)
5 2
. 77 -
+E 1ZJ¢SfJA.1 Zﬁj§5—25(5> 5534 1 i < 52
Viem \jG, p €5 (p/s)

Z'gs 7j
1+ E JifA 77]
1V jetn i J%

+E{Zjesf(1 _ﬁj)}

p/S

S

20 s\ 2 s\ 2 s\ 2
§+<) 5+<) 5+2<> d <6,
3 P D D

where the last inequality follows from p/s > +/12. Therefore we get an upper bound of the com-
bined risk in sparse multiple testing with a rate-optimal signal condition, which completes the proof
of Theorem [I.

E Proof of Theorem

The proof of Theorem [ uses a similar technique to Section C in the proof of Theorem B. Re-
call the decoder n; = n,;(f;) = 1(f; # 0) and the corresponding vector n = n(f) :=

(m(f1),-++ ,mp(fp)) " € {0,1}P. This proof focuses on the SPAM space Fi®) (r?), which is de-
fined in (I9). For every f € ﬁs(k)(’f‘Q), its specific form is only determined by decoder n € {0, 1}?,
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therefore a prior of 1 can also be realized as a prior of the function space .7-'§k) (r?), and in next we
may use the notation f = f(n).

ca(|p/s]—1) 16 32 1 —log(1—v/1=3)
‘We assume logm Z max <¥, alog m,l), S Z m, and n 2
Lo loalp/s) 105 l(p/ 2) | where Cmax () and k(0) are two functions solely determined by § € (0,1) and will be
clarified later.

E.1 Preliminary

For any prior 7 on {0, 1}?, we denote by P, the prior distribution of n. Then, similar to the proof
of Theorem O we get

inf sup R(f,7)

N feF_y(r?)
2 inf sup  R(f,7
AREXP 5{0,1}P FeF® (r2) (f 77)
(@)
> inf sup  R(f,7)
7): norm selector feﬁé“(ﬂ)
(ii) M(]. — H) 20 ~
S MU THR) (] gmen )— P, : —2P7,( F®) 2),
_s—&-M(l—fi)( ¢ p D> f(n) & FH(r7)

J€lp]

where inequality (i) follows from Lemma [, and the last inequality (ii) follows from Lemma B, with

1
M = ZPTA’ <77] :1aP7T\Z(7]j:0|Z) > 2)7

JE[P]

where Z = (|| X112, 5 | X1:k,pll2) € RP. This formulation is justified by Lemma [0, which
indicates that we can focus solely on the norms of each column in X;.x ., with X;.x . denoting
the first K rows of X. In particular, inequality (ii) holds with every x € (0, 1) and every prior 7
on {0, 1}?. Next, we will construct a block prior distribution 7 to conduct the lower bound of the
minimax separation rate.

E.2 The block prior

We consider a block prior 7 which has often been used [Bufiiceaef all, P1734, Abraham ef all,
2074]. Take prior 7 as a product prior over s + 1 blocks of consecutive coordinates B; =
{1727"' vq}vBQ = {q+ L. 72(]}7 ,Bs = {(8_1)Q+1a 7p/}’ where q = LP/SJ and
p’ = qs. We write B, for the (possibly empty) set {p’ + 1, - ,p}. In each block By, b € [s], we
uniformly choose an index ¢ € By and set; = 1 and n; = O for all j € By, and j # . For every
1 € Bgsy1, we just set ; = 0. With this prior, we have

P Yo mi>s | =Pa(fn g FNG0Y) =o.

J€[p]
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Then we have

M=Y P, ( -_1,P7,‘Z(nj:0|2)>1/2)

J€p]
P.(n.=1,72
=Y Y p2 (nj =1, Z“EBb\{JI}, (mi — s 1/2)
vl <Py > uen, Pr(u=1,2)
(i) fi f1
=Y N PP gi=1, > P ([ X1k0ll3) > 7 = (nl| X1.5,5113)
be[s] FEBy ueB\ {5} *° 0
_ PBb fl X 2 fl X 112 L PBb R
=22 PR | X Rl > F X l3) [0y =1 x P2 (n; = 1)
be[s] 5E€Bs ueB\{j} 70 0
B 2 2
> Y 2k, (vl < e al X)),
be[s]JeBb

where equality (i) follows the same notation in (P0), and in the last inequality we focus on the
probability on the block By, where "X |e;" means we assume 7, = 1 and n; = 0 forall uw € By, \ {j}.
Therefore, we transform the problem into the one we dealt with in Section C_T2.

