
KBQA-o1: Agentic Knowledge Base Question Answering
with Monte Carlo Tree Search

Haoran Luo 1 2 Haihong E 1 Yikai Guo 3 Qika Lin 4 Xiaobao Wu 2 Xinyu Mu 1 Wenhao Liu 1 Meina Song 1

Yifan Zhu 1 Luu Anh Tuan 2

Abstract
Knowledge Base Question Answering (KBQA)
aims to answer natural language questions with a
large-scale structured knowledge base (KB). De-
spite advancements with large language models
(LLMs), KBQA still faces challenges in weak KB
awareness, imbalance between effectiveness and
efficiency, and high reliance on annotated data. To
address these challenges, we propose KBQA-o1,
a novel agentic KBQA method with Monte Carlo
Tree Search (MCTS). It introduces a ReAct-based
agent process for stepwise logical form generation
with KB environment exploration. Moreover, it
employs MCTS, a heuristic search method driven
by policy and reward models, to balance agen-
tic exploration’s performance and search space.
With heuristic exploration, KBQA-o1 generates
high-quality annotations for further improvement
by incremental fine-tuning. Experimental results
show that KBQA-o1 outperforms previous low-
resource KBQA methods with limited annotated
data, boosting Llama-3.1-8B model’s GrailQA F1
performance to 78.5% compared to 48.5% of the
previous sota method with GPT-3.5-turbo. Our
code is publicly available at https://github.
com/LHRLAB/KBQA-o1.

1. Introduction
Knowledge Base Question Answering (KBQA) leverages a
large-scale structured knowledge base (KB), such as Free-
base (Bollacker et al., 2008) or Wikidata (Vrandečić &
Krötzsch, 2014), as a reference to answer questions in nat-
ural language, widely applied in fields such as search en-
gines (Jang et al., 2017), medical consultations (Wu et al.,

1Beijing University of Posts and Telecommunications
2Nanyang Technological University 3Beijing Institute of Computer
Technology and Application 4National University of Singapore.
Correspondence to: Haihong E <ehaihong@bupt.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ObservationExploration

KBQA
Agent

KB
Environment

Question What movie with a television running time of
 less than 60 minutes features Taylor Lautner?

Extract_entity
[Taylor Lautner]

Find_relation
[film.actior.film]

Find_relation
[film.performance.film]

Extract_entity
[60]

Compare
[LESS THAN | tv.tv_program.

episode_running_time]

Merge
[expression1 | expression]

SPARQL Query

Logical
Form

(AND (lt tv.tv_program.episode_running_time 60)
(JOIN (R film.performance.film)

(JOIN (R film.actor.film) Taylor Lautner)))

He's a Bully, Charlie Brown m.02686wj

Figure 1. An example of KBQA task to answer a natural language
question by exploring the KB environment with KBQA agent.

2024), and legal analysis (Cui et al., 2023). Typically, KBs
are stored in graph databases and accessed using graph
queries, such as SPARQL (Pérez et al., 2009), which sup-
port multi-hop and logical queries to acquire knowledge in-
formation. To answer natural language questions, language
models are usually leveraged (Ye et al., 2022) to convert
the questions into logical forms, such as S-expression (Gu
et al., 2021), and then transform them into executable graph
queries to obtain answers from KB, as shown in Figure 1.

With the emergence of LLMs (OpenAI, 2024; Dubey et al.,
2024), two main types of KBQA methods appear, as shown
in Figure 2. On the one hand, end-to-end methods (Luo
et al., 2024b;a) generate logical forms directly from natural
language questions and utilize retrieval before or after gen-
eration for improvement. On the other hand, step-by-step
methods (Huang et al., 2024; Sun et al., 2024) alternate be-
tween generation and retrieval for stepwise thinking on KB,
performing in a Chain-of-Thought (CoT) (Wei et al., 2022)
or Tree-of-Thoughts (ToT) (Yao et al., 2023a) manner.

However, three main challenges remain: (1) Poor aware-
ness of the KB environment in end-to-end methods. Re-
lying on direct logical form generation by language models,
end-to-end KBQA methods (Li et al., 2023; Nie et al., 2024)
struggle with limited logical form schemas and unseen en-
tities and relations that existed in KB, making it difficult
to fully capture the KB environment. (2) Local optima

1

https://github.com/LHRLAB/KBQA-o1
https://github.com/LHRLAB/KBQA-o1

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

End-to-end LLM-based KBQA Methods Stey-by-step LLM-based KBQA Methods Heuristic LLM-based KBQA

Retrieve-then-Generate Generate-then-Retrieve CoT-based ToT-based Agentic MCTS-based

Input Question

Reference

Answers

KB

LLM

Input Question

Answers

Logical Form

LLM

KB

Input Question

KB

Step1

Step2

StepN

Answers

LLM

LLM

LLM

Input Question

e1

Answers

LLM

LLM

e2 e3

r1 r2 r3

en1 en2 en3

...

...

...

LLM

KB

Input Question

State1

Answers

State3

KB

State2

State4

State5

reward

State6 State7

State8

simulate

LLM

LLM

LLM

Figure 2. Comparison of the previous end-to-end KBQA framework, including retrieve-then-generate (RG) and generate-then-retrieve
(GR) methods, step-by-step KBQA methods, including CoT-based and ToT-based methods, and our proposed heuristic KBQA method,
which is agentic MCTS-based. With the same Llama-3.1-8B (Dubey et al., 2024) as the base model, both the MCTS-based agent process
and the full KBQA-o1 after the incremental fine-tuning show improvements on all three KBQA datasets.

or large search space in step-by-step methods. Com-
pared to end-to-end methods, CoT-based step-by-step meth-
ods (Huang et al., 2024) in the search process can lead to
local optima due to intermediate bias. Although ToT-based
methods (Sun et al., 2024) expand search options, tree-like
searches still face challenges with large search spaces. (3)
Training depends on high-quality annotation. Training
open-source LLMs (Luo et al., 2024a) significantly con-
tributes to the generation of logical forms for KBQA tasks,
but this heavily relies on the quality of the annotated data.
For large-scale KBs, producing substantial, high-quality
annotated data by human labor is impractical.

To address these challenges, we propose KBQA-o1, a novel
agentic KBQA approach with heuristic exploration of the
KB environment, as shown in Figure 1. First, we design a
ReAct-based (Yao et al., 2023b) agent process with atomic
query tools to generate logical forms by fully interacting
with the KB environment. Moreover, we employ Monte
Carlo Tree Search (MCTS) (Świechowski et al., 2022),
driven by policy and reward models, to optimize the agent
process from local optima or large search space. Further-
more, to mitigate reliance on extensive human annotation,
we first fine-tune the policy and reward models only using a
small amount of sample-labeled data. For unlabeled ques-
tions, we employ MCTS exploration with the reward model
filter instead of human labor to generate abundant, auto-
annotated data, further enhancing the capabilities of both
the policy and reward models by incremental fine-tuning.

We perform experiments on three KBQA datasets,
GrailQA (Gu et al., 2021), WebQSP (Yih et al., 2016) and
GraphQ (Su et al., 2016) in low-resource settings (Li et al.,
2023) for application with limited annotated data. Experi-
mental results demonstrate that KBQA-o1 outperforms ex-
isting low-resource KBQA methods and even approaches
or surpasses the performance of fully supervised KBQA

models, especially in more difficult cases like composi-
tional and zero-shot. Ablation studies further validate the
proposed MCTS-based agent process and incremental fine-
tuning, both of which make KBQA-o1 outperform other
forms of KBQA methods, as shown in Figure 2. In addition,
KBQA-o1 supports multiple open-source LLMs, including
Llama-3 (Dubey et al., 2024), Qwen2.5 (Yang et al., 2025)
and Gemma-2 (Team et al., 2024), making it a plug-and-play
and promising solution for diverse KBQA applications.

2. Related Work
Knowledge Base Question Answering. Before the rise of
LLMs, KBQA methods could be divided into information-
retrieval-based (IR-based) (Sun et al., 2018; 2019; Zhang
et al., 2022) and semantic-parsing-based (SP-based) (Ye
et al., 2022; Shu et al., 2022). In the era of LLMs, LLM-
based KBQA methods can be divided into two categories:
end-to-end and step-by-step. End-to-end methods take ad-
vantage of in-context learning (ICL) (Li et al., 2023; Nie
et al., 2024) or fine-tuning (Luo et al., 2024b;a) to enable
LLMs to generate queries. The step-by-step methods (Gu
et al., 2023; Sun et al., 2024; Huang et al., 2024) follow a
reasoning process on the graph to gradually find the answers.
In this paper, we propose the first heuristic KBQA method.

LLMs and LLM-powered Agent. LLMs have shown sig-
nificant advantages in generation and reasoning (Wang et al.,
2024). Powered by CoT(Wei et al., 2022; Li et al., 2024),
guiding LLMs to think step by step can further enhance
reasoning capabilities. ReAct (Yao et al., 2023b) introduces
a prompt-based agent, using tools to interact with the envi-
ronment. Lightman et al. (2024) verifies CoT by rewarding
the process and outcome. On the other hand, to expand the
thought space in every step, ToT (Yao et al., 2023a) rea-
sons in a tree-like manner. RAP (Hao et al., 2023) employs
MCTS, a heuristic algorithm applied in AlphaGo.

2

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

Table 1. Description of proposed atomic query tools and corresponding arguments, whereMo = {max,min}, andMc = {<,≤, >,≥}
are mode sets of Order and Compare. By using tools, the agent can obtain the target functions and equivalent logical forms accordingly.

Atomic Query Tool Arguments Target Function Equivalent Logical Form

Extract entity [entity] entity ∈ E expression = START(‘entity’) entity
Find relation [relation] relaiton ∈ R expression = JOIN(‘relation’, expression) (JOIN relation (expression))
Merge [expression1 | expression] expression1, expression expression = AND(expression1, expression) (AND (expression1) (expression))
Order [mode | relation] mode ∈ Mo, relation ∈ R expression = ARG(‘mode’, expression, ‘relation’) (mode (expression) relation)
Compare [mode | relation] mode ∈ Mc, relation ∈ R expression = CMP(‘mode’, ‘relation’, expression) (mode relation (expression))
Time constraint [relation | time] relation ∈ R, time ∈ E expression = TC(expression, ‘relation’, ‘time’) (TC (expression) relation time)
Count [expression] expression expression = COUNT(expression) (COUNT (expression))
Finish [expression] expression expression = STOP(expression) (expression)

3. Preliminaries
Definition 1: Knowledge Base. A knowledge base (KB) is
a large-scale knowledge graph G = (E ,R, T), composed of
an entity set E , a relation set R, and a triple set T . Relations
in the relation set r ∈ R are used to connect two entities.
Each triple (s, r, o) ∈ T is formed by (entity, relation, en-
tity), thus T = {(s, r, o)|s ∈ E , r ∈ R, o ∈ E}.

