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Abstract

The sparse additive model (SpAM) offers a trade-off between interpretability and
flexibility, and hence is a powerful model for high-dimensional research. This paper
focuses on the variable selection, i.e., the univariate function selection problem in
SpAM. We establish the minimax separation rates from both the perspectives of
sparse multiple testing (FDR + FNR control) and support recovery (wrong recovery
probability control). We further study how adaptation to unknown smoothness
affects the minimax separation rate, and propose an adaptive selection procedure.
Finally, we discuss the difference between estimation and selection in SpAM:
Procedures achieving optimal function estimation may fail to achieve optimal
univariate function selection.

1 Introduction

The Sparse Additive Model (SpAM) is a pivotal topic of recent statistical research [Ravikumar et al.,
2009, [Meier et al., 2009, [Koltchinskii and Yuan, [2010, [Raskutti et al., 2012} [Dalalyan et al., 2014,
Yuan and Zhou, 2016, [Tyagi et al., 2016, Tan and Zhang, 2019, [Haris et al.,|[2022]. It extends the
generalized additive model [Hastie and Tibshirani, [1987]], balancing interpretability and flexibility
while avoiding the curse of dimensionality and adapting to high-dimensional settings.

In this paper, we focus on the variable selection, i.e., univariate function selection problem of the
SpAM, which is a fundamental problem with broad implications in multi-channel detection [Ingster|
and Lepskil [2003]], multi-task learning [Wang et al.,2020], sparse neural network [Xu et al.}2023]], and
so on. We consider a Gaussian white noise (GWN) model with p covariates x = (x1,--- ,x,) € XP,
which takes the form as

p

Jj=1

where X is the domain of each covariate =, B, is a standard Wiener process on X, and ¢ > 0
measures the intensity of the white noise. We assume f; is the univariate function corresponding to
variable x ;. Under the setting of sparsity, the response Y, is influenced by no more than s covariates,
and hence f can be expressed as f(x) = >;cg, fj(x;), where Sy € {1,---,p} is the index set
of these support covariates. In this continuous-time SpAM framework, our main goal is to recover
the index set Sy, i.e., to select which f; # 0. This paper studies the univariate function selection
in SpAMs from two perspectives—namely, as a sparse multiple testing problem and as a support
recovery problem. We employ the truncated procedures and establish the non-asymptotic minimax
separation rates, delivering, to our knowledge, the first optimal finite-sample guarantees for univariate
function selection in SpAMs.
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1.1 Related work

Background of variable selection The variable selection problem has attracted significant interest
recently [Butucea et al., 2018, Rabinovich et al., 2020, Belitser and Nurushev, 2022} |Song and Chengl
2023\ Butucea et al., 2023a), |Abraham et al.| [2024]]. The general assumption is that the response
depends on only a few covariates, and the main aim is to find them. This problem can be framed as
either a sparse multiple testing problem (controlling False Discovery Rate (FDR), False Negative
Rate (FNR), etc.) [Rabinovich et al., [2020, [Song and Chengl 2023} |/Abraham et al., [2024], or a
support recovery problem (controlling Hamming loss) [Wainwright, | 2007, [Butucea et al., 2018 |Gao
and Stoev, 2020, Butucea et al.,2023a]], based on different setting of the loss function. Much of the
existing studies concentrated on the sparse sequence model X; = 3;+¢;, i = 1,--- , pindependently,
with assuming Zle 1(5; # 0) < s and each ¢; drawn from distributions like Gaussian [Butucea
et al., 2018} |Song and Chengl [2023]] or generalized Gaussian [Gao and Stoevl 2020, [Rabinovich
et al.| 2020, /Abraham et al.,2024]]. Though these studies demonstrated interesting phase-transition
phenomena and established the asymptotically sharp minimax separation rate, they cannot be directly
applied to the univariate function selection in SpAM.

Background of univariate function selection in SpAM  Univariate function selection in SpAM
stands as a pivotal problem in statistical learning [Lin and Zhang, 2006, [Ravikumar et al., 2009,
Huang et al.;, 2010, |Chouldechova and Hastie, 2015} Xu et al., 2016, |Wood et al., 2015, Butucea and
Stepanova, 2017, |Dai et al., [2023]]. Most existing studies firstly provided minimax-optimal estimators
for the function f via M-estimation with group-lasso-type penalties on each f;. Then, by utilizing the
estimation results, the selection performances were often established as by-products [Ravikumar et al.|
2009, \Huang et al.l 2010, Dai et al., |2023]]. Although these methods ensured asymptotic variable
selection consistency [Ravikumar et al., 2009, [Huang et al.| 2010] or FDR control [Dai et al.| 2023]],
they did not guarantee minimax optimality for the univariate function selection problem. This implies
that their minimum signal conditions, typically quantified by “min;eg, | f;||3 > some rate”, are

sufficient but not necessary: Their signal strength assumptions may be overly restrictive.

Existing optimal univariate function selection in SpAM  From the viewpoint of support recovery
with Hamming loss, Ingster and Stepanova| [2014] and [Butucea and Stepanoval [2017] provided
the minimax optimal (i.e., necessary and sufficient) signal condition for exact support recovery
and almost-full support recovery, respectively. (Comminges and Dalalyan| [2012] analyzed support
recovery in a p-dimensional nonparametric regression with an intrinsic s-variate underlying function.
In an additive model allowing k-dimensional interaction effects, |Stepanova and Turcicoval [2025alb]]
provided the optimal signal condition for exact support recovery. These studies offered asymptotically
minimax optimal results in some specific function classes, but may not be persuasive in the general
function space with a finite sample size. For instance, they rely on certain additional assumptions,
like log p = o(c=2/(2¢*+ 1)) and o — 0, in the Sobolev space with smoothness parameter c.

Inspiration from cutting-edge work Building on the monotone likelihood ratio property, Butucea
et al.|[2023a] recently established rate-optimal signal conditions for support recovery under group
sparsity, improving upon conclusions from Lounici et al.|[2011]]. [Kotekal and Gao|[2024] extended the
hard-thresholding estimator of |Collier et al.|[2017] to develop a minimax optimal goodness-of-fit test
for SpAM (i.e., testing whether f = ) jes; f;i = 0). These advances motivate the development of a
non-asymptotic minimax optimal univariate function selector within a generalized SpAM framework,
covering Sobolev-smooth, analytic, and other function classes.

1.2 Main contributions and organization
This paper answers the following questions:

In a generalized SpAM framework, can we achieve non-asymptotic and minimax
optimal univariate function selection? What is the difference between function
estimation and univariate function selection?

The main contributions are threefold:

1. Minimax separation rates From both the viewpoints of sparse multiple testing
(FDR+FNR control) and support recovery (wrong recovery probability control), we establish



the non-asymptotic minimax separation rates for univariate function selection in a gener-
alized SpAM framework. This result is, to our knowledge, the first optimal finite-sample
guarantees. We also develop truncated-type selectors to achieve the minimax rate-optimality,
respectively.

2. Minimax adaptation We provide a rate-optimal selection procedure that adapts to the
smoothness parameter of the Sobolev spaces. We show that an additional log (log(J*Q))
term in the signal condition is required for this adaptation.

3. Difference between estimation and selection Within the class of truncated-type estima-
tors, we demonstrate that the optimal function estimations can not yield optimal univariate
function selection in some cases. This gap underscores the necessity to proceed differently
in selection versus estimation, a finding with deep statistical implications.

The rest of the paper is organized as follows: Section [1|establishes the notation used throughout the
paper. Section [2]introduces the model setup and the background of our problem. Section [3|establishes
the minimax separation rates for univariate function selection from two viewpoints. Sectionfd]provides
a rate-optimal selector adaptive to the smoothness parameter in the Sobolev space. Section [5offers an
in-depth discussion about the difference between estimation and selection in SpAMs. The limitations,
future directions, numerical experiments, and all technical proofs are provided in the appendices.

1.3 Notation

For the given sequences a,, and b,,, we write that a,, = O(b,,) and a,, < by, (resp. a, = Q(b,)
and a, = by) if a, < cb, (resp. a, > cb,) for some absolute positive constant c. We write
that a,, < b, if a,, = O(b,,) and b,, = O(a,,). Denote by [m] the set {1,2,--- ,m}, and 1(-) the
indicator function. Denote by z V y the maximum of z and y, and = A y the minimum of z and y.

Denote by Sy = {j € [p] : f; # 0} C [p] the support univariate function set of a SpAM function f.
For a square intergral function f with support X, denote by || f||2 = ([ f*(z)dx) Y2 it Lo norm.

Let C,Cy, Cq, - - - denote absolute positive constants whose values may change from one occurrence
to the next.

2 Preliminary and problem setup

Let us recall that we observe Y, and x € x? such that

AV, = Y fi(z;)dz + 0dB,. (1)
JESy

To ensure the identifiability of univariate functions, we assume [, f;(z;)daz; = 0 for each j € [p].
In theoretical research, the GWN model and nonparametric regression model are asymptotically
equivalent, as shown by Brown and Low|[1996], Reif} [2008ﬂ Moreover, the GWN model simplifies
the analysis by avoiding unnecessary technical complexities while keeping the focus on the statistical
essence [Kotekal and Gaol 2024]. Consequently, many foundational nonparametric statistics theories
are developed based on the GWN model [[Fan, 1991} Donoho and Johnstone} |1998| |Baraud, 2002}
Tsybakov, [2009} (Comminges and Dalalyan, [2012} Johnstone} 2017, [Han et al.| 2020]]. Therefore, to
maintain this theory-driven tradition, we conduct our analysis based on the GWN model (T)).

2.1 Function settings

We propose a general smoothness assumption based on the series expansion of univariate functions.
For each j € [p], assume that f; : X — R can be decomposed from an orthonormal basis {1; };en+,
as fj (LL']) = Zfil Qijz/}i(mj), where 92']' = sz(fj) = fX ’(/J,L("Ej)fj (l‘j)de‘j is the coefficient of ipl
for each i € N*. Define 6.; = 0.;(f;) := {0s; };en+. We assume that each f; is sufficiently smooth
and belongs to the ellipsoid class

&= {szz%i/%lzw_él}, 2
i—1

i=1 7

'Also see Section 1.10 of Tsybakov| [2009]] for the connection between the GWN and nonparametric
regression.



where {p; 72 is a non-increasing sequence of positive numbers, i.e., (11 > 12 > -- -, and we assume
p1 < 1 to ensure f; has finite Ly norm. This ellipsoid setting is a broad smoothness assumption that
renders our theoretical results applicable to Reproducing Kernel Hilbert Space (RKHS) [Raskutti
et al.} 2012} |Yuan and Zhou, 2016, |[Kotekal and Gao, |2024]], Fourier basis [[Comminges and Dalalyan,
2012, [Ingster and Stepanova, [2014, [Butucea and Stepanoval, 2017], etc. The function space of SpAM
is defined as

p p

For= f@) =Y filw;): > 1(f; #0) < s, f; € Eforall j € [p] o . 3)

Jj=1 Jj=1

Each f € F; corresponds uniquely to a © = O(f) := (0.1(f1),---,0.,(fp)) € RN"xP_ Therefore,
f € Fs and © € F; will be used interchangeably in the subsequent text. For every f € F, and every
i € NT, j € [p], based on the continuous process Y, in model (I)), we have access to the following
random variables

Xij = / 1/)1(:c])dY$ = Gij +/ wl(l’j)UdBI ~ N(aij,(fz).
xr xP

By orthogonality, the set X = {X;;} ) is a collection of independent random observations.

ieNT j€[p
2.2 Problem setup

Within the SpAM space Fy, our primary task is to establish a minimax optimal (i.e., necessary and
sufficient) signal condition of each support f;, for the univariate function selection. Before delving
into our analysis, we revisit the function estimation problem in SpAM, where |[Raskutti et al.| [2012]]
established the minimax rate as:

. 2
inf sup E; (Hf(X) - fH > = 8 % o?log(ep/s) +5 % max ((0%k) A ) )
forers 2 — keNt

High-dimensional selection error —
infg supy,; cg By, 155 (xX.5)—F; ||z

“

which is composed of s times the "high-dimensional selection error" and s times the "minimax

estimation rate of a single univariate function", with no interplay between these two parts. This result

shows that the first term o2slog(ep/s) is independent of the univariate function space £, and the

estimation term (the second term) is dimension-free (p-free) [Kotekal and Gaol 2024]. Therefore, it

is natural to speculate that the univariate function selection shares a similar property, with its optimal
signal condition, quantified by the squared L, norm, of the rate:

o?log(ep/s) + max ((02 VEk) A /Lk) , 5)
——— keN+t
High-dimensional selection error

where the second term is the minimax separation rate for the goodness-of-fit test of a single univariate
function in £ [Baraud, [2002].

However, in SectionE] we prove that this is not the case. In univariate function selection, there is an
interplay between the high-dimensional sparse structure (selection error) and the ellipsoid space &,
complicating the form of its minimax rate.

3 Main result: optimal univariate function selection

In this section, we demonstrate that the truncated-type selectors lead to minimax optimal results.
Define the decoder n; = n;(f;) = 1(f; # 0), and the corresponding vector n = n(f) =
(m(f1), - .mp(fp)) € {0,1}P. We also define the selector, i.e., the estimation of 7, as /) =
A(X) = (1 (X), -, 7,(X)) € {0,1}?,and S = {j € [p] : 7; = 1} as the estimated support set
corresponding to 7). Define the SpAM space with the signal strength condition as

Fo(r?) = f =Y f; € Fo:fsl5 = r*forall f; #0 5, (6)

J€lp]



indicating that each support f; has a signal separated from 0. Here 72 is a positive value and we

2
additionally assume r? < p; to ensure Fy(r?) # 0 (since ||f;]3 < w1 Y, i—J < pq based on

f; € &). In the next two subsections, we derive the minimax separation rates from two viewpoints,
sparse multiple testing and support recovery, respectively.

3.1 From sparse multiple testing: FDR + FNR control

Preliminary setup From the viewpoint of testing, the selection can be realized as a multiple-testing
problem
Hoj: f; =0, Hyj: f; #0, foralljep],

under the exactly s-sparse function space

FEF_(r®)=qFf= ) fieFlr’): > 1f; #0)=s

J€[p] JE[p]

We consider the multiple testing risk combined with the false discovery rate (FDR) plus the false
negative rate (FNR), which is of the form

R(f,mEf( 2ies, ' +Zjesf<1ﬁj>>'

LV et i 5
This combined risk balances the proportion of type I and type II errors, and is frequently used in the

sparse testing [|Arias-Castro and Chen, [2017} Rabinovich et al., 2020, |Abraham et al., [2024].

Definition 1 (Minimax separation rate of sparse multiple testing) We say ¢2,., is the non-
asymptotic minimax separation rate of the sparse multiple testing problem for (1)) if:
(1) Forall 6 € (0,1), there exists cs > 0 depending only on § such that for all 0 < ¢ < cs,
inf  sup  R(f,) >1-4.
i fe]::-g (Cefest)
(2) Forall 6 € (0,1), there exists Cs > 0 depending only on 0 such that for all C > Cj,

inf sup R(f,n) <6,
T feEF=s(Ceiosr)

where inf;, denotes the infimum over all selector 7(X) : RNTxp {0,1}>.

K-truncated selector For each sequence X ;, we truncate by the first K entries and construct the
corresponding selector

K
ﬁ;'ESt(XAj) -1 <ZX123 > a?K + /\Q(K)> , J € [p], @)
=1

where the truncation K := min {k: € Nt : py, < o?y/klog(p/ s)}, and the parameter A\?(K) will

be determined in Theorem [1} Denote by 7" = (i, --- 71°*") € {0, 1} the corresponding
selector vector. The following theorem employs an analysis to control the combined risk at a low
level.

Theorem 1 (Upper bound for sparse multiple testing) Let § be an arbitrary number in (0, 1), and

Cs,11og(p/s)

assume that c=2 > ,p/s > Csa, and s > Cys 3. Then, assuming

2 (G5 (VI +2) +v2) s (o VEogofo) ) + S lostofs) @

and taking

N (K) = 207 ( 5K log (s%) + 5log (;)) ,



we have
sup  R(f,7"*") <,
fEF=s(r?)
where Cs 1, Cs 2, Cs 3 are positive constants only determined by 0.

The next theorem shows that the rate in (8) is also necessary for controlling the testing risk.

Theorem 2 (Lower bound for sparse multiple testing) Let § be an arbitrary number in (0,1), and

C“%%(p/), p/s > Cso, and s > Cjs 3. Then, for all r? satisfies

0<r?<csq {0’ log(p/s) + max ( Vklog(p/s) /\,uk)}

assume that c~2 >

we have
inf sup  R(f,i) > 16,
M feF=s(r?)

where Cs1,Cs.2,Cs 3 and cs 4 are four positive constants only determined by 0.

Therefore, combining Theorem [I] and [2] we establish the minimax separation rate for the sparse
multiple testing in the SpAM () as

o = 0 log(p/s) + max (o%/Flog(p/3) A ). ©

We also illustrate that a truncated-type selector possesses such minimax optimality.

Remark 1 (Truncation) So far, the equation (9) reveals that our initial speculation (), in the end
of Section 2.2} is inaccurate: The high-dimensional sparsity structure influences both terms in
the minimax separation rate. This is because the selection problem is related to the chi-squared

distribution, whose heavy tail leads to the selection error of the rate o> {1og(p/ s) + /K log(p/s) }

Therefore, we have to choose an appropriate truncation level K to balance the residual signal strength

i with this composite error bound, i.e., jig =< 0> {log(p/s) + \/Klog(p/s)}. Consequently, the

high-dimensional structure affects the choice of truncation, revealing an interplay that is not only
sufficient but also necessary.

Remark 2 (SpAM and GSM) The Gaussian sequence model (GSM, mentioned in Section can
be seen as a simplified SpAM, where 01; = 1 and 0,; = 0 for each it > 2 and j € Sy. Therefore,
in GSM, we can just choose truncation K = 1, and analyze the selection error caused by the
Gaussian distribution [|[Butucea et al.| 2018, |Song and Cheng| |2023|]. In contrast, to get an optimal
truncation K in general SpAM space, our selector (/) requires trading off the truncation bias against
sub-exponential error. Both the analysis and outcome demonstrate that univariate function selection
in SpAM is more challenging than variable selection in GSM.

Additionally, our theoretical results can be extended to the following specific cases.
Corollary 1 Assume that all assumptions in Theorem 2|and Theorem|[I|hold. Then we have:

* Sobolev Take ji; =< i~2% with smoothness parameter o, the minimax separation rate for
multiple testing is
2 _ 2 =
G = 0 log(p/s) + (04 log(p/s)) 777 .
* Finite dimension Take (11 = -+ = [y, > fimy1 = fmg2 = - -+ = 0 for some positive
integer m, the minimax separation rate for multiple testing is

ot = 02 10g(p/s) + (o2v/mlog(p/s) A ) -

* Exponential decay Take ; < exp(—c1i7), where c; is a positive constant and v > 0,
the minimax separation rate for multiple testing is

—4
€y =< 0210g(p/s) + 02+/log(p/s) - log?7 ()

log(p/s)



Remark 3 (Finite dimension case) We now give a further discussion of the finite dimension case.

Under the assumption o2 > M the minimax separation rate exhibits two regimes:

~ 11
VIRE]S s o s los(p/s)
I35 H1

~ ~

L If ip < mlog(p/s), then we derive that

m 2 o~ 2uy. In this case €2, < 02 log(p/s) + p1 < p1.

2. If py = o%y/mlog(p/s), then we get €7, ,, < o log(p/s) + a*\/mlog(p/s), which aligns

with the minimax separation rate in the group sparsity setting [|[Butucea et al.||20234].

, leading

Combining these cases gives a more intuitive separation rate

Clest < min {02 (10g(p/ s) + v/mlog(p/ S)) : Ul} :

Here the minimum reflects our ellipsoid space constraint: by deﬁmtlon of € and F(r?) in Section

every active univariate function f; obeys | f;|3 < ZZ@H t
upper bounded by 111.

In the case 11 < 02+/mlog(p/s), we have €2, < py. In other words, to control FDR+FNR, we
would need each f; to satisfy || f_j||_2 > Cu for some large constant C > 0. However, each
support f; obeys || f_j|l2 < pi1. Hence, there are basically no f; that can attain a detectable norm,
and the support recovery problem is essentially trivial in this case.

< w1, leading its Lo norm

3.2 From support recovery: wrong recovery probability control

Preliminary setup The univariate function selection can also be viewed as a support recovery

problem We measure the selection error between the estimated support S and the true support S by
using the Hamming loss 1(7(X) # n(f)), where the probability of wrong recovery

Py (S(X) £ 8(1) = Py (1(X) # (/) = B(1(0(X) £ (1))

serves as the risk function, which characterizes how we can exactly recover the support set [Wain-
wright, 2007, Butucea et al.,[2023a].

Definition 2 (Minimax separation rate of support recovery) We say e
minimax separation rate of support recovery for (1)) if:

Zoc IS the non-asymptotic

(1) Forall 6 € (0,1), there exists cs > 0 depending only on § such that for all 0 < ¢ < cs,

it sup Py (i(X)£n(f) > 1.

7l fEFs(ce2

rec

(2) Forall 6 € (0,1), there exists Cs > 0 depending only on § such that for all C > Cs,
inf  sup Py ((X) #n(f) <9

T feFs(Ce..)

where inf;; denotes the infimum over all selector (X)) : RN xp 5 {0, 1}7.

Similar to Section[3.1} we next establish the minimax separation rate for the support recovery problem
in SpAM ().

Theorem 3 (Minimax separation rate of support recovery) Let § be an arbitrary number in
(0,1), and assume that o2 > W, p > Cs,9, and s > Cj 3. Then the minimax separation rate
for the support recovery problem with respect to the wrong recovery probability P ; (7(X) # n(f)) is

eﬁpp = o2 logp + max ( v klogp A #k) (10)

The minimax separation rate for support recovery in (I0) is a little greater than that for sparse multiple
testing in (@) (log p versus log(p/s)), showing that controlling the wrong recovery probability is



more demanding than controlling the combined risk (FDR + FNR). Indeed, sparse testing requires
|SAS| = o(s), while exact recovery requires | SAS| = o(1), necessitating a slightly stronger signal
condition. In addition, this discrepancy leads to a higher thresholding level for optimal selection in
support recovery, as detailed in the following.

Remark 4 (Rate-optimal selector) Under assumptions in Theorem[3|and the signal condition
r? > Cjs {02 logp + max (02\/klogp A ,uk>} ,
kEN

the selector
K/
Pe(X) =14 3" X2 > 0°K' + 20° (\/K’ log(2p/3) +1og(2p/5)) Ljel A
=1

controls the wrong recovery probability effectively:

sup Py (7"(X) #n(f)) <6,
fEF.(r?)

where K’ := min {k eNt o <o?Vk logp} and Cs > 0 is a constant only determined by 6.

Remark 5 (Relation to existing work) For the Sobolev space with smoothness parameter o, we
rewrite the minimax separation rate (10) for exact support recovery as:

8« 2a —2
= = 7 < =
2 = {04 + (logp)3+T  if logp S 071, (12)

"¢ o2 log p ifo=2>logp > oatt,
Therefore, in the case logp = o (aﬁ), we match the rate derived from|Ingster and Stepanova
[2014|], Butucea and Stepanova, [2017|]. Additionally, our findings establish the non-asymptotic

—2
minimax separation rate for the case c=2 2 logp > o 2+1, which was not provided in previous
studies. In this case, the selection error exhibits sub-Gaussian behavior, resulting in the rate aligning
with that in the Gaussian sequence model [Butucea et al.| |2018, \Song and Chengl |2023)].

4 Adaptation to the smoothness

Thus far, our analysis has assumed full knowledge of the smoothness sequence {; };cn+, Which
is often unrealistic. This section investigates how adaptation to unknown smoothness affects the
minimax separation rate. For simplicity, we consider the Sobolev space with 11; = i72%, o > 0, and
rewrite the original space F(r?) as F(r?, o). The wrong recovery probability P ;(7(X) # n(f))
is used as the risk function.

A selector adaptive to the unknown o Define the truncation set

Kree := {2,47 t ’2[10g2(%)—| } .

For every § € (0,1) and k € K., we denote 77%) (X) := (ﬁ%k)(X), e ,ﬁz(,k) (X)) € {0,1}? as
the selector vector with respect to k£, where

k

) B 8nlo 0.72 8plo 0'72

Ak =1 {g 2y XG> k+2\/k10g <Pg6()> +2log <Pg6())}
i=1

Now, we define the adaptive selector

~ad o ~ (k) - (k
7*(X) = (krenlgx iy max )> e {0,1}". (13)

rec rec

For each f;, our selector firstly constructs individual tests for each k& € C,..., and then aggregates
them by taking the maximum over K,... Equivalently, f; is declared supported as soon as it is
identified as nonzero under any candidate k£ € K,...; conversely, f; is declared non-supported only if
it is identified as zero for all k£ € K,.... We next establish the sufficient signal condition for the wrong
recovery probability control.



Theorem 4 (Upper bound for adaptation) Let 6 be an arbitrary number in (0, 1), and assume that
o2 > %. Then, for all r* satisfies

a 20 I -2 I -2
12> (12v2+1) o7 log i (8p Ogé(” )) + 1802 log (Sp Ogé(a )) ,

we have

sup  sup Py (7*(X) #n) <6.
a>0 feFs(r?,a)

Compared to (I2), an additional log (log(J*Z)) term in the signal strength condition is required. The
following theorem shows that log (log(ofz)) is also necessary for the adaptation to the smoothness.

Theorem 5 (Lower bound for adaptation) Let § be an arbitrary number in (0, 1), and assume that

o2 > % and p > Cj . Then, for all r* satisfies

0<7r?<csa {a% log% (plog(a_Q)) + 0% log (plog(a_Q))} ,

we have
infsup sup Pr(H(X)#n) >1-34.
T a>0 feF(r?2,a)

Theorem [ and [5]establish the adaptive minimax separation rate as
o THiE log% (plog(a_2)) + 0% log (p log(o_2)) ) (14)

In the high-dimensional case log p 2 log (log(c2)), the log (log(c~2)) term becomes negligible
and (T4) achieves the same rate as (I2), indicating that adaptation incurs no additional cost on the
rate. However, when p is a large constant that is much smaller than o2, (T4)) indicates that, with the
smoothness unknown, achieving support recovery requires a stronger signal strength compared to

(™).
5 Discussion: difference between optimal estimation and selection

We finally end this paper by discussing the difference between estimation and selection. For simplicity,
we assume s < p'~#, where 3 € (0, 1) is a constant, therefore log(ep/s) < log p. Next, we establish
a minimax-optimal estimator for f € F, through a truncated hard-thresholding procedure:

Ke
i =Xij - 1(i < K.)-1 <a2 > X} > K.+ /CK.logp+ Clogp>, (15)

. =1
Truncation °

Hard thresholding

where we define K, := min{k € N : 4, < 02k}, and C > 0 is a fixed constant.

Theorem 6 (Optimal truncation for function estimation) Assume o2 > U2 4ng the
canstant C' in (15) satisfies C' > 4. Then the estimator (13)) is rate-optimal:

sup Ef||f(©) — f[3 = sup Ef||© — O(f)[|3 < 0?slogp + s x max ((0%k) A ) -
fEFs feF.S keN+

Combined with @), Theorem [6]implies that by only using the first /. entries in each observation
sequence (i.e., only using X jx[p = {Xij}<ic K. .1<j<p)» One can achieve a minimax optimal
function estimation. However, it may fail to guarantee optimal univariate function selection by only
using these truncated observations, as shown below.

Theorem 7 (Suboptimal selection) Assume =2 > % and p > Cs. Then, for all r* satisfies

0<r’<cs {02 log p + [max, (02\/k10gpA #k) + ﬂKchl} : (16)
E e



we have a lower bound as

1
inf sup P (9(X > -,
s oy P 5 (X pxm) # ) 2 5

where the infimum infﬁ( X takes over all restricted selectors that only use observations

Ke1xip) ) E{0,1}7
XK. x[p) and C1,C2, c3 > 0 are absolute constants.

This theorem demonstrates that in the family of truncation estimators, optimal estimation sometimes

leads to a suboptimal univariate function selection. For example, consider the Sobolev space with
. _ 2 .

j; = i72% in the case logp = o (a T+2a ) To exactly recover the support set, the necessary signal

strength (16) (by only using X )x[p]) is of the rate o TR , which exceeds the minimax separation

rate o 7ot (log p) TatT , as illustrated in (12). This gap directly shows that optimal univariate function
selection cannot be treated as a byproduct of optimal SpAM function estimation. See Figure [I|for a
clearer difference.

Signal strength 72

oTa Lo T o?\/klogp

0351 (log p) T

1 1
Truncation for optimal estimation Truncation for optimal selection k

2 4 1
K.xo 1+2a K=o 1+4a (logp) IH+ia

2
Figure 1: The difference between optimal estimation and selection in the case logp = o (a_ 1+2a ) .

Appendix [A]discusses some future directions for this paper, and Appendix [B] provides the numerical
experiment to confirm our theoretical findings.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [Yes] The abstract of this paper precisely outlines our contributions in terms
of minimax separation rates for univariate function selection in sparse additive models.
We also discuss the adaptation to the smoothness and the difference between the optimal
function estimation and univariate function selection. Section[I]and [2]also present the main
contributions and assumptions in this paper.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: [Yes] This paper sets certain limitations on the model. Our analysis is based
on the Gaussian white noise model instead of the empirical nonparametric regression model,
which means our results cannot be directly used in a real application. However, as we
point up in Section 2] the Gaussian white noise model simplifies the analysis by avoiding
unnecessary technical complexities while keeping the focus on the statistical essence, and
our results are asymptotically applied to the nonparametric regression model. We also
provide an in-depth discussion of our limitations and future directions in Appendix [A]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: [Yes] Each theorem in this paper comes with detailed assumptions. All formal
proofs of all theorems are provided in Appendix and the formal proofs of auxiliary
lemmas are provided in Appendix K}

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [Yes] This paper provides rate-optimal selectors and an adaptive selection
procedure. We thoroughly outline the experimental parameter settings and simulation proce-
dures in Appendix [B] Additionally, we upload all the R code required for the experiments in
the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: [Yes] The supplementary material includes all code used in our experiments,
covering data generation, preprocessing, truncation selection, effectiveness analysis, and so
on. The code provides specific parameter settings and random seeds to ensure the complete
reproducibility of all results shown in Appendix [B]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: [Yes] In Appendix[B] we present comprehensive introductions to our procedure
and data, covering data generation, preprocessing, truncation selection, performance metrics,
and so on. Furthermore, the supplementary material includes all the code used in our
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: [Yes] The simulation results in this paper report 1-sigma error bars based
on standard errors from 300 Monte Carlo simulations (see figures in Appendix [B). The
variability of error bars arises from the randomness of error terms in simulations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: [Yes] We provide the information on the computer resources in Appendix
All simulations are conducted using R and executed on a personal laptop equipped with an
AMD Ryzen 7 5800H processor operating at 3.20 GHz and 16.00GB of RAM.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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10.

11.

Justification: [Yes] This paper consists solely of theoretical analysis and simulation ex-
periments, with all data being randomly generated. It does not engage human subjects or
participants, nor does it raise data security concerns such as personal privacy. Additionally,
the supplemental material contains all the code for our experiments, ensuring the repro-
ducibility of our results. Therefore, the research presented in this paper adheres to the
NeurIPS Code of Ethics in all respects.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: [NA] In this paper, we purely discuss the theoretical minimax separation
rates of univariate function selection in sparse additive models. It belongs to the domain of
statistical theory research, and therefore does not involve societal impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA] In this paper, we purely discuss the theoretical minimax separation
rates of univariate function selection in sparse additive models. Therefore, it belongs to the
domain of statistical theory research and poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: [Yes] We cite all the papers that inspired this work, and also provide citations
for the techniques used in the proofs.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: [Yes] We upload all the code in the supplementary materials as a zipped file,
covering data generation, pre-processing and so on. The code provides specific hyperparam-
eter settings and random seeds to ensure the complete reproducibility of all results.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]

Justification: [NA] This paper purely discusses the theoretical minimax separation rates
of univariate function selection in sparse additive models. Therefore, it does not involve
crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA] This paper purely discusses the theoretical minimax separation rates
of univariate function selection in sparse additive models. Therefore, it does not involve
crowdsourcing nor research with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: [NA] This paper purely discusses the theoretical minimax separation rates of
univariate function selection in sparse additive models. Therefore, it does not involve LLMs
as any important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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These appendices provide the future directions, numerical experiments and the technical proofs of
the main manuscript. For notational convenience, throughout all appendices we define n := o2 to
represent the noise intensity.

A Limitations and future directions

Besov ball or L, ball One key direction for future work is to extend our univariate function
selection results from the Lo-ellipsoid (2) to richer nonparametric classes such as Besov balls By, or,
more generally, L,-ellipsoids. These spaces naturally align with wavelet bases and are foundational
to practical methods in signal processing and denoising. However, under the high-dimensional setting,
the techniques in/Baraud|[2002]] may not be useful anymore. Perhaps a more viable approach is to
construct selectors based on the nonquadratic estimation procedure in|Cai and Low|[2005} [2006],
which may also lead to a minimax adaptation result simultaneously.

Univariate function selection under local differential privacy Integrating the differential privacy
(DP) mechanism into univariate function selection for SpAM represents a direction for future research.
DP ensures rigorous protection of individual data while allowing valid statistical inference; therefore
is welcomed by the computer science, machine learning, and statistics communities recently. In the
local DP setting, Butucea et al.|[2023b] established phase transitions for support recovery in the
sparse mean model, deriving minimax separation rates for exact recovery and for almost-full recovery.
Butucea et al.[[2020} 2023c] studied the function estimation and the quadratic functional estimation
in the nonparametric univariate function, respectively, where the latter plays an important role in
goodness-of-fit testing. All these works demonstrated that DP leads to some markedly different
minimax rates compared to non-private benchmarks.

Consequently, when extending univariate function selection in SpAM to local DP constraints, one
should expect that the minimax separation rates will differ from the results in this paper: the optimal
truncation should be recalibrated to account for the additional privacy-induced noise. Designing
and analyzing such privacy-preserving selectors for SpAMs remains an important and challenging
problem.

A general conclusion about estimation and selection Another significant extension lies in gener-
alizing the minimax lower bound in Theorem [7, which currently restricts the infimum to selectors
relying solely on truncated observations X|x jx[p). To this end, we define the minimax optimal
estimation class

Eopt = {f . RNJrX[p] — RNJrX[ZI’]

~ 2
EHX—H<21 x 2k) A .
sup By J(X) = ||, S o”slogp+s iﬂ%ﬁf((a ) A )

The general version of Theorem 7]should focus on the necessary signal condition for selectors induced
by estimation class E;:

cinf  inf  sup Py {ﬁ(f)#n(f)}zc
feEopt ﬁ:ﬁ(f) fe]:s(T2)

Ideally, this lower bound could quantify how the minimax optimal estimations perform in the support
recovery problem. It could also lead to a more comprehensive realization of the difference between
estimation and selection.

Establishing such a result will likely require some new analytic tools, and we think the techniques in
Song and Cheng| [2023]] may give some help. We leave this interesting problem for future research.

B Numerical experiment

We conduct three simulation studies to evaluate the performance of our truncated-type selectors in
sparse additive models. For ease of display, we define n = o~2.

1. Compare the performance of our proposed method across varying dimension p and signal
strength 2.

2. Compare the performance of different selection methods across varying variance 1/n.
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3. Compare the performance of different selection methods across varying smoothness parame-

ters.
In all experiments, we take X = [0, 1], s = 5, and let the support covariates be j = 1,...,5, with
centered functions
fi(z) =2*(2°7" — (z — 0.5)%)e” — 0.5424,
fa(z) = 12(x — 0.5)% — 12,
f3(z) = 322 2" cos(152) — 0.1002,
f4($) =2z — 17
fs5(z) = 8(z — 0.7)% + 0.4640,

which all belong to the Sobolev space with v = 1/2.

Performance is measured by the Hamming loss

1(7(X) # n(f)).
and the combined FDR plus FNR loss
Dies, i Djes, (1 —1;)
— + .
LV jew i §

For each simulation, we execute 300 repetitions, with 1-sigma error bars provided in the figures. All
simulations are conducted using R and executed on a personal laptop equipped with an AMD Ryzen
7 5800H processor operating at 3.20 GHz and 16.00GB of RAM.

B.1 Simulation 1: dimension and signal strength

We fix n = 300, and vary p € {10,100, 1000, 10000}. We take a - f; as the support function, for
j=1,---,5, where a > 0 quantifies the effect of the signal strength.

Figure 2] shows that, as the signal strength a increases, the selection errors (both Hamming loss and
FDR plus FNR loss) for each p decay toward a relatively low level, but larger p demands higher a to
reach the same error level. Moreover, controlling FDR + FNR requires weaker signal strengths: at
p = 10000, a = 0.5 suffices to keep FDR + FNR = 0.5, whereas the Hamming loss drops below 0.5
until @ = 0.7. This behavior reflects the fundamental difference between sparse multiple testing and
exact support recovery, as we discussed after Theorem 3]

Support Recovery Sparse Multiple Testing
1.25
1.00
1.00
0 0.75 @
8 3
En' = 0.75
a)
g 0.50 T
£ + 0.50
g g
T 025 w
0.25
0.00 0.00
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Signal Strength a Signal Strength a

Dimension =e= p=10 =~ p=100 p=1000 = p=10000

Figure 2: Selection performance with different dimensions and signal strength.
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B.2 Simulation 2: noise variance 1/n
We fix p = 500 and vary n from 20 to 300. Four types of selectors are considered in this simulation:

1. Optimal  The rate-optimal selector (TT).
2. Adaptation The adaptive selector (T3).

3. Univariate The selector that takes truncation at &, = min {k eENT:puy < %}
4. Suboptimal  The selector that takes truncation at K, = min {k € N* : y, < £}

Figure [3]illustrates that, as n grows, all methods see error decay, but the Optimal and Adaptation
methods maintain the lowest selection errors across most regimes. Additionally, as we discussed
in Remark [3} for n < (log p)'*2%, the minimax separation rate is log p/n, under which the K-
truncation remains rate-optimal, giving the Suboptimal selector a temporary advantage (for n < 100).
Once n = (logp)!T22, the minimax separation rate becomes 1~ TafT (log p) Ta§T , and truncation at
K. cannot be optimal anymore.

Support Recovery Sparse Multiple Testing
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Method -e- Adaptation =+ Optimal Suboptimal == Univariate

Figure 3: Selection performance of the four methods with different noise level n.

B.3 Simulation 3: smoothness parameter (5

We fix p = 500 and n = 300, and assess the effect of smoothness on univariate function selection.
First, for j = 1,...,5, we compute the original basis coefficients of each f;, denoted by {6;; };en+.
We next reweight these coefficients and get the new functions

1ENT

so that each fj(ﬁ ) lies in the Sobolev ball with smoothness parameter 5. We vary 8 € [0.2,1] and
compare the performance of the four methods.

As shown in Figure [4] only the Adaptation method consistently achieves low error across all 3,
demonstrating its optimality and robustness to unknown smoothness and verifying our theoretical
guarantees in Section 4]

C Proof of Theorem

We first introduce the proof of the lower bound and upper bound in Theorem 3] These proofs are
instructive and lead to clearer proofs of Theorem [I|and Theorem 2]
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Figure 4: Selection performance of the four methods with different smoothness parameter 3.

We first define the Hamming distance

which can upper-bound the wrong classification probability

Ef(H(,n)) = Y wPp(H(,n) =w) > Ps(7 #n). (17)

w=1

For notational convenience, throughout all proofs we set n = o2 to represent the noise intensity.
C.1 The lower bound

To better clarify the truncation construction, we define

T Vk

The SPAM function set induced by £*) (r2) is:

EW(r2) = {0 eRY g, forall 1 <i <k, 6; =0 foralli > k} cé&.

FR () =S f = ij € Fo(r?) . fj € EW(r?) forall f; # 0

j=1
Now we consider:

inf sup Pf(ﬁ(X) + n(f)) > inf sup Py (ﬁ(X) # n(f))

AR X {0,1)P fEF, (r?) AR P {0,137 e 2 () (2

sup Py (ﬁ(kap) # n(f)),
FeF (r2)
(18)

which means that in .Fs(k)(T‘Q), we only need to consider those selectors 7 based on the first &k
observations in each univariate function f;,j € [p].

inf
7:REXP—5{0,1}P

Now, for some fixed k € NT, we set a least favorable subset of fik) (7"2), and then derive its lower
bound of the minimax separation rate.
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C.1.1 The least favorable subset

For every fixed 6 € (0,1), & € NT which satisfy py > (C15 A1) max (log(z_s), v klog(ps))

25 n

(where ¢; > 0 is a constant defined in Lemma , consider the subset:

p

FR(r?) =80 FM@?): Y 10, #£0)=s ). (19)
j=1
Therefore, for each f € fs(k) (r2), if its j-th univariate function f; = 0, the random variable

n Zle ij follows from a central y?-distribution with k degrees of freedom (note that X;; ~
N(0i,1/n). If f; #0,n 3", X7, follows from a non-central x>-distribution with % degrees

of freedom and with non-centrality parameter nr2. Let fy and f; be the densities of these two
distributions with respect to the Lebesgue measure:

Sk/2=1 g—2/2

k/2 0 (m2>l Sk/24i=1 ,—2/2
1 i
( ) e—nrz/Q 2 : 4

2 i T(k/2 + 1)

, 2> 0,

(20)

fi(z) = , 2> 0.

=0

Once the positive integer k is fixed, by Lemma [T we only need to consider the selector based on the
norm || X1.x,;||2, which we call them the norm selectors. Then we conclude

inf sup P (A Xk f )
H:RFXP—{0,1}P f€fgk>(r2) f n( XP) # 77( )
> inf sup P ( X )
H:RFXP—5{0,1}P fe]}b(,kl))(ﬂ) f 77( ><;D) # 77(f)
@ A
2 ol sup Py (77(|\X1:k,1||2>"' X 1npll,) # n(f)) @1)
7): norm selector feﬁb(k)(rz)

@) S fi )
> Pe s 1 X1 2 < X 1.1 2
Z Fe(s) (j—nll}l{l,s fo (n|| 1.k,g||2) = j:anrlElL,)-(-.,p o (n|| 1.k,]||2)

(43) X
ﬁPds)(_mm Al Xuisl < max n||X1:k,j||%),
s j=s+1,,p

Jj=1,

where inequality (i) follows from Lemmal[T} inequality (ii) follows from Theorem 6 in[Butucea et al.
[2023a], where we denote by P, a probability measure in which only the first s univariate functions
are non-zero, i.e., f; = 0 < j ¢ [s]. Equality (iii) follows from the monotonic increasing property of

the likelihood ratio %(z) onz e RT.

C.1.2 The tail probabilities

With the fixed 6§ € (0,1), k € N* which satisfy p > (%2 A 1) max (“’g(g”, v klOi(p‘s)), we
aim to prove that the last probability in ZT)) is greater than 1—¢ if log(p—s) > (% + log %) v
1

(2 log %) v % and r2 < (% A 1) max <log(i—s)7 \/KIOS(P—S)>, where ¢; > 0 and ¢y €

(0, 1) are two positive constants defined in Lemma Firstly, by taking = = log fjéf’;/z% > 0, we

26



conclude

Pecs) (j_srgfyﬁ_ L X

s

2>k+co+ clx/lm) —1-{1-P (xi(O) > k+eo+ e Vha) }p_s

I\/~

(1 coe ””)

<1 log 2/5 )
§
(22)

where inequality (i) follows from (39) in Lemma 2] inequality (ii) follows from the assumption
2 .
p—s5> <logg/5)) > logz/é) > 1.

(i)
> -

Besides, by taking 72 < % max <1og(£s), \/kloi(p—s)) and log(p — s) > 2log logg/é)’ we

conclude z > L log(p — s) > Zlog(p — s) and

nr2+2\/m<22€51(x+@)+2\/2-22?(x+\/ﬁ) <S(e+via), @3

where the last inequality follows from c; (m + kx) > 4 led by log(p — s) > 8/c;. Then, by
assuming s > log(2/4) and log(p — s) > % + log %, we conclude z > 16/c2, therefore
1

nr? + 2\/(k‘ + 2nr?) 10g(2/6) 2 10g(2/5 242k +2nr2 4+ 2
s
<nr? 4+ 2vV2onr2 + 2 (\/E + 1)

(Z<)%1 (x+x/%)+%\/5(\/%+1)

<cy (x—l—\/ﬁ),

where inequality (i) follows from (23)). Therefore, we conclude

P ( mln n||X1kJ||2<k+clm+clv )

{ (X >k+clx+01@)}
{P ( ) > k+nr’ +2\/(k:+2m2)10g(§/5) N 210g(2/5)> } 24

2 (o <log<s2/6>>> !

where inequality (i) follows from (8T} in Lemma 2] with non-centrality parameter B = nr2. Combin-

ing 1), (22) and (24)), we conclude that

it s (00 £ 000) 2P (pin [Xuslf < _max | 1%013)
N FEF,(r2) Jj=s+1,,p

| \/

\\/~

>Pe(s) ( I{lln nHX1 kg||2 <k‘+61$+01\/k‘l‘>

X Pe(sy | . max n||X1:k,j||§ >k+cix+ 01\/@
j=s+1ep

5 2
> 1—-= 1—o.
>(1-5) »1-0
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C.1.3 The optimal truncation K

By the definition of F1" (r2), F{¥)(#2) and 44(¥) (+2), the minimax separation rate is lower bounded
by the constrained maximum:

log(p —5) +/klog(p — 8)>

max : ¢y max ( ,

log(p —s) +/klog(p—s) (25)
n n > < M

subject to : cs max ( ,

ke Nt

where ¢ = %5 A1 € (0,1]. For ease of display, we define

cs\/klog(p — s) }

K .— min {k eNT:p <
n

(26)

vV

n

cs\/klog(p — s) }

L) :=max {k e Nt : Lok

By assuming n > %(lp_s), we derive that 1 < L(¢s) < K(¢s) < [(¢5) 4 1, Then we analyze the
maximum into two cases:

* Case A: When [i[1o5(p—s)] > co/Nos(p=s)1106W=%) 'y derive that L(¢?) > [log(p — )]

n

A/ L(es) ] — _ . . \/L(¢s) 1 —
hence £ — og(p—s) > % logrgp s) Then the maximum of [@3) is NP8 os(p=s)

n

cs/Tlog(p—s)] log(p—s) . .
¢ Case B: When fif105(5—5)] < AVARLCES nﬂl =) " We derive that 1 < L) <
[log(p — s)| hence esy/LED log(p=s) e logly =5) " Then the maximum of is

n - n

cs log(p—s)
—

Therefore, we establish the lower bound of the minimax separation rate as:

- (cs) — i - (cs) —
C(s.max{log(p s) /L) log(p 8)}<> X{log(p s) K()log(p 8)}

, = ma ,
n n n n

ii I — k1 —

@ {Og@s) - (uk . 0g<ﬂ>> }
n kENt n
I — k1 —
_log(p —5) 4 max (Hk A og(p — ) ’
n kEN+ n

@7)

where equality (i) follows from 1 < L(¢) < K(¢) < L(¢5) 4 1 and equality (ii) follows from
Lemmafd] By (27), we derive the lower bound of the minimax separation rate.

C.2 The upper bound

By (I7), we only need to prove that sup j¢ z_(,2) E¢ (H(ﬁ(X)7 n(f))) < 6. For ease of display, we

denote A\*(K') = 2 (\/K’ log(2p/d) + 10g(2p/6)>.
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C.2.1 Preliminary

For a fixed SPAM f € F(r?), we use Sy C [p] as the index set of the support univariate functions
f; # 0. Then we have

By (H(X),0(£) =B > 1 (i (X) # ;1)

>
Zi: ( ) # nJ(fJ))
2P

= sz <—+>\2 + > Py ZXQ z—H?(K')
i=1 JQSf
(28)
Therefore, we will discuss the Hamming loss on the support and non-support separately.
C.2.2 Support
With signal condition
1 vklogp 36logp
113 > 24\/7 2 ——=A
1313 > < 5 H V2 ) max (TS A )+ =
holds for all j € S¢ , we have
92
16157 5113 = Z% >(If5l15 — prer Y
i=rct1 M
@ 2 K'l 1
2 12\[+ . og(p) | 36logp
4] n on (29)
!/
> 12\/7\/1( log(p 3610gp
on
(7,;)12 K'log(2p/0) n 18log(2p/4)
- n n b

where inequality (i) follows from the signal condition and a proof strategy similar to in Lemma
inequality (ii) follows from the definition of K’ and inequality (iii) follows from (2/4) logp >
log(2p/J) when p > 2.
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We decompose Xi; = 0;; + &; with each §;; ~ N(0,1/n) independently. Then we get

ZX2 <—+/\2

K/
1617 5113 + 1101:57 5113 + 2 (€r:xcv 5 Or:kcr5) < T AQ(KI))

K .
{||§1:K,j||§ + 16011, 015 + 2 (1,5, 01k g) < s )\Q(KI)} n Aj) + Py, (A5)

8log(2p/6)

K/
<Py, <||§1 kM5 + 101k 5115 — 101:50 52 < AQ) + exp (—log(2p/9))

K 1)
v 513 + H16nsesl3 < 2+ m«)) i

(2i7) k)
< Pj, (nna krll3 < K = 2y/K 1og<2p/6)) to
é
<=,
p’
(30)

2
where in inequality (i) we define event A; = {(5111(/7]-, b1.57.5) > f\/QHGLK” Iz log(2p/?) }, where

n

n

(&1.x7 5,01k, ) ~N (O M). Inequality (ii) and (iii) follow from (29), and the last inequal-
ity follows from (60) in Lemma 2]

C.2.3 Non-support

We now focus on the Hamming loss on the non-support. For every j ¢ S, we have n Zfil X fj ~
X% (0), therefore
]
2 2
(ZX”2+A> %’ (31)
where the last inequality follows from (61)) in Lemma 2]

Combining (28], (30), and (BT)), we conclude

B (H@(X),n(1) = Y Py, ZX2<f+A2 )|+ 2Py, ZX?sz( )
JES i J&Sys
(4) -
§|Sf|5 L (P = 15¢1)
D 2p
ICEALTDLI
2p -

where in inequality (i), we use |Sy| to denote the cardinal number of the support index set S, hence
1<|8 f| < s < p. Therefore, we complete the proof of the upper bound and also Theorem

D Proof of Theorem /(1]

In the proof of the upper bound, we first recall our signal condition

15 2 (5= (VIO+2) +v2) ma (’“Oj@/s)wk> + 2 tog(p/s)

and the selector

=1 (nZXQ > K +2+/5K log(p/(s6)) + 1010g(p/(35))> ,
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where K = min {k; eENT:p < Vklof(p/s)} and n = o~2. We assume p/s > /12 V 1/6/6,

§>16V Cs,andn > %fp/s), where Cj is a positive constant solely determined by § € (0, 1).

D.1 FNR control
Similar to ([29) in the proof of Theorem 3| we get

Klo 50 36
Hel:K,j”% >6 (\/54— \/5) % + Zlog(p/(sé)).
Then for j € Sy, similar to (30) we get

. 1— }

S

SP(X (0) + *Wl&a

2 |2 < K +2+/5K log(p/(sd)) + 10 log(p/(sé)))
P (20 €. eg) <~y e 0w/ o9) )

<Py, (xk(0) < K - VEKog(p/(0))) + (p) 5

which also leads to

2
S| s -2s (S) s.
JESy b
Besides, by Hoeffding’s inequality, we get

S =B iy < st <exp(-2vs),

JESF JESF
yielding
2
Z N <s—2s <S> §— s | <exp (—2v/s) . (33)
‘ p
JESy

D.2 FDR control

By Markov’s inequality, we conclude

Z fj > < p/s Z P nZij > K +2+/5K log(p/(s6)) + 101og(p/(sd))
igs p/s igs
f f
s 2
S () 6)
p
(34)
which yields
Z‘gs 7 s\? s
E{ —I22 — g ﬁj>s—23(> §—s 1 flj <
LV e M j;:f p jgs:f (p/s)?
W/ (35)

< 5
@iz T 5 —2s(s/p) § — s3/4

QG 2

worts 3
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where inequality (i) follows from p/s > /12 and s > 16, and the last inequality follows from
p/s > /9/(26). Besides, by a similar technique, we have

> ¢S Mj s\ 2
EQ 22— 1 Y s —— Z iy > < () 5, (36)
1V Y e Tl i p/s p
where the last inequality follows from (34)), and the first inequality holds because %% <1
jelp] 12
We also get
5 2
E 12:J¢SfjA.1 Zﬁj§8_23(5> s_s34) 1 Zﬁjg
Vieml  \jeE, p 5,
Zn]<s—25<) §—s%/4 (37)
p/ s p

JESS

(i) se=2V* (s > ?
S - 6a
= (p/s)? p
where inequality (i) follows from (33)), and the last inequality is based on that the function g(x) =

re~2V™ is monotonically decreasing and tends to 0 on (1, 00), and hence for every ¢ € (0, 1), there
exists a corresponding Cjs such that s > Cs yields se=2V® < 4.

D.3 Conclusion
Combining (32)), (33) (B6), and (37)), we get
E { ngsf 7l i Zjesf(l - 77]) }

LV e s 5

—E % an>s_25< ) §—s34) .1 i < s

1v Zje[p] i JES s, (p/s)2
J 2
o
+E 1\/2:;“'1 Zﬁj§3_28(5> s3] AJS(/SS)Q
sel) 7 JESs p ¢Sy P

2jes, i
+E W Z nj >
el " j¢Sy

+E{Zj6Sf(1 _ﬁj)}

S

26 s\ 2 s\ 2 s\ 2
§+<) 5+<) 5+2<> § <6,
3 D P P

where the last inequality follows from p/s > 1/12. Therefore we get an upper bound of the combined
risk in sparse multiple testing with a rate-optimal signal condition, which completes the proof of
Theorem 11

p/s

E Proof of Theorem 2]
The proof of Theorem P] uses a similar technique to Section in the proof of Theorem

Recall the decoder n; = n;(f;) = 1(f; # 0) and the corresponding vector 7 = n(f) =
(m(f1), -+ mp(fp))" € {0,1}P. This proof focuses on the SPAM space }}Sk)(rQ), which is
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defined in (T9). For every f € Fio (r2), its specific form is only determined by decoder 1 € {0, 1}?,

therefore a prior of 1) can also be realized as a prior of the function space F. g(k) (r?), and in next we
may use the notation f = f ().

We assume log% > max (%‘?’ %bg m, 1), s > % Vai(}‘;), and n >
C‘Sk’+(p/s), where ¢,x(0) and x(0) are two functions solely determined by 6 € (0, 1) and will be

clarified later.

E.1 Preliminary

For any prior 7 on {0, 1}?, we denote by Py the prior distribution of . Then, similar to the proof of
Theorem [3] we get

inf sup R(f,7)

N feF_s(r2)
sup  R(f,n)

> inf
H:REXP—{0,1}P fe]:-ék)(rz)

—
%S
=

inf sup  R(f,)

7): norm selector feJ:‘ék)(r?)

(i1) M(]_*K)) kM 4 B = (k) (.2
> e (e ) —ePe J%]m>s 2P (70n) ¢ FO()),

where inequality (i) follows from Lemmal([I] and the last inequality (ii) follows from Lemma[3] with

1
M=} P (m =LPrz(n;=0]2)> 2)»
JE[P]

where Z = (|[ X1k 1ll2,- [ X1:kpll2) € RP. This formulation is justified by Lemma I} which
indicates that we can focus solely on the norms of each column in X;.x ., with X.k,. denoting
the first K rows of X. In particular, inequality (ii) holds with every x € (0, 1) and every prior 7
on {0, 1}P. Next, we will construct a block prior distribution 7 to conduct the lower bound of the
minimax separation rate.

E.2 The block prior

We consider a block prior m which has often been used [Butucea et al.||2023al, |/Abraham et al.| 2024]).
Take prior 7 as a product prior over s+ 1 blocks of consecutive coordinates By = {1,2,--- ,q}, By =
{g+1,---,2q},--- ,Bs={(s—1)g+1,--- ,p'}, where ¢ = |p/s]| and p’ = ¢qs. We write By
for the (possibly empty) set {p’ + 1,--- ,p}. In each block By, b € [s]|, we uniformly choose an
index i € By andsetn; = landn; = Oforall j € By, and j # . For every ¢ € B,;1, we just set
1; = 0. With this prior, we have

P Yo mi>s | =Pa(fn g FNGY) =o.

J€[p]
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Then we have

M=Y P, (nj = 1,Puz (7 =0]2) > 1/2)

Jelp]
P =12
-y e ( _y Zeemap Prn=12) 1/2)
be[s] JEBs 2uep, Pr (i =1,2)
@ PB | =1 fi X N1 X2
=X P2 =1, ) P (0] X1k,ul3) > 7 = (nf| X1k 512)
be[s] jEBy weB\ {5} 7 0

-SSR X Rt > Lelxasid|n=1) <P e -1

be[s] J€By ueBy\ {7}

>3 Pﬁﬁp <n||X1:k,j||§ < max. n||X1:k,u||§>,
; weBy\ ()
eisljen 1

where equality (i) follows the same notation in (20), and in the last inequality we focus on the
probability on the block Bj, where "X |e;" means we assume 7, = 1 and ; = O forall u € By \ {j}.
Therefore, we transform the problem into the one we dealt with in Section[C.1.2]

Recall we denote by ¢max(d) and x(5) two functions of 6 € (0, 1) independent of p, s, k and n, which

will be determined later. By taking = = log ——<2(4=1)

“Toa(i—cms(o))’ Ve follow a proof strategy similar to
(22) and get

X‘EJ (ue%a\)i }nHX1 kqu > k‘—|—clx—|—clvkm> > Cmax(0).

Additionally, when nr? < % (:c + vV k:c) we define ¢ := log m > 1 and have

nr? + 24/ (k + 2nr2)t 4 2t <nr? 4+ 2v2nr2t + 2Vkt + 2t
t
<—(x+\/ )+2 C;( \/kx)+2<\/E+1)

4
<9 (o Vi) + 2VE (VE 1)
< ($+ﬁ>,
where inequality (i) follows the assumption =z = log% >

—log(1—cmax(9))
max (Q, %QIOg T—c 1x(6)> ) Therefore, we follow a proof strategy similar to (24) and
get
P (Xi(nTQ) <k4czx+ Cl\/E) > Crrlax(6)7
which leads that

CIQnax(é)(l _K( ))
b e BUD 2 T ST w(0))

Note that we can always choose suitable ¢ax(0) and x(9) to let M =+/1-4,and

14c3,0x (0) (1—~(8
%, we conclude inf sup ez (,2) R(f,7) > 1—4.

(1 _ e—csn2<6>cm<5)) .

then by assuming s >

The optimal truncation k follows a similar analysis as Section|C.1.3] which proves that we cannot
control the FDR plus FNR well when

k1
2 < e {log(p/S) + max ( og(p/s) A/%) }
n keNt n

which completes the proof of Theorem 2}
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F Proof of Theorem 4]

The proof of Theorem is similar to Section For simlpicity, we assume 1, = k2. Recall

Kree = {274’ . 72[logz(15ﬁﬂ }, we conclude |K.c.| < log, (%) +1 < 4logn.
F.1 Support
TT4a 108 %
For every o > i, we define K* = 2[1+4 2(1"@(%))] By 0 <

1_:4& log, <10g(87;21§g n)) < log, (%), we conclude K* € K,... Now with the signal condi-

tion

. THia .
15012 > (12v3+1 log(8p/¢ - logn) n 181log(8p/d - logn)
n?2 n

holding for all j € Sy, we have

K
||91:K*,j||§ = Z 91‘2]‘
i=1

2a
8plogn T+ia 8plogn
> (123 +1) () BB ey G8)
- n? n
; * 8plogn 8plogn
(ng,/K log(“P=5") . 18105%)’
n n

2

J J
where inequality (i) follows from (72)) < Kr <2 (lg(sﬁilogﬂ)) "% Then for every
o 5

n
Splogn
log (=252~

j € S, we conclude that
Efj {1 (ﬁ?d(X) # 1)}
<Py, (7 =0)

K 8plogn 8plogn
=Py, (n XE,<K*+2\/ *10g< )+210g< >>

; J ) ) 39)
(Xi(*(()) < K*— 2K 1og(2p/5)) 4P (N(o, 1) < —/2 log(2p/5))

where inequality (i) follows from (38)), and uses a similar technique in (30) from the proof of Theorem

F.2 Non-support

For every j ¢ Sy, by the subadditivity of the probability measure, we have
E;, {1 (17(X) #0)}

k
1 1
-P, ( U {nZij > k42, [klog (W) +2log (8p gg”>}>
=1

kEK ree

8plogn 8plogn
< ) P<X§(0)zk+2 k:log( 5g >—|—2log< 5g ))

kEK ree

(@) 1) 0
S ‘ recl a_

(40)

— < .
8plogn — 2p
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where inequality (i) follows from (61) in Lemma[2] and the last inequality follows from |K;c| <
4log n. Combining (39) and (@0), we conclude that

E; {H (0*(X) ()} = D B {105 # 1)} + D By, {1 (57(X) #£0)}

JESy J¢Sy
IS -1sps _ o
D 2p

which completes the proof of Theorem [4]

G Proof of Theorem 5

G.1 Lower bound with truncation

Preliminary Firstly, we construct a prior uniform distribution of « as

1 108 et ey 1
Pla= 7 14 $ - Tk for each k € Krec,

where the constant ¢ > 0 will be determined later. The prior of o corresponds to a uniformly
distributed truncation K in /C,.... as

P(K=k)= for each k € ICcc.

|’Crec|

We next construct a prior distribution of function f € F,(72, «) for the given « (i.e., for the given
k € Krec). Specifically, we assume that only O or 1 univariate function can be the support, that is,
f=0,0r f= f;foraj e [p|. Forthe support f;,if ¢ < k, assume that its ¢-th entry is drawn from a

uniform distribution as
o (ME) A
v 1/2 1/2 )

1/4
where A(k) := n~1/2 (%M) Otherwise just take 6;; = 0. Conversely, f = 0 directly

indicates #;; = 0 for each i € NT and j € [p]. After we get an f = {61 }ien+ jepp)> assume
Xi; ~ N(0;j,1/n), indepedently.

2
Finally, for a given « derived from k, we get Y.+ 9#"'?' < Ek2e(k) L \(k)? = 1, indicating the
setting of A(k) is valid. Therefore, we name the distribution with respect to the truncation k& and
support f; as P; 1, and

(b)\ k),1 n(Xi, ) + ¢—)\ k),1 n(Xi, )
Pjr(X) = H L/ 5 LA H%,l/n(Xi,j) < H b0,1/n(Xij0)-
i€ k] i>k j'#7,4€NT

For j € [p], we define P; = “le > kex,.. Pjk» and we also denote by Py the distribution with
j=0,ie., X;; ~ N(0, 1/n) for each (4,7) € N* x [p].

Based on these settings, we transform the minimax lower bound into:

infsup sup Py (9(X)#n) >inf sup  sup  Pj, (9(X) #n)
T a>0 fEF.(r2,a) N k€K e j€{0}U[p]

>inf sup  P; (7(X) #n).
T je{o}tulp]

x? divergences calculation For j € [p], consider

dP; 1 k- A(k)
(X)= exp ( > cosh (nX; ; - A(k)),
dPO |ICT€C| kEKZ,.EC 2/” ]E:[[k] 7

36



which leads that

Ep, <(§;])(X)>2

:L' S ew (_k'A(k)Q +k- MW) x {Bcosh (nX, ;- A(K)) - cosh (nX, ;- A(K)) }W/

|K:rec 2 2/1’L

kK€ ee
kVE —EAK'
X {Ecosh (nXi; - [MNk) AAE)]) }

1N

@; Z {cosh[nk(k))\(k/)]}

VCT“'Q kk' € ree

pa— > exp {n2 VEN (k) - VEN(K) - (k A K) }

< —
| Kree|? kK

kk' €K ree
1 c kENEK

= expl = -log(plogn) - — ¢,

IKee|? . k;@ P{2 g(plogn) T k’}

where equality (i) follows from Lemma@ inequality (ii) follows from cosh(x) < exp(x?/2) for
every x € R, and the last equality follows from the definition of (k).

2

We now define g := |Kpee| = [log2 (ﬁ@ﬂ = log n, and then conclude
1 clog(plogm) __luvl
LI SEFDY exp{2 oty

u,v€E[q]

Control the wrong recovery probability Inspired by|Gao et al.|[2020], we divide the set [g] X [g]
into two subset as T} := {(u,v) € [¢] X [¢] : |u — v| < 2log, ¢} and Ty := {(u,v) € [q] % [¢] :
|u — v| > 2log, q}, therefore |1 | < 5qlog, ¢ and |T3| < ¢*. We then have

1 clog(plogn 1 clog(plogn
IOy exp{(Q) s Y e CREEOEN

(u,v)eT q (u,v)ET>

] log(pl log(pl
§5 ogzqexp{c og(p2 ogn)} +exp{c og(g Ogn)}
q

5p  §%p
< £, 7
-8 + 8’

. : c 5213 log, n
where the last inequality follows from £ log(plogn) < log

m) and Clog(p log n) §
2log(82p/8) log, n, both of which hold under sufficiently large n, p and sufficiently small constant c.

Therefore, by Lemma(7] we prove that with signal strength

2a
1 1 THae
0<r=Fk Ak)?< (COg(ZQOg")) : @41)
the wrong recovery probability is out of control, i.e.,
infsup sup Py (f(X) #n) =inf sup P; (H(X)#n) >1-0. (42)
T a>0 fEFs(r2,a) T je{orulp]

G.2 Lower bound with sparse structure

Since

2a 2a
1+4a 1+4a
<log(p logn) ) N log(plogn) S { <log(p logn) ) ’ log(plogn) }

n? n n? n

2a
- (log%&) i > log(plogn),

log(p logn)
n

ifnTFe < log(plogn),
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we only need to verify the necessity of the separation rate Lo(plogn) \ynder the condition n 77 <

log(plogn). This condition indicates that loglog p 2 log n, which leads to ¢, log(plogn) < logp
for some constant c,, determined only by a.

In Theorem|[3] we prove that the wrong recovery probability can be lower bounded by 1—4 if the signal

strength r2 < ¢ logp . Hence, for any valid smoothness parameter o*, if n e < log(plogn), we
have

inf sup sup Py (7(X) #n) = inf sup Py (7H(X) #n)
1 a>0fE]_-S(656a loi@logn)ﬂ) n fEfs(c‘sl,?gP,a*) (43)

>1—4.
Therefore, combining @1)), (42) and (@3), we complete the proof of Theorem 5]
H Proof of Theorem

This section proves the minimax optimality of the estimator (I3). We begin by defining

- % (\/Ck log p + C’logp) : (44)

therefore 6;; = X;;-1(i < K.)-1 (ZZ, VX5 > Ke/n+ AQ(KS)), where recall K, := min{k €
Nt up < k/n}.

Support For each f € F,, we denote by S the index set of the support covariates in f. For every
j € Sy, we have

K. . 2
Eny f]” =E (%‘ —911;') + >0
i=1 i>K,
() e & ’
<E {Xij—eij—xij-1 <ZX2] <Ke/n+)\2(Ke)>} + 1K,
i=1 i'=1
K. K.
<2E» (Xi; —0;)° +2E> X7 -1 (Z X% < Ke/n+ N(K )) + pk,
i=1 1=1
4K,
<S—+ 2N2(K.) + pixe

(45)
where inequality (i) follows from ;. - 02] <KD sk, 2. L i < e,

Non-support For every j ¢ Sy, we have

2l m{ (e ) 2 (S = B o)
oy a(Ers o)

K. K. K
D (Z X) [P (Z X,z o0 A?(m)) 40

i'=1
Ke
- <ZX > +>\2(K ))
() /2K, C 1 K. C 3K,
- exp 7 ogp —|—7~exp ——logp| < ,

n

IA
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where in inequality (i) follows from Cauchy-Schwarz inequality, inequality (ii) follows from (61I) in
Lemma 2] with taking the constant C' > 4.

Combining the definition of \?(k), {@3), and ([@6)), we conclude

B ||f -] = E\ ol + Y B[
J%Sf
4K 3K,
<s (Ke) +pk. ) +p
np 47)
K, VK1 I
xs 'Jrs ‘ngJrSngJrsu%(e
n n n :
1
xs Y + 8§ X max (k /\Mk>
n keN+

where the last equality follows from K. /n + px, < maxgent (£ A ). Therefore, by @7) we
complete the proof of Theorem 6}

I Proof of Theorem/[7]

This section establishes a necessary signal condition for univariate function selection, under the
case that we have to only leverage the first K. entries in X.; for each j € [p], that is, only use
observations X(r,jx[p] = {Xij} ;< k. 1<;<p» Where Ko := min{k € N* 1y, < k/n} is the
optimal truncation for minimax function estimation, and n = o 2.

I.1 Lower bound with truncation

Preliminary We first construct a prior distribution of function f € F(r?). Specifically, in this
prior, only 0 or 1 univariate function can be the support, that is, either f = 0, or f = f; for j € [p].

In the case f = 0, we take 6;; = 0 for each (i, j) € NT x [p], and thus assume X;; ~ N(0,1/n),
indepedently. We name the distribution as

P, = H G0,1/n(Xij)-

ieNt je[p]

In the case f = f;, we take 6, ; = 0 for each i € N, 5/ € [p] \ {j}. For the support f;, we
introduce two additional parameters A > 0,1 < k < K., which will be determined later. If i € [k],
assume that its i-th entry is drawnas P (6, j = ) =P (0; ; = —\) = 1/2. If i = K. + 1, we take
OKk.+1, = VK. +1 /2. For other i we just take 0;.; = 0. We name the distribution with respect to
the support f; as P, and

P;(X)

Oa1/n(Xig) + d-x1/n(Xi )
— H /n J 5 /n J X ¢ /7MKe+1/271/n(XKC+1"j) X H ¢0,1/n(X

i€[k] 1ENT\([K]U{K+1})
Distribution of the (K .+1)-th entry in f;
Distribution of first & entries in f; Distribution of the residual entries in f;
x H b0,1/n(Xij)
J'#5ENT

Distribution of other f;/

for every j € [p]. Based on these settings, we transform the minimax lower bound into:

inf sup Py (9(X
(X[Kp]x[p])E{Ol}” fefr()) f()( (K Ix[pl) 7 7 )

inf sup P (7(X 7
T (X %) €401} je{0}Ulp] ( ( [Ke]x[p]) 7 ])

- inf sup P A(X ,
T AKX €0 je0julp) stsccxin) (X 1xp1) 771

where P ¢,1x[p) is the marginal distribution of X|xjx [p]-
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Control the wrong recovery probability via marginal 2 divergences For j € [p], consider

dP; (K] x[p] ( MZ)
——= (X =exp|——— cosh (nAX; ),
dPO,[Ke]X[P]( < xlpl) = XD 2/n Zy[k] (nAXis)

which leads that

dP; 2
2 Jy[Ke]x[p]
X (Pl Po. 1 x1) =By i (dpo — (X[Kelx[p1)> —1

24
= cosh” (n/\2) -1 < exp (n ;\ k) —1.

Recall that we only focus on those restricted selectors based on observations X g« [p], and hence only

focus on the marginal distribution of X[, 1, ,. Then our aim is to find proper (A, k) € RT x [K.]
such that:

max : A2k, (48)
I\

subject to: exp <n > > <cips (49)

N < B, (50)

1<k<K.. (5D

where [#9) controls the average x? divergence and c; is a sufficiently small positive constant, (50)
ensures our construction is in the ellipsoid £, and (51)) ensures that the truncation k is valid. Therefore,
by Lemma|/} we prove that with signal strength

vkl
0<r2=k-A2+“Kes@{max (ngwk)w&ﬂ}, (52)
2 ke[K.] n
the wrong recovery probability is lower bounded by 1/2:
inf sup Py (7( Xk, #*
(X (ro)x[p)) €£0,1}7 FEF.(r2) f(n( [K]X[P]) 77)
(53)

N =

> inf sup P, (X >
e Moy o tup Pl (WX (k. )xp) # 1)

I.2 Lower bound with sparse structure

We now quantify the influence of the sparse structure on the necessary signal condition. Similarly to
Section|L.1} we first construct a prior distribution of function f € F,(r?), where only 0 or 1 univariate
function can be the support.

In the case f = 0, we still take

Po:= [ ¢o1/m(Xij)

ieNt,j€(p]

For every j € [p], in the case f = f;, we only take the first entry 61 ; = X, and take other 0, ;; = 0.
The distribution is described as

P;(X) = Dr1/n(X1,5) X I | b0,1/n(Xi5) X | I $0,1/n(Xi ) -
—— - ettt
Distribution of the first entry in f; i22 J'#j,1€N
Distribution of the residual entries in f; Distribution of other f;/

Based on these settings, we transform the minimax lower bound into:

inf sup Py (n(X
(X x ) €01 feF, (r2) f()( [KAX[P])?AW)

> inf sup Pj ik, N Xk, .
s oy s Piixp) (1 Xx.x15) # 1)
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It is straightforward to check that
X (Pj k1P () = exp (A7) = 1.
Therefore, our aim is to find proper A € R™ such that:

max : /\2, 4
subject to: exp (n)\2) <cy-p, (55)
A2 <, (56)

where (53) controls the average x? divergence and c; is a sufficiently small positive constant, (56)
ensures our construction is in the ellipsoid £. Under assumption n > ﬂ#, by Lemma we prove
that with signal strength

1
0<r?=2< 582 (57)
n
the wrong recovery probability is lower bounded by 1/2:
inf sup Py (7( Xk, %7
WX ko) p) EL0,1}P feF,(r2) f ( ( [K,]X[P]) )
(58)

N =

> inf sup P N(X >
WX i) €011 jegoyop <P (1(Xext) # 1)
Therefore, combining (52)), (33)), and (58), we complete the proof of Theorem

J Some extended conclusions

This appendix discusses theoretical results obtained under assumptions more general than those in
the main text.

J.1 Violating the separate rate

In a more realistic setting where the true signal strength || f;]|3 may fall below the minimax threshold,
our selectors still have some useful properties:

1. The selector from Theorem || selects at most 2s variables with probability at least 1 — §
(proved by following equation (34)) in Appendix[D.2).

2. The selector from equation (TI)) ensures S C S with probability at least 1 — 4, i.e., it
guarantees zero false positives (proved by following Appendix [C.2.3).

These guarantees hold without knowing the signal strength of each f; in advance, showing that our
selectors remain both sparse and interpretable under a practical condition.

We also provide a specific example in which our procedures are appropriate. Consider a system with p
channels, some of which carry a true signal while the rest are pure white noise, and we aim to identify
those channels with a signal. Then the selector (TT)) achieves that, with high probability, no noise-only
channel is selected, and any channel whose signal strength exceeds the minimax separation rate (T0)
will be selected. In this way, our selector provides a false-positive-free method for this problem.

J.2 Heterogeneous univariate functions

We now extend our framework to heterogeneous settings where f; € H,; and H; might be different
across j € [p]. This setting was considered in|[Raskutti et al.| [2012] for function estimation. Define
the parameter space:

Fa(rd o) ==Y _fit D AUf#0)<s, fj€H;(r?)U{0}foralljefp|p,

J€lp] J€[p]
where
3
i=1 i=1 " i=1

Heterogeneity across # ; (7’]2) is captured via distinct sequence {;; };en+for every j € [p].
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Upper bound We apply a component-wise selector

ﬁfet” =1 nZX > K, + 24/ K;log(2p/d) + 2log(2p/9) | ,
where K; := min {k eNT:py; < Y klog } and recall n = o~ 2. If the condition

1 k1
T;>oa{°gp+max (vnogm@}

- n keN+

holds for every j € [p], we have the exact support recovery guarantee

fers(lr%,.,.,rg) f( (X) (f)) >

The proof proceeds analogously to that given in Appendix [C.2}

Lower bound We next prove that, if there exists some j € [p] with 7} <

c {k’% + maxyen+ (V 98P A s )} for a sufficiently small constant ¢, then no selector can
achieve consistent support recovery.

Define
Freast,j = {f = fi =) Oithi: O € (N, =N} if i <k, 0 =0if i > k]}’
i=1

where \;, k; will be clarified later. We then design the least favorable set

-Eeast = U -Fleast J U {f - 0}

J€p]

The set Fieqs: assumes that at most one univariate function could be the support, and the very support
has a weak signal strength 75 = A\%k;. Then we get

inf sup Pf( (X )#S(f)) >1nf max P, ( );é{j})
S f€Ficast =0,-,p
where P follows a similar definition in Appendix [[.T] Then, if

1 5%p
- —1)<—2 1
](“ )<yt

we obtain

inf sup Py (S(X)£S(N) =14,

S f€Ficast
for arbitrary constant § € (0, 1). Therefore, it suffices to consider the optimization problem

S \27..
max : Ajkj,

n2/\4k;j
subject to: exp 2j <c-p,

2
Ajki < bk

for every j € [p]. The result shows that 77 = A\3k; < cmaxgen+ (7”“;0“ A ,uk]) leads unreliable
selection.

On the other hand, by assuming 02 = n > %{I}’M and following the proof technique in
J P J

Appendix we can prove that rjz < clc’% also leads unreliable selection, therefore we prove the
matching lower bound.
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K Technical Lemma

The following Lemma shows that, if f € fS(K)(TQ), it suffices to only consider those selectors
. K
depending on [| X 1. jll2 = />0y X7

Lemma 1 (Norm selector) Assume K is a positive integer satisfying g > r2. For every measur-
able function w(-, -) and for every selector 1 (X i xp) = (M (Xkxp), 0 (XKxp)) € {0,1}7,

there exists a randomized selector ij (|| X. 1|y, , | X plly) such that
sup  Epf{w(@n(f))} >  suwp  Ep{w(@n(f))}
FEFIO(r?) e (r2)

Taking w(z,y) = 1(x # y), we get

sup  Pr(#n(f)) = sup  Pp(i#n(f))
fE-FS(K)(7'2) fE]-'S(K)('rQ)

The proof of Lemma E] is as similar as the proof of Lemma 1 in [Butucea et al.| [2023al], with
additional checking that r* < [|0; X1.x ;|15 = || X1.x ;1|3 < pux holds for every orthogonal matrix

O; € REXK ‘every X. ; € Fi.x(r?) and every index j € {j : f; # 0}.

Lemma 2 (Chi-squared inequalities) Let 7 (B) denote a x* random variable with k degrees of
freedom and non-centrality parameter B > 0. Then for every x > 0, there exist absolute constants
c1 > 0and ¢y € (0,1) such that

P (Xﬁ(o) > k4 iV + clsc) >cpe?, (59)
2
P (x3(0) <k —z) <exp <_ik> ) (60)
P(X%(B) 2k+B+2\/m+2x) <e . (61)

Inequalities B9), (60) and (61) are proved in Corollary 3 in[Zhang and Zhou| [2020]], Theorem 2 in
Ghosh| [2021]] and Lemma 8.1 in |Birgé [2001|] respectively.

Lemma 3 (Minimax lower bound based on combined risk, Abraham et al.[[2024]]) Assume we
observe X ~ Py, 0 € RP. For any prior 7 (of 0) on RP, we denote by P the distribution of (X, 0)
in the Bayesian model. Then, for all 1 < s < p, all k € (0,1), and all measurable © C RP, we have:

: A —ck®M
> CcK
mfsup R(0, ) T (1 e ) nPr (]10lo > s) — 2P, (0 ¢ ©),

for some universal constant ¢ > 0, where

A=

1—k 1
- > P, 0;# 0, Pr (0, =0[X) > 0.
j=1

Lemma 3]is derived from Theorem S-3 in the supplementary of [Abraham et al., [2024], with taking
p = 1 and the combined risk

R(stp) =E, ( Zj:@j:O Py I Zj:gﬁgo(l — Wj)) ’

LV jem Pi 5

Lemma 4 (Truncation for classification) Assume C > 0 is a postive constant and K @ .=

. V/k log(p— . _
min {k; eNt iy < C’Oi(ps)}, then under assumption n. > %, we have

= max
n keNt

K@ log(p— s klog(p — s
) <MM GG >>'
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Cy/klog(p—s)

k

Figure 5: A guide to show p > Civlogépﬂ) and VI log(ps) >

n
C/(K(©)—1) log(p—s)
max {,LLK(C), " .

Proof 1 (Proof of Lemma[) The proof is inspired by Lemma 2.1 in|Kotekal and Gao| [2024]. By
taking K = 1 and n > %, we have ji; > Clogép_s) > (Y 10g7(1p75), which shows K(©) > 2.

C/K(©) log(p—s) <

n =

For every k > K(©), by definition of K(©), we conclude i, < jipc) <

Cy/klog(p—s)
n

, which leads that p, N\ %g(p_s) = pr < pig). Foreveryl < k < K©) —1,

C+/(K(©) —1)log(p—s) Cy/klog(p—s)
n

we conclude p, > pey_1 >

Cy/klog(p—s) _ Cy/klog(p—s) <
n n -

> , which leads that pj, N

n
C\/(K(C)_nl) log(p—2) Therefore, we conclude that

< W>_ ( C\/<K<C>—1>log<p—s>>
JTA " =max | [ ,

max
keN+t

()
K ) n

see Figure[d|for a clear demonstration. And it is straightforward that

C/K©)1 — C/(K©) —1)1 —
V 80 =5) o o (e, V( Jlog(p—5) | 62)
n n
Besides, from K(©) > 2, we get K(©) < Q(K(C) — 1), therefore
Cv/K©)log(p — s) <C\/2(K(C) — 1) log(p — s)
n - n
C/(K©) —1)log(p—s
<V2 max (umcn v - Jlog(p )> (63)
C\kl —
/3 max (uk . g<p>>
keN+ n
From (62) and (63) we conclude
K(©)] — C\/kl — k1 —
ogp—s) _ (uk \ Cv/Elog(p s)) S (Mk  V/FIog(p s)) |
n keN+t n keN+ n

which completes the proof of Lemma

Following the same proof technique, we can get the following results.
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Lemma 5 (Truncation for joint estimation and multiple testing) Assume C' > 0 is a positive con-

stant and K (©) := min {k eNt iy < C"klof(p/s)}, then under assumption n > Clogp/s) e

M1
have
vkl (9] k1
max (/Lk A ¢ 0g(p/s)> < Cv K@ log(p/s) < V2 max (Mk: A Cog(p/s)> 7
keNt n n keNT+ n

which means

© 1
K@ log(p/s) ~ max (M A VK og(p/8)> .
n keNt n

Besides, define K’ := min {k eNT < %} then under assumption n > i we have

A/ !
max(ukA\/E>< K<\/§max<ukA\/E>.
n kEN+ n

keNt n

Lemma 6 (Expectation with hyperbolic cosine) Assume X ~ N(0,1/n), k1, ks are two positive
integers, then we have

k1 Ak }kl\/kg—kl/\kg

{Ecosh (nX (k1)) - cosh (nX)\(kQ))} % {Ecosh X - (Ak1) A Ak2))]
= cosiF 2 (A (k) A(K2)) X exp (g{(kl Vka) - A1 V k)2 + (ky A ko) - A A kz)Q}) :
where \(-) can be arbitrary non-increasing function on N*.

Proof 2 (Proof of Lemmal[6) By cosh(z) cosh(zs) = 1 (cosh(zy + z2) + cosh(zy — 22)) and
E,n(0,1) cosh(Az) = X’ /2, we derive that
1( a n
E cosh (nX A(kq)) - cosh (nX \(k2)) =5 {ef(>‘(’“1)+>\(’€2))2 + efo‘(kl)”‘(b))z}
=3 AED D) cosh (nA (k)M (k2)),
and
E cosh [nX - (Mk1) A A(ko))] = e AkANR2))?,
Therefore
k1Nko k1Vko—kiNko
{Ecosh (nX (k1)) - cosh (nXA(k2)) } X {Ecosh [nX - (A(k1) A Ak2))] }
= cosh™ "2 (nA (k) A(k2))
n
X exp (5{0\@1)2 + A(k2)?) - (k1 A k) + Ak V k)2 - (k1 V kg — ki A kQ)})
= coshF M2 (n\ (k) A (2)) X exp (%{(kl Vka) - Akt V E2)? + (K A ko) - Ay A k2)2}) ,
which completes the proof of Lemma [6]

Lemma 7 (Minimax lower bound in \? divergence) For a given constant § € (0,1), assume that
Py, Py, --- , P, be p probability measures satisfying p > 4/6% and

1 &, 5%p
=Y X (PyIP) € sos — L.
P 2(2 -9)
Then
inf sup P;(v#j) > (1-6/2)> >1—4,
Y 0<j<p
where inf,, represents the infimum over all tests of the form ¢ : X — {0,1,--- ,p} with X ~ P;.

The proof of Lemma [/ follows from Proposition 2.4 of Tsybakov| [2009] with taking M = p,

_ &% _2-6
Qe = 525y — land 7 = %
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