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Abstract

The sparse additive model (SpAM) offers a trade-off between interpretability and
flexibility, and hence is a powerful model for high-dimensional research. This pa-
per focuses on the variable selection, i.e., the univariate function selection problem
in SpAM. We establish the minimax separation rates from both the perspectives of
sparse multiple testing (FDR + FNR control) and support recovery (wrong recov-
ery probability control). We further study how adaptation to unknown smoothness
affects the minimax separation rate, and propose an adaptive selection procedure.
Finally, we discuss the difference between estimation and selection in SpAM: Pro-
cedures achieving optimal function estimation may fail to achieve optimal univari-
ate function selection.

1 Introduction

The Sparse Additive Model (SpAM) is a pivotal topic of recent statistical research [Ravikumar et al.,
2009, Meier et al., 2009, Koltchinskii and Yuan, 2010, Raskutti et al., 2012, Dalalyan et al., 2014,
Yuan and Zhou, 2016, Tyagi et al., 2016, Tan and Zhang, 2019, Haris et al., 2022]. It extends the
generalized additive model [Hastie and Tibshirani, 1987], balancing interpretability and flexibility
while avoiding the curse of dimensionality and adapting to high-dimensional settings.

In this paper, we focus on the variable selection, i.e., univariate function selection problem of the
SpAM, which is a fundamental problem with broad implications in multi-channel detection [Ingster
and Lepski, 2003], multi-task learning [Wang et al., 2020], sparse neural network [Xu et al., 2023],
and so on. We consider a Gaussian white noise (GWN) model with p covariates x = (x1, · · · , xp) ∈
X p, which takes the form as

dYx = f(x)dx+ σdBx =

p∑
j=1

fj(xj)dxj + σdBx,

where X is the domain of each covariate xj , Bx is a standard Wiener process on X p, and σ > 0
measures the intensity of the white noise. We assume fj is the univariate function corresponding
to variable xj . Under the setting of sparsity, the response Yx is influenced by no more than s
covariates, and hence f can be expressed as f(x) =

∑
j∈Sf

fj(xj), where Sf ⊆ {1, · · · , p} is the
index set of these support covariates. In this continuous-time SpAM framework, our main goal is
to recover the index set Sf , i.e., to select which fj ̸= 0. This paper studies the univariate function
selection in SpAMs from two perspectives—namely, as a sparse multiple testing problem and as a
support recovery problem. We employ the truncated procedures and establish the non-asymptotic
minimax separation rates, delivering, to our knowledge, the first optimal finite-sample guarantees
for univariate function selection in SpAMs.
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1.1 Related work

Background of variable selection The variable selection problem has attracted significant interest
recently [Butucea et al., 2018, Rabinovich et al., 2020, Belitser and Nurushev, 2022, Song and
Cheng, 2023, Butucea et al., 2023a, Abraham et al., 2024]. The general assumption is that the
response depends on only a few covariates, and the main aim is to find them. This problem can be
framed as either a sparse multiple testing problem (controlling False Discovery Rate (FDR), False
Negative Rate (FNR), etc.) [Rabinovich et al., 2020, Song and Cheng, 2023, Abraham et al., 2024],
or a support recovery problem (controlling Hamming loss) [Wainwright, 2007, Butucea et al., 2018,
Gao and Stoev, 2020, Butucea et al., 2023a], based on different setting of the loss function. Much
of the existing studies concentrated on the sparse sequence model Xi = βi + ϵi, i = 1, · · · , p
independently, with assuming

∑p
i=1 1(βi ̸= 0) ≤ s and each ϵi drawn from distributions like

Gaussian [Butucea et al., 2018, Song and Cheng, 2023] or generalized Gaussian [Gao and Stoev,
2020, Rabinovich et al., 2020, Abraham et al., 2024]. Though these studies demonstrated interesting
phase-transition phenomena and established the asymptotically sharp minimax separation rate, they
cannot be directly applied to the univariate function selection in SpAM.

Background of univariate function selection in SpAM Univariate function selection in SpAM
stands as a pivotal problem in statistical learning [Lin and Zhang, 2006, Ravikumar et al., 2009,
Huang et al., 2010, Chouldechova and Hastie, 2015, Xu et al., 2016, Wood et al., 2015, Butucea and
Stepanova, 2017, Dai et al., 2023]. Most existing studies firstly provided minimax-optimal estima-
tors for the function f via M-estimation with group-lasso-type penalties on each fj . Then, by utiliz-
ing the estimation results, the selection performances were often established as by-products [Raviku-
mar et al., 2009, Huang et al., 2010, Dai et al., 2023]. Although these methods ensured asymptotic
variable selection consistency [Ravikumar et al., 2009, Huang et al., 2010] or FDR control [Dai et al.,
2023], they did not guarantee minimax optimality for the univariate function selection problem. This
implies that their minimum signal conditions, typically quantified by “minj∈Sf

∥fj∥22 ≥ some rate”,
are sufficient but not necessary: Their signal strength assumptions may be overly restrictive.

Existing optimal univariate function selection in SpAM From the viewpoint of support recov-
ery with Hamming loss, Ingster and Stepanova [2014] and Butucea and Stepanova [2017] provided
the minimax optimal (i.e., necessary and sufficient) signal condition for exact support recovery and
almost-full support recovery, respectively. Comminges and Dalalyan [2012] analyzed support recov-
ery in a p-dimensional nonparametric regression with an intrinsic s-variate underlying function. In
an additive model allowing k-dimensional interaction effects, Stepanova and Turcicova [2025, 2024]
provided the optimal signal condition for exact support recovery. These studies offered asymptot-
ically minimax optimal results in some specific function classes, but may not be persuasive in the
general function space with a finite sample size. For instance, they rely on certain additional as-
sumptions, like log p = o(σ−2/(2α+1)) and σ → 0, in the Sobolev space with smoothness parameter
α.

Inspiration from cutting-edge work Building on the monotone likelihood ratio property, Butucea
et al. [2023a] recently established rate-optimal signal conditions for support recovery under group
sparsity, improving upon conclusions from Lounici et al. [2011]. Kotekal and Gao [2024] extended
the hard-thresholding estimator of Collier et al. [2017] to develop a minimax optimal goodness-
of-fit test for SpAM (i.e., testing whether f =

∑
j∈Sf

fj = 0). These advances motivate the
development of a non-asymptotic minimax optimal univariate function selector within a generalized
SpAM framework, covering Sobolev-smooth, analytic, and other function classes.

1.2 Main contributions and organization

This paper answers the following questions:

In a generalized SpAM framework, can we achieve non-asymptotic and minimax
optimal univariate function selection? What is the difference between function
estimation and univariate function selection?

The main contributions are threefold:
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1. Minimax separation rates From both the viewpoints of sparse multiple testing
(FDR+FNR control) and support recovery (wrong recovery probability control), we es-
tablish the non-asymptotic minimax separation rates for univariate function selection in a
generalized SpAM framework. This result is, to our knowledge, the first optimal finite-
sample guarantees. We also develop truncated-type selectors to achieve the minimax rate-
optimality, respectively.

2. Minimax adaptation We provide a rate-optimal selection procedure that adapts to the
smoothness parameter of the Sobolev spaces. We show that an additional log

(
log(σ−2)

)
term in the signal condition is required for this adaptation.

3. Difference between estimation and selection Within the class of truncated-type estima-
tors, we demonstrate that the optimal function estimations can not yield optimal univariate
function selection in some cases. This gap underscores the necessity to proceed differently
in selection versus estimation, a finding with deep statistical implications.

The rest of the paper is organized as follows: Section 1 establishes the notation used throughout the
paper. Section 2 introduces the model setup and the background of our problem. Section 3 estab-
lishes the minimax separation rates for univariate function selection from two viewpoints. Section 4
provides a rate-optimal selector adaptive to the smoothness parameter in the Sobolev space. Section
5 offers an in-depth discussion about the difference between estimation and selection in SpAMs.
The limitations, future directions, numerical experiments, and all technical proofs are provided in
the appendices.

1.3 Notation

For the given sequences an and bn, we write that an = O(bn) and an ≲ bn (resp. an = Ω(bn)
and an ≳ bn) if an ≤ cbn (resp. an ≥ cbn) for some absolute positive constant c. We write that
an ≍ bn if an = O(bn) and bn = O(an). Denote by [m] the set {1, 2, · · · ,m}, and 1(·) the
indicator function. Denote by x ∨ y the maximum of x and y, and x ∧ y the minimum of x and y.
Denote by Sf = {j ∈ [p] : fj ̸= 0} ⊆ [p] the support univariate function set of a SpAM function

f . For a square intergral function f with support X , denote by ∥f∥2 =
(∫

X f
2(x)dx

)1/2
its L2

norm. Let C,C0, C1, · · · denote absolute positive constants whose values may change from one
occurrence to the next.

2 Preliminary and problem setup

Let us recall that we observe Yx and x ∈ χp such that

dYx =
∑
j∈Sf

fj(xj)dx+ σdBx. (1)

To ensure the identifiability of univariate functions, we assume
∫
X fj(xj)dxj = 0 for each j ∈ [p].

In theoretical research, the GWN model and nonparametric regression model are asymptotically
equivalent, as shown by Brown and Low [1996], Reiß [2008]1. Moreover, the GWN model sim-
plifies the analysis by avoiding unnecessary technical complexities while keeping the focus on the
statistical essence [Kotekal and Gao, 2024]. Consequently, many foundational nonparametric statis-
tics theories are developed based on the GWN model [Fan, 1991, Donoho and Johnstone, 1998,
Baraud, 2002, Tsybakov, 2009, Comminges and Dalalyan, 2012, Johnstone, 2017, Han et al., 2020].
Therefore, to maintain this theory-driven tradition, we conduct our analysis based on the GWN
model (1).

2.1 Function settings

We propose a general smoothness assumption based on the series expansion of univariate functions.
For each j ∈ [p], assume that fj : X → R can be decomposed from an orthonormal basis {ψi}i∈N+ ,
as fj(xj) =

∑∞
i=1 θijψi(xj), where θij = θij(fj) :=

∫
X ψi(xj)fj(xj)dxj is the coefficient of ψi

1Also see Section 1.10 of Tsybakov [2009] for the connection between the GWN and nonparametric regres-
sion.
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for each i ∈ N+. Define θ·j = θ·j(fj) := {θij}i∈N+ . We assume that each fj is sufficiently smooth
and belongs to the ellipsoid class

E :=

{
fj =

∞∑
i=1

θijψi :

∞∑
i=1

θ2ij
µi

≤ 1

}
, (2)

where {µi}∞i=1 is a non-increasing sequence of positive numbers, i.e., µ1 ≥ µ2 ≥ · · · , and we
assume µ1 ≍ 1 to ensure fj has finite L2 norm. This ellipsoid setting is a broad smoothness assump-
tion that renders our theoretical results applicable to Reproducing Kernel Hilbert Space (RKHS)
[Raskutti et al., 2012, Yuan and Zhou, 2016, Kotekal and Gao, 2024], Fourier basis [Comminges
and Dalalyan, 2012, Ingster and Stepanova, 2014, Butucea and Stepanova, 2017], etc. The function
space of SpAM is defined as

Fs :=

f(x) =
p∑
j=1

fj(xj) :

p∑
j=1

1(fj ̸= 0) ≤ s, fj ∈ E for all j ∈ [p]

 . (3)

Each f ∈ Fs corresponds uniquely to a Θ = Θ(f) := (θ·1(f1), · · · , θ·p(fp)) ∈ RN+×p. Therefore,
f ∈ Fs and Θ ∈ Fs will be used interchangeably in the subsequent text. For every f ∈ Fs and
every i ∈ N+, j ∈ [p], based on the continuous process Yx in model (1), we have access to the
following random variables

Xij :=

∫
Xp

ψi(xj)dYx = θij +

∫
Xp

ψi(xj)σdBx ∼ N(θij , σ
2).

By orthogonality, the set X = {Xij}i∈N+,j∈[p] is a collection of independent random observations.

2.2 Problem setup

Within the SpAM space Fs, our primary task is to establish a minimax optimal (i.e., necessary and
sufficient) signal condition of each support fj , for the univariate function selection. Before delving
into our analysis, we revisit the function estimation problem in SpAM, where Raskutti et al. [2012]
established the minimax rate as:

inf
f̂

sup
f∈Fs

Ef

(∥∥∥f̂(X)− f
∥∥∥2
2

)
≍ s× σ2 log(ep/s)︸ ︷︷ ︸

High-dimensional selection error

+s× max
k∈N+

(
(σ2k) ∧ µk

)
︸ ︷︷ ︸

inf
f̂j

supfj∈E Efj∥f̂j(X·j)−fj∥2

2

,

(4)
which is composed of s times the "high-dimensional selection error" and s times the "minimax
estimation rate of a single univariate function", with no interplay between these two parts. This
result shows that the first term σ2s log(ep/s) is independent of the univariate function space E , and
the estimation term (the second term) is dimension-free (p-free) [Kotekal and Gao, 2024]. Therefore,
it is natural to speculate that the univariate function selection shares a similar property, with its
optimal signal condition, quantified by the squared L2 norm, of the rate:

σ2 log(ep/s)︸ ︷︷ ︸
High-dimensional selection error

+ max
k∈N+

(
(σ2

√
k) ∧ µk

)
, (5)

where the second term is the minimax separation rate for the goodness-of-fit test of a single univari-
ate function in E [Baraud, 2002].

However, in Section 3 we prove that this is not the case. In univariate function selection, there is an
interplay between the high-dimensional sparse structure (selection error) and the ellipsoid space E ,
complicating the form of its minimax rate.

3 Main result: optimal univariate function selection

In this section, we demonstrate that the truncated-type selectors lead to minimax optimal re-
sults. Define the decoder ηj = ηj(fj) := 1(fj ̸= 0), and the corresponding vector η =
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η(f) := (η1(f1), · · · , ηp(fp)) ∈ {0, 1}p. We also define the selector, i.e., the estimation of η,
as η̂ = η̂(X) = (η̂1(X), · · · , η̂p(X)) ∈ {0, 1}p, and Ŝ = {j ∈ [p] : η̂j = 1} as the estimated
support set corresponding to η̂. Define the SpAM space with the signal strength condition as

Fs(r2) :=

f =
∑
j∈[p]

fj ∈ Fs : ∥fj∥22 ≥ r2 for all fj ̸= 0

 , (6)

indicating that each support fj has a signal separated from 0. Here r2 is a positive value and we

additionally assume r2 ≤ µ1 to ensure Fs(r2) ̸= ∅ (since ∥fj∥22 ≤ µ1

∑
i

θ2ij
µi

≤ µ1 based on
fj ∈ E). In the next two subsections, we derive the minimax separation rates from two viewpoints,
sparse multiple testing and support recovery, respectively.

3.1 From sparse multiple testing: FDR + FNR control

Preliminary setup From the viewpoint of testing, the selection can be realized as a multiple-
testing problem

H0j : fj = 0, H1j : fj ̸= 0, for all j ∈ [p],

under the exactly s-sparse function space

f ∈ F=s(r
2) :=

f =
∑
j∈[p]

fj ∈ Fs(r2) :
∑
j∈[p]

1(fj ̸= 0) = s

 .