Recall we denote by cmax(0) and x(J) two functions of § € (0,1) independent of p, s, k and n,
which will be determined later. By taking x = log 710;21(3;1? oy e follow a proof strategy
similar to (Z2) and get

P?"e. ( I]IS}E%\PE nHX1kuH2 > k+01w+c1vkx> > Cmax(0).
i \ue

Additionally, when nr? < < (sc +V kx), we define ¢ := log #&X@) > 1 and have
nr? + 2/ (k + 2nr2)t 4 2t <nr? + 2v2nr2t + 2Vkt + 2t
t
S% (x+\/k;x) +2 % (x—l—\/k‘m) +2(x/E+1)
(1
<5 (o Vi) + 5 Ve (Vi)

Scl (J? + v .1') ’
where  inequality (i) follows the assumption = = log% >
max (%, i—Qlog T3 ) Therefore, we follow a proof strategy similar to (Z4) and

get
P (Xi(nr2) <k+4cx+ cl\/E) > Cmax(9),
which leads that

2 (8)(1 — Kk(5)) 25,2
inf sup R(f,7) > —max (1 _emosm <6>cmax<6)).
R U O C)

Note that we can always choose suitable ¢ax(9) and x(9) to let % =+/1—0, and

then by assuming s > % V(_é)), we conclude infj sup e r_ 2y R(f, ) > 1—4.

The optimal truncation k follows a similar analysis as Section T3, which proves that we cannot
control the FDR plus FNR well when

2 <o {1og<p/s> . ( Flog(p/s) |, uk) } |
n keN+ n

which completes the proof of Theorem D.
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F Proof of Theorem 4

The proof of Theorem B is similar to Section C2. For simlpicity, we assume j, = k~2“. Recall

'!L2
Kree = {274’ ... 7Q[Ing(mﬂ }, we conclude || < log, (%) +1 < 4logn.
F.1 Support
Tz 1082 ( — e
For every o >  aupy, we define K* = 2[ i 2<1°g<%>>-‘. By 0 <

14_140‘ log, (1og(87;21§g”)) < log, (%), we conclude K* € K,.... Now with the signal condition

n2 n

15513 > (12v2 + 1) (bg@w“)gn)) . 18log(8p/d - logn)

holding for all j € Sy, we have

.
1615+ 5115 = 63
i=1

2a
8plogn T+ia 8plogn
> (12v3+1) (B} BB ey G8)
- n? n
X * 8plogn Sploen
<§>12\/K log(Z557) | 18log(®28%)
n n

2

S 1
where inequality (i) follows from (L)) T K< 2 (mg(ni)) "% Then for every

SpTog > 8plogn
log( 3 =

7 € .S, we conclude that
Ep {1 (7%(X) #1)}
<Py, (ﬁgK* = 0)

& 9 N . 8plogn 8plogn
=Py, nZXij<K +2 log 5 + 2log 5 (39)
i=1
i)
(X%(*(O) < K* 2K 1og<2p/5)) 4P (N(o, 1) < —/2 log(2p/5))

IN IN=
"l

b

where inequality (i) follows from (B), and uses a similar technique in (BO) from the proof of Theo-
rem B.

F.2 Non-support

For every j ¢ Sy, by the subadditivity of the probability measure, we have
Ej, {1(7j"(X) #0)}

k
1 1
:Pfj< U {nZijzk+2 k;log(gp:;gn>—|—210g(8p ;g”>}>
=1

kEK ree

8plogn 8plogn
< ) P<X§(0)zk+2 k:log( 5g >—|—210g< 5g ))

k€K ree

() 1) )
S ‘ recl a_

(40)

— < .
8plogn — 2p

35



where inequality (i) follows from (BI) in Lemma [, and the last inequality follows from |/C;.c.| <
4logn. Combining (B9) and (E0), we conclude that

E; {H (0*(X)0(H)} = D B {1 (05 # 1)} + D By, {1 (7(X) #£0)}

JESy J¢Sy
ISl o1sps _ o
D 2p

which completes the proof of Theorem 8.