Definition 2: Logical Form. The logical form F is a
multi-hop expression that can convert equally to a graph
query q = Convert(F). Each logical form can be divided
into a stepwise list of functions F = [fi]

l
i=1 with l steps.

Problem Statement. In the KBQA task, given a natural
language question Q and a KB G, the goal is to first convert
Q into a logical form F , and then an executable graph query
q. Once executed, the result A = Exec(q,G) is a set of
entities in the KB A ⊂ E that answer the question Q.

4. Method: KBQA-o1
In this section, we introduce the three components of KBQA-
o1: agent initialization, heuristic environment exploration
using MCTS with policy and reward models to optimize
the agent process, and incremental fine-tuning with auto-
annotated data to improve low-resource performance.

4.1. Agent Initialization

KBQA-o1 follows a ReAct-based (Yao et al., 2023b) agent
prompt, with KB environment, the agent state space and
exploration space, targeting to generate logical forms.

KB Environment G. We consider KB a critical environment
that provides guides in generating the logical form at each
step of the agent, for example, by providing the candidate
relations connected to the current state of the logical form.

The Agent State Space H. The agent state ht ∈ H is
defined by its exploration history as ht = (h0, e1, . . . , et).

• Initial State (h0): We create an initial prompt, consist-
ing of the task description and the given question Q,
as the initial state h0, as shown in Appendix A.1.

• State Update (ht): At each step t, the state incorpo-
rates the latest exploration step, which is prompted
as ReAct-based (Yao et al., 2023b) Thought-Action-
Observation tuple et = (etht

t , eact
t , eobs

t) as shown in
Appendix A.2, to update: ht = ht−1 + et.

• State Representation (Fht): Besides prompt-based
history, the cumulative Observations in the trajectory
(eobs

1 , . . . , eobs
t) determine the function list, which is

equivalent to the logical form Fht
= [eobs

i]ti=1.

The Agent Exploration Space Exp(H,G). The agent ex-
ploration et ∈ Exp(ht−1,G) is dynamically determined by
the last state ht−1 ∈ H and the KB environment G. Each
exploration comprises the following components:

• Tool Selection (etht
t): Based on ht−1, the agent selects

one of the eight atomic query tools as shown in Table 1.

• Argument Determination (eact
t): The agent identifies

the appropriate arguments for the selected tool, lever-
aging the candidates provided by the KB environment.
For example:

– Calling Extract entity requires specifying
an entity name existed in G as the argument.

– Calling Find relation involves specifying a
relation name that has a connection with Fht−1

.

• Function Writen (eobs
t): Based on the selected tool

and arguments, the agent writes down the correspond-
ing target function in Observation, referred to Table 1.

The Agent Target (hl, Fhl
,Ahl

). The agent explores the
exploration space until calling the Finish tool or when the
length of the function list exceeds the maximum allowable
length l < L. The ultimate target of the agent is to find a
complete state hl, which forms a logical form Fhl

and the
final answers executed Ahl

= Exec(Convert(Fhl
),G).

Proposition 4.1. The agent’s awareness of the environment
makes it more effective in generating optimal logical forms
compared to end-to-end methods.

Proof. We provide quantitative experimental results in Sec-
tion 5.4 and qualitative proofs in Appendix B.1.

3

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

KB Environment

 What movie with a television running time of less than 60 minutes features Taylor Lautner?Question

Thought1: At this step, we should identify a topic entity
 from the question to start a new expression.

Action1: Extract_entity [Taylor Lautner]
Observation1: expression = START('m.07ldhs')

Q: 76.14

Q: 96.97
Thought2: At this step, we should find the one-hop relation

 that is connected to the current expression.
Action2: Find_relation [film.actor.film]
Observation2: expression = JOIN('(R film.actor.film)', expression)

Q: 99.89

Thought3: At this step, we should find the one-hop relation
 that is connected to the current expression.

Action3: Find_relation [film.performance.film]
Observation3: expression = JOIN('(R film.performance.film)', expression)

Q: 99.97
Thought3: At this step, we should identify a topic entity

 from the question to start a new expression.
Action3: Extract_entity [60]
Observation3: expression1 = START('60')

Q: 94.92

Thought7: At this step, we conclude that it is appropriate to end and
 output the expression.

Action7: Finish [expression]
Observation7: expression = STOP(expression)

Q: 99.99
Thought5: At this step, we conclude that it is appropriate to end and

 output the expression.
Action5: Finish [expression]
Observation5: expression1 = STOP(expression1)

Q: 73.61

Logical
Form

(AND (lt tv.tv_program.episode_running_time 60)
(JOIN (R film.performance.film)

(JOIN (R film.actor.film) Taylor Lautner)))

Reward Model
75.82

Logical
Form (lt tv.tv_program.episode_running_time 60)

Reward Model
32.55

Policy ModelPolicy Model

Thought2: At this step, we should find the one-hop relation
 that is connected to the current expression.

Action2: Find_relation [tv.tv_actor.starring_roles]
Observation2: expression = JOIN('(R tv.tv_actor.starring_roles)', expression)

Selection

Expansion

Simulation

Back-
propagation

KB
Environment

Policy Model

Reward Model
75.82

Policy Model

Reward Model

Q: 76.14
Q-value

.

.

.

LEGENDS

Figure 3. An example of the heuristic KB environment exploration with MCTS driven by policy and reward models.

4.2. Heuristic Environment Exploration

As shown in Figure 3, to address the issue of the step-by-step
agent falling into local optima or large search spaces, we
design an MCTS-based heuristic environment exploration
method, driven by a policy model and a reward model.

4.2.1. THE POLICY MODEL

The policy model aims to provide the agent with a forward-
looking capability. We use the last state at each step ht−1

from the annotated training set Da as input, and the steps
from the current state to the conclusion (et, ..., el) as output,
forming SFT data for training the policy model πpolicy:

LSFT(πpolicy,Da) = −EDa

[
l∑

t=1

log πpolicy

(
l∑

i=t

ei | ht−1

)]
.

(1)

4.2.2. THE REWARD MODEL

The reward model aims to assess the entire trajectory by
scoring the final logical form. We use the question Q as
input, and the logical form Fhl

from the annotated training
set Da as output, forming SFT data for training the reward
model πreward:

LSFT(πreward,Da) = −EDa [log πreward (Fhl | Q)] , (2)

Moreover, we employ a scoring method Rπ that uses the
logits from the LLM π, which can be πpolicy or πreward, to
evaluate the likelihood of an output y, given an input x:

Rπ(y | x) = β + α log π (y | x) . (3)

where β is the defined full score, set as 100, and α is a
positive temperature to control the disparity of scores.

4.2.3. MONTE CARLO TREE SEARCH OVER KB

MCTS is a heuristic search algorithm in the form of a tree,
where each node represents a state in the agent process.
Starting from the initial state (the root node), the algorithm
uses four stages of selection, expansion, simulation, and
back-propagation to explore and enrich the search tree it-
eratively. MCTS conducts a total of N search rollouts. In
the n-th rollout (n = 1, ..., N), the agent process can be
represented by the trajectory of agent states {[h(n)

t]lt=1}Nn=1.

Selection. When a new MCTS rollout begins, the agent
process starts from the root node and progressively searches
down through the child nodes of the already explored tree
until it reaches a leaf node. At each level, the UCT (Upper
Confidence Bound applied to Trees) (Świechowski et al.,
2022) algorithm is used to select the next child node:

et ← argmax
e∈E(h

(n)
t−1)

Q(h
(n)
t−1 + e) + w

√√√√ lnN(h
(n)
t−1)

N(h
(n)
t−1 + e)

 ,

(4)
where N(.) is the visit counts of the agent state during the
MCTS process, E(.) is the candidate expansion of Thought-
Action-Observation explorations, derived from Equation (7),
and Q(.) is the Q-value of the agent state, which will be
updated by back-propagation. UCT balances the selection
of high-scoring nodes with the exploration of unvisited ones.
The variable w controls the tendency towards exploration. A
larger w encourages exploration of nodes with fewer visits,
while a smaller w biases nodes with higher scores.

Expansion. Once the selection process reaches a leaf
node but not in a terminal Finish state and is not beyond
the maximum depth L, the policy model πpolicy generates

4

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

several possible next states by beam search:

{e(b)
t }

B
b=1 ∼ πpolicy

(
et | h(n)

t−1

)
beam

, (5)

where B is the beam size. To engage with KB environment,
we utilize an unsupervised retrieval model, SimCSE (Gao
et al., 2021), to match the generated explorations with the
exploration options e ∈ Exp(h(n)

t−1,G) that are executable
over KB G when connected with the last state h

(n)
t−1:

{e(i)
t }

k
i=1←argmaxk

e∈Exp(h(n)
t−1,G)

SimCSE
(
{e(b)

t }
B
b=1, e

)
.

(6)
For example, if the ground truth is ‘Find relation
[file.actor.film]’ the model might initially generate ‘[
film.actor]’. Then, we select the most semantically related
action options from Exp(h(n)

t−1,G) such as ‘[file.actor.film
]’ and ‘[tv.tv actor.starring roles]’ to filter the top k explo-
rations {e(i)t }ki=1.

Then, the policy model πpolicy scores the k candidates based
on the previous state h

(n)
t−1 and selects the top d candidates

as expanded options E(h
(n)
t−1), which are added as child

nodes to the leaf node, thus expanding the tree:

E(h
(n)
t−1) = {e

(i)
t }

d
i=1 ← argmaxdRπpolicy

(
{e(i)

t }
k
i=1 | h

(n)
t−1

)
.