We consider the multiple testing risk combined with the false discovery rate (FDR) plus the false
negative rate (FNR), which is of the form

R(f, η̂) = Ef

( ∑
j /∈Sf

η̂j

1 ∨
∑
j∈[p] η̂j

+

∑
j∈Sf

(1− η̂j)

s

)
.

This combined risk balances the proportion of type I and type II errors, and is frequently used in the
sparse testing [Arias-Castro and Chen, 2017, Rabinovich et al., 2020, Abraham et al., 2024].

Definition 1 (Minimax separation rate of sparse multiple testing) We say ϵ2test is the non-
asymptotic minimax separation rate of the sparse multiple testing problem for (1) if:

(1) For all δ ∈ (0, 1), there exists cδ > 0 depending only on δ such that for all 0 < c < cδ ,

inf
η̂

sup
f∈F=s(cϵ2test)

R(f, η̂) ≥ 1− δ.

(2) For all δ ∈ (0, 1), there exists Cδ > 0 depending only on δ such that for all C > Cδ ,

inf
η̂

sup
f∈F=s(Cϵ2test)

R(f, η̂) ≤ δ,

where inf η̂ denotes the infimum over all selector η̂(X) : RN+×p → {0, 1}p.

K-truncated selector For each sequence X·j , we truncate by the first K entries and construct the
corresponding selector

η̂testj (X·j) = 1

(
K∑
i=1

X2
ij ≥ σ2K + λ2(K)

)
, j ∈ [p], (7)

where the truncation K := min
{
k ∈ N+ : µk ≤ σ2

√
k log(p/s)

}
, and the parameter λ2(K) will

be determined in Theorem 1. Denote by η̂test = (η̂test1 , · · · , η̂testp ) ∈ {0, 1}p the corresponding
selector vector. The following theorem employs an analysis to control the combined risk at a low
level.
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Theorem 1 (Upper bound for sparse multiple testing) Let δ be an arbitrary number in (0, 1),
and assume that σ−2 >

Cδ,1 log(p/s)
µ1

, p/s ≥ Cδ,2, and s ≥ Cδ,3. Then, assuming

r2 ≥
(

6√
δ

(√
10 + 2

)
+
√
2

)
max
k∈N+

(
σ2
√
k log(p/s) ∧ µk

)
+

36

δ
σ2 log(p/s) (8)

and taking

λ2(K) = 2σ2

(√
5K log

( p
sδ

)
+ 5 log

( p
sδ

))
,

we have
sup

f∈F=s(r2)

R(f, η̂test) ≤ δ,

where Cδ,1, Cδ,2, Cδ,3 are positive constants only determined by δ.

The next theorem shows that the rate in (8) is also necessary for controlling the testing risk.

Theorem 2 (Lower bound for sparse multiple testing) Let δ be an arbitrary number in (0, 1),
and assume that σ−2 >

Cδ,1 log(p/s)
µ1

, p/s ≥ Cδ,2, and s ≥ Cδ,3. Then, for all r2 satisfies

0 < r2 ≤ cδ,4

{
σ2 log(p/s) + max

k∈N+

(
σ2
√
k log(p/s) ∧ µk

)}
,

we have
inf
η̂

sup
f∈F=s(r2)

R(f, η̂) ≥ 1− δ,

where Cδ,1, Cδ,2, Cδ,3 and cδ,4 are four positive constants only determined by δ.

Therefore, combining Theorem 1 and 2, we establish the minimax separation rate for the sparse
multiple testing in the SpAM (1) as

ϵ2test ≍ σ2 log(p/s) + max
k∈N+

(
σ2
√
k log(p/s) ∧ µk

)
. (9)

We also illustrate that a truncated-type selector possesses such minimax optimality.

Remark 1 (Truncation) So far, the equation (9) reveals that our initial speculation (5), in the end of
Section 2.2, is inaccurate: The high-dimensional sparsity structure influences both terms in the min-
imax separation rate. This is because the selection problem is related to the chi-squared distribution,
whose heavy tail leads to the selection error of the rate σ2

{
log(p/s) +

√
K log(p/s)

}
. Therefore,

we have to choose an appropriate truncation level K to balance the residual signal strength µK
with this composite error bound, i.e., µK ≍ σ2

{
log(p/s) +

√
K log(p/s)

}
. Consequently, the

high-dimensional structure affects the choice of truncation, revealing an interplay that is not only
sufficient but also necessary.

Remark 2 (SpAM and GSM) The Gaussian sequence model (GSM, mentioned in Section 1.1) can
be seen as a simplified SpAM, where θ1j = 1 and θij = 0 for each i ≥ 2 and j ∈ Sf . Therefore, in
GSM, we can just choose truncation K ≡ 1, and analyze the selection error caused by the Gaussian
distribution [Butucea et al., 2018, Song and Cheng, 2023]. In contrast, to get an optimal truncation
K in general SpAM space, our selector (7) requires trading off the truncation bias against sub-
exponential error. Both the analysis and outcome demonstrate that univariate function selection in
SpAM is more challenging than variable selection in GSM.

Additionally, our theoretical results can be extended to the following specific cases.

Corollary 1 Assume that all assumptions in Theorem 2 and Theorem 1 hold. Then we have:

• Sobolev Take µi ≍ i−2α with smoothness parameter α, the minimax separation rate for
multiple testing is

ϵ2test ≍ σ2 log(p/s) +
(
σ4 log(p/s)

) 2α
1+4α .
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• Finite dimension Take µ1 = · · · = µm > µm+1 = µm+2 = · · · = 0 for some positive
integer m, the minimax separation rate for multiple testing is

ϵ2test ≍ σ2 log(p/s) +
(
σ2
√
m log(p/s) ∧ µ1

)
.

• Exponential decay Take µi ≍ exp(−c1iγ), where c1 is a positive constant and γ > 0,
the minimax separation rate for multiple testing is

ϵ2test ≍ σ2 log(p/s) + σ2
√

log(p/s) · log
1
2γ

(
σ−4

log(p/s)

)
.

Remark 3 (Finite dimension case) We now give a further discussion of the finite dimension case.
Under the assumption σ−2 ≳ log(p/s)

µ1
, the minimax separation rate exhibits two regimes:

1. If µ1 ≲ σ2
√
m log(p/s), then we derive that

√
m log(p/s)

µ1
≳ σ−2 ≳ log(p/s)

µ1
, leading

m ≳ σ−2µ1. In this case ϵ2test ≍ σ2 log(p/s) + µ1 ≍ µ1.

2. If µ1 ≻ σ2
√
m log(p/s), then we get ϵ2test ≍ σ2 log(p/s)+σ2

√
m log(p/s), which aligns

with the minimax separation rate in the group sparsity setting [Butucea et al., 2023a].

Combining these cases gives a more intuitive separation rate

ϵ2test ≍ min
{
σ2
(
log(p/s) +

√
m log(p/s)

)
, µ1

}
.

Here the minimum reflects our ellipsoid space constraint: by definition of E and Fs(r2) in Section

2.1, every active univariate function fj obeys ∥fj∥22 ≤ µ1

∑
i∈N+

θ2ij
µi

≤ µ1, leading its L2 norm
upper bounded by µ1.

In the case µ1 ≲ σ2
√
m log(p/s), we have ϵ2test ≍ µ1. In other words, to control FDR+FNR, we

would need each fj to satisfy ∥f_j∥_2 ≥ Cµ1 for some large constant C > 0. However, each
support fj obeys ∥f_j∥2 ≤ µ1. Hence, there are basically no fj that can attain a detectable norm,
and the support recovery problem is essentially trivial in this case.

3.2 From support recovery: wrong recovery probability control

Preliminary setup The univariate function selection can also be viewed as a support recovery
problem. We measure the selection error between the estimated support Ŝ and the true support S by
using the Hamming loss 1(η̂(X) ̸= η(f)), where the probability of wrong recovery

Pf

(
Ŝ(X) ̸= S(f)

)
= Pf (η̂(X) ̸= η(f)) = E

(
1
(
η̂(X) ̸= η(f)

))
serves as the risk function, which characterizes how we can exactly recover the support set [Wain-
wright, 2007, Butucea et al., 2023a].

Definition 2 (Minimax separation rate of support recovery) We say ϵ2rec is the non-asymptotic
minimax separation rate of support recovery for (1) if:

(1) For all δ ∈ (0, 1), there exists cδ > 0 depending only on δ such that for all 0 < c < cδ ,

inf
η̂

sup
f∈Fs(cϵ2rec)

Pf (η̂(X) ̸= η(f)) ≥ 1− δ.

(2) For all δ ∈ (0, 1), there exists Cδ > 0 depending only on δ such that for all C > Cδ ,

inf
η̂

sup
f∈Fs(Cϵ2rec)

Pf (η̂(X) ̸= η(f)) ≤ δ,

where inf η̂ denotes the infimum over all selector η̂(X) : RN+×p → {0, 1}p.
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Similar to Section 3.1, we next establish the minimax separation rate for the support recovery prob-
lem in SpAM (1).

Theorem 3 (Minimax separation rate of support recovery) Let δ be an arbitrary number in
(0, 1), and assume that σ−2 >

Cδ,1 log p
µ1

, p ≥ Cδ,2, and s ≥ Cδ,3. Then the minimax separation rate
for the support recovery problem with respect to the wrong recovery probability Pf (η̂(X) ̸= η(f))
is

ϵ2rec ≍ σ2 log p+ max
k∈N+

(
σ2
√
k log p ∧ µk

)
. (10)

The minimax separation rate for support recovery in (10) is a little greater than that for sparse multi-
ple testing in (9) (log p versus log(p/s)), showing that controlling the wrong recovery probability is
more demanding than controlling the combined risk (FDR + FNR). Indeed, sparse testing requires
|Ŝ∆S| = o(s), while exact recovery requires |Ŝ∆S| = o(1), necessitating a slightly stronger signal
condition. In addition, this discrepancy leads to a higher thresholding level for optimal selection in
support recovery, as detailed in the following.

Remark 4 (Rate-optimal selector) Under assumptions in Theorem 3 and the signal condition

r2 ≥ Cδ

{
σ2 log p+ max

k∈N+

(
σ2
√
k log p ∧ µk

)}
,

the selector

η̂recj (X) = 1


K′∑
i=1

X2
ij ≥ σ2K ′ + 2σ2

(√
K ′ log(2p/δ) + log(2p/δ)

) , j ∈ [p] (11)

controls the wrong recovery probability effectively:

sup
f∈Fs(r2)

Pf (η̂
rec(X) ̸= η(f)) ≤ δ,

where K ′ := min
{
k ∈ N+ : µk ≤ σ2

√
k log p

}
and Cδ > 0 is a constant only determined by δ.

Remark 5 (Relation to existing work) For the Sobolev space with smoothness parameter α, we
rewrite the minimax separation rate (10) for exact support recovery as:

ϵ2rec ≍

{
σ

8α
4α+1 (log p)

2α
4α+1 if log p ≲ σ

−2
2α+1 ,

σ2 log p if σ−2 ≳ log p ≳ σ
−2

2α+1 .
(12)

Therefore, in the case log p = o
(
σ

−2
2α+1

)
, we match the rate derived from Ingster and Stepanova

[2014], Butucea and Stepanova [2017]. Additionally, our findings establish the non-asymptotic
minimax separation rate for the case σ−2 ≳ log p > σ

−2
2α+1 , which was not provided in previous

studies. In this case, the selection error exhibits sub-Gaussian behavior, resulting in the rate aligning
with that in the Gaussian sequence model [Butucea et al., 2018, Song and Cheng, 2023].

4 Adaptation to the smoothness

Thus far, our analysis has assumed full knowledge of the smoothness sequence {µi}i∈N+ , which
is often unrealistic. This section investigates how adaptation to unknown smoothness affects the
minimax separation rate. For simplicity, we consider the Sobolev space with µi = i−2α, α > 0, and
rewrite the original space Fs(r2) as Fs(r2, α). The wrong recovery probability Pf (η̂(X) ̸= η(f))
is used as the risk function.

A selector adaptive to the unknown α Define the truncation set

Krec :=
{
2, 4, · · · , 2

⌈
log2

(
σ−4

log p

)⌉}
.
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For every δ ∈ (0, 1) and k ∈ Krec, we denote η̂(k)(X) :=
(
η̂
(k)
1 (X), · · · , η̂(k)p (X)

)
∈ {0, 1}p as

the selector vector with respect to k, where

η̂
(k)
j := 1

{
σ−2

k∑
i=1

X2
ij ≥ k + 2

√
k log

(
8p log(σ−2)

δ

)
+ 2 log

(
8p log(σ−2)

δ

)}
.

Now, we define the adaptive selector

η̂ad(X) :=

(
max
k∈Krec

η̂
(k)
1 , · · · , max

k∈Krec

η̂(k)p

)
∈ {0, 1}p. (13)

For each fj , our selector (13) firstly constructs individual tests for each k ∈ Krec, and then aggre-
gates them by taking the maximum over Krec. Equivalently, fj is declared supported as soon as it is
identified as nonzero under any candidate k ∈ Krec; conversely, fj is declared non-supported only
if it is identified as zero for all k ∈ Krec. We next establish the sufficient signal condition for the
wrong recovery probability control.

Theorem 4 (Upper bound for adaptation) Let δ be an arbitrary number in (0, 1), and assume that
σ−2 >

Cδ,1 log p
µ1

. Then, for all r2 satisfies

r2 ≥
(
12
√
2 + 1

)
σ

8α
1+4α log

2α
1+4α

(
8p log(σ−2)

δ

)
+ 18σ2 log

(
8p log(σ−2)

δ

)
,

we have
sup
α>0

sup
f∈Fs(r2,α)

Pf

(
η̂ad(X) ̸= η

)
≤ δ.

Compared to (12), an additional log
(
log(σ−2)

)
term in the signal strength condition is required. The

following theorem shows that log
(
log(σ−2)

)
is also necessary for the adaptation to the smoothness.

Theorem 5 (Lower bound for adaptation) Let δ be an arbitrary number in (0, 1), and assume
that σ−2 >

Cδ,1 log p
µ1

and p ≥ Cδ,2. Then, for all r2 satisfies

0 < r2 ≤ cδ,3

{
σ

8α
1+4α log

2α
1+4α

(
p log(σ−2)

)
+ σ2 log

(
p log(σ−2)

)}
,

we have
inf
η̂

sup
α>0

sup
f∈Fs(r2,α)

Pf (η̂(X) ̸= η) ≥ 1− δ.

Theorem 4 and 5 establish the adaptive minimax separation rate as

σ
8α

1+4α log
2α

1+4α
(
p log(σ−2)

)
+ σ2 log

(
p log(σ−2)

)
. (14)

In the high-dimensional case log p ≳ log
(
log(σ−2)

)
, the log

(
log(σ−2)

)
term becomes negligible

and (14) achieves the same rate as (12), indicating that adaptation incurs no additional cost on the
rate. However, when p is a large constant that is much smaller than σ−2, (14) indicates that, with
the smoothness unknown, achieving support recovery requires a stronger signal strength compared
to (12).

5 Discussion: difference between optimal estimation and selection

We finally end this paper by discussing the difference between estimation and selection. For sim-
plicity, we assume s ≤ p1−β , where β ∈ (0, 1) is a constant, therefore log(ep/s) ≍ log p. Next, we
establish a minimax-optimal estimator for f ∈ Fs through a truncated hard-thresholding procedure:

θ̂ij = Xij · 1(i ≤ Ke)︸ ︷︷ ︸
Truncation

·1

(
σ−2

Ke∑
i′=1

X2
ij ≥ Ke +

√
CKe log p+ C log p

)
︸ ︷︷ ︸

Hard thresholding

, (15)

where we define Ke := min{k ∈ N+ : µk ≤ σ2k}, and C > 0 is a fixed constant.
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Theorem 6 (Optimal truncation for function estimation) Assume σ−2 ≥ C1 log p
µ1

and the
canstant C in (15) satisfies C ≥ 4. Then the estimator (15) is rate-optimal:

sup
f∈Fs

Ef∥f̂(Θ̂)− f∥22 = sup
f∈Fs

Ef∥Θ̂−Θ(f)∥22 ≲ σ2s log p+ s× max
k∈N+

(
(σ2k) ∧ µk

)
.

Combined with (4), Theorem 6 implies that by only using the first Ke entries in each observation
sequence (i.e., only using X[Ke]×[p] := {Xij}1≤i≤Ke,1≤j≤p), one can achieve a minimax optimal
function estimation. However, it may fail to guarantee optimal univariate function selection by only
using these truncated observations, as shown below.

Theorem 7 (Suboptimal selection) Assume σ−2 ≥ C1 log p
µ1

and p ≥ C2. Then, for all r2 satisfies

0 < r2 ≤ c3

{
σ2 log p+ max

k∈[Ke]

(
σ2
√
k log p ∧ µk

)
+ µKe+1

}
, (16)

we have a lower bound as

inf
η̂(X[Ke]×[p])∈{0,1}p

sup
f∈Fs(r2)

Pf

(
η̂(X[Ke]×[p]) ̸= η

)
≥ 1

2
,

where the infimum inf η̂(X[Ke]×[p])∈{0,1}p takes over all restricted selectors that only use observations
X[Ke]×[p], and C1, C2, c3 > 0 are absolute constants.

This theorem demonstrates that in the family of truncation estimators, optimal estimation sometimes
leads to a suboptimal univariate function selection. For example, consider the Sobolev space with
µi = i−2α in the case log p = o

(
σ− 2

1+2α

)
. To exactly recover the support set, the necessary signal

strength (16) (by only using X[Ke]×[p]) is of the rate σ
4α

1+2α , which exceeds the minimax separation
rate σ

8α
4α+1 (log p)

2α
4α+1 , as illustrated in (12). This gap directly shows that optimal univariate function

selection cannot be treated as a byproduct of optimal SpAM function estimation.

Appendix A discusses some future directions for this paper, and Appendix B provides the numerical
experiment to confirm our theoretical findings.
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pretable deep learning withăfeature selection viaăgroup sparsity. In Danai Koutra, Claudia Plant,
Manuel Gomez Rodriguez, Elena Baralis, and Francesco Bonchi, editors, Machine Learning and
Knowledge Discovery in Databases: Research Track, pages 343–359, Cham, 2023. Springer Na-
ture Switzerland. ISBN 978-3-031-43418-1.

Cristina Butucea, Mohamed Ndaoud, Natalia A. Stepanova, and Alexandre B. Tsybakov. Variable
selection with hamming loss. The Annals of Statistics, 46(5):1837 – 1875, 2018. doi:10.1214/17-
AOS1572SUPP. URL https://doi.org/10.1214/17-AOS1572.

11

https://doi.org/10.1111/j.1467-9868.2009.00718.x
https://doi.org/10.1111/j.1467-9868.2009.00718.x
https://doi.org/10.1111/j.1467-9868.2009.00718.x
https://doi.org/10.1214/09-AOS692
https://doi.org/10.1214/09-AOS692
https://doi.org/10.1214/09-AOS692
https://doi.org/10.1214/10-AOS825
https://doi.org/10.1214/10-AOS825
https://doi.org/10.1214/10-AOS825
https://doi.org/10.1214/15-AOS1422
https://doi.org/10.1214/15-AOS1422
https://proceedings.mlr.press/v51/tyagi16.html
https://doi.org/10.1214/18-AOS1757
https://doi.org/10.1214/18-AOS1757
https://doi.org/10.1080/01621459.1987.10478440
https://www.tandfonline.com/doi/abs/10.1080/01621459.1987.10478440
https://www.tandfonline.com/doi/abs/10.1080/01621459.1987.10478440
https://proceedings.neurips.cc/paper_files/paper/2020/file/8767bccb1ff4231a9962e3914f4f1f8f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8767bccb1ff4231a9962e3914f4f1f8f-Paper.pdf
https://doi.org/10.1214/17-AOS1572SUPP
https://doi.org/10.1214/17-AOS1572SUPP
https://doi.org/10.1214/17-AOS1572


Maxim Rabinovich, Aaditya Ramdas, Michael I Jordan, and Martin J Wainwright. Optimal rates
and trade-offs in multiple testing. Statistica Sinica, 30(2):741–762, 2020.

Eduard Belitser and Nurzhan Nurushev. Uncertainty quantification for robust variable selection
and multiple testing. Electronic Journal of Statistics, 16(2):5955 – 5979, 2022. doi:10.1214/22-
EJS2088. URL https://doi.org/10.1214/22-EJS2088.

Qifan Song and Guang Cheng. Optimal false discovery control of minimax estimators. Bernoulli,
29(3):1959 – 1982, 2023. doi:10.3150/22-BEJ1527. URL https://doi.org/10.3150/
22-BEJ1527.

Cristina Butucea, Enno Mammen, Mohamed Ndaoud, and Alexandre B. Tsybakov. Variable selec-
tion, monotone likelihood ratio and group sparsity. The Annals of Statistics, 51(1):312 – 333,
2023a. doi:10.1214/22-AOS2251. URL https://doi.org/10.1214/22-AOS2251.

Kweku Abraham, Ismaël Castillo, and Étienne Roquain. Sharp multiple testing boundary for sparse
sequences. The Annals of Statistics, 52(4):1564 – 1591, 2024. doi:10.1214/24-AOS2404. URL
https://doi.org/10.1214/24-AOS2404.

Martin Wainwright. Information-theoretic bounds on sparsity recovery in the high-dimensional and
noisy setting. In 2007 IEEE International Symposium on Information Theory, pages 961–965,
2007. doi:10.1109/ISIT.2007.4557348.

Zheng Gao and Stilian Stoev. Fundamental limits of exact support recovery in high dimensions.
Bernoulli, 26(4):2605 – 2638, 2020. doi:10.3150/20-BEJ1197. URL https://doi.org/10.
3150/20-BEJ1197.

Yi Lin and Hao Helen Zhang. Component selection and smoothing in multivariate nonparametric
regression. The Annals of Statistics, 34(5):2272 – 2297, 2006. doi:10.1214/009053606000000722.
URL https://doi.org/10.1214/009053606000000722.

Jian Huang, Joel L. Horowitz, and Fengrong Wei. Variable selection in nonparametric additive
models. The Annals of Statistics, 38(4):2282 – 2313, 2010. doi:10.1214/09-AOS781. URL
https://doi.org/10.1214/09-AOS781.

Alexandra Chouldechova and Trevor Hastie. Generalized additive model selection. arXiv preprint
arXiv:1506.03850, 2015.

Min Xu, Minhua Chen, and John Lafferty. Faithful variable screening for high-dimensional convex
regression. The Annals of Statistics, 44(6):2624 – 2660, 2016. doi:10.1214/15-AOS1425. URL
https://doi.org/10.1214/15-AOS1425.

Simon N Wood, Yannig Goude, and Simon Shaw. Generalized additive models for large data sets.
Journal of the Royal Statistical Society Series C: Applied Statistics, 64(1):139–155, 2015.

Cristina Butucea and Natalia Stepanova. Adaptive variable selection in nonparametric sparse addi-
tive models. Electronic Journal of Statistics, 11(1):2321 – 2357, 2017. doi:10.1214/17-EJS1275.
URL https://doi.org/10.1214/17-EJS1275.

Xiaowu Dai, Xiang Lyu, and Lexin Li. Kernel knockoffs selection for nonparametric addi-
tive models. Journal of the American Statistical Association, 118(543):2158–2170, 2023.
doi:10.1080/01621459.2022.2039671. URL https://doi.org/10.1080/01621459.2022.
2039671. PMID: 38143786.

Yu Ingster and Natalia Stepanova. Adaptive variable selection in nonparametric sparse regression.
Journal of Mathematical Sciences, 199:184–201, 2014.

Laëtitia Comminges and Arnak S. Dalalyan. Tight conditions for consistency of variable selec-
tion in the context of high dimensionality. The Annals of Statistics, 40(5):2667 – 2696, 2012.
doi:10.1214/12-AOS1046. URL https://doi.org/10.1214/12-AOS1046.

Natalia Stepanova and Marie Turcicova. Exact variable selection in sparse nonparametric models.
Electronic Journal of Statistics, 19(1):2001 – 2032, 2025. doi:10.1214/25-EJS2374. URL https:
//doi.org/10.1214/25-EJS2374.

12

https://doi.org/10.1214/22-EJS2088
https://doi.org/10.1214/22-EJS2088
https://doi.org/10.1214/22-EJS2088
https://doi.org/10.3150/22-BEJ1527
https://doi.org/10.3150/22-BEJ1527
https://doi.org/10.3150/22-BEJ1527
https://doi.org/10.1214/22-AOS2251
https://doi.org/10.1214/22-AOS2251
https://doi.org/10.1214/24-AOS2404
https://doi.org/10.1214/24-AOS2404
https://doi.org/10.1109/ISIT.2007.4557348
https://doi.org/10.3150/20-BEJ1197
https://doi.org/10.3150/20-BEJ1197
https://doi.org/10.3150/20-BEJ1197
https://doi.org/10.1214/009053606000000722
https://doi.org/10.1214/009053606000000722
https://doi.org/10.1214/09-AOS781
https://doi.org/10.1214/09-AOS781
https://doi.org/10.1214/15-AOS1425
https://doi.org/10.1214/15-AOS1425
https://doi.org/10.1214/17-EJS1275
https://doi.org/10.1214/17-EJS1275
https://doi.org/10.1080/01621459.2022.2039671
https://doi.org/10.1080/01621459.2022.2039671
https://doi.org/10.1080/01621459.2022.2039671
https://doi.org/10.1214/12-AOS1046
https://doi.org/10.1214/12-AOS1046
https://doi.org/10.1214/25-EJS2374
https://doi.org/10.1214/25-EJS2374
https://doi.org/10.1214/25-EJS2374


Natalia Stepanova and Marie Turcicova. Adaptive signal recovery in sparse nonparametric models.
arXiv preprint arXiv:2411.04320, 2024.

Karim Lounici, Massimiliano Pontil, Sara van de Geer, and Alexandre B. Tsybakov. Oracle inequal-
ities and optimal inference under group sparsity. The Annals of Statistics, 39(4):2164 – 2204,
2011. doi:10.1214/11-AOS896. URL https://doi.org/10.1214/11-AOS896.

Subhodh Kotekal and Chao Gao. Minimax signal detection in sparse additive models. IEEE Trans-
actions on Information Theory, 70(12):8892–8928, 2024. doi:10.1109/TIT.2024.3473770.

Olivier Collier, Laëtitia Comminges, and Alexandre B. Tsybakov. Minimax estimation of linear
and quadratic functionals on sparsity classes. The Annals of Statistics, 45(3):923 – 958, 2017.
doi:10.1214/15-AOS1432. URL https://doi.org/10.1214/15-AOS1432.

Lawrence D. Brown and Mark G. Low. Asymptotic equivalence of nonparametric regression and
white noise. The Annals of Statistics, 24(6):2384 – 2398, 1996. doi:10.1214/aos/1032181159.
URL https://doi.org/10.1214/aos/1032181159.

Markus Reiß. Asymptotic equivalence for nonparametric regression with multivariate and random
design. The Annals of Statistics, 36(4):1957 – 1982, 2008. doi:10.1214/07-AOS525. URL https:
//doi.org/10.1214/07-AOS525.

Alexandre B. Tsybakov. Introduction to nonparametric estimation. Springer Ser. Stat. New York,
NY: Springer, 2009. ISBN 978-0-387-79051-0.

Jianqing Fan. On the Estimation of Quadratic Functionals. The Annals of Statistics, 19(3):
1273 – 1294, 1991. doi:10.1214/aos/1176348249. URL https://doi.org/10.1214/aos/
1176348249.

David L. Donoho and Iain M. Johnstone. Minimax estimation via wavelet shrinkage. The Annals
of Statistics, 26(3):879 – 921, 1998. doi:10.1214/aos/1024691081. URL https://doi.org/10.
1214/aos/1024691081.

Yannick Baraud. Non-asymptotic minimax rates of testing in signal detection. Bernoulli, 8(5):
577–606, 2002. ISSN 13507265. URL http://www.jstor.org/stable/3318947.

Iain M. Johnstone. Gaussian estimation: Sequence and wavelet models. 2017.

Yanjun Han, Jiantao Jiao, and Rajarshi Mukherjee. On estimation of lr-norms in gaussian white
noise models. Probability Theory and Related Fields, 177(3):1243–1294, 2020.

Ery Arias-Castro and Shiyun Chen. Distribution-free multiple testing. Electronic Journal of Statis-
tics, 11(1):1983 – 2001, 2017. doi:10.1214/17-EJS1277. URL https://doi.org/10.1214/
17-EJS1277.

T Tony Cai and Mark G Low. Nonquadratic estimators of a quadratic functional. The Annals of
Statistics, 33(6):2930–2956, 2005.

T. Tony Cai and Mark G. Low. Optimal adaptive estimation of a quadratic functional. The Annals
of Statistics, 34(5):2298 – 2325, 2006. doi:10.1214/009053606000000849. URL https://doi.
org/10.1214/009053606000000849.

Cristina Butucea, Amandine Dubois, and Adrien Saumard. Phase transitions for support recovery
under local differential privacy. Mathematical Statistics and Learning, 6(1):1–50, 2023b.

Cristina Butucea, Amandine Dubois, Martin Kroll, and Adrien Saumard. Local differential privacy:
Elbow effect in optimal density estimation and adaptation over Besov ellipsoids. Bernoulli, 26(3):
1727 – 1764, 2020. doi:10.3150/19-BEJ1165. URL https://doi.org/10.3150/19-BEJ1165.

Cristina Butucea, Angelika Rohde, and Lukas Steinberger. Interactive versus noninteractive locally
differentially private estimation: Two elbows for the quadratic functional. The Annals of Statis-
tics, 51(2):464 – 486, 2023c. doi:10.1214/22-AOS2254. URL https://doi.org/10.1214/
22-AOS2254.

13

https://doi.org/10.1214/11-AOS896
https://doi.org/10.1214/11-AOS896
https://doi.org/10.1109/TIT.2024.3473770
https://doi.org/10.1214/15-AOS1432
https://doi.org/10.1214/15-AOS1432
https://doi.org/10.1214/aos/1032181159
https://doi.org/10.1214/aos/1032181159
https://doi.org/10.1214/07-AOS525
https://doi.org/10.1214/07-AOS525
https://doi.org/10.1214/07-AOS525
https://doi.org/10.1214/aos/1176348249
https://doi.org/10.1214/aos/1176348249
https://doi.org/10.1214/aos/1176348249
https://doi.org/10.1214/aos/1024691081
https://doi.org/10.1214/aos/1024691081
https://doi.org/10.1214/aos/1024691081
http://www.jstor.org/stable/3318947
https://doi.org/10.1214/17-EJS1277
https://doi.org/10.1214/17-EJS1277
https://doi.org/10.1214/17-EJS1277
https://doi.org/10.1214/009053606000000849
https://doi.org/10.1214/009053606000000849
https://doi.org/10.1214/009053606000000849
https://doi.org/10.3150/19-BEJ1165
https://doi.org/10.3150/19-BEJ1165
https://doi.org/10.1214/22-AOS2254
https://doi.org/10.1214/22-AOS2254
https://doi.org/10.1214/22-AOS2254


Chao Gao, Fang Han, and Cun-Hui Zhang. On estimation of isotonic piecewise constant signals.
The Annals of Statistics, 48(2):629 – 654, 2020. doi:10.1214/18-AOS1792. URL https://doi.
org/10.1214/18-AOS1792.

Anru R. Zhang and Yuchen Zhou. On the non-asymptotic and sharp lower tail bounds of ran-
dom variables. Stat, 9(1):e314, 2020. doi:https://doi.org/10.1002/sta4.314. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/sta4.314. e314 sta4.314.

Malay Ghosh. Exponential tail bounds for chisquared random variables. Journal of Statistical
Theory and Practice, 15(2):35, 2021.

Lucien Birgé. An alternative point of view on lepski’s method. Lecture Notes-Monograph Series,
pages 113–133, 2001.

14

https://doi.org/10.1214/18-AOS1792
https://doi.org/10.1214/18-AOS1792
https://doi.org/10.1214/18-AOS1792
https://doi.org/https://doi.org/10.1002/sta4.314
https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.314
https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.314


NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [Yes] The abstract of this paper precisely outlines our contributions in terms
of minimax separation rates for univariate function selection in sparse additive models.
We also discuss the adaptation to the smoothness and the difference between the optimal
function estimation and univariate function selection. Section 1 and 2 also present the main
contributions and assumptions in this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [Yes] This paper sets certain limitations on the model. Our analysis is
based on the Gaussian white noise model instead of the empirical nonparametric regres-
sion model, which means our results cannot be directly used in a real application. However,
as we point up in Section 2, the Gaussian white noise model simplifies the analysis by avoid-
ing unnecessary technical complexities while keeping the focus on the statistical essence,
and our results are asymptotically applied to the nonparametric regression model. We also
provide an in-depth discussion of our limitations and future directions in Appendix A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: [Yes] Each theorem in this paper comes with detailed assumptions. All formal
proofs of all theorems are provided in Appendix C-I, and the formal proofs of auxiliary
lemmas are provided in Appendix K.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [Yes] This paper provides rate-optimal selectors and an adaptive selection
procedure. We thoroughly outline the experimental parameter settings and simulation pro-
cedures in Appendix B. Additionally, we upload all the R code required for the experiments
in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

16



(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: [Yes] The supplementary material includes all code used in our experiments,
covering data generation, preprocessing, truncation selection, effectiveness analysis, and so
on. The code provides specific parameter settings and random seeds to ensure the complete
reproducibility of all results shown in Appendix B.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: [Yes] In Appendix B, we present comprehensive introductions to our proce-
dure and data, covering data generation, preprocessing, truncation selection, performance
metrics, and so on. Furthermore, the supplementary material includes all the code used in
our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [Yes] The simulation results in this paper report 1-sigma error bars based
on standard errors from 300 Monte Carlo simulations (see figures in Appendix B). The
variability of error bars arises from the randomness of error terms in simulations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [Yes] We provide the information on the computer resources in Appendix B.
All simulations are conducted using R and executed on a personal laptop equipped with an
AMD Ryzen 7 5800H processor operating at 3.20 GHz and 16.00GB of RAM.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]
Justification: [Yes] This paper consists solely of theoretical analysis and simulation ex-
periments, with all data being randomly generated. It does not engage human subjects or
participants, nor does it raise data security concerns such as personal privacy. Additionally,
the supplemental material contains all the code for our experiments, ensuring the repro-
ducibility of our results. Therefore, the research presented in this paper adheres to the
NeurIPS Code of Ethics in all respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA] In this paper, we purely discuss the theoretical minimax separation
rates of univariate function selection in sparse additive models. It belongs to the domain of
statistical theory research, and therefore does not involve societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA] In this paper, we purely discuss the theoretical minimax separation
rates of univariate function selection in sparse additive models. Therefore, it belongs to the
domain of statistical theory research and poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [Yes] We cite all the papers that inspired this work, and also provide citations
for the techniques used in the proofs.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: [Yes] We upload all the code in the supplementary materials as a zipped file,
covering data generation, pre-processing and so on. The code provides specific hyperpa-
rameter settings and random seeds to ensure the complete reproducibility of all results.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
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Answer: [NA]
Justification: [NA] This paper purely discusses the theoretical minimax separation rates
of univariate function selection in sparse additive models. Therefore, it does not involve
crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA] This paper purely discusses the theoretical minimax separation rates
of univariate function selection in sparse additive models. Therefore, it does not involve
crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA] This paper purely discusses the theoretical minimax separation rates
of univariate function selection in sparse additive models. Therefore, it does not involve
LLMs as any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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These appendices provide the future directions, numerical experiments and the technical proofs of
the main manuscript. For notational convenience, throughout all appendices we define n := σ−2 to
represent the noise intensity.

A Limitations and future directions

Besov ball or Lq ball One key direction for future work is to extend our univariate function se-
lection results from the L2-ellipsoid (2) to richer nonparametric classes such as Besov balls Bσr,q or,
more generally, Lq-ellipsoids. These spaces naturally align with wavelet bases and are foundational
to practical methods in signal processing and denoising. However, under the high-dimensional set-
ting, the techniques in Baraud [2002] may not be useful anymore. Perhaps a more viable approach is
to construct selectors based on the nonquadratic estimation procedure in Cai and Low [2005, 2006],
which may also lead to a minimax adaptation result simultaneously.

Univariate function selection under local differential privacy Integrating the differential pri-
vacy (DP) mechanism into univariate function selection for SpAM represents a direction for future
research. DP ensures rigorous protection of individual data while allowing valid statistical infer-
ence; therefore is welcomed by the computer science, machine learning, and statistics communities
recently. In the local DP setting, Butucea et al. [2023b] established phase transitions for support
recovery in the sparse mean model, deriving minimax separation rates for exact recovery and for
almost-full recovery. Butucea et al. [2020, 2023c] studied the function estimation and the quadratic
functional estimation in the nonparametric univariate function, respectively, where the latter plays
an important role in goodness-of-fit testing. All these works demonstrated that DP leads to some
markedly different minimax rates compared to non-private benchmarks.

Consequently, when extending univariate function selection in SpAM to local DP constraints, one
should expect that the minimax separation rates will differ from the results in this paper: the optimal
truncation should be recalibrated to account for the additional privacy-induced noise. Designing
and analyzing such privacy-preserving selectors for SpAMs remains an important and challenging
problem.

A general conclusion about estimation and selection Another significant extension lies in gen-
eralizing the minimax lower bound in Theorem 7, which currently restricts the infimum to selectors
relying solely on truncated observations X[Ke]×[p]. To this end, we define the minimax optimal
estimation class

Eopt :=

{
f̂ : RN+×[p] → RN+×[p]

∣∣∣∣ sup
f∈Fs

Ef

∥∥∥f̂(X)− f
∥∥∥2
2
≲ σ2s log p+ s× max

k∈N+

(
(σ2k) ∧ µk

)}
.

The general version of Theorem 7 should focus on the necessary signal condition for selectors in-
duced by estimation class Eopt:

inf
f̂∈Eopt

inf
η̂=η̂(f̂)

sup
f∈Fs(r2)

Pf

{
η̂(f̂) ̸= η(f)

}
≥ c.

Ideally, this lower bound could quantify how the minimax optimal estimations perform in the support
recovery problem. It could also lead to a more comprehensive realization of the difference between
estimation and selection.

Establishing such a result will likely require some new analytic tools, and we think the techniques in
Song and Cheng [2023] may give some help. We leave this interesting problem for future research.

B Numerical experiment

We conduct three simulation studies to evaluate the performance of our truncated-type selectors in
sparse additive models. For ease of display, we define n = σ−2.

1. Compare the performance of our proposed method across varying dimension p and signal
strength r2.

2. Compare the performance of different selection methods across varying variance 1/n.
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3. Compare the performance of different selection methods across varying smoothness param-
eters.

In all experiments, we take X = [0, 1], s = 5, and let the support covariates be j = 1, . . . , 5, with
centered functions

f1(x) = x2
(
2x−1 − (x− 0.5)2

)
ex − 0.5424,

f2(x) = 12(x− 0.5)2 − 12,

f3(x) = 3x2 2x−1 cos(15x)− 0.1002,

f4(x) = 2x− 1,

f5(x) = 8(x− 0.7)3 + 0.4640,

which all belong to the Sobolev space with α = 1/2.

Performance is measured by the Hamming loss

1
(
η̂(X) ̸= η(f)

)
,

and the combined FDR plus FNR loss∑
j /∈Sf

η̂j

1 ∨
∑
j∈[p] η̂j

+

∑
j∈Sf

(1− η̂j)

s
.

For each simulation, we execute 300 repetitions, with 1-sigma error bars provided in the figures. All
simulations are conducted using R and executed on a personal laptop equipped with an AMD Ryzen
7 5800H processor operating at 3.20 GHz and 16.00GB of RAM.

B.1 Simulation 1: dimension and signal strength

We fix n = 300, and vary p ∈ {10, 100, 1000, 10000}. We take a · fj as the support function, for
j = 1, · · · , 5, where a > 0 quantifies the effect of the signal strength.

Figure 1 shows that, as the signal strength a increases, the selection errors (both Hamming loss and
FDR plus FNR loss) for each p decay toward a relatively low level, but larger p demands higher a
to reach the same error level. Moreover, controlling FDR + FNR requires weaker signal strengths:
at p = 10000, a = 0.5 suffices to keep FDR + FNR = 0.5, whereas the Hamming loss drops below
0.5 until a = 0.7. This behavior reflects the fundamental difference between sparse multiple testing
and exact support recovery, as we discussed after Theorem 3.
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Figure 1: Selection performance with different dimensions and signal strength.
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B.2 Simulation 2: noise variance 1/n

We fix p = 500 and vary n from 20 to 300. Four types of selectors are considered in this simulation:

1. Optimal The rate-optimal selector (11).

2. Adaptation The adaptive selector (13).

3. Univariate The selector that takes truncation at Ku = min
{
k ∈ N+ : µk ≤

√
k
n

}
.

4. Suboptimal The selector that takes truncation at Ke = min
{
k ∈ N+ : µk ≤ k

n

}
.

Figure 2 illustrates that, as n grows, all methods see error decay, but the Optimal and Adapta-
tion methods maintain the lowest selection errors across most regimes. Additionally, as we dis-
cussed in Remark 5, for n ≲ (log p)1+2α, the minimax separation rate is log p/n, under which
the Ke-truncation remains rate-optimal, giving the Suboptimal selector a temporary advantage (for
n < 100). Once n ≳ (log p)1+2α, the minimax separation rate becomes n−

4α
4α+1 (log p)

2α
4α+1 , and

truncation at Ke cannot be optimal anymore.
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Figure 2: Selection performance of the four methods with different noise level n.

B.3 Simulation 3: smoothness parameter β

We fix p = 500 and n = 300, and assess the effect of smoothness on univariate function selection.
First, for j = 1, . . . , 5, we compute the original basis coefficients of each fj , denoted by {θij}i∈N+ .
We next reweight these coefficients and get the new functions

f
(β)
j =

∑
i∈N+

i
1
2−βθijψi, j = 1, · · · , 5,

so that each f (β)j lies in the Sobolev ball with smoothness parameter β. We vary β ∈ [0.2, 1] and
compare the performance of the four methods.

As shown in Figure 3, only the Adaptation method consistently achieves low error across all β,
demonstrating its optimality and robustness to unknown smoothness and verifying our theoretical
guarantees in Section 4.

C Proof of Theorem 3

We first introduce the proof of the lower bound and upper bound in Theorem 3. These proofs are
instructive and lead to clearer proofs of Theorem 1 and Theorem 2.
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Figure 3: Selection performance of the four methods with different smoothness parameter β.

We first define the Hamming distance

H(η̂(X), η(f)) :=

p∑
j=1

|η̂j − ηj | =
p∑
j=1

1(η̂j ̸= ηj),

which can upper-bound the wrong classification probability

Ef
(
H(η̂, η)

)
=

p∑
w=1

wPf

(
H(η̂, η) = w

)
≥ Pf

(
η̂ ̸= η

)
. (17)

For notational convenience, throughout all proofs we set n = σ−2 to represent the noise intensity.

C.1 The lower bound

To better clarify the truncation construction, we define

E(k)(r2) :=

{
θ ∈ RN+

: θi =
r√
k

for all 1 ≤ i ≤ k, θi = 0 for all i > k

}
⊂ E .

The SPAM function set induced by E(k)(r2) is:

F (k)
s (r2) :=

f =

p∑
j=1

fj ∈ Fs(r2) : fj ∈ E(k)(r2) for all fj ̸= 0

 .

Now we consider:

inf
η̂:RN+×p→{0,1}p

sup
f∈Fs(r2)

Pf

(
η̂(X) ̸= η(f)

)
≥ inf
η̂:RN+×p→{0,1}p

sup
f∈F(k)

s (r2)

Pf

(
η̂(X) ̸= η(f)

)
= inf
η̂:Rk×p→{0,1}p

sup
f∈F(k)

s (r2)

Pf

(
η̂(Xk×p) ̸= η(f)

)
,

(18)
which means that in F (k)

s (r2), we only need to consider those selectors η̂ based on the first k obser-
vations in each univariate function fj , j ∈ [p].

Now, for some fixed k ∈ N+, we set a least favorable subset of F (k)
s (r2), and then derive its lower

bound of the minimax separation rate.
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C.1.1 The least favorable subset

For every fixed δ ∈ (0, 1), k ∈ N+ which satisfy µk ≥
(
c1δ
25 ∧ 1

)
max

(
log(p−s)

n ,

√
k log(p−s)

n

)
(where c1 > 0 is a constant defined in Lemma 2), consider the subset:

F̃ (k)
s (r2) :=

Θ ∈ F (k)
s (r2) :

p∑
j=1

1(θ·j ̸= 0) = s

 . (19)

Therefore, for each f ∈ F̃ (k)
s (r2), if its j-th univariate function fj ≡ 0, the random variable

n
∑k
i=1X

2
ij follows from a central χ2-distribution with k degrees of freedom (note that Xij ∼

N(θij , 1/n)). If fj ̸= 0, n
∑k
i=1X

2
ij follows from a non-central χ2-distribution with k degrees

of freedom and with non-centrality parameter nr2. Let f0 and f1 be the densities of these two
distributions with respect to the Lebesgue measure:

f0(z) =
zk/2−1 e−z/2

2k/2 Γ(k/2)
, z > 0,

f1(z) =

(
1

2

)k/2
e−nr

2/2
∞∑
i=0

(
nr2

4

)i
zk/2+i−1 e−z/2

i! Γ(k/2 + i)
, z > 0.

(20)

Once the positive integer k is fixed, by Lemma 1 we only need to consider the selector based on the
norm ∥X1:k,j∥2, which we call them the norm selectors. Then we conclude

inf
η̂:Rk×p→{0,1}p

sup
f∈F(k)

s (r2)

Pf

(
η̂(Xk×p) ̸= η(f)

)
≥ inf
η̂:Rk×p→{0,1}p

sup
f∈F̃(k)

s (r2)

Pf

(
η̂(Xk×p) ̸= η(f)

)
(i)

≥ inf
η̂: norm selector

sup
f∈F̃(k)

s (r2)

Pf

(
η̂
(
∥X1:k,1∥2 , · · · , ∥X1:k,p∥2

)
̸= η(f)

)
(ii)

≥Pe(s)

(
min

j=1,··· ,s

f1
f0

(
n∥X1:k,j∥22

)
≤ max
j=s+1,··· ,p

f1
f0

(
n∥X1:k,j∥22

))
(iii)
= Pe(s)

(
min

j=1,··· ,s
n∥X1:k,j∥22 ≤ max

j=s+1,··· ,p
n∥X1:k,j∥22

)
,

(21)

where inequality (i) follows from Lemma 1, inequality (ii) follows from Theorem 6 in Butucea
et al. [2023a], where we denote by Pe(s) a probability measure in which only the first s univariate
functions are non-zero, i.e., fj = 0 ⇔ j /∈ [s]. Equality (iii) follows from the monotonic increasing
property of the likelihood ratio f1

f0
(z) on z ∈ R+.

C.1.2 The tail probabilities

With the fixed δ ∈ (0, 1), k ∈ N+ which satisfy µk ≥
(
c1δ
25 ∧ 1

)
max

(
log(p−s)

n ,

√
k log(p−s)

n

)
, we

aim to prove that the last probability in (21) is greater than 1−δ if log(p−s) ≥
(

16
c21

+ log log (2/δ)
c2

)
∨(

2 log log (2/δ)
c2

)
∨ 8
c1

and r2 ≤
(
c1δ
25 ∧ 1

)
max

(
log(p−s)

n ,

√
K log(p−s)

n

)
, where c1 > 0 and c2 ∈

(0, 1) are two positive constants defined in Lemma 2. Firstly, by taking x = log c2(p−s)
log(2/δ) > 0, we
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conclude

Pe(s)

(
max

j=s+1,··· ,p
n∥X1:k,j∥22 ≥ k + c1x+ c1

√
kx

)
=1−

{
1−P

(
χ2
k(0) ≥ k + c1x+ c1

√
kx
)}p−s

(i)

≥1−
(
1− c2e

−x)p−s
=1−

(
1− log(2/δ)

p− s

)p−s
(ii)

≥ 1− δ

2
,

(22)
where inequality (i) follows from (59) in Lemma 2, inequality (ii) follows from the assumption

p− s ≥
(

log(2/δ)
c2

)2
> log(2/δ)

c2
> 1.

Besides, by taking r2 ≤ c1δ
25 max

(
log(p−s)

n ,

√
k log(p−s)

n

)
and log(p − s) ≥ 2 log log(2/δ)

c2
, we

conclude x ≥ 1
2 log(p− s) > δ

2 log(p− s) and

nr2 + 2
√
2nr2 <

2c1
25

(
x+

√
kx
)
+ 2

√
2 · 2c1

25

(
x+

√
kx
)
<
c1
2

(
x+

√
kx
)
, (23)

where the last inequality follows from c1

(
x+

√
kx
)

≥ 4 led by log(p − s) ≥ 8/c1. Then, by

assuming s ≥ log(2/δ) and log(p− s) ≥ 16
c21

+ log log(2/δ)
c2

, we conclude x ≥ 16/c21, therefore

nr2 + 2

√
(k + 2nr2)

log(2/δ)

s
+

2 log(2/δ)

s
≤nr2 + 2

√
k + 2nr2 + 2

≤nr2 + 2
√
2nr2 + 2

(√
k + 1

)
(i)
<
c1
2

(
x+

√
kx
)
+
c1
2

√
x
(√

k + 1
)

≤c1
(
x+

√
kx
)
,

where inequality (i) follows from (23). Therefore, we conclude

Pe(s)

(
min

j=1,··· ,s
n∥X1:k,j∥22 ≤ k + c1x+ c1

√
kx

)
=1−

{
P
(
χ2
k(nr

2) ≥ k + c1x+ c1
√
kx
)}s

≥1−

{
P

(
χ2
k(nr

2) ≥ k + nr2 + 2

√
(k + 2nr2)

log(2/δ)

s
+

2 log(2/δ)

s

)}s
(i)

≥1−
(
exp

(
− log(2/δ)

s

))s
= 1− δ

2
,

(24)

where inequality (i) follows from (61) in Lemma 2 with non-centrality parameter B = nr2. Com-
bining (21), (22) and (24), we conclude that

inf
η̂

sup
f∈Fs(r2)

Pf

(
η̂(X) ̸= η(f)

)
≥Pe(s)

(
min

j=1,··· ,s
∥X1:k,j∥22 ≤ max

j=s+1,··· ,p
∥X1:k,j∥22

)
≥Pe(s)

(
min

j=1,··· ,s
n∥X1:k,j∥22 ≤ k + c1x+ c1

√
kx

)
×Pe(s)

(
max

j=s+1,··· ,p
n∥X1:k,j∥22 ≥ k + c1x+ c1

√
kx

)
≥
(
1− δ

2

)2

> 1− δ.
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C.1.3 The optimal truncation K

By the definition of F̃ (k)
s (r2), F (k)

s (r2) and U (k)(r2), the minimax separation rate is lower bounded
by the constrained maximum:

max : cδmax

(
log(p− s)

n
,

√
k log(p− s)

n

)
,

subject to : cδmax

(
log(p− s)

n
,

√
k log(p− s)

n

)
≤ µk,

k ∈ N+,

(25)

where cδ = c1δ
25 ∧ 1 ∈ (0, 1]. For ease of display, we define

K(cδ) :=min

{
k ∈ N+ : µk ≤

cδ
√
k log(p− s)

n

}

L(cδ) :=max

{
k ∈ N+ : µk ≥

cδ
√
k log(p− s)

n

}
,

(26)

By assuming n > cδ log(p−s)
µ1

, we derive that 1 ≤ L(cδ) ≤ K(cδ) ≤ L(cδ) + 1. Then we analyze the
maximum into two cases:

• Case A: When µ⌈log(p−s)⌉ ≥
cδ
√

⌈log(p−s)⌉ log(p−s)
n . We derive that L(cδ) ≥ ⌈log(p− s)⌉

hence cδ
√
L(cδ) log(p−s)

n ≥ cδ log(p−s)
n . Then the maximum of (25) is cδ

√
L(cδ) log(p−s)

n .

• Case B: When µ⌈log(p−s)⌉ <
cδ
√

⌈log(p−s)⌉ log(p−s)
n . We derive that 1 ≤ L(cδ) ≤

⌊log(p− s)⌋ hence cδ
√
L(cδ) log(p−s)

n ≤ cδ log(p−s)
n . Then the maximum of (25) is

cδ log(p−s)
n .

Therefore, we establish the lower bound of the minimax separation rate as:

cδ ·max

{
log(p− s)

n
,

√
L(cδ) log(p− s)

n

}
(i)
≍max

{
log(p− s)

n
,

√
K(cδ) log(p− s)

n

}
(ii)
≍ max

{
log(p− s)

n
, max
k∈N+

(
µk ∧

√
k log(p− s)

n

)}

≍ log(p− s)

n
+ max
k∈N+

(
µk ∧

√
k log(p− s)

n

)
,

(27)
where equality (i) follows from 1 ≤ L(cδ) ≤ K(cδ) ≤ L(cδ) + 1 and equality (ii) follows from
Lemma 4. By (27), we derive the lower bound of the minimax separation rate.

C.2 The upper bound

By (17), we only need to prove that supf∈Fs(r2) Ef

(
H(η̂(X), η(f))

)
≤ δ. For ease of display, we

denote λ2(K ′) = 2
n

(√
K ′ log(2p/δ) + log(2p/δ)

)
.
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C.2.1 Preliminary

For a fixed SPAM f ∈ Fs(r2), we use Sf ⊂ [p] as the index set of the support univariate functions
fj ̸= 0. Then we have

Ef

(
H(η̂(X), η(f))

)
=Ef

p∑
j=1

1
(
η̂j(X) ̸= ηj(fj)

)
=

p∑
j=1

Pf

(
η̂j(X) ̸= ηj(fj)

)

=
∑
j∈Sf

Pfj

 K′∑
i=1

X2
ij <

K ′

n
+ λ2(K ′)

+
∑
j /∈Sf

Pfj

 K′∑
i=1

X2
ij ≥

K ′

n
+ λ2(K ′)

 .

(28)
Therefore, we will discuss the Hamming loss on the support and non-support separately.

C.2.2 Support

With signal condition

∥fj∥22 ≥

(
24

√
1

δ
+
√
2

)
max
k∈N+

(√
k log p

n
∧ µk

)
+

36 log p

δn

holds for all j ∈ Sf , we have

∥θ1:K′,j∥22 =

K′∑
i=1

θ2ij ≥∥fj∥22 − µK′

∞∑
i=K+1

θ2ij
µi

(i)

≥

(
12

√
2

δ
+ 1

) √
K ′ log(p)

n
+

36 log p

δn
− µK′

(ii)

≥ 12

√
2

δ

√
K ′ log(p)

n
+

36 log p

δn
(iii)

≥
12
√
K ′ log(2p/δ)

n
+

18 log(2p/δ)

n
,

(29)

where inequality (i) follows from the signal condition and a proof strategy similar to (63) in Lemma
4, inequality (ii) follows from the definition of K ′ and inequality (iii) follows from (2/δ) log p ≥
log(2p/δ) when p ≥ 2.
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We decompose Xij = θij + ξij with each ξij ∼ N(0, 1/n) independently. Then we get

Pfj

 K′∑
i=1

X2
ij <

K

n
+ λ2


=Pfj

(
∥ξ1:K′,j∥22 + ∥θ1:K′,j∥22 + 2 ⟨ξ1:K′,j , θ1:K′,j⟩ <

K ′

n
+ λ2(K ′)

)
(i)

≤Pfj

({
∥ξ1:K,j∥22 + ∥θ1:K,j∥22 + 2 ⟨ξ1:K,j , θ1:K,j⟩ <

K

n
+ λ2(K ′)

}
∩ Aj

)
+Pfj

(
Ac
j

)
≤Pfj

(
∥ξ1:K′,j∥22 + ∥θ1:K′,j∥22 − ∥θ1:K′,j∥2

√
8 log(2p/δ)

n
<
K ′

n
+ λ2

)
+ exp (− log(2p/δ))

(ii)

≤Pfj

(
∥ξ1:K,j∥22 +

1

3
∥θ1:K,j∥22 <

K

n
+ λ2(K ′)

)
+

δ

2p

(iii)

≤ Pfj

(
n∥ξ1:K′,j∥22 < K ′ − 2

√
K ′ log(2p/δ)

)
+

δ

2p

≤δ
p
,

(30)

where in inequality (i) we define event Aj =

{
⟨ξ1:K′,j , θ1:K′,j⟩ > −

√
2∥θ1:K′,j∥2

2 log(2p/δ)

n

}
, where

⟨ξ1:K′,j , θ1:K′,j⟩ ∼ N
(
0,

∥θ1:K′,j∥
2
2

n

)
. Inequality (ii) and (iii) follow from (29), and the last inequal-

ity follows from (60) in Lemma 2.

C.2.3 Non-support

We now focus on the Hamming loss on the non-support. For every j /∈ S, we have n
∑K
i=1X

2
ij ∼

χ2
K(0), therefore

Pfj

(
K∑
i=1

X2
ij ≥

K

n
+ λ2

)
≤ δ

2p
, (31)

where the last inequality follows from (61) in Lemma 2.

Combining (28), (30), and (31), we conclude

Ef

(
H(η̂(X), η(f))

)
=
∑
j∈Sf

Pfj

 K′∑
i=1

X2
ij <

K

n
+ λ2(K ′)

+
∑
j /∈Sf

Pfj

 K′∑
i=1

X2
ij ≥

K

n
+ λ2(K ′)


(i)

≤ |Sf |δ
p

+
(p− |Sf |)δ

2p

=
(p+ |Sf |)δ

2p
≤ δ,

where in inequality (i), we use |Sf | to denote the cardinal number of the support index set Sf , hence
1 ≤ |Sf | ≤ s ≤ p. Therefore, we complete the proof of the upper bound and also Theorem 3.

D Proof of Theorem 1

In the proof of the upper bound, we first recall our signal condition

∥fj∥22 ≥
(

6√
δ

(√
10 + 2

)
+
√
2

)
max
k∈N+

(√
k log(p/s)

n
∧ µk

)
+

36

δn
log(p/s)

and the selector

η̂j = 1

(
n

K∑
i=1

X2
ij ≥ K + 2

√
5K log(p/(sδ)) + 10 log(p/(sδ))

)
,
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where K = min

{
k ∈ N+ : µk ≤

√
k log(p/s)

n

}
and n = σ−2. We assume p/s ≥

√
12 ∨

√
6/δ,

s ≥ 16 ∨ Cδ , and n ≥ Cδ log(p/s)
µ1

, where Cδ is a positive constant solely determined by δ ∈ (0, 1).

D.1 FNR control

Similar to (29) in the proof of Theorem 3, we get

∥θ1:K,j∥22 ≥ 6
(√

5 +
√
2
) √K log(p/(sδ))

n
+

36

n
log(p/(sδ)).

Then for j ∈ Sf , similar to (30) we get

Ef

(∑
j∈Sf

(1− η̂j)

s

)
= Ef (1− η̂j)

≤P
(
χ2
K(0) +

n

3
∥θ1:K,j∥22 < K + 2

√
5K log(p/(sδ)) + 10 log(p/(sδ))

)
+P

(
2n ⟨ξ1:K,j , θ1:K,j⟩ ≤ −4

√
n∥θ1:K,j∥22 log(p/(sδ))

)
≤Pfj

(
χ2
K(0) < K −

√
8K log(p/(sδ))

)
+

(
s

p

)2

δ

≤2

(
s

p

)2

δ,

(32)

which also leads to

Ef

∑
j∈Sf

η̂j

 ≥ s− 2s

(
s

p

)2

δ.

Besides, by Hoeffding’s inequality, we get

P

∑
j∈Sf

η̂j −E
∑
j∈Sf

η̂j ≤ −s3/4
 ≤ exp

(
−2

√
s
)
,

yielding

P

∑
j∈Sf

η̂j ≤ s− 2s

(
s

p

)2

δ − s3/4

 ≤ exp
(
−2

√
s
)
. (33)

D.2 FDR control

By Markov’s inequality, we conclude

P

∑
j /∈Sf

η̂j >
s

(p/s)2

 ≤ (p/s)2

s

∑
j /∈Sf

P

(
n

K∑
i=1

X2
ij ≥ K + 2

√
5K log(p/(sδ)) + 10 log(p/(sδ))

)

≤
(
s

p

)2

δ,

(34)
which yields

E


∑
j /∈Sf

η̂j

1 ∨
∑
j∈[p] η̂j

· 1

∑
j∈Sf

η̂j > s− 2s

(
s

p

)2

δ − s3/4

 · 1

∑
j /∈Sf

η̂j ≤
s

(p/s)2


≤

s
(p/s)2

s
(p/s)2 + s− 2s (s/p)

2
δ − s3/4

(i)

≤
s

(p/s)2

s
(p/s)2 + s

3

≤ 2δ

3
,

(35)
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where inequality (i) follows from p/s ≥
√
12 and s ≥ 16, and the last inequality follows from

p/s ≥
√
9/(2δ). Besides, by a similar technique, we have

E


∑
j /∈Sf

η̂j

1 ∨
∑
j∈[p] η̂j

· 1

∑
j /∈Sf

η̂j >
s

(p/s)2

 ≤ P

∑
j /∈Sf

η̂j >
s

(p/s)2

 ≤
(
s

p

)2

δ, (36)

where the last inequality follows from (34), and the first inequality holds because
∑

j /∈S η̂j

1∨
∑

j∈[p] η̂j
≤ 1.

We also get

E


∑
j /∈Sf

η̂j

1 ∨
∑
j∈[p] η̂j

· 1

∑
j∈Sf

η̂j ≤ s− 2s

(
s

p

)2

δ − s3/4

 · 1

∑
j /∈Sf

η̂j ≤
s

(p/s)2


≤ s

(p/s)2
P

∑
j∈Sf

η̂j ≤ s− 2s

(
s

p

)2

δ − s3/4


(i)

≤ se−2
√
s

(p/s)2
≤
(
s

p

)2

δ,

(37)

where inequality (i) follows from (33), and the last inequality is based on that the function g(x) =
xe−2

√
x is monotonically decreasing and tends to 0 on (1,∞), and hence for every δ ∈ (0, 1), there

exists a corresponding Cδ such that s > Cδ yields se−2
√
s ≤ δ.

D.3 Conclusion

Combining (32), (35) (36), and (37), we get

E

{ ∑
j /∈Sf

η̂j

1 ∨
∑
j∈[p] η̂j

+

∑
j∈Sf

(1− η̂j)

s

}

=E


∑
j /∈Sf

η̂j

1 ∨
∑
j∈[p] η̂j

· 1

∑
j∈Sf

η̂j > s− 2s

(
s

p

)2

δ − s3/4

 · 1

∑
j /∈Sf

η̂j ≤
s

(p/s)2


+E


∑
j /∈Sf

η̂j

1 ∨
∑
j∈[p] η̂j

· 1

∑
j∈Sf

η̂j ≤ s− 2s

(
s

p

)2

δ − s3/4

 · 1

∑
j /∈Sf

η̂j ≤
s

(p/s)2


+E


∑
j /∈Sf

η̂j

1 ∨
∑
j∈[p] η̂j

· 1

∑
j /∈Sf

η̂j >
s

(p/s)2


+E

{∑
j∈Sf

(1− η̂j)

s

}

≤2δ

3
+

(
s

p

)2

δ +

(
s

p

)2

δ + 2

(
s

p

)2

δ ≤ δ,

where the last inequality follows from p/s ≥
√
12. Therefore we get an upper bound of the com-

bined risk in sparse multiple testing with a rate-optimal signal condition, which completes the proof
of Theorem 1.

E Proof of Theorem 2

The proof of Theorem 2 uses a similar technique to Section C.1 in the proof of Theorem 3. Re-
call the decoder ηj = ηj(fj) = 1(fj ̸= 0) and the corresponding vector η = η(f) :=

(η1(f1), · · · , ηp(fp))⊤ ∈ {0, 1}p. This proof focuses on the SPAM space F̃ (k)
s (r2), which is de-

fined in (19). For every f ∈ F̃ (k)
s (r2), its specific form is only determined by decoder η ∈ {0, 1}p,
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therefore a prior of η can also be realized as a prior of the function space F̃ (k)
s (r2), and in next we

may use the notation f = f(η).

We assume log c2(⌊p/s⌋−1)
− log(1−cmax(δ))

≥ max
(

16
c21
, 32c1 log 1

1−cmax(δ)
, 1
)

, s ≥ − log(1−
√
1−δ)

cκ2(δ)c2max(δ)
, and n ≥

Cδ log(p/s)
µ1

, where cmax(δ) and κ(δ) are two functions solely determined by δ ∈ (0, 1) and will be
clarified later.

E.1 Preliminary

For any prior π on {0, 1}p, we denote by Pπ the prior distribution of η. Then, similar to the proof
of Theorem 3 we get

inf
η̂

sup
f∈F=s(r2)

R(f, η̂)

≥ inf
η̂:Rk×p→{0,1}p

sup
f∈F̃(k)

s (r2)

R(f, η̂)

(i)

≥ inf
η̂: norm selector

sup
f∈F̃(k)

s (r2)

R(f, η̂)

(ii)

≥ M(1− κ)

s+M(1− κ)

(
1− e−cκ

2M
)
− pPπ

∑
j∈[p]

ηj > s

− 2Pπ

(
f(η) /∈ F̃ (k)

s (r2)
)
,

where inequality (i) follows from Lemma 1, and the last inequality (ii) follows from Lemma 3, with

M =
∑
j∈[p]

Pπ

(
ηj = 1,Pπ|Z(ηj = 0 | Z) > 1

2

)
,

where Z = (∥X1:k,1∥2, · · · , ∥X1:k,p∥2) ∈ Rp. This formulation is justified by Lemma 1, which
indicates that we can focus solely on the norms of each column in X1:K,·, with X1:K,· denoting
the first K rows of X . In particular, inequality (ii) holds with every κ ∈ (0, 1) and every prior π
on {0, 1}p. Next, we will construct a block prior distribution π to conduct the lower bound of the
minimax separation rate.

E.2 The block prior

We consider a block prior π which has often been used [Butucea et al., 2023a, Abraham et al.,
2024]. Take prior π as a product prior over s + 1 blocks of consecutive coordinates B1 =
{1, 2, · · · , q}, B2 = {q + 1, · · · , 2q}, · · · , Bs = {(s− 1) q + 1, · · · , p′}, where q = ⌊p/s⌋ and
p′ = qs. We write Bs+1 for the (possibly empty) set {p′ + 1, · · · , p}. In each block Bb, b ∈ [s], we
uniformly choose an index i ∈ Bb and set ηi = 1 and ηj = 0 for all j ∈ Bb and j ̸= i. For every
i ∈ Bs+1, we just set ηi = 0. With this prior, we have

Pπ

∑
j∈[p]

ηj > s

 = Pπ

(
f(η) /∈ F̃ (k)

s (r2)
)
= 0.
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Then we have

M =
∑
j∈[p]

Pπ

(
ηj = 1,Pπ|Z (ηj = 0|Z) > 1/2

)

=
∑
b∈[s]

∑
j∈Bb

PBb
π

(
ηj = 1,

∑
u∈Bb\{j} Pπ (ηu = 1, Z)∑
u∈Bb

Pπ (ηu = 1, Z)
> 1/2

)

(i)
=
∑
b∈[s]

∑
j∈Bb

PBb
π

ηj = 1,
∑

u∈Bb\{j}

f1
f0

(n∥X1:k,u∥22) >
f1
f0

(n∥X1:k,j∥22)


=
∑
b∈[s]

∑
j∈Bb

PBb

X|ej

 ∑
u∈Bb\{j}

f1
f0

(n∥X1:k,u∥22) >
f1
f0

(n∥X1:k,j∥22)
∣∣∣ ηj = 1

×PBb
π (ηj = 1)

≥
∑
b∈[s]

∑
j∈Bb

1

q
PBb

X|ej

(
n∥X1:k,j∥22 ≤ max

u∈Bb\{j}
n∥X1:k,u∥22

)
,

where equality (i) follows the same notation in (20), and in the last inequality we focus on the
probability on the blockBb, where "X|ej" means we assume ηu = 1 and ηi = 0 for all u ∈ Bb\{j}.
Therefore, we transform the problem into the one we dealt with in Section C.1.2.

Recall we denote by cmax(δ) and κ(δ) two functions of δ ∈ (0, 1) independent of p, s, k and n,
which will be determined later. By taking x = log c2(q−1)

− log(1−cmax(δ))
, we follow a proof strategy

similar to (22) and get

PBb

X|ej

(
max

u∈Bb\{j}
n∥X1:k,u∥22 ≥ k + c1x+ c1

√
kx

)
≥ cmax(δ).

Additionally, when nr2 ≤ c1
4

(
x+

√
kx
)

, we define t := log 1
1−cmax(δ)

> 1 and have

nr2 + 2
√
(k + 2nr2)t+ 2t ≤nr2 + 2

√
2nr2t+ 2

√
kt+ 2t

≤c1
4

(
x+

√
kx
)
+ 2

√
c1t

2

(
x+

√
kx
)
+ 2

(√
k + 1

)
(i)

≤ c1
2

(
x+

√
kx
)
+
c2
2

√
x
(√

k + 1
)

≤c1
(
x+

√
kx
)
,

where inequality (i) follows the assumption x = log c2(q−1)
− log(1−cmax(δ))

≥

max
(

16
c21
, 32c1 log 1

1−cmax(δ)
, 1
)

. Therefore, we follow a proof strategy similar to (24) and
get

P
(
χ2
k(nr

2) ≤ k + c1x+ c1
√
kx
)
≥ cmax(δ),

which leads that

inf
η̂

sup
f∈F=s(r2)

R(f, η̂) ≥ c2max(δ)(1− κ(δ))

1 + c2max(δ)(1− κ(δ))

(
1− e−csκ

2(δ)c2max(δ)
)
.

Note that we can always choose suitable cmax(δ) and κ(δ) to let c2max(δ)(1−κ(δ))
1+c2max(δ)(1−κ(δ))

=
√
1− δ, and

then by assuming s ≥ − log(1−
√
1−δ)

cκ2(δ)c2max(δ)
, we conclude inf η̂ supf∈F=s(r2)R(f, η̂) ≥ 1− δ.

The optimal truncation k follows a similar analysis as Section C.1.3, which proves that we cannot
control the FDR plus FNR well when

r2 ≤ cδ

{
log(p/s)

n
+ max
k∈N+

(√
k log(p/s)

n
∧ µk

)}
,

which completes the proof of Theorem 2.
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F Proof of Theorem 4

The proof of Theorem 4 is similar to Section C.2. For simlpicity, we assume µk = k−2α. Recall

Krec :=
{
2, 4, · · · , 2

⌈
log2

(
n2

log p

)⌉}
, we conclude |Krec| ≤ log2

(
n2

log p

)
+ 1 ≤ 4 log n.

F.1 Support

For every α ≥ αmin, we define K∗ := 2

⌈
1

1+4α log2

(
n2

log(
8p log n

δ
)

)⌉
. By 0 <

1
1+4α log2

(
n2

log( 8p log n
δ )

)
≤ log2

(
n2

log p

)
, we conclude K∗ ∈ Krec. Now with the signal condition

∥fj∥22 ≥
(
12
√
2 + 1

)( log(8p/δ · log n)
n2

) 2α
1+4α

+
18 log(8p/δ · log n)

n

holding for all j ∈ Sf , we have

∥θ1:K∗,j∥22 =

K∗∑
i=1

θ2ij

≥
(
12

√
2 + 1

)( log( 8p lognδ )

n2

) 2α
1+4α

+
18 log( 8p lognδ )

n
− (K∗)−2α

(i)

≥
12
√
K∗ log( 8p lognδ )

n
+

18 log( 8p log nδ )

n
,

(38)

where inequality (i) follows from
(

n2

log( 8p log n
δ )

) 1
1+4α ≤ K∗ ≤ 2

(
n2

log( 8p log n
δ )

) 1
1+4α

. Then for every
j ∈ S, we conclude that

Efj
{
1
(
η̂adj (X) ̸= 1

)}
≤Pfj

(
η̂K

∗

j = 0
)

=Pfj

(
n

K∗∑
i=1

X2
ij < K∗ + 2

√
K∗ log

(
8p log n

δ

)
+ 2 log

(
8p log n

δ

))
(i)

≤P
(
χ2
K∗(0) < K∗ − 2

√
K∗ log(2p/δ)

)
+P

(
N(0, 1) ≤ −

√
2 log(2p/δ)

)
≤δ
p
,

(39)

where inequality (i) follows from (38), and uses a similar technique in (30) from the proof of Theo-
rem 3.

F.2 Non-support

For every j /∈ Sf , by the subadditivity of the probability measure, we have

Efj
{
1
(
η̂adj (X) ̸= 0

)}
=Pfj

( ⋃
k∈Krec

{
n

k∑
i=1

X2
ij ≥ k + 2

√
k log

(
8p log n

δ

)
+ 2 log

(
8p log n

δ

)})

≤
∑

k∈Krec

P

(
χ2
k(0) ≥ k + 2

√
k log

(
8p log n

δ

)
+ 2 log

(
8p log n

δ

))
(i)

≤|Krec|
δ

8p log n
≤ δ

2p
.

(40)
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where inequality (i) follows from (61) in Lemma 2, and the last inequality follows from |Krec| ≤
4 log n. Combining (39) and (40), we conclude that

Ef
{
H
(
η̂ad(X), η(f)

)}
=
∑
j∈Sf

Efj
{
1
(
η̂adj (X) ̸= 1

)}
+
∑
j /∈Sf

Efj
{
1
(
η̂adj (X) ̸= 0

)}
≤|S|δ

p
+

(p− |S|)δ
2p

≤ δ,

which completes the proof of Theorem 4.

G Proof of Theorem 5

G.1 Lower bound with truncation

Preliminary Firstly, we construct a prior uniform distribution of α as

P

α =
1

4

−1 +
log n2

c log(p log n)

log k

 =
1

|Krec|
, for each k ∈ Krec,

where the constant c > 0 will be determined later. The prior of α corresponds to a uniformly
distributed truncation K in Krec as

P (K = k) =
1

|Krec|
, for each k ∈ Krec.

We next construct a prior distribution of function f ∈ Fs(r2, α) for the given α (i.e., for the given
k ∈ Krec). Specifically, we assume that only 0 or 1 univariate function can be the support, that is,
f = 0, or f = fj for a j ∈ [p]. For the support fj , if i ≤ k, assume that its i-th entry is drawn from
a uniform distribution as

θi,j ∼
(
λ(k) −λ(k)
1/2 1/2

)
,

where λ(k) := n−1/2
(
c log(p log n)

k

)1/4
Otherwise just take θij = 0. Conversely, f = 0 directly

indicates θij = 0 for each i ∈ N+ and j ∈ [p]. After we get an f = {θij}i∈N+,j∈[p], assume
Xij ∼ N(θij , 1/n), indepedently.

Finally, for a given α derived from k, we get
∑
i∈N+

θ2ij
µi

≤ k1+2α(k) · λ(k)2 = 1, indicating the
setting of λ(k) is valid. Therefore, we name the distribution with respect to the truncation k and
support fj as Pj,k, and

Pj,k(X) =
∏
i∈[k]

ϕλ(k),1/n(Xi,j) + ϕ−λ(k),1/n(Xi,j)

2
×
∏
i>k

ϕ0,1/n(Xi,j)×
∏

j′ ̸=j,i∈N+

ϕ0,1/n(Xi,j′).

For j ∈ [p], we define Pj = 1
|Krec|

∑
k∈Krec

Pj,k, and we also denote by P0 the distribution with
j = 0, i.e., Xij ∼ N(0, 1/n) for each (i, j) ∈ N+ × [p].

Based on these settings, we transform the minimax lower bound into:

inf
η̂

sup
α>0

sup
f∈Fs(r2,α)

Pf (η̂(X) ̸= η) ≥ inf
η̂

sup
k∈Krec

sup
j∈{0}∪[p]

Pj,k (η̂(X) ̸= η)

≥ inf
η̂

sup
j∈{0}∪[p]

Pj (η̂(X) ̸= η) .

χ2 divergences calculation For j ∈ [p], consider

dPj

dP0
(X) =

1

|Krec|
∑

k∈Krec

exp

(
−k · λ(k)

2

2/n

) ∏
i∈[k]

cosh (nXi,j · λ(k)) ,
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which leads that

EP0

(
dPj

dP0
(X)

)2

=
1

|Krec|2
∑

k,k′∈Krec

exp

(
−k · λ(k)

2 + k′ · λ(k′)2

2/n

)
×
{
E cosh (nXi,j · λ(k)) · cosh (nXi,j · λ(k′))

}k∧k′
×
{
E cosh (nXi,j · [λ(k) ∧ λ(k′)])

}k∨k′−k∧k′
(i)
=

1

|Krec|2
∑

k,k′∈Krec

{
cosh [nλ(k)λ(k′)]

}k∧k′
(ii)

≤ 1

|Krec|2
∑

k,k′∈Krec

exp

{
n2 ·

√
kλ2(k) ·

√
k′λ2(k′) · (k ∧ k′)

2
√
k · k′

}

=
1

|Krec|2
∑

k,k′∈Krec

exp

{
c

2
· log(p log n) · k ∧ k

′
√
k · k′

}
,

where equality (i) follows from Lemma 6, inequality (ii) follows from cosh(x) ≤ exp(x2/2) for
every x ∈ R, and the last equality follows from the definition of λ(k).

We now define q := |Krec| =
⌈
log2

(
n2

log p

)⌉
≍ log n, and then conclude

χ2(Pj ||P0) ≤
1

q2

∑
u,v∈[q]

exp

{
c log(p log n)

2
· 2−

|u−v|
2

}
− 1.

Control the wrong recovery probability Inspired by Gao et al. [2020], we divide the set [q]× [q]
into two subset as T1 := {(u, v) ∈ [q] × [q] : |u − v| ≤ 2 log2 q} and T2 := {(u, v) ∈ [q] × [q] :
|u− v| > 2 log2 q}, therefore |T1| ≤ 5q log2 q and |T2| ≤ q2. We then have

1 + χ2(Pj ||P0) ≤
1

q2

∑
(u,v)∈T1

exp

{
c log(p log n)

2

}
+

1

q2

∑
(u,v)∈T2

exp

{
c log(p log n)

2q

}

≤5 log2 q

q
exp

{
c log(p log n)

2

}
+ exp

{
c log(p log n)

2q

}
≤δ

2p

8
+
δ2p

8
,

where the last inequality follows from c
2 log(p log n) ≤ log

(
δ2p log2 n

40 log2 log2 n

)
and c log(p log n) ≤

2 log(δ2p/8) log2 n, both of which hold under sufficiently large n, p and sufficiently small constant
c. Therefore, by Lemma 7, we prove that with signal strength

0 < r2 = k · λ(k)2 ≤
(
c log(p log n)

n2

) 2α
1+4α

, (41)

the wrong recovery probability is out of control, i.e.,
inf
η̂

sup
α>0

sup
f∈Fs(r2,α)

Pf (η̂(X) ̸= η) ≥ inf
η̂

sup
j∈{0}∪[p]

Pj (η̂(X) ̸= η) > 1− δ. (42)

G.2 Lower bound with sparse structure

Since(
log(p log n)

n2

) 2α
1+4α

+
log(p log n)

n
≍max

{(
log(p log n)

n2

) 2α
1+4α

,
log(p log n)

n

}

=


(

log(p logn)
n2

) 2α
1+4α

if n
1

1+2α ≥ log(p log n),
log(p log n)

n if n
1

1+2α < log(p log n),

37



we only need to verify the necessity of the separation rate log(p log n)
n under the condition n

1
1+2α <

log(p log n). This condition indicates that log log p ≳ log n, which leads to cα log(p log n) ≤ log p
for some constant cα determined only by α.

In Theorem 3, we prove that the wrong recovery probability can be lower bounded by 1 − δ if
the signal strength r2 ≤ cδ log p

n . Hence, for any valid smoothness parameter α∗, if n
1

1+2α∗ <
log(p log n), we have

inf
η̂

sup
α>0

sup
f∈Fs

(
cδcα log(p log n)

n ,α
)Pf (η̂(X) ̸= η) ≥ inf

η̂
sup

f∈Fs

(
cδ log p

n ,α∗
)Pf (η̂(X) ̸= η)

≥1− δ.

(43)

Therefore, combining (41), (42) and (43), we complete the proof of Theorem 5.

H Proof of Theorem 6

This section proves the minimax optimality of the estimator (15). We begin by defining

λ2(k) :=
1

n

(√
Ck log p+ C log p

)
, (44)

therefore θ̂ij = Xij ·1(i ≤ Ke) ·1
(∑Ke

i′=1X
2
ij ≥ Ke/n+ λ2(Ke)

)
, where recall Ke := min{k ∈

N+ : µk ≤ k/n}.

Support For each f ∈ Fs, we denote by Sf the index set of the support covariates in f . For every
j ∈ Sf , we have

E
∥∥∥f̂j − fj

∥∥∥2
2
=E

Ke∑
i=1

(
θ̂ij − θij

)2
+
∑
i>Ke

θ2ij

(i)

≤E

Ke∑
i=1

{
Xij − θij −Xij · 1

(
Ke∑
i′=1

X2
ij < Ke/n+ λ2(Ke)

)}2

+ µKe

≤2E

Ke∑
i=1

(Xij − θij)
2
+ 2E

Ke∑
i=1

X2
ij · 1

(
Ke∑
i′=1

X2
ij < Ke/n+ λ2(Ke)

)
+ µKe

≤4Ke

n
+ 2λ2(Ke) + µKe

.

(45)
where inequality (i) follows from

∑
i>Ke

θ2ij ≤ µKe

∑
i>Ke

θ2ij/µi ≤ µKe .

Non-support For every j /∈ Sf , we have

E
∥∥∥f̂j − fj

∥∥∥2
2
=E

{(
−Ke

n
+

Ke∑
i=1

X2
ij

)
· 1

(
Ke∑
i′=1

X2
i′,j ≥

Ke

n
+ λ2(Ke)

)}

+E

{
Ke

n
· 1

(
Ke∑
i′=1

X2
i′,j ≥

Ke

n
+ λ2(Ke)

)}

(i)

≤

√√√√D

(
Ke∑
i=1

X2
ij

)
·

√√√√P

(
Ke∑
i′=1

X2
i′,j ≥

Ke

n
+ λ2(Ke)

)

+
Ke

n
·P

(
Ke∑
i′=1

X2
i′,j ≥

Ke

n
+ λ2(Ke)

)
(ii)

≤
√
2Ke

n
· exp

(
−C

4
log p

)
+
Ke

n
· exp

(
−C

2
log p

)
≤ 3Ke

np
,

(46)
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where in inequality (i) follows from Cauchy-Schwarz inequality, inequality (ii) follows from (61) in
Lemma 2 with taking the constant C ≥ 4.

Combining the definition of λ2(k), (45), and (46), we conclude

Ef

∥∥∥f̂ − f
∥∥∥2
2
=
∑
j∈Sf

E
∥∥∥f̂j − fj

∥∥∥2
2
+
∑
j /∈Sf

E
∥∥∥f̂j − fj

∥∥∥2
2

≤s
(
4Ke

n
+ 2λ2(Ke) + µKe

)
+ p

3Ke

np

≍sKe

n
+
s
√
Ke log p

n
+
s log p

n
+ sµ2

Ke

≍s log p
n

+ s× max
k∈N+

(
k

n
∧ µk

)
,

(47)

where the last equality follows from Ke/n + µKe
≍ maxk∈N+

(
k
n ∧ µk

)
. Therefore, by (47) we

complete the proof of Theorem 6.

I Proof of Theorem 7

This section establishes a necessary signal condition for univariate function selection, under the
case that we have to only leverage the first Ke entries in X·j for each j ∈ [p], that is, only use
observations X[Ke]×[p] := {Xij}1≤i≤Ke,1≤j≤p, where Ke := min {k ∈ N+ : µk ≤ k/n} is the
optimal truncation for minimax function estimation, and n = σ−2.

I.1 Lower bound with truncation

Preliminary We first construct a prior distribution of function f ∈ Fs(r2). Specifically, in this
prior, only 0 or 1 univariate function can be the support, that is, either f = 0, or f = fj for j ∈ [p].

In the case f = 0, we take θij = 0 for each (i, j) ∈ N+ × [p], and thus assume Xij ∼ N(0, 1/n),
indepedently. We name the distribution as

P0 :=
∏

i∈N+,j∈[p]

ϕ0,1/n(Xi,j).

In the case f = fj , we take θi,j′ = 0 for each i ∈ N+, j′ ∈ [p] \ {j}. For the support fj , we
introduce two additional parameters λ > 0, 1 ≤ k ≤ Ke, which will be determined later. If i ∈ [k],
assume that its i-th entry is drawn as P (θi,j = λ) = P (θi,j = −λ) = 1/2. If i = Ke + 1, we take
θKe+1,j =

√
µKe+1/2. For other i we just take θi,j = 0. We name the distribution with respect to

the support fj as Pj , and
Pj(X)

:=
∏
i∈[k]

ϕλ,1/n(Xi,j) + ϕ−λ,1/n(Xi,j)

2︸ ︷︷ ︸
Distribution of first k entries in fj

× ϕ√
µKe+1/2,1/n

(XKe+1,j)︸ ︷︷ ︸
Distribution of the (Ke+1)-th entry in fj

×
∏

i∈N+\([k]∪{Ke+1})

ϕ0,1/n(Xi,j)︸ ︷︷ ︸
Distribution of the residual entries in fj

×
∏

j′ ̸=j,i∈N+

ϕ0,1/n(Xi,j′)︸ ︷︷ ︸
Distribution of other fj′

for every j ∈ [p]. Based on these settings, we transform the minimax lower bound into:
inf

η̂(X[Ke]×[p])∈{0,1}p
sup

f∈Fs(r2)

Pf

(
η̂(X[Ke]×[p]) ̸= η

)
≥ inf
η̂(X[Ke]×[p])∈{0,1}p

sup
j∈{0}∪[p]

Pj

(
η̂(X[Ke]×[p]) ̸= η

)
= inf
η̂(X[Ke]×[p])∈{0,1}p

sup
j∈{0}∪[p]

Pj,[Ke]×[p]

(
η̂(X[Ke]×[p]) ̸= η

)
,

where Pj,[Ke]×[p] is the marginal distribution of X[Ke]×[p].
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Control the wrong recovery probability via marginal χ2 divergences For j ∈ [p], consider

dPj,[Ke]×[p]

dP0,[Ke]×[p]
(X[Ke]×[p]) = exp

(
−kλ

2

2/n

) ∏
i∈[k]

cosh (nλXi,j) ,

which leads that

χ2
(
Pj,[Ke]×[p]

∥∥P0,[Ke]×[p]

)
=EP0,[Ke]×[p]

(
dPj,[Ke]×[p]

dP0,[Ke]×[p]
(X[Ke]×[p])

)2

− 1

= coshk
(
nλ2

)
− 1 ≤ exp

(
n2λ4k

2

)
− 1.

Recall that we only focus on those restricted selectors based on observations X[Ke]×[p], and hence
only focus on the marginal distribution of X[Ke]×[p]. Then our aim is to find proper (λ, k) ∈ R+ ×
[Ke] such that:

max : λ2k, (48)

subject to: exp

(
n2λ4k

2

)
≤ c1 · p, (49)

λ2k ≤ µKe

2
, (50)

1 ≤ k ≤ Ke. (51)

where (49) controls the average χ2 divergence and c1 is a sufficiently small positive constant, (50)
ensures our construction is in the ellipsoid E , and (51) ensures that the truncation k is valid. There-
fore, by Lemma 7, we prove that with signal strength

0 < r2 = k · λ2 + µKe

2
≤ c2

{
max
k∈[Ke]

(√
k log p

n
∧ µk

)
+ µKe+1

}
, (52)

the wrong recovery probability is lower bounded by 1/2:

inf
η̂(X[Ke]×[p])∈{0,1}p

sup
f∈Fs(r2)

Pf

(
η̂(X[Ke]×[p]) ̸= η

)
≥ inf
η̂(X[Ke]×[p])∈{0,1}p

sup
j∈{0}∪[p]

Pj,[Ke]×[p]

(
η̂(X[Ke]×[p]) ̸= η

)
≥ 1

2
.

(53)

I.2 Lower bound with sparse structure

We now quantify the influence of the sparse structure on the necessary signal condition. Similarly
to Section I.1, we first construct a prior distribution of function f ∈ Fs(r2), where only 0 or 1
univariate function can be the support.

In the case f = 0, we still take

P0 :=
∏

i∈N+,j∈[p]

ϕ0,1/n(Xi,j).

For every j ∈ [p], in the case f = fj , we only take the first entry θ1,j = λ, and take other θi,j′ = 0.
The distribution is described as

Pj(X) := ϕλ,1/n(X1,j)︸ ︷︷ ︸
Distribution of the first entry in fj

×
∏
i≥2

ϕ0,1/n(Xi,j)︸ ︷︷ ︸
Distribution of the residual entries in fj

×
∏

j′ ̸=j,i∈N+

ϕ0,1/n(Xi,j′)︸ ︷︷ ︸
Distribution of other fj′

.

Based on these settings, we transform the minimax lower bound into:

inf
η̂(X[Ke]×[p])∈{0,1}p

sup
f∈Fs(r2)

Pf

(
η̂(X[Ke]×[p]) ̸= η

)
≥ inf
η̂(X[Ke]×[p])∈{0,1}p

sup
j∈{0}∪[p]

Pj,[Ke]×[p]

(
η̂(X[Ke]×[p]) ̸= η

)
.
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It is straightforward to check that
χ2
(
Pj,[Ke]×[p]

∥∥P0,[Ke]×[p]

)
= exp

(
nλ2

)
− 1.

Therefore, our aim is to find proper λ ∈ R+ such that:
max : λ2, (54)

subject to: exp
(
nλ2

)
≤ c4 · p, (55)

λ2 ≤ µ1, (56)
where (55) controls the average χ2 divergence and c4 is a sufficiently small positive constant, (56)
ensures our construction is in the ellipsoid E . Under assumption n ≥ c5 log p

µ1
, by Lemma 7, we prove

that with signal strength

0 < r2 = λ2 ≤ c6
log p

n
, (57)

the wrong recovery probability is lower bounded by 1/2:
inf

η̂(X[Ke]×[p])∈{0,1}p
sup

f∈Fs(r2)

Pf

(
η̂(X[Ke]×[p]) ̸= η

)
≥ inf
η̂(X[Ke]×[p])∈{0,1}p

sup
j∈{0}∪[p]

Pj,[Ke]×[p]

(
η̂(X[Ke]×[p]) ̸= η

)
≥ 1

2
.

(58)

Therefore, combining (52), (53), (57) and (58), we complete the proof of Theorem 7.

J Some extended conclusions

This appendix discusses theoretical results obtained under assumptions more general than those in
the main text.

J.1 Violating the separate rate

In a more realistic setting where the true signal strength ∥fj∥22 may fall below the minimax threshold,
our selectors still have some useful properties:

1. The selector from Theorem 1 selects at most 2s variables with probability at least 1 − δ
(proved by following equation (34) in Appendix D.2).

2. The selector from equation (11) ensures Ŝ ⊆ S with probability at least 1 − δ, i.e., it
guarantees zero false positives (proved by following Appendix C.2.3).

These guarantees hold without knowing the signal strength of each fj in advance, showing that our
selectors remain both sparse and interpretable under a practical condition.

We also provide a specific example in which our procedures are appropriate. Consider a system
with p channels, some of which carry a true signal while the rest are pure white noise, and we aim
to identify those channels with a signal. Then the selector (11) achieves that, with high probability,
no noise-only channel is selected, and any channel whose signal strength exceeds the minimax
separation rate (10) will be selected. In this way, our selector provides a false-positive-free method
for this problem.

J.2 Heterogeneous univariate functions

We now extend our framework to heterogeneous settings where fj ∈ Hj and Hj might be different
across j ∈ [p]. This setting was considered in Raskutti et al. [2012] for function estimation. Define
the parameter space:

Fs(r21, · · · , r2p) :=

f =
∑
j∈[p]

fj :
∑
j∈[p]

1(fj ̸= 0) ≤ s, fj ∈ Hj(r
2
j ) ∪ {0} for all j ∈ [p]

 ,

where

Hj(r
2
j ) :=

{
fj =

∞∑
i=1

θijψi :

∞∑
i=1

θ2ij
µij

≤ 1,

∞∑
i=1

θ2ij ≥ r2j

}
.

Heterogeneity across Hj(r
2
j ) is captured via distinct sequence {µij}i∈N+ for every j ∈ [p].
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Upper bound We apply a component-wise selector

η̂heterj := 1

n Kj∑
i=1

X2
ij ≥ Kj + 2

√
Kj log(2p/δ) + 2 log(2p/δ)

 ,

where Kj := min
{
k ∈ N+ : µkj ≤

√
k log p
n

}
and recall n = σ−2. If the condition

r2j ≥ Cδ

{
log p

n
+ max
k∈N+

(√
k log p

n
∧ µkj

)}
holds for every j ∈ [p], we have the exact support recovery guarantee

inf
f∈Fs(r21 ,··· ,r2p)

Pf

(
Ŝ(X) = S(f)

)
≥ 1− δ.

The proof proceeds analogously to that given in Appendix C.2.

Lower bound We next prove that, if there exists some j ∈ [p] with r2j ≤
c
{

log p
n +maxk∈N+

(√
k log p
n ∧ µkj

)}
for a sufficiently small constant c, then no selector can

achieve consistent support recovery.

Define

Fleast,j :=

{
f = fj =

∞∑
i=1

θijψi : θij ∈ {λj ,−λj} if i ≤ kj , θij = 0 if i > kj

}
,

where λj , kj will be clarified later. We then design the least favorable set

Fleast :=

 ⋃
j∈[p]

Fleast,j

⋃ {f = 0} .

The set Fleast assumes that at most one univariate function could be the support, and the very support
has a weak signal strength r2j = λ2jkj . Then we get

inf
Ŝ

sup
f∈Fleast

Pf

(
Ŝ(X) ̸= S(f)

)
≥ inf

Ŝ
max

j=0,··· ,p
Pj

(
Ŝ(X) ̸= {j}

)
,

where Pj follows a similar definition in Appendix I.1. Then, if

1

p

∑
j∈[p]

(
e

n2λ4
jkj

2 − 1

)
≤ δ2p

2(2− δ)
− 1,

we obtain
inf
Ŝ

sup
f∈Fleast

Pf

(
Ŝ(X) ̸= S(f)

)
≥ 1− δ,

for arbitrary constant δ ∈ (0, 1). Therefore, it suffices to consider the optimization problem

max : λ2jkj ,

subject to: exp

(
n2λ4jkj

2

)
≤ c1 · p,

λ2jkj ≤ µKj ,

for every j ∈ [p]. The result shows that r2j = λ2jkj ≤ cmaxk∈N+

(√
k log p
n ∧ µkj

)
leads unreliable

selection.

On the other hand, by assuming σ−2 = n ≳ log p
minj∈[p] µ1j

and following the proof technique in

Appendix I.2, we can prove that r2j ≤ c log pn also leads unreliable selection, therefore we prove the
matching lower bound.
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K Technical Lemma

The following Lemma shows that, if f ∈ F (K)
s (r2), it suffices to only consider those selectors

depending on ∥X1:K,j∥2 =
√∑K

i=1X
2
ij .

Lemma 1 (Norm selector) Assume K is a positive integer satisfying µK ≥ r2. For every measur-
able function ω(·, ·) and for every selector η̂ (XK×p) = (η̂1 (XK×p) , · · · , η̂p (XK×p)) ∈ {0, 1}p,
there exists a randomized selector η̄

(
∥X·,1∥2 , · · · , ∥X·,p∥2

)
such that

sup
f∈F(K)

s (r2)

Ef
{
ω(η̂, η(f))

}
≥ sup
f∈F (K)

s (r2)

Ef
{
ω(η̄, η(f))

}
.

Taking ω(x, y) = 1(x ̸= y), we get

sup
f∈F(K)

s (r2)

Pf (η̂ ̸= η(f)) ≥ sup
f∈F(K)

s (r2)

Pf (η̄ ̸= η(f)).

The proof of Lemma 1 is as similar as the proof of Lemma 1 in Butucea et al. [2023a], with additional
checking that r2 ≤ ∥OjX1:K,j∥22 = ∥X1:K,j∥22 ≤ µK holds for every orthogonal matrix Oj ∈
RK×K , every X·,j ∈ F1:K(r2) and every index j ∈ {j : fj ̸= 0}.

Lemma 2 (Chi-squared inequalities) Let χ2
k(B) denote a χ2 random variable with k degrees of

freedom and non-centrality parameter B ≥ 0. Then for every x > 0, there exist absolute constants
c1 > 0 and c2 ∈ (0, 1) such that

P
(
χ2
k(0) ≥ k + c1

√
kx+ c1x

)
≥c2e−x, (59)

P
(
χ2
k(0) ≤ k − x

)
≤ exp

(
−x

2

4k

)
, (60)

P
(
χ2
k(B) ≥ k +B + 2

√
(k + 2B)x+ 2x

)
≤e−x. (61)

Inequalities (59), (60) and (61) are proved in Corollary 3 in Zhang and Zhou [2020], Theorem 2 in
Ghosh [2021] and Lemma 8.1 in Birgé [2001] respectively.

Lemma 3 (Minimax lower bound based on combined risk, Abraham et al. [2024]) Assume we
observe X ∼ Pθ, θ ∈ Rp. For any prior π (of θ) on Rp, we denote by Pπ the distribution of
(X, θ) in the Bayesian model. Then, for all 1 ≤ s ≤ p, all κ ∈ (0, 1), and all measurable Θ ⊂ Rp,
we have:

inf
φ

sup
θ∈Θ

R(θ, φ) ≥ λ

1 + λ

(
1− e−cκ

2M
)
− nPπ (∥θ∥0 > s)− 2Pπ(θ /∈ Θ),

for some universal constant c > 0, where

λ =
1− κ

s

p∑
j=1

Pπ

{
θj ̸= 0, Pπ (θj = 0|X) >

1

2

}
.

Lemma 3 is derived from Theorem S-3 in the supplementary of [Abraham et al., 2024], with taking
ρ = 1 and the combined risk

R(θ, φ) = Eθ

( ∑
j:θj=0 φj

1 ∨
∑
j∈[p] φj

+

∑
j:θj ̸=0(1− φj)

s

)
.

Lemma 4 (Truncation for classification) Assume C > 0 is a postive constant and K(C) :=

min

{
k ∈ N+ : µk ≤ C

√
k log(p−s)

n

}
, then under assumption n > C log(p−s)

µ1
, we have√

K(C) log(p− s)

n
≍ max
k∈N+

(
µk ∧

√
k log(p− s)

n

)
.
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µk

C
√
k log(p−s)
n

kK(C)K(C) − 11

Figure 4: A guide to show µ1 > C

√
log(p−s)
n and C

√
K(C) log(p−s)

n ≥

max

{
µK(C) ,

C
√

(K(C)−1) log(p−s)
n

}
.

Proof 1 (Proof of Lemma 4) The proof is inspired by Lemma 2.1 in Kotekal and Gao [2024]. By

taking K = 1 and n > C log(p−s)
µ1

, we have µ1 >
C log(p−s)

n ≥ C

√
log(p−s)
n , which shows K(C) ≥

2.

For every k ≥ K(C), by definition of K(C), we conclude µk ≤ µK(C) ≤ C
√
K(C) log(p−s)

n ≤
C
√
k log(p−s)
n , which leads that µk ∧ C

√
k log(p−s)
n = µk ≤ µK(C) . For every 1 ≤ k ≤ K(C) −

1, we conclude µk ≥ µK(C)−1 >
C
√

(K(C)−1) log(p−s)
n ≥ C

√
k log(p−s)
n , which leads that µk ∧

C
√
k log(p−s)
n =

C
√
k log(p−s)
n ≤ C

√
(K(C)−1) log(p−s)

n . Therefore, we conclude that

max
k∈N+

(
µk ∧

C
√
k log(p− s)

n

)
= max

(
µK(C) ,

C
√
(K(C) − 1) log(p− s)

n

)
,

see Figure 4 for a clear demonstration. And it is straightforward that

C
√
K(C) log(p− s)

n
≥ max

(
µK(C) ,

C
√
(K(C) − 1) log(p− s)

n

)
. (62)

Besides, from K(C) ≥ 2, we get K(C) ≤ 2(K(C) − 1), therefore

C
√
K(C) log(p− s)

n
≤C

√
2(K(C) − 1) log(p− s)

n

≤
√
2 max

(
µK(C) ,

C
√

(K(C) − 1) log(p− s)

n

)

=
√
2 max
k∈N+

(
µk ∧

C
√
k log(p− s)

n

)
.

(63)

From (62) and (63) we conclude√
K(C) log(p− s)

n
≍ max
k∈N+

(
µk ∧

C
√
k log(p− s)

n

)
≍ max
k∈N+

(
µk ∧

√
k log(p− s)

n

)
,

which completes the proof of Lemma 4.

Following the same proof technique, we can get the following results.
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Lemma 5 (Truncation for joint estimation and multiple testing) Assume C > 0 is a positive

constant andK(C) := min

{
k ∈ N+ : µk ≤ C

√
k log(p/s)

n

}
, then under assumption n > C log(p/s)

µ1
,

we have

max
k∈N+

(
µk ∧

C
√
k log(p/s)

n

)
≤ C

√
K(C) log(p/s)

n
≤

√
2 max
k∈N+

(
µk ∧

C
√
k log(p/s)

n

)
,

which means √
K(C) log(p/s)

n
≍ max
k∈N+

(
µk ∧

√
k log(p/s)

n

)
.

Besides, define K ′ := min
{
k ∈ N+ : µk ≤

√
k
n

}
, then under assumption n > 1

µ1
, we have

max
k∈N+

(
µk ∧

√
k

n

)
≤

√
K ′

n
≤

√
2 max
k∈N+

(
µk ∧

√
k

n

)
.

Lemma 6 (Expectation with hyperbolic cosine) Assume X ∼ N(0, 1/n), k1, k2 are two positive
integers, then we have{

E cosh (nXλ(k1)) · cosh (nXλ(k2))
}k1∧k2

×
{
E cosh [nX · (λ(k1) ∧ λ(k2))]

}k1∨k2−k1∧k2
= coshk1∧k2(nλ(k1)λ(k2))× exp

(n
2

{
(k1 ∨ k2) · λ(k1 ∨ k2)2 + (k1 ∧ k2) · λ(k1 ∧ k2)2

})
,

where λ(·) can be arbitrary non-increasing function on N+.

Proof 2 (Proof of Lemma 6) By cosh(x1) cosh(x2) = 1
2 (cosh(x1 + x2) + cosh(x1 − x2)) and

Ex∼N(0,1) cosh(λx) = eλ
2/2, we derive that

E cosh (nXλ(k1)) · cosh (nXλ(k2)) =
1

2

{
e

n
2 (λ(k1)+λ(k2))

2

+ e
n
2 (λ(k1)−λ(k2))2

}
=e

n
2 (λ(k1)

2+λ(k2)
2) cosh(nλ(k1)λ(k2)),

and
E cosh [nX · (λ(k1) ∧ λ(k2))] = e

n
2 (λ(k1)∧λ(k2))2 .

Therefore{
E cosh (nXλ(k1)) · cosh (nXλ(k2))

}k1∧k2
×
{
E cosh [nX · (λ(k1) ∧ λ(k2))]

}k1∨k2−k1∧k2
=coshk1∧k2(nλ(k1)λ(k2))

× exp
(n
2

{
(λ(k1)

2 + λ(k2)
2) · (k1 ∧ k2) + λ(k1 ∨ k2)2 · (k1 ∨ k2 − k1 ∧ k2)

})
=coshk1∧k2(nλ(k1)λ(k2))× exp

(n
2

{
(k1 ∨ k2) · λ(k1 ∨ k2)2 + (k1 ∧ k2) · λ(k1 ∧ k2)2

})
,

which completes the proof of Lemma 6.

Lemma 7 (Minimax lower bound in χ2 divergence) For a given constant δ ∈ (0, 1), assume that
P0,P1, · · · ,Pp be p probability measures satisfying p ≥ 4/δ2 and

1

p

p∑
j=1

χ2 (Pj∥P0) ≤
δ2p

2(2− δ)
− 1.

Then
inf
ψ

sup
0≤j≤p

Pj(ψ ̸= j) ≥ (1− δ/2)2 > 1− δ,

where infψ represents the infimum over all tests of the form ψ : X → {0, 1, · · · , p} with X ∼ Pj .

The proof of Lemma 7 follows from Proposition 2.4 of Tsybakov [2009] with taking M = p,
α∗ = δ2p

2(2−δ) − 1 and τ = 2−δ
δp .
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