G Proof of Theorem B

G.1 Lower bound with truncation

Preliminary Firstly, we construct a prior uniform distribution of « as

1 108 Sate ey 1
Pla= 3 14 ﬁ - ol for each k € Kec,

where the constant ¢ > 0 will be determined later. The prior of o corresponds to a uniformly
distributed truncation K in KC,... as

P(K=k)= for each k € IC,cc..

|’Crec|

We next construct a prior distribution of function f € F(r?, ) for the given « (i.e., for the given
k € Kyec). Specifically, we assume that only O or 1 univariate function can be the support, that is,
f=0,0r f = f; foraj € [p]. For the support f;,if i < k, assume that its ¢-th entry is drawn from

a uniform distribution as
o (ME) A
v 1/2 1/2 )

1/4
where \(k) := n~1/2 (%) Otherwise just take 6;; = 0. Conversely, f = 0 directly

indicates 6,; = 0 for eachi € NT and j € [p|. After we get an f = {63 Yier jepp)> assume
Xi; ~ N(0;j,1/n), indepedently.

2
Finally, for a given o derived from k, we get Y, i+ ij? < kM2eR) U \(k)? = 1, indicating the
setting of A(k) is valid. Therefore, we name the distribution with respect to the truncation k and
support f; as P; j, and

(b)\ k),1 n(Xi, ) + ¢—)\ k),1 n(Xi, )
Pj(X) = H Lm0 5 LA H%,l/n(Xi,j) < H b0,1/n(Xij0)-
i€ k] i>k j'#7,4€NT

For j € [p], we define P; = = %o Km‘ > kex,.. Pjk»> and we also denote by Py the distribution with
j=0,ie., X;; ~ N(0,1/n) for each (i,7) € N* x [p].

Based on these settings, we transform the minimax lower bound into:

infsup sup Py (H(X)#n) >inf sup  sup  Pj, (9(X) #n)
T a>0 fEF.(r2,a) N k€K e j€{0}U[p]

>inf sup  P; (7(X) #n).
T je{o}tulp]

x? divergences calculation For j € [p], consider

dP; 1 k- A(k)
(X)= exp ( > cosh (nX; ;- A(k)),
dPO |’Crec| kEKZTEC 2/” ]E:[[k] 7
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which leads that

Ep, <j;])(X)>2

:% S ew (_k'A(k)Q +k- MW) x {Bcosh (nX, ;- AK)) - cosh (nX, ;- A(K)) }W/

|K:rec 2 2/1’L

kk' € ec
kVE —EAK'

X {Ecosh (nX:; - [ANk) A AE)]) }
(1) 1 kAK'
:m Z {cosh [PA(R)A(K)] }

ki k' €rec

Ea— > exp {n2 VEN (k) - VEN(K) - (k A K) }

P —
| Kree|? kK

k. k' €rec
1 ¢ ENE
= E exp < = -log(plogn) - — ;,
KrecP o p{2 Blplogn) - 7= k’}

where equality (i) follows from Lemma B, inequality (ii) follows from cosh(x) < exp(2?/2) for
every x € R, and the last equality follows from the definition of (k).

2

We now define g := |Kpee| = [log2 (15@” = log n, and then conclude
1 clog(plogm) __luvl
LI SEFDY exp{2 oty

u,v€E[q]

Control the wrong recovery probability Inspired by Gaoefall [2020], we divide the set [g] % [g]
into two subset as 71 := {(u,v) € [¢] X [¢] : |u —v| < 2log, q} and T := {(u,v) € [g] X [q] :
|u — v| > 2log, q}, therefore |T1| < 5qlog, g and |T5| < ¢. We then have

1 clog(plogn 1 clog(plogn
L (PIPo) S 30 oxp { SEEREIIL L5 o f 0B 08N

q

(u,v)€Tr (u,v)ET>
SE’)longeXp clog(plogn) + exp clog(plogn)
2 2q
&%p  6%p
<, Z
<3 + 3

zizplog2 n

where the last inequality follows from § log(plogn) < log (m

) and clog(plogn) <

21og(6%p/8) log, n, both of which hold under sufficiently large n, p and sufficiently small constant
c. Therefore, by Lemma [, we prove that with signal strength

2a
1 1 THae
0<r=Fk Ak)?< (COg(ZQOg")) : @41)
the wrong recovery probability is out of control, i.e.,
infsup sup Py (f(X) #n) =inf sup P; (H(X)#n) >1-0. (42)
T a>0 fEFs(r2,a) T je{orulp]

G.2 Lower bound with sparse structure

Since

2a 2a
1+4a 1+4a
<log(p logn) ) N log(plogn) T { <log(p logn) ) ’ log(plogn) }

n? n n? n

20
(log(p log n)) 1+4o
= n?

log(p logn)
n

if 77 > log(plogn),
ifnTe < log(plogn),
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we only need to verify the necessity of the separation rate M under the condition n 777 <
log(plogn). This condition indicates that log log p = log n, which leads to ¢, log(plogn) < logp
for some constant c,, determined only by a.

In Theorem B, we prove that the wrong recovery probability can be lower bounded by 1 — ¢ if

e . . 71
the signal strength r? < “’l%. Hence, for any valid smoothness parameter o, if nT#2e7 <
log(plogn), we have

inf sup sup Py (7(X) #n) = inf sup Py (7(X) #n)
n Oz>0fE]__S(c(;ca lo%fplog'n)7a) n fej__s(c(; l;)gpva*) (43)

>1—0.
Therefore, combining (&), (B2) and (E3), we complete the proof of Theorem B.
H Proof of Theorem B
This section proves the minimax optimality of the estimator (I3). We begin by defining

- % (\/Ck: log p + Clogp) : (44)

therefore éij =X,; 1 < K.)-1 (Zw VX5 > Ke/n+ )\2(K6)>, where recall K, := min{k €
NT g, < k/n}.

Support For each f € F;, we denote by S the index set of the support covariates in f. For every
j € Sy, we have

K. )
B (05-05) + 3 63
i=1 i>Ke
2
() e
<E {Xij i — <ZX < K, /n+)\2(K ))} + pK,
i=1 i'=1

K. Ke
<2EY (Xi;—0;)° +2E> X7 -1 (Z X} < Ko/n+ )\Q(Ke)> + ik,
: =1

=1
(45)
where inequality (i) follows from Y _,_ . 07 < e, Yois e, 055/ 1i < bk, -

Non-support For every j ¢ Sy, we have

) 2 K K. K.
ol o (5 ) 1 (B, 2 2 i)
{ <ZXZJZ[::—|—/\2( ))}
K. K. K
D (Z X) [P (Z Xpjz ot A?(m)) 0

Ke
- <ZX > +>\2(K)>
() /2K, C | K, C 3K,
- exp 7 ogp —|—7~exp ——logp| < ,

n

IA
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where in inequality (i) follows from Cauchy-Schwarz inequality, inequality (ii) follows from (BIl) in
Lemma D with taking the constant C' > 4.

Combining the definition of \?(k), (&3), and (&8), we conclude

B ||f -] = E\ -l + Y B[
J¢Sf
4K 3K,
<s (Ke) +pk. ) +p
np (47)
K, VK] It
xs 'Jrs ‘ngJrSngJrsu%(e
n n n :
1
xs Y + 8§ X max (k /\Mk>
n keN+

where the last equality follows from K./n + px, < maxgent (£ A ). Therefore, by (E2) we
complete the proof of Theorem B.

I Proof of Theorem [

This section establishes a necessary signal condition for univariate function selection, under the
case that we have to only leverage the first K. entries in X.; for each j € [p], that is, only use
observations X |x[p] = {Xij} i<k, 1<, Where Ko := min{k € NT : up < k/n} is the
optimal truncation for minimax function estimation, and n = o 2.

I.1 Lower bound with truncation

Preliminary We first construct a prior distribution of function f € F,(r?). Specifically, in this
prior, only 0 or 1 univariate function can be the support, that is, either f = 0, or f = f; for j € [p].

In the case f = 0, we take 6,; = 0 for each (i, j) € N x [p], and thus assume X;; ~ N(0,1/n),
indepedently. We name the distribution as

P, = H G0,1/n(Xij)-

ieNt je[p]

In the case f = f;, we take 0; j; = 0 for each i € N*,j' € [p] \ {j}. For the support f;, we
introduce two additional parameters A > 0,1 < k < K., which will be determined later. If i € [k],
assume that its i-th entry is drawn as P (6, ; = \) = P (6, ; = —\) = 1/2. If i = K. + 1, we take
OK.+1,5 = VUK. +1 /2. For other ¢ we just take 0;.; = 0. We name the distribution with respect to
the support f; as P, and

P;(X)

Pr1/n(Xij) + 0x1/m(Xiy)
= H /n J 5 /n J X ¢m,l/n(XKc+l"j) X H ¢0,1/n(X

i€[k] PENT\([K]U{K.+1})
Distribution of the (K .+1)-th entry in f;
Distribution of first & entries in f; Distribution of the residual entries in f;
x H b0,1/n(Xi5)
J'#JAENT

Distribution of other f;/

for every j € [p]. Based on these settings, we transform the minimax lower bound into:

inf sup Py (n(X
(X (50 x (5 E£0,1}P feFI()) f()( (K Ix[pl) 7 7 )

inf sup P (7(X 7
T (X %) €401} e {0}Ulp] ( ( [Ke]x[p]) 7 ])

= inf sup P,
e etony jeom | i x i) (X[ x ) # 1)

where P ¢,1x[p) is the marginal distribution of X|xjx [p]-
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Control the wrong recovery probability via marginal 2 divergences For j € [p], consider

kX2
Xik.)x[p) = €Xp (2/n> H cosh (nAX ;) ,

i€ (k]

dP; k. )x[p]
dPo,[k.]x[p)

which leads that

dP; 2
2 3, [Ke]x[p]
X (P )l P01 x) =By i (dPO — (X{Ke]X[p])) -1

214
= cosh” (n)\z) -1 < exp (n ;\ k) —1.

Recall that we only focus on those restricted selectors based on observations X (K] % [p]s and hence

only focus on the marginal distribution of X[ jx[p- Then our aim is to find proper (X, k) € R* x
[K] such that:

max : A2k, (48)
EDNI

subject to: exp (n 5 ) <c1-p, (49)

Xk < B, (50)

1<k<K.. (51)

where (E9) controls the average 2 divergence and c; is a sufficiently small positive constant, (&)
ensures our construction is in the ellipsoid £, and (R1l) ensures that the truncation & is valid. There-
fore, by Lemma [, we prove that with signal strength

k1
0<ri=Fk-A2+ e<02{max (WAMC)-I-MKE-H}’ (52)
2 kE[K.] n

the wrong recovery probability is lower bounded by 1/2:

if sup P
s o ;S 1 (X (r ) x)) # 1)

inf P; X >
(X xip) €{0,1}P Je{o}%[] ixepxtp) (1 Xiac i) 7 1) 2

(53)

| =

L2 Lower bound with sparse structure

We now quantify the influence of the sparse structure on the necessary signal condition. Similarly
to Section I, we first construct a prior distribution of function f € Fj (7"2), where only O or 1
univariate function can be the support.

In the case f = 0, we still take

Py = H b0,1/n(Xij)-

ieNt je[p]

For every j € [p], in the case f = f;, we only take the first entry 6; ; = X, and take other 6; ;; = 0.
The distribution is described as

Pi(X):= oamXy)  x [leemiy) < JT doam(Xig).
~——— ~ i
Distribution of the first entry in f; i22 J'#3,ieN
Distribution of the residual entries in f; Distribution of other £/

Based on these settings, we transform the minimax lower bound into:

inf sup Py (n(X
(X x ) €01 fer, (r2) f()( (K] ><[p)7£77)

inf P, .
(X)) €0, 117 JE{O}IL)J[ ] el (1K< <) 7 7)
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It is straightforward to check that
2 2
X (P x| [Po e <) = exp (nA%) — 1.
Therefore, our aim is to find proper A € R such that:

max : \2, (54
subject to: exp (nA?) < ¢4 - p, (55)
)\2 < M1, (56)

where (B3) controls the average 2 divergence and c; is a sufficiently small positive constant, (88)
ensures our construction is in the ellipsoid £. Under assumption n > CF’L#, by Lemma [, we prove
that with signal strength

1
0<r?=)\2< 580 (57)
n
the wrong recovery probability is lower bounded by 1/2:
inf sup P (n(X
N Xk xp) €01} feF (r2) d (77( (e1x17) # 77)
{ P i, ) (X1 ) #1) = 5 o
> in sup K. 1 . > —.
X ) E(01) e fo}ol] G [Ke]x[p] \TN\A[K]x[p] n B
Therefore, combining (82), (83), (84) and (88), we complete the proof of Theorem [2.

J Some extended conclusions

This appendix discusses theoretical results obtained under assumptions more general than those in
the main text.

J.1 Violating the separate rate

In a more realistic setting where the true signal strength || f;||3 may fall below the minimax threshold,
our selectors still have some useful properties:

1. The selector from Theorem [ selects at most 2s variables with probability at least 1 — §
(proved by following equation (B4) in Appendix D).

2. The selector from equation () ensures S C S with probability at least 1 — 4, i.e., it
guarantees zero false positives (proved by following Appendix C23).

These guarantees hold without knowing the signal strength of each f; in advance, showing that our
selectors remain both sparse and interpretable under a practical condition.

We also provide a specific example in which our procedures are appropriate. Consider a system
with p channels, some of which carry a true signal while the rest are pure white noise, and we aim
to identify those channels with a signal. Then the selector (IIl) achieves that, with high probability,
no noise-only channel is selected, and any channel whose signal strength exceeds the minimax
separation rate (I) will be selected. In this way, our selector provides a false-positive-free method
for this problem.

J.2 Heterogeneous univariate functions

We now extend our framework to heterogeneous settings where f; € H,; and H; might be different
across j € [p]. This setting was considered in Rasknffief all [20172] for function estimation. Define
the parameter space:

Folri, - m)=qf=>_fit D UG#0)<s, fj€H;(r})U{0}foralljefp] o,

J€(p] JE[P]
where
2 1
i=1 i=1 i=1

Heterogeneity across # ; (7’]2) is captured via distinct sequence {;; };en+for every j € [p].
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Upper bound We apply a component-wise selector

ﬁ;wt” =1 nZX > K, +24/K;log(2p/d) + 2log(2p/9) | ,
where K; := min {k eNT:py; < Y klog } and recall n = o~ 2. If the condition

1 k1
T;>oa{°gp+max (vnogm@}

- n keN+

holds for every j € [p], we have the exact support recovery guarantee

fers(lr%,.,.,rg) f( (X) (f)) >

The proof proceeds analogously to that given in Appendix C2.

Lower bound We next prove that, if there exists some j € [p] with 75 <

c {1"% + maxyen+ (V kilogp A ,uk;j)} for a sufficiently small constant ¢, then no selector can
achieve consistent support recovery.

Define
Fieast,j = {f = fi =Y Oithi: O €N, =N} ifi <k, 0, =0if i > ka}’
=1

where \;, k; will be clarified later. We then design the least favorable set

-Eeast = U -Fleast J U {f - O}

J€p]

The set Fieqs¢ assumes that at most one univariate function could be the support, and the very support
has a weak signal strength 75 = A%k;. Then we get

inf sup Pf( (X )#S(f)) >1nf max P, ( );é{j})
S f€Ficast =0,--,p
where P ; follows a similar definition in Appendix . Then, if

1 5%p
- —1)<—2 1
](“ )<yt

we obtain

inf sup Py (S(X)£S(N) =1-4,

S f€Ficast
for arbitrary constant § € (0, 1). Therefore, it suffices to consider the optimization problem

S\27..
max : Ajkj,

n2/\4k;j
subject to: exp 23 <c-p,

2
Ajki < b

for every j € [p]. The result shows that 77 = A\3k; < cmaxgen+ ( ¥ Og A ng) leads unreliable
selection.

On the other hand, by assuming o2 = n > ﬁ[’]’m‘ and following the proof technique in
JELP. J

Appendix [, we can prove that rjz < ck’% also leads unreliable selection, therefore we prove the
matching lower bound.
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K Technical Lemma

The following Lemma shows that, if f € EgK)(TQ), it suffices to only consider those selectors
depending on || X1.x ;|| = \/Zf{zl X7

Lemma 1 (Norm selector) Assume K is a positive integer satisfying px > r2. For every measur-
able function w(-,-) and for every selector (X xp) = (1 (Xrxp), - »1p Xkxp)) € {0,1}7,

there exists a randomized selector ij (| X. 1]y, , || X. p|l,) such that
sup Ep{w(,n(f))} >  sup  Eg{w(n(f))}-
FeFd () FEFI(r2)

Taking w(z,y) = 1(z # y), we get

sup Py #n(f) > sup  Pr(n#n(f)).
FeFIO (r2) FeFiO(r2)

The proof of Lemma [ is as similar as the proof of Lemma 1 in Bufiiceaefall [207234], with additional
checking that 72 < ||0;X1.k;/3 = [ X1.x;]3 < wx holds for every orthogonal matrix O; €
REXE ‘every X. ; € Fi.x(r?) and every index j € {j : f; # 0}.

Lemma 2 (Chi-squared inequalities) Let x7(B) denote a x* random variable with k degrees of
freedom and non-centrality parameter B > 0. Then for every x > 0, there exist absolute constants
¢1 > 0and cy € (0,1) such that

P (Xi(O) >k + Ve + clx) >coe” 7, (59)
2
P (Xﬁ(o) <k-—z) <exp <Z€> ) (60)
p (Xi(B) > k+B+2\/m+2x) <e T, ©61)

Inequalities (89), (B0) and (B1) are proved in Corollary 3 in Zhang and Zhou [2020], Theorem 2 in
Ghosh [PO71] and Lemma 8.1 in Birgé [POUI] respectively.

Lemma 3 (Minimax lower bound based on combined risk, Abraham ef all [2024]) Assume we
observe X ~ Py, 0 € RP. For any prior m (of 0) on RP, we denote by P, the distribution of
(X, 0) in the Bayesian model. Then, for all 1 < s < p, all k € (0, 1), and all measurable © C RP?,
we have:

A 27
inf sup R(0, ) > —— (1 - 6sz) — Py (|0l > s) — 2P (0 ¢ ©),
® 9co 1+A
for some universal constant ¢ > 0, where
JE— 1
A=— zpﬂ 0;#0, Pr (0, =0[X) > 0.
j=

Lemma B is derived from Theorem S-3 in the supplementary of [Abraham ef-all, 2074], with taking
p = 1 and the combined risk

R(0,¢) = Eq ( Zj:OJ:O P 4 Zj;gﬂéo(l — ij)> .

1\/23'6[1)] ®j s

Lemma 4 (Truncation for classification) Assume C' > 0 is a postive constant and K(©) :=
min {k eENT:puy < C’Vkloi(p_s)}, then under assumption n > %, we have

= max

K@ log(p — s) < Flog(p — s))
pp N Y2 )
n keNt n
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Cy/klog(p—s)

Figure 4: A guide to show > Civlogépﬂ) and VI log(p=s) >
c (mc)_l)log(p_s)}

max {,UK(C), n

Proof 1 (Proof of Lemma 8) The proof is inspired by Lemma 2.1 in Kotekal_and Gaa [P074]. By

taking K = 1 and n > %, we have py > Clogr(f’_s) > CY logrgpfs), which shows K(©) >
2.

For every k > K©), by definition of K©), we conclude we < pre < CVED log(p—s) <

P =
Cy/klog(p—s) klog(p—s)
n

, which leads that i N ¢ - = pr < pro). Foreveryl < k < K© —
C\/(K(©) —1)log(p—s) Cy/klog(p—s)
n

1, we conclude py > pge)_1 > —
C\/klog(p—s) _ C\/klog(p—s) < C\/(K(C)fl)log(pfs)

< C\/k‘log(p—s)>
Mk/\—n

> , which leads that pj, N\

. Therefore, we conclude that

O/(E© —1)log(p — s))

max
keN+t

= max (MK(C) ,

see Figure B for a clear demonstration. And it is straightforward that

CvK©)] - Cyv/(K©) —1)1 -
V - (Mmcn V( ) log(p S)> _ 62)
n n
Besides, from K(©) > 2, we get K(©) < 2(K(©) — 1), therefore
C/K© log(p — s) <C\/2(K(C) —1)log(p — s)
n - n
Cv/(K©) —1)log(p —s
<V2 max (umc>, v - Jlog(v )> (63)
Cykl -
:\/§ max <’uk /\ Og(ps)>
keN+ n
From (B2) and (B3) we conclude
() — k1 — k1 —
K@log(p—s) _ (uk . Cv/klog(p s)) - (Mk  V/Flog(p s)) |
n keEN+ n EENT n

which completes the proof of Lemma B.

Following the same proof technique, we can get the following results.
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Lemma 5 (Truncation for joint estimation and multiple testing) Assume C' > 0 is a positive

constant and K(©) := min {k eNt iy < Ci‘klof(p/s) } then under assumption n > Clog(p/s)

M1
we have
kl (@) k1
ﬁg@wcwomwv<c~K1%WQ<@E$Q%~%/%W®>
€ n n c n

which means

(©) 1
Klmwmm@MWMmu
n keNt n

Besides, define K’ := min {k eNT < %} then under assumption n > i we have

A/ !
max(ukA\/E>< K<\/§max<uk/\\/%>.
n kEN+ n

keNt n

Lemma 6 (Expectation with hyperbolic cosine) Assume X ~ N(0,1/n), ki, ko are two positive
integers, then we have

ki Ak }k]\/kg—kl/\kg

{Ecosh (nXA(k1)) - cosh (nX)\(kQ))} % {Ecosh X - (A(k1) A Ak2))]
= cosiF 2 (A (k1) A(K2)) X exp (g{(kl Vka) - A1 V k)2 + (ky A ko) - A A kz)Q}) ,
where \(-) can be arbitrary non-increasing function on N*.

Proof 2 (Proof of Lemma B) By cosh(z1) cosh(zs) = 3 (cosh(zy + z2) + cosh(z1 — 22)) and
E,n(0,1) cosh(Az) = X’ /2, we derive that
1( a n
E cosh (nX (k1)) - cosh (nX \(k2)) =5 {ef(>‘(’“1)+>\(’€2))2 + efo‘(kl)”‘(b))z}
=3 DA cosh (nA (k)M (k2)),
and
E cosh [nX - (Mk1) A A(ko))] = e AkANR2))?,
Therefore
k1Nko k1Vko—kiNko
{Ecosh (nX (k1)) - cosh (nXA(k2)) } X {Ecosh X - (A(k1) A Ak2))] }
= cosh™ "2 (nA (k) A(k2))
n
X exp (5{0\@1)2 + A(k2)?) - (k1 A k) + Ak V k)2 - (k1 V kg — ki A kQ)})
= cosh 2 (n A (k1 )A(2)) X exp (%{(kl Vka) - A1 V E2)? + (K A ko) - Ay A k2)2}) ,
which completes the proof of Lemma B.

Lemma 7 (Minimax lower bound in x? divergence) For a given constant § € (0,1), assume that
Py, Py, --- , P, be p probability measures satisfying p > 4/6% and

1 &, 5%p
=Y X (PyP) € s — L.
P 2(2 -9)
Then
inf sup P;(v#j) > (1-6/2)> >1—4,
Y 0<j<p
where int,, represents the infimum over all tests of the form ¢ : X — {0,1,--- ,p} with X ~ P;.

The proof of Lemma [ follows from Proposition 2.4 of [Isybakovi [2009] with taking M = p,

_ &% _2-§
Q= 525y — land 7 = TR
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