(7)

Simulation. After the nodes are expanded, the policy
model assigns scores to all newly added child nodes. The
node with the highest prospective score is selected:

et ← argmax
e∈E(h

(n)
t−1)

Rπpolicy

(
e | h(n)

t−1

)
, (8)

and the simulation continues to explore the process until
the final Finish state, producing a complete logical form
generation trajectory.

Back-propagation. Once the final state is reached, the
reward model πreward evaluates the entire trajectory by as-
sessing the corresponding logical form combined with the
policy model’s score from the last step to compute the over-
all Q-value of the final state:

Q(h
(n)
l)← δ Rπpolicy

(
el | h(n)

l−1

)
+(1−δ)Rπreward

(
F
h
(n)
l

| Q
)
,

(9)
where δ is a ratio from (0, 1) to balance the process score
and overall score. The algorithm then back-propagates the
score by updating the Q-values of all nodes along the trajec-
tory, from the leaf back to the root:

Q(h
(n)
t)← n

max
j=1

(∑t
i=l Q(h

(j)
i)

l − t+ 1

)
, (10)

where the Q-values of parent nodes are updated to the max-
imum average Q-value from all child nodes along the tra-
jectory. Meanwhile, the visit count of each node along the
trajectory N(h

(n)
t) adds 1, and then the next rollout begins.

4.2.4. FINAL TRAJECTORY CHOSEN

After MCTS completes its exploration for N rollouts with
parameter set θ, we select the trajectory ĥQ

l ∈ {h(n)
l }Nn=1

with the highest Q-value in every state in the expanded
search tree as the optimal trajectory of question Q:

(ĥQ
l , F̂Q, ÂQ) = MCTSθ

(
Q, πpolicy, πreward

)
, (11)

where F̂Q is corresponding logical form of ĥQ
l , and ÂQ =

Exec(Convert(F̂Q),G) is the executed answers.
Proposition 4.2. The MCTS-based heuristic method bal-
ances the effectiveness and size of the search space better
than CoT-based and ToT-based step-by-step methods.

Proof. We provide quantitative experimental results in Sec-
tion 5.4 and qualitative proofs in Appendix B.2.

4.3. Incremental Fine-Tuning

In addition to training on annotated data, KBQA-o1 em-
ploys MCTS with exploration incentives θexp for heuristic
exploration on unannotated questions Q ∈ Dn:

{(ĥQ
l , F̂Q, ÂQ)}Q∈Dn =

{
MCTSθexp

(
Q, πpolicy, πreward

)}
Q∈Dn

.

(12)
Then, we discard the annotation by choosing if the answer
set is not empty and the reward score of logical form does
not exceed a threshold γ∗:

R̂Q = Rπreward

(
F̂Q | Q

)
, (13)

Di = Da ∪
{(
Q, F̂Q, ÂQ

)
|ÂQ ̸= ∅ ∧ R̂Q > γ∗

}
Q∈Dn

.

(14)
Combined with the original annotated data Da, the incre-
mental data Di is then used for incremental fine-tuning of
the policy and reward models:

LSFT(πpolicy,Di) = −EDi

[
l∑

t=1

log πpolicy

(
l∑

i=t

ei | ht−1

)]
,

(15)
LSFT(πreward,Di) = −EDi [log πreward (Fhl | Q)] . (16)

Through incremental fine-tuning, the policy and reward
models gain enhanced understanding of the environment
and a preference for high-reward logical form trajectories.
Finally, we perform testing Dt under efficiency-focused
MCTS parameter settings θeff, yielding final answers ÂQ:

{(ĥQ
l , F̂Q, ÂQ)}Q∈Dt =

{
MCTSθeff

(
Q, πpolicy, πreward

)}
Q∈Dt

.

(17)

Proposition 4.3. There exists a reward threshold γ∗ < β
such that incremental fine-tuning data, under the effect of
the KB, can improve model performance.

Proof. We provide quantitative experimental results in Sec-
tion 5.5 and qualitative proofs in Appendix B.3.

5

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

Table 2. 40-shot results on the local dev set of GrailQA. Bold numbers indicate the best low-resource performance.

Method LLM
I.I.D Compositional Zero-shot Overall

EM F1 EM F1 EM F1 EM F1

Full-Supervised KBQA Methods

RnG-KBQA (Ye et al., 2022) 86.7 89.0 61.7 68.9 68.8 74.7 69.5 76.9
DecAF (Yu et al., 2023) 88.7 92.4 71.5 79.8 65.9 77.3 72.5 81.4
TIARA (Shu et al., 2022) 88.4 91.2 66.4 74.8 73.3 80.7 75.3 81.9

Low-resource KBQA Methods

KB-BINDER (Li et al., 2023) GPT-3.5-turbo 40.0 43.3 33.9 36.6 40.1 44.0 38.7 42.2
KB-Coder (Nie et al., 2024) GPT-3.5-turbo 40.6 45.5 34.5 38.6 42.2 47.3 40.1 44.9
ARG-KBQA (Tian et al., 2024) GPT-3.5-turbo 46.6 51.5 36.4 41.8 46.6 52.1 43.8 48.5

KBQA-o1 (Llama-3) Llama-3.1-8B 77.8 ±0.5 85.5 ±0.4 76.3 ±0.6 77.6 ±0.5 68.1 ±0.8 76.1 ±0.4 71.9 ±0.3 78.5 ±1.0

Llama-3.3-70B 79.2 ±0.7 88.2 ±0.3 80.8 ±0.6 82.3 ±0.2 71.8 ±1.0 80.3 ±0.8 75.2 ±0.7 81.6 ±0.5

KBQA-o1 (Qwen2.5)
Qwen2.5-7B 76.1 ±0.3 84.4 ±0.5 75.7 ±0.7 77.0 ±0.7 67.3 ±0.9 75.7 ±0.2 70.8 ±0.5 77.9 ±0.8

Qwen2.5-14B 78.0 ±0.4 85.9 ±0.6 77.4 ±0.8 78.4 ±0.5 68.6 ±0.1 79.0 ±0.7 72.5 ±0.6 79.2 ±0.2

Qwen2.5-32B 78.9 ±0.5 86.2 ±0.7 79.3 ±0.6 80.4 ±0.8 69.6 ±0.3 79.7 ±0.7 73.3 ±0.8 80.3 ±1.3

Qwen2.5-72B 79.1 ±0.4 87.4 ±0.5 81.5 ±0.7 83.0 ±0.6 72.1 ±0.4 81.9 ±0.5 75.8 ±0.4 82.1 ±0.2

KBQA-o1 (Gemma-2) Gemma-2-9B 77.1 ±0.5 82.3 ±0.6 75.6 ±0.8 76.7 ±0.4 66.3 ±0.2 76.4 ±0.6 70.6 ±0.7 77.8 ±0.5

Gemma-2-27B 78.3 ±0.3 82.6 ±0.4 76.0 ±0.6 77.3 ±0.5 69.5 ±1.1 79.6 ±0.7 72.8 ±0.5 79.7 ±0.3

Table 3. 100-shot results on the test set of WebQSP. Bold numbers
indicate the best low-resource performance.

Method LLM F1

Full-Supervised KBQA Methods

RnG-KBQA (Ye et al., 2022) 75.6
DecAF (Yu et al., 2023) 76.7
TIARA (Shu et al., 2022) 78.7

Low-resource KBQA Methods

KB-BINDER (Li et al., 2023) GPT-3.5-turbo 52.6
KB-Coder (Nie et al., 2024) GPT-3.5-turbo 55.7
ARG-KBQA (Tian et al., 2024) GPT-3.5-turbo 58.8

KBQA-o1 (Llama-3) Llama-3.1-8B 59.8 ±1.2

Llama-3.3-70B 67.0 ±0.4

KBQA-o1 (Qwen2.5)
Qwen2.5-7B 57.8 ±0.7

Qwen2.5-14B 60.1 ±1.3

Qwen2.5-32B 63.7 ±0.9

Qwen2.5-72B 66.5 ±1.1

KBQA-o1 (Gemma-2) Gemma-2-9B 58.9 ±0.6

Gemma-2-27B 61.0 ±0.5

5. Experiments
This section presents the experimental setup, results, and
analysis. We answer the following research questions (RQs):
RQ1: Does KBQA-o1 outperform other KBQA methods?
RQ2: Does the main component of KBQA-o1 work? RQ3:
Does KBQA-o1 address the corresponding challenges com-
pared to end-to-end and step-by-step KBQA methods? RQ4:
How does incremental fine-tuning gradually improve low-
resource KBQA performance?

5.1. Experimental Setup

Datasets. All experiments are conducted on three standard
KBQA datasets in low-resource setting (Li et al., 2023):
GrailQA (Gu et al., 2021), WebQSP (Yih et al., 2016), and

Table 4. 100-shot results on the test set of GraphQ. Bold numbers
indicate the best low-resource performance.

Method LLM F1

Full-Supervised KBQA Methods

SPARQA (Sun et al., 2020) 21.5
BERT+Ranking (Gu et al., 2021) 25.0
ArcaneQA (Gu & Su, 2022) 31.8

Low-resource KBQA Methods

KB-BINDER (Li et al., 2023) GPT-3.5-turbo 27.1
KB-Coder (Nie et al., 2024) GPT-3.5-turbo 31.1
ARG-KBQA (Tian et al., 2024) GPT-3.5-turbo -

KBQA-o1 (Llama-3) Llama-3.1-8B 48.7 ±0.8

Llama-3.3-70B 50.5 ±0.2

KBQA-o1 (Qwen2.5)
Qwen2.5-7B 49.2 ±0.2

Qwen2.5-14B 50.0 ±0.7

Qwen2.5-32B 50.9 ±0.6

Qwen2.5-72B 51.2 ±1.0

KBQA-o1 (Gemma-2) Gemma-2-9B 49.8 ±0.7

Gemma-2-27B 50.3 ±0.4

GraphQ (Su et al., 2016). All datasets are based on Free-
base (Bollacker et al., 2008) KB.

Baselines. We mainly compare our method with KB-
BINDER (Li et al., 2023), KB-Coder (Nie et al., 2024), and
ARG-KBQA (Tian et al., 2024) with the same LLM of gpt-
3.5-turbo-0613 from OpenAI in low-resource setting. Some
results obtained by full-supervised training on the whole
training dataset (Ye et al., 2022; Yu et al., 2023; Shu et al.,
2022; Sun et al., 2020; Gu et al., 2021; Gu & Su, 2022) are
also reported for reference.

Evaluation Metrics. In line with prior studies (Li et al.,
2023; Nie et al., 2024; Tian et al., 2024), we use F1 score
and Exact Match (EM) as the evaluation metric for GrailQA,
while F1 score are reported for WebQSP and GraphQ.

6

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

Table 5. Evaluation results of Llama-3.1-8B-based KBQA-o1 and its ablations. Bold numbers indicate the best performance.

Method
I.I.D Compositional Zero-shot GrailQA WebQSP GraphQ

EM F1 EM F1 EM F1 EM F1 F1 F1

KBQA-o1 (Llama-3.1-8B) 77.8 ±0.5 85.5 ±0.4 76.3 ±0.6 77.6 ±0.5 68.1 ±0.8 76.1 ±0.4 71.9 ±0.3 78.5 ±1.0 59.8 ±1.2 48.7 ±0.8

w/o agent prompt 65.2 ±1.1 72.8 ±0.8 61.9 ±1.3 63.2 ±1.2 45.7 ±1.6 49.8 ±1.4 51.2 ±2.3 56.4 ±3.1 52.3 ±1.2 37.7 ±2.2

w/o KB environment 43.5 ±1.4 51.3 ±1.3 38.7 ±1.7 41.5 ±1.5 29.6 ±1.9 35.4 ±1.6 34.9 ±2.0 43.0 ±1.6 49.3 ±0.7 25.1 ±1.4

w/o initial annotated sft 14.3 ±3.9 17.4 ±4.2 12.2 ±4.7 14.5 ±4.1 8.5 ±3.6 10.7 ±4.4 10.6 ±4.3 13.1 ±4.0 17.2 ±2.9 9.5 ±3.0

w/o MCTS 47.9 ±1.6 54.2 ±1.5 42.6 ±2.1 45.8 ±1.9 40.3 ±1.8 44.2 ±2.0 43.8 ±2.6 48.5 ±3.7 44.0 ±2.1 20.8 ±2.6

w/o incremental fine-tuning 60.7 ±1.0 68.3 ±1.2 56.2 ±1.5 58.9 ±1.4 53.8 ±1.7 56.7 ±1.5 57.1 ±1.0 63.9 ±1.6 55.4 ±2.4 43.9 ±1.7

I.I.D

Comp.

ZeroS.

GrailQA

WebQSP

GraphQ

10

30

50

70

90

F1 Scores (Llama-3.1-8B)

RG-E2E

GR-E2E

CoT-SbS

ToT-SbS

MCTS

KBQA-o1

(a)

START

JOIN

AND

ARG

CMP

TC

COUNT

STOP

10

30

50

70

90

F1 Scores (Llama-3.1-8B)

RG-E2E

GR-E2E

CoT-SbS

ToT-SbS

MCTS

KBQA-o1

(b)

2 4 6 8 10 12 14 16 18
Query per Minute

40

50

60

70

80

F
1

S
co

re

RG-E2EGR-E2E
CoT-SbS

ToT-SbS

MCTS

KBQA-o1

(c)

Figure 4. Performance and efficiency comparison of Llama-3.1-8B-based KBQA-o1 with compared methods. (a) F1 scores comparison
across datasets. (b) F1 scores across logical operators on GrailQA. (c) Trade-off between F1 scores and queries per minute on GrailQA.

Implementation Details. Following KB-BINDER (Li
et al., 2023), we conduct 40-shot experiments for GrailQA,
and 100-shot for WebQSP and GraphQ. During the MCTS
exploration phase, we set θexp with w = 50, while in the
prediction phase, we set θeff with w = 10. We select multi-
ple open-source 7B-72B LLMs, including Llama-3 (Dubey
et al., 2024), Qwen2.5 (Yang et al., 2025), and Gemma-
2 (Team et al., 2024), to construct KBQA-o1. All exper-
iments are done on 8 NVIDIA A40 GPUs (48GB), with
results averaged from three randomly seeded experiments.
Appendix G shows the optimal hyperparameter settings.

5.2. Main Result (RQ1)

As shown in Tables 2, 3, and 4, KBQA-o1 enables open-
source LLM to outperform previous low-resource KBQA
methods based on GPT-3.5-turbo, with limited labeled data.
In more complex data sets such as GrailQA, KBQA-o1
improves the overall EM performance of the Llama-3.1-
8B model by 28.1 percentage points and boosts F1 scores
by 30.0 percentage points over the previous best meth-
ods. In compositional and zero-shot evaluations, KBQA-o1
even outperforms fully supervised KBQA methods, which
demonstrates its strong capabilities for generalization, en-
vironment exploration, and handling complex logical ques-
tions. Moreover, KBQA-o1 is plug-and-play, allowing inte-
gration with various open-source 7B-72B LLMs, expected
to improve further with future open-source LLM updates.

5.3. Ablation Study (RQ2)

As shown in Table 5, we conduct an ablation study on the
Llama-3.1-8B-based KBQA-o1 methods. Five ablation set-
tings are tested: removing the ReAct-based agent prompt,
removing environment feedback, excluding the initial su-
pervised fine-tuning (SFT) with a small amount of labeled
data, removing MCTS optimization, and omitting the incre-
mental fine-tuning stage, respectively. Comparisons of the
evaluation results reveal that all modules contribute to over-
all performance, underscoring the importance of designed
agent initialization, heuristic environment exploration, and
incremental fine-tuning as key components of KBQA-o1.

5.4. Comparison Analysis (RQ3)

To explore how KBQA-o1 addresses the challenges of end-
to-end and step-by-step methods mentioned in Section 1, we
construct six variants. We design two end-to-end variants:
one is a retrieve-then-generate method (RG-E2E) based on
DECAF (Yu et al., 2023), and the other is a generate-then-
retrieve method (GR-E2E), based on ChatKBQA (Luo et al.,
2024a). Furthermore, we design two step-by-step variants:
one is based on CoT (CoT-SbS) as QueryAgent (Huang
et al., 2024), and the other is based on ToT (ToT-SbS) as
ToG (Sun et al., 2024). Finally, we implement an MCTS-
optimized variant without incremental fine-tuning and the
full KBQA-o1 method after incremental fine-tuning.

7

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

0 5 10 15 20 25 30 35 40
Exploration Samples (k)

55

60

65

70

75

80

F
1

&
 E

M
 S

co
re

Llama-3.1-8B F1

Llama-3.1-8B EM

Llama-3.3-70B F1

Llama-3.3-70B EM

(a)

200 100 0 100
Reward Threshold

0.0

0.2

0.4

0.6

0.8

1.0

R
a

ti
o

 o
f

C
h

o
se

n
 D

a
ta

65

70

75

80

F
1

S
co

re

Ratio

F1 Score

(b)

0

2

4

6

Q
u

e
ry

/m
in

Before Incremental Fine-tuning (Exploration Stage)

Query/min

F1

10 20 30 40 50 60 700

5

Q
u

e
ry

/m
in

After Incremental Fine-tuning (Prediction Stage)

Query/min

F1

60

65

F
1

S
co

re

76

78

80

82

F
1

S
co

re

MCTS Exploration Weight

(c)

Figure 5. Impact of incremental fine-tuning tested on GrailQA: (a) Effect of exploration samples on F1 and EM scores. (b) Relationship
between reward threshold, data ratio, and performance. (c) Influence of MCTS exploration weight on query efficiency and accuracy.

Comparison with End-to-end Methods. To investigate
whether the agent process in KBQA-o1 is more capable of
perceiving the KB environment than end-to-end methods,
we compare CoT-SbS with RG-E2E and GR-E2E. Under
the same prompt, CoT-SbS is equivalent to the agent process
in KBQA-o1 without expansion. As shown in Figures 4(a)
and 4(b), in the I.I.D and WebQSP evaluations with annota-
tions in distribution, RG-E2E and GR-E2E perform better.
However, in Compositional and Zero-shot evaluations, the
agent process represented by CoT-SbS performs better. This
is because, with preannotated logical forms, end-to-end gen-
eration rigidly adheres to a fixed logical form structure. In
contrast, the step-by-step agent approach allows stepwise
adjustments by KB environment awareness, enabling it to
handle more complex out-of-distribution questions.

Comparison with Step-by-step Methods. To investi-
gate whether the MCTS proposed in KBQA-o1 can further
prevent the step-by-step agent process from getting stuck
in local optima or dealing with a large search space, we
compared MCTS with CoT-SbS and ToT-SbS. As shown
in Figures 4(a) and 4(b), MCTS consistently outperform
CoT-SbS and ToT-SbS in all evaluation tasks and logical
operators. To analyze efficiency, Figure 4(c) shows that the
efficiency of MCTS and KBQA-o1 falls between CoT-SbS
and ToT-SbS. When exploring unlabeled data, the MCTS
prioritizes correctness, while the full KBQA-o1, after incre-
mental fine-tuning, adopts more efficient settings to balance
performance and search time.

5.5. Analysis of Incremental Improvement (RQ4)

To explore the impact of incremental fine-tuning on improv-
ing the performance of KBQA-o1 in low-resource KBQA
scenarios, we examine three key factors: the impacts of the
exploration samples, the reward threshold, and the explo-
ration weights on performance and efficiency.

Impact of Exploration Samples. As shown in Figure 5(a),
we gradually increase the number of unlabeled exploration
samples and observe a steady improvement in the F1 and
EM scores after incremental fine-tuning. This suggests that

newly explored and labeled samples contribute to automati-
cally generating high-quality logical forms using both en-
vironmental and reward-based filtering, allowing KBQA to
improve with minimal human annotation, making it highly
promising for transferability and real-world applications.

Impact of Reward Threshold γ∗. As shown in Fig-
ure 5(b), we conduct experiments with reward thresholds
γ∗ ranging from -200 to 100. As γ∗ increases, the propor-
tion of post-labeled data decreases until no data are selected
at the maximum threshold of 100. In GrailQA, setting γ∗

to -100 retained most labeled samples while filtering out
lower-quality ones, resulting in the highest F1 score. This
indicates that selecting an appropriate γ∗ helps preserve
newly labeled high-quality samples while discarding erro-
neous samples, making incremental fine-tuning effective.

Impact of Exploration Weight w. Figure 5(c) presents a
study on the selection of the exploration weight w in MCTS
before and after incremental fine-tuning. We test seven dif-
ferent values between 10 and 70. The results show that
higher w leads to slower generation, but improves accuracy.
Based on this, we set w ∈ θexp at 50 before incremental fine-
tuning to ensure accuracy. After incremental fine-tuning,
we reduce w ∈ θeff to 10 to balance efficiency and effective-
ness. Hence, we ensure that the MCTS with θexp performs a
slow and careful search during exploration, leading to high-
quality data for incremental fine-tuning. After that, we can
implement a more efficient MCTS with θeff in applications,
maintaining high performance while improving efficiency.

6. Conclusion
In this work, we propose KBQA-o1, an agentic KBQA
method with Monte Carlo Tree Search (MCTS) for efficient
exploration. By combining a ReAct-based agent process
with incremental fine-tuning, it improves logical form gen-
eration and reduces reliance on annotated data. Experiments
on three KBQA datasets show that KBQA-o1 outperforms
previous low-resource methods and rivals fully supervised
models, demonstrating its scalability and effectiveness.

8

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

Acknowledgments
This work is supported by the National Natural Science
Foundation of China (Grant No. 62176026, Grant No.
62473271, and Grant No. 62406036). This work is also sup-
ported by the BUPT Excellent Ph.D. Students Foundation
(No. CX2023133) and the Engineering Research Center of
Information Networks, Ministry of Education, China.

Impact Statement
This work introduces KBQA-o1, a novel agentic approach to
knowledge base question answering (KBQA) using Monte
Carlo Tree Search (MCTS). While effective, it still faces
limitations in fine-grained policy design and scalability to
larger domains. To address these challenges, we outline four
future directions: (1) exploring reinforcement learning for
continual learning, (2) enhancing logical reasoning capabili-
ties, (3) adapting to specialized domains such as medicine
and law, and (4) extending to multimodal, multilingual, and
multi-agent settings, as detailed in Appendix K. This work
poses no ethical concerns, as it relies solely on publicly
available datasets and aims to advance KBQA technology
with positive societal impacts.

References
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and

Taylor, J. Freebase: a collaboratively created graph
database for structuring human knowledge. In Pro-
ceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’08, pp.
1247–1250, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781605581026. doi: 10.
1145/1376616.1376746. URL https://doi.org/
10.1145/1376616.1376746.

Cui, J., Li, Z., Yan, Y., Chen, B., and Yuan, L.
Chatlaw: Open-source legal large language model
with integrated external knowledge bases. CoRR,
abs/2306.16092, 2023. URL https://doi.org/10.
48550/arXiv.2306.16092.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
et al. The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

Gao, T., Yao, X., and Chen, D. SimCSE: Simple con-
trastive learning of sentence embeddings. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 6894–6910, On-
line and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.552. URL https://
aclanthology.org/2021.emnlp-main.552.

Gu, Y. and Su, Y. ArcaneQA: Dynamic program induc-
tion and contextualized encoding for knowledge base
question answering. In Calzolari, N., Huang, C.-R.,
Kim, H., Pustejovsky, J., Wanner, L., Choi, K.-S., Ryu,
P.-M., Chen, H.-H., Donatelli, L., Ji, H., Kurohashi,
S., Paggio, P., Xue, N., Kim, S., Hahm, Y., He, Z.,
Lee, T. K., Santus, E., Bond, F., and Na, S.-H. (eds.),
Proceedings of the 29th International Conference on
Computational Linguistics, pp. 1718–1731, Gyeongju,
Republic of Korea, October 2022. International Com-
mittee on Computational Linguistics. URL https:
//aclanthology.org/2022.coling-1.148/.

Gu, Y., Kase, S., Vanni, M., Sadler, B., Liang, P., Yan,
X., and Su, Y. Beyond i.i.d.: Three levels of general-
ization for question answering on knowledge bases. In
Proceedings of the Web Conference 2021, WWW ’21,
pp. 3477–3488, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450383127.
doi: 10.1145/3442381.3449992. URL https://doi.
org/10.1145/3442381.3449992.

Gu, Y., Deng, X., and Su, Y. Don’t generate, discrimi-
nate: A proposal for grounding language models to real-
world environments. In Rogers, A., Boyd-Graber, J., and
Okazaki, N. (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 4928–4949, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.270. URL https:
//aclanthology.org/2023.acl-long.270.

Hao, S., Gu, Y., Ma, H., Hong, J., Wang, Z., Wang, D., and
Hu, Z. Reasoning with language model is planning with
world model. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 8154–8173,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
507. URL https://aclanthology.org/2023.
emnlp-main.507.

Huang, X., Cheng, S., Huang, S., Shen, J., Xu, Y., Zhang,
C., and Qu, Y. QueryAgent: A reliable and efficient
reasoning framework with environmental feedback based
self-correction. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 5014–5035, Bangkok, Thailand,
August 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.acl-long.274. URL https://
aclanthology.org/2024.acl-long.274.

Jang, H., Oh, Y., Jin, S., Jung, H., Kong, H., Lee, D., Jeon,
D., and Kim, W. Kbqa: constructing structured query

9

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.48550/arXiv.2306.16092
https://doi.org/10.48550/arXiv.2306.16092
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2022.coling-1.148/
https://aclanthology.org/2022.coling-1.148/
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://aclanthology.org/2023.acl-long.270
https://aclanthology.org/2023.acl-long.270
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2024.acl-long.274
https://aclanthology.org/2024.acl-long.274

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

graph from keyword query for semantic search. In Pro-
ceedings of the International Conference on Electronic
Commerce, ICEC ’17, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery. ISBN 9781450353120.
doi: 10.1145/3154943.3154955. URL https://doi.
org/10.1145/3154943.3154955.

Li, T., Ma, X., Zhuang, A., Gu, Y., Su, Y., and Chen, W.
Few-shot in-context learning on knowledge base ques-
tion answering. In Rogers, A., Boyd-Graber, J., and
Okazaki, N. (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 6966–6980, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.385. URL https:
//aclanthology.org/2023.acl-long.385.

Li, Z., Liu, H., Zhou, D., and Ma, T. Chain of thought em-
powers transformers to solve inherently serial problems.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=3EWTEy9MTM.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=v8L0pN6EOi.

Luo, H., E, H., Tang, Z., Peng, S., Guo, Y., Zhang, W.,
Ma, C., Dong, G., Song, M., Lin, W., Zhu, Y., and Luu,
A. T. ChatKBQA: A generate-then-retrieve framework for
knowledge base question answering with fine-tuned large
language models. In Ku, L.-W., Martins, A., and Sriku-
mar, V. (eds.), Findings of the Association for Computa-
tional Linguistics ACL 2024, pp. 2039–2056, Bangkok,
Thailand and virtual meeting, August 2024a. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.122. URL https://aclanthology.
org/2024.findings-acl.122.

Luo, L., Li, Y.-F., Haf, R., and Pan, S. Reasoning on
graphs: Faithful and interpretable large language model
reasoning. In The Twelfth International Conference
on Learning Representations, 2024b. URL https:
//openreview.net/forum?id=ZGNWW7xZ6Q.

Nie, Z., Zhang, R., Wang, Z., and Liu, X. Code-style in-
context learning for knowledge-based question answering.
Proceedings of the AAAI Conference on Artificial Intel-
ligence, 38(17):18833–18841, Mar. 2024. doi: 10.1609/
aaai.v38i17.29848. URL https://ojs.aaai.org/
index.php/AAAI/article/view/29848.

OpenAI. Gpt-4 technical report, 2024. URL https://
arxiv.org/abs/2303.08774.

Pérez, J., Arenas, M., and Gutierrez, C. Semantics and
complexity of sparql. ACM Trans. Database Syst.,
34(3), September 2009. ISSN 0362-5915. doi: 10.
1145/1567274.1567278. URL https://doi.org/
10.1145/1567274.1567278.

Sastry, S. and Sastry, S. Lyapunov stability theory. Nonlin-
ear systems: analysis, stability, and control, pp. 182–234,
1999.

Shu, Y., Yu, Z., Li, Y., Karlsson, B., Ma, T., Qu, Y.,
and Lin, C.-Y. TIARA: Multi-grained retrieval for
robust question answering over large knowledge base.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 8108–
8121, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.emnlp-main.555. URL https://
aclanthology.org/2022.emnlp-main.555.

Su, Y., Sun, H., Sadler, B., Srivatsa, M., Gür, I., Yan, Z., and
Yan, X. On generating characteristic-rich question sets
for QA evaluation. In Su, J., Duh, K., and Carreras, X.
(eds.), Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 562–572,
Austin, Texas, November 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D16-1054. URL
https://aclanthology.org/D16-1054/.

Sun, H., Dhingra, B., Zaheer, M., Mazaitis, K., Salakhutdi-
nov, R., and Cohen, W. Open domain question answering
using early fusion of knowledge bases and text. In Pro-
ceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 4231–4242, Brus-
sels, Belgium, October-November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/D18-1455.
URL https://aclanthology.org/D18-1455.

Sun, H., Bedrax-Weiss, T., and Cohen, W. PullNet: Open do-
main question answering with iterative retrieval on knowl-
edge bases and text. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2380–2390,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1242.
URL https://aclanthology.org/D19-1242.

Sun, J., Xu, C., Tang, L., Wang, S., Lin, C., Gong, Y., Ni,
L., Shum, H.-Y., and Guo, J. Think-on-graph: Deep
and responsible reasoning of large language model on
knowledge graph. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=nnVO1PvbTv.

Sun, Y., Zhang, L., Cheng, G., and Qu, Y. Sparqa: Skeleton-
based semantic parsing for complex questions over knowl-

10

https://doi.org/10.1145/3154943.3154955
https://doi.org/10.1145/3154943.3154955
https://aclanthology.org/2023.acl-long.385
https://aclanthology.org/2023.acl-long.385
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://aclanthology.org/2024.findings-acl.122
https://aclanthology.org/2024.findings-acl.122
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://ojs.aaai.org/index.php/AAAI/article/view/29848
https://ojs.aaai.org/index.php/AAAI/article/view/29848
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
https://aclanthology.org/2022.emnlp-main.555
https://aclanthology.org/2022.emnlp-main.555
https://aclanthology.org/D16-1054/
https://aclanthology.org/D18-1455
https://aclanthology.org/D19-1242
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

edge bases. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 34(05):8952–8959, Apr. 2020. doi: 10.
1609/aaai.v34i05.6426. URL https://ojs.aaai.
org/index.php/AAAI/article/view/6426.

Świechowski, M., Godlewski, K., Sawicki, B., and
Mańdziuk, J. Monte carlo tree search: a review of re-
cent modifications and applications. Artif. Intell. Rev.,
56(3):2497–2562, July 2022. ISSN 0269-2821. doi:
10.1007/s10462-022-10228-y. URL https://doi.
org/10.1007/s10462-022-10228-y.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahriari,
B., Ramé, A., et al. Gemma 2: Improving open lan-
guage models at a practical size, 2024. URL https:
//arxiv.org/abs/2408.00118.

Tian, Y., Song, D., Wu, Z., Zhou, C., Wang, H.,
Yang, J., Xu, J., Cao, R., and Wang, H. Augment-
ing reasoning capabilities of LLMs with graph struc-
tures in knowledge base question answering. In Al-
Onaizan, Y., Bansal, M., and Chen, Y.-N. (eds.), Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2024, pp. 11967–11977, Miami, Florida,
USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.
699. URL https://aclanthology.org/2024.
findings-emnlp.699/.

Vrandečić, D. and Krötzsch, M. Wikidata: A free collab-
orative knowledgebase. Commun. ACM, 57(10):78–85,
sep 2014. ISSN 0001-0782. doi: 10.1145/2629489. URL
https://doi.org/10.1145/2629489.

Wang, J., Sun, K., Luo, L., Wei, W., Hu, Y., Liew, A. W.-
C., Pan, S., and Yin, B. Large language models-guided
dynamic adaptation for temporal knowledge graph reason-
ing. In Globerson, A., Mackey, L., Belgrave, D., Fan, A.,
Paquet, U., Tomczak, J., and Zhang, C. (eds.), Advances
in Neural Information Processing Systems, volume 37,
pp. 8384–8410. Curran Associates, Inc., 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b.,
Xia, F., Chi, E., Le, Q. V., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 24824–24837.
Curran Associates, Inc., 2022.

Wu, J., Zhu, J., Qi, Y., Chen, J., Xu, M., Menolascina, F.,
and Grau, V. Medical graph rag: Towards safe medi-
cal large language model via graph retrieval-augmented
generation, 2024. URL https://arxiv.org/abs/
2408.04187.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2.5
technical report, 2025. URL https://arxiv.org/
abs/2412.15115.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 11809–11822. Curran Associates,
Inc., 2023a.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K. R., and Cao, Y. React: Synergizing reasoning
and acting in language models. In The Eleventh In-
ternational Conference on Learning Representations,
2023b. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Ye, X., Yavuz, S., Hashimoto, K., Zhou, Y., and Xiong, C.
RNG-KBQA: Generation augmented iterative ranking for
knowledge base question answering. In Proceedings of
the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 6032–
6043, Dublin, Ireland, May 2022. Association for Com-
putational Linguistics. doi: 10.18653/v1/2022.acl-long.
417. URL https://aclanthology.org/2022.
acl-long.417.

Yih, W.-t., Richardson, M., Meek, C., Chang, M.-W., and
Suh, J. The value of semantic parse labeling for knowl-
edge base question answering. In Proceedings of the
54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pp. 201–206,
Berlin, Germany, August 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P16-2033. URL
https://aclanthology.org/P16-2033.

Yu, D., Zhang, S., Ng, P., Zhu, H., Li, A. H., Wang, J.,
Hu, Y., Wang, W. Y., Wang, Z., and Xiang, B. DecAF:
Joint decoding of answers and logical forms for ques-
tion answering over knowledge bases. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=XHc5zRPxqV9.

Zhang, J., Zhang, X., Yu, J., Tang, J., Tang, J., Li, C.,
and Chen, H. Subgraph retrieval enhanced model for
multi-hop knowledge base question answering. In Pro-
ceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 5773–5784, Dublin, Ireland, May 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.396. URL https://aclanthology.org/
2022.acl-long.396.

11

https://ojs.aaai.org/index.php/AAAI/article/view/6426
https://ojs.aaai.org/index.php/AAAI/article/view/6426
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007/s10462-022-10228-y
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://aclanthology.org/2024.findings-emnlp.699/
https://aclanthology.org/2024.findings-emnlp.699/
https://doi.org/10.1145/2629489
https://arxiv.org/abs/2408.04187
https://arxiv.org/abs/2408.04187
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://aclanthology.org/2022.acl-long.417
https://aclanthology.org/2022.acl-long.417
https://aclanthology.org/P16-2033
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://aclanthology.org/2022.acl-long.396
https://aclanthology.org/2022.acl-long.396

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

Appendix

A. Prompts Used in KBQA-o1
A.1. Initial Prompt

Figure 6 illustrates the initial prompt used in the KBQA-o1 agent process. This prompt defines the structure and steps
for solving KBQA tasks through interleaving Thought, Action, and Observation stages. The prompt guides the agent to
perform specific actions, such as entity extraction, relation finding, expression merging, ordering, numerical comparisons,
and adding time constraints. These predefined actions are essential for generating logical forms step by step from natural
language questions. The diagram highlights the structured input format (<input> for the question and <output> for logical
expressions) and the scratchpad used for intermediate reasoning steps during the task.

I want you to be a good knowledge graph query generator, solving a knowledge base question answering task with interleaving Thought, Action,
Observation steps. Thought can reason about the current situation, and Action can be eight types:
(1) Extract_entity [entity name], where we identify a topic entity from the question to start a new expression.
(2) Find_relation [relation name], where we find the one-hop relation that is connected to the current expression.
(3) Merge [expression1 | expression2], where we merge these two expressions.
(4) Order [mode | relation], where we perform a sorting operation and impose a constraint to output either the maximum or minimum value.
(5) Compare [mode | relation], where we perform a numerical comparison to determine the range.
(6) Time_constraint [relation | time], where we add a time constraint.
(7) Count [expression], where we perform a counting operation to determine the number of answers.
(8) Finish [expression], where we conclude that it is appropriate to end and output the expression.

<input>
Question: {question}
<output>
{scratchpad}

Figure 6. Initial prompt of agent process.

A.2. Example Agent Process

Figure 7 provides an example of the complete agent process in KBQA-o1 for the query. The figure demonstrates how the
agent iteratively constructs the logical form using the Thought-Action-Observation prompt. Each step involves reasoning
about the current context (Thought), performing a specific operation (Action), and observing the resulting logical expression
(Observation). The process begins with extracting the topic entity followed by finding relevant relations and applying
numerical and time constraints. The agent merges expressions to form a complete logical form, which is then executed to
retrieve the answer from the knowledge base. The final logical output form is shown at the bottom, showcasing the agent’s
ability to generate structured and executable queries systematically.

Thought1: At this step, we should identify a topic entity from the question to start a new expression.
Action1: Extract_entity [Taylor Lautner]
Observation1: expression = START('m.07ldhs')
Thought2: At this step, we should find the one-hop relation that is connected to the current expression.
Action2: Find_relation [film.actor.film]
Observation2: expression = JOIN('(R film.actor.film)', expression)
Thought3: At this step, we should find the one-hop relation that is connected to the current expression.
Action3: Find_relation [film.performance.film]
Observation3: expression = JOIN('(R film.performance.film)', expression)
Thought4: At this step, we should identify a topic entity from the question to start a new expression.
Action4: Extract_entity [60]
Observation4: expression1 = START('60')
Thought5: At this step, we should perform a numerical comparison to determine the range.
Action5: Compare [LESS THAN | tv.tv_program.episode_running_time]
Observation5: expression1 = CMP('lt', 'tv.tv_program.episode_running_time', expression1)
Thought6: At this step, we should merge these two expressions.
Action6: Merge [expression1 | expression]
Observation6: expression = AND(expression1, expression)
Thought7: At this step, we conclude that it is appropriate to end and output the expression.
Action7: Finish [expression]
Observation7: expression = STOP(expression)

Input Question: What movie with a television running time of less than 60 minutes features Taylor Lautner?

Equivalent Logical Form:
(AND (lt tv.tv_program.episode_running_time 60) (JOIN (R film.performance.film) (JOIN (R film.actor.film) Taylor Lautner)))

Figure 7. An example of a complete agent process.

12

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

B. Proof
B.1. Proof of Proposition 4.1

Proposition 4.1. The agent’s awareness of the environment makes it more effective in generating optimal logical forms
compared to end-to-end methods.

Proof. According to the Lyapunov Stability Second Theorem (Sastry & Sastry, 1999):

For a dynamic system ẋ = f(x), where x is the state and f(x) is the nonlinear function describing state evolution. Define
a non-negative scalar function V (x) such that: V (x) > 0 for all x ̸= 0 and V (0) = 0 (positive definiteness). Its time
derivative along the system trajectory satisfies V̇ (x) < 0 and is bounded (negative definiteness). Then V (x) is called a
Lyapunov function candidate, and the system (from Lyapunov’s perspective) is asymptotically stable.

For a discrete dynamic system xt+1 = f(xt), if a Lyapunov function V (x) can be define, and the Lyapunov increment
∆V (xt) = V (xt+1)− V (xt), then V (xt) > 0 and ∆V (xt) < 0 with bounded implies asymptotic stability.

Our KBQA-o1 system is modeled as a discrete dynamic system:

ht+1 = f(ht,G), (18)

where ht ∈ H is the system state at step t; G is environment feedback. The state transition probability is defined as:
P (ht+1 | ht,G), which represents the probability of transitioning to the next state ht+1, given the current state ht and the
environment feedback G. The goal is for the system state ht to converge asymptotically to the target state h∗, to satisfy
P (h∗ | ht,G) = 1.

We define a positive definite Lyapunov function V (ht) as:

V (ht) = − logP (ht | h∗,G), (19)

where P (ht | h∗,G) is the posterior probability of state ht relative to the target state h∗; V (ht) quantifies the deviation of
the current state ht from the target state h∗.

The posterior probability satisfies 0 < P (ht | h∗,G) ≤ 1. Thus, V (ht) = − logP (ht | h∗,G) ≥ 0. When ht = h∗,
P (ht | h∗,G) = 1 =⇒ V (ht) = 0. Thus, V (ht) is positive definite.

The change in the Lyapunov function between steps is defined as:

∆V (ht) = V (ht+1)− V (ht). (20)

Using the definition of V (ht), we get V (ht+1):

V (ht+1) = − logP (ht+1 | h∗,G), (21)

and the posterior probability recursion:

P (ht+1 | h∗,G) = P (ht | h∗,G) · P (ht+1 | ht,G), (22)

we have:
V (ht+1) = − logP (ht | h∗,G)− logP (ht+1 | ht,G). (23)

Thus:
∆V (ht) = V (ht+1)− V (ht) = − logP (ht+1 | ht,G). (24)

The probability P (ht+1 | ht,G) can be expressed as:

P (ht+1 | ht,G) = P (Exp(ht,G) | ht,G) · P (ht+1 | ht,Exp(ht,G)), (25)

where P (Exp(ht,G) | ht,G) is the probability that the environment generates an exploration space Exp(ht,G), containing
valid actions for transitioning to ht+1. And P (ht+1 | ht,Exp(ht,G)) is the probability that the system transitions from ht

to ht+1, given the exploration space.

13

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

In KBQA-o1, our environment can provide all possible explorations under the prior state, and the correct exploration step
is guaranteed to be included. Thus, P (Exp(ht,G) | ht,G) = 1. Therefore, P (ht+1 | ht,G) = P (ht+1 | ht,Exp(ht,G)),
and given a set of explorations that contains the correct one, the probability of selecting the correct exploration satisfies
0 < P (ht+1 | ht,Exp(ht,G)) < 1. Consequently, 0 < P (ht+1 | ht,G) < 1.

Since 0 < P (ht+1 | ht,G) < 1, we conclude ∆V (ht) < 0 and is bounded. Thus, the Lyapunov function change is strictly
negative definite.

Based on the Lyapunov Stability Second Theorem, V (ht) = − logP (ht | h∗,G) satisfies positive definiteness: V (ht) ≥ 0,
and V (ht) = 0 only when ht = h∗, and negative definiteness: ∆V (ht) < 0, ensuring V (ht) strictly decreases. Thus, the
Agent system is asymptotically stable in the Lyapunov sense, and the state ht converges to h∗.

However, for end-to-end methods, although both pre-retrieval and post-retrieval approaches can incorporate environmental
information, pre-retrieval may result in an exploration space that does not include the target exploration, leading to
P (Exp(ht,G) | ht,G) = 0. Post-retrieval, on the other hand, may generate a logical form framework that is incorrect,
resulting in P (ht+1 | ht,Exp(ht,G)) = 0. In such cases, this leads to P (ht+1 | ht,G) = P (Exp(ht,G) | ht,G) · P (ht+1 |
ht,Exp(ht,G)) = 0, causing ∆V (ht) isn’t bounded, leading to instability.

Therefore, we conclude that the agent’s awareness of the environment makes it more effective in generating optimal logical
forms compared to end-to-end methods.

B.2. Proof of Proposition 4.2

Proposition 4.2. The MCTS-based heuristic method balances the effectiveness and size of the search space better than
CoT-based and ToT-based step-by-step methods.

Proof. Let F represent the search space of logical forms, with a size of |F| = kL, where k is the number of choices per
step, and L is the maximum search depth. Let Foptimal ⊆ F denote the set of high-quality solutions whose scores exceed a
threshold τ . For any search method X , if its generated candidate set is FX ⊆ F , the coverage rate is defined as:

CX =
|FX ∩ Foptimal|

|Foptimal|
. (26)

We first compare CoT (Chain-of-Thought) and our proposed MCTS-based method. CoT follows a single path hl, producing
a single candidate FCoT, with its candidate set given by FCoT = {FCoT}. If FCoT ∈ Foptimal, the coverage rate is

CCoT =
1

|Foptimal|
, (27)

otherwise, CCoT = 0. MCTS, on the other hand, expands multiple different paths during multiple rollouts. If N rollouts are
performed in total, the resulting candidate set is

FMCTS =

N⋃
n=1

{h(n)
l }, (28)

where h
(n)
l is the n-th path generated. Under effective strategy and reward guidance, most paths will fall into Foptimal, and

thus

CMCTS =
|FMCTS ∩ Foptimal|

|Foptimal|
≫ CCoT. (29)

This demonstrates that MCTS significantly outperforms CoT in terms of coverage of high-quality solutions.

Next, we compare MCTS and ToT (Tree of Thought) based on BFS/DFS. ToT explores all possible paths in F , so its max
candidate set is FToT = F . The coverage rate for ToT is

CToT =
|F ∩ Foptimal|
|Foptimal|

= 1, (30)

14

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

but this requires a time complexity of
TToT = O(kL). (31)

MCTS, however, only explores part of the tree. Assuming each rollout expands ωk candidates (ω ∈ (0, 1)), and N rollouts
are performed, the total search size is N · ωk · L, with a time complexity of

TMCTS = O(N · ωk · L). (32)

As long as N · ωk · L ≪ kL, we have
TMCTS ≪ TToT. (33)

Moreover, if the strategy and reward models effectively focus the search on high-potential nodes,

|FMCTS ∩ Foptimal| ≈ |Foptimal|, (34)

leading to
CMCTS ≈ CToT = 1. (35)

Combining these results, we see that compared to CoT, MCTS significantly improves the coverage rate by expanding
multiple paths. Compared to ToT, MCTS achieves a near-equal coverage rate with substantially lower time complexity.
Thus, MCTS balances effectiveness (coverage rate) and efficiency (search space size) better than both CoT and ToT.

B.3. Proof of Proposition 4.3

Proposition 4.3. There exists a reward threshold γ∗ < β such that incremental fine-tuning data, under the joint effect of the
KB and the reward model, can significantly improve model performance.

Proof. First, we define the performance improvement of incremental fine-tuning, ∆E(γ∗). The model’s initial performance
on the annotated dataset Da is denoted as Ebase, and its performance after incremental fine-tuning is Enew = Ebase +
∆E(γ∗).Here,∆E(γ∗) represents the performance gain contributed by incremental data, which depends on the quantity
and quality of the incremental data.

The incremental data originates from the unannotated dataset Dn, where the logical forms F̂Q and answers ÂQ are generated
through a filtering mechanism. The filtering criteria are as follows: 1) The reward score of the logical form Rπreward(F) > γ∗;
2) The answer set is non-empty, ÂQ ̸= ∅.

The logical forms that satisfy the criteria form the incremental dataset Di(γ
∗). The size and quality of the incremental data

are both dependent on the reward threshold γ∗. The performance improvement can be expressed as:

∆E(γ∗) = λ ·Nhigh(γ
∗) ·Qavg(Di(γ

∗)), (36)

where Nhigh(γ
∗) is the quantity of incremental data; Qavg(Di(γ

∗)) is the average quality of incremental data; λ > 0 is a
scaling factor representing the contribution of data quality to the performance gain.

Next, we analyze the properties of Nhigh(γ
∗) and Qavg(Di(γ

∗)), and subsequently derive the behavior of ∆E(γ∗).

The quantity of incremental data Nhigh(γ
∗) depends on the number of logical forms in the unannotated dataset that satisfy

Rπreward(F) > γ∗. Let Nn = |Dn| be the size of the unannotated dataset, and let the reward scores of logical forms follow a
probability density function P (R). Then:

Nhigh(γ
∗) = Nn · Phigh(γ

∗), (37)

where Phigh(γ
∗) represents the probability that the reward score exceeds γ∗:

Phigh(γ
∗) =

∫ β

γ∗
P (R) dR. (38)

Clearly, as γ∗ increases, Nhigh(γ
∗) decreases. When γ∗ → −∞, Nhigh(γ

∗) → Nn;whenγ
∗ → β,Nhigh(γ

∗) → 0.

15

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

The quality of the incremental data Qavg(Di(γ∗)) is the average reward score of logical forms with Rπreward(F) > γ∗,
defined as:

Qavg(Di(γ
∗)) =

∫ β

γ∗ R · P (R) dR∫ β

γ∗ P (R) dR
. (39)

The numerator
∫ β

γ∗ R · P (R) dR is the total quality weighted by reward scores, while the denominator
∫ β

γ∗ P (R) dR =

Phigh(γ
∗) is the total probability. When γ∗ → −∞, all logical forms are included in the incremental data, and the average

quality is the expected reward score:

Qavg(Di(γ
∗)) → E[R] =

∫ β

−∞
R · P (R) dR. (40)

When γ∗ → β, only the logical forms with the highest reward scores are retained, and the average quality approaches 1.

Now, we analyze the behavior of the performance improvement ∆E(γ∗). Substituting Nhigh(γ
∗) and Qavg(Di(γ∗)) into

∆E(γ∗), we obtain:

∆E(γ∗) = λ ·Nn ·

(∫ β

γ∗
P (R) dR

)
·
∫ β

γ∗ R · P (R) dR∫ β

γ∗ P (R) dR
. (41)

Simplifying this, we get:

∆E(γ∗) = λ ·Nn ·
∫ β

γ∗
R · P (R) dR. (42)

To analyze the critical points, we take the derivative of ∆E(γ∗) with respect to γ∗:

∂∆E(γ∗)

∂γ∗ = −λ ·Nn · γ∗ · P (γ∗). (43)

It is clear that when γ∗ → −∞, ∂∆E(γ∗)
∂γ∗ > 0, indicating that ∆E(γ∗) increases with γ∗; when γ∗ → β, ∂∆E(γ∗)

∂γ∗ < 0,
indicating that ∆E(γ∗) decreases with γ∗. Thus, ∆E(γ∗) is a unimodal function, and there exists a critical point
γ∗

opt ∈ (−∞, β) at which ∆E(γ∗) achieves its maximum.

In conclusion, we have proven that: There exists a reward threshold γ∗ < β such that the trade-off between the quantity and
quality of incremental data is optimized. At this threshold, the performance improvement ∆E(γ∗) reaches its maximum.
This establishes the existence of γ∗ and its role in optimizing the effect of incremental fine-tuning.

C. MCTS Algorithm Details
Figure 8 and Algorithm 1 illustrate the Monte Carlo Tree Search (MCTS) process in KBQA-o1. The figure highlights the
four stages of MCTS: Selection, where nodes are chosen using the Upper Confidence Bound for Trees (UCT) to balance
exploration and exploitation; Expansion, where candidate actions are generated by the policy model, filtered for relevance to
the knowledge base, and added as child nodes; Simulation, where the most promising path is explored to produce a complete
logical form and compute rewards; and Back-propagation, where rewards are propagated back to update Q-values and
visit counts. The pseudocode formalizes this process, iteratively performing rollouts that follow the four stages. It ensures
efficient exploration by selecting nodes with high potential, expanding with semantically relevant actions, simulating logical
forms, and updating scores through back-propagation. This approach enables KBQA-o1 to navigate large search spaces
effectively and generate high-quality logical forms.

Complexity Analysis. The time complexity of the MCTS process in KBQA-o1 can be analyzed based on its four stages:
Selection, Expansion, Simulation, and Back-propagation. In the Selection stage, the algorithm traverses the search tree
up to depth L , selecting the best node using the Upper Confidence Bound for Trees (UCT), leading to a complexity of
O(k · L) per rollout, where k is the number of possible actions per step. The Expansion stage generates B beam candidates,
which are filtered based on knowledge base similarity, adding O(ωk) complexity. The Simulation stage explores paths up to
depth L , contributing O(k · L) . Finally, the Back-propagation stage updates the rewards along the path, requiring O(L) .

16

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

Summing up these steps, the complexity for a single rollout is O(k ·L) , and with N rollouts, the total complexity of MCTS
is O(N · k · L) , which scales linearly with the number of rollouts and search depth.

Compared to exhaustive search methods like Tree-of-Thoughts (ToT), which have a complexity of O(kL) , MCTS is
significantly more efficient. Instead of exploring all possible paths, MCTS selectively explores high-potential nodes based
on the policy model and UCT, reducing redundant computations. This selective approach allows MCTS to scale effectively,
making it suitable for large KBs. Additionally, MCTS dynamically balances exploration and exploitation, adapting its
search strategy based on reward feedback. This adaptability, combined with its lower computational cost, enables MCTS to
generate high-quality logical forms while maintaining efficiency.

Find_relation
[film.performance.film]

Find_relation
[film.actior.film]

Extract_entity
[Taylor Lautner]

 Find_relation
[tv.tv_actor.starring_roles]

Extract_entity
[60]

Find_relation
[film.actior.film]

Initial Prompt

Extract_entity
[Taylor Lautner]

 Find_relation
[tv.tv_actor.starring_roles]

Find_relation
[film.performance.film]

Find_relation
[film.actior.film]

Extract_entity
[Taylor Lautner]

 Find_relation
[tv.tv_actor.starring_roles]

Extract_entity
[60]

Finish
[expression]

Find_relation
[film.performance.film]

Find_relation
[film.actior.film]

Extract_entity
[Taylor Lautner]

 Find_relation
[tv.tv_actor.starring_roles]

Extract_entity
[60]

Finish
[expression]

Q-value

Input Question
Initial Prompt

Input Question
Initial Prompt

Input Question
Initial Prompt

Input Question

Selection Expansion Simulation Back-propagation

MCTS Inference in AgentKBQA

Figure 8. Four stages of the MCTS process in KBQA-o1.

Algorithm 1 MCTS in KBQA-o1
Require: Initial state h0, knowledge base G, policy model πpolicy, reward model πreward, beam size B, number of top candidates d, depth

limit L, number of rollouts N , exploration weight w.
1: for n← 1 to N do
2: t← 0
3: while N(ht) > 0 do

4: Select by UCT: et ← argmax
e∈E(h

(n)
t−1)

[
Q(h

(n)
t−1 + e) + w

√
lnN(h

(n)
t−1)

N(h
(n)
t−1+e)

]
▷ Selection

5: Update h
(n)
t ← h

(n)
t−1 + et

6: t← t+ 1
7: end while
8: while ht is not a terminal state ∧ t ≤ L do
9: Beam search by policy model: {e(b)

t }Bb=1 ∼ πpolicy

(
et | h(n)

t−1

)
beam

▷ Expansion

10: Semantic selection from KB: {e(i)
t }ki=1←argmaxk

e∈Exp(h(n)
t−1,G)

SimCSE
(
{e(b)

t }Bb=1, e
)

11: Policy model rerank: E(h
(n)
t−1) = {e

(i)
t }di=1 ← argmaxdRπpolicy

(
{e(i)

t }ki=1 | h
(n)
t−1

)
12: Simulate along the best: et ← argmax

e∈E(h
(n)
t−1)

Rπpolicy

(
e | h(n)

t−1

)
▷ Simulation

13: Update h
(n)
t ← h

(n)
t−1 + et

14: t← t+ 1
15: end while
16: l← t

17: Calculate reward: Q(h
(n)
l)← δ Rπpolicy

(
el | h(n)

l−1

)
+ (1− δ) Rπreward

(
F
h
(n)
l

| Q
)

18: for t← l, . . . , 0 do

19: Update Q(h
(n)
t)← maxn

j=1

(∑t
i=l Q(h

(j)
i)

l−t+1

)
▷ Back-propagation

20: Add visit count: N(h
(n)
t)← N(h

(n)
t) + 1

21: end for
22: end for

17

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

D. Dataset Details
Table 6 provides an overview of the dataset statistics used in the KBQA-o1 experiments across different settings: I.I.D
(Independent and Identically Distributed), Compositional, Zero-shot, and three datasets (GrailQA, WebQSP, and GraphQ).
The table includes the following rows: #Train is the number of training examples used for each dataset. #Exploration is the
number of exploration queries generated during the heuristic exploration phase for each dataset. The numbers indicate the
extensive exploration. #Test is the number of testing examples for evaluation in each setting.

Table 6. Dataset statistics of KBQA-o1.

I.I.D Compositional Zero-shot GrailQA WebQSP GraphQ

#Train - - - 40 100 100
#Exploration - - - 43851 2929 2332
#Test 1564 1487 3645 6696 1566 2319

GrailQA dataset (Gu et al., 2021) is a large-scale dataset specifically designed to evaluate KBQA models across three
key generalization levels: i.i.d., compositional, and zero-shot. It contains 64,331 questions, of which 6,696 in the local dev
set with three levels are used for testing in the KBQA-o1 experiments. This dataset requires models to understand a wide
range of logical forms and multi-hop reasoning over knowledge bases. Its exploration phase involves a significant number
of queries (43,851), emphasizing the importance of comprehensive environment exploration. The dataset is particularly
challenging in its compositional and zero-shot settings, where models need to handle unseen combinations of entities and
relations, testing their ability to generalize beyond simple patterns.

WebQSP dataset (Yih et al., 2016) is an enriched version of the original WebQuestions dataset, providing semantic parses
for each of its 4,737 questions. In KBQA-o1 experiments, 1,566 questions are used for testing, and 2,929 queries are
generated during the exploration phase. This dataset focuses on evaluating the semantic understanding of KBQA models,
requiring them to map natural language questions to precise logical forms. The inclusion of semantic parses enhances
the dataset’s utility for training and evaluating models, enabling fine-grained analysis of their ability to disambiguate and
retrieve information from the knowledge base. The relatively smaller size of WebQSP compared to GrailQA makes it a
valuable benchmark for assessing model efficiency in low-resource settings.

GraphQ dataset (Su et al., 2016) is a dataset aimed at testing KBQA models on complex reasoning tasks involving
graph-structured data. It contains over 5,000 questions, with 2,319 used for testing in the KBQA-o1 experiments. The
exploration phase generates 2,332 queries, reflecting the intricate nature of reasoning required by the dataset. GraphQ
challenges models to navigate multi-hop relationships and resolve complex dependencies between entities, pushing them to
understand the underlying structure of the knowledge graph. Its focus on characteristic-rich queries ensures a thorough
evaluation of a model’s reasoning capabilities, making it an essential dataset for advancing KBQA methods.

E. Atomic Query Tool Details
As shown in Table 1, KBQA-o1 introduces eight atomic query tools designed to facilitate logical form generation for KBQA.
These tools are tailored to systematically convert natural language queries into logical forms by leveraging the structural
properties of KB. Each tool serves a specific function, ensuring precise interactions with the KB to retrieve or manipulate
information. Below is an explanation of each tool:

Extract entity is used to identify and extract a specific entity from the knowledge base. It takes an entity as an argument
and initializes the logical form with this entity. The target function is represented as START(‘entity’), and the corresponding
logical form is simply the entity itself. For instance, extracting “Taylor Lautner” initializes the logical form with the entity
identifier for the actor.

Find relation identifies a relation connected to the current logical form. It takes a relation as an argument and appends it to
the existing logical form using the JOIN operation. The resulting logical form is (JOIN relation (expression)). For example,
finding the film.actor.film relation connects an actor to their associated films.

Merge combines two logical expressions into a single conjunctive expression. It takes two arguments, expression1 and
expression, and returns AND(expression1, expression) as the target function. The equivalent logical form is (AND

18

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

(expression1) (expression)). For example, merging two conditions like “actor is Taylor Lautner” and “runtime < 60 minutes”
forms a combined condition.

Order determines the extreme value of a property, such as the maximum or minimum. It takes a mode (e.g., max or min)
and a relation as arguments. The target function is ARG(‘mode’, expression, ‘relation’), and the logical form is (mode
(expression) relation). For example, finding the longest film associated with an actor uses this tool.

Compare evaluates a property against a specified value using a comparison operator (e.g., <, <=, >, >=). It takes a mode
and a relation as arguments. The target function is CMP(‘mode’, ‘relation’, expression), and the corresponding logical form
is (mode relation (expression)). For instance, checking if a film’s runtime is less than 60 minutes employs this tool.

Time constraint imposes a time-based constraint on the logical form. It takes a relation and a time as arguments, applying
a temporal filter to the expression. The target function is TC(expression, ‘relation’, ‘time’), and the logical form is (TC
(expression) relation time). For example, filtering films released before a specific year uses this tool.

Count calculates the number of entities that satisfy a given condition. It takes an expression as an argument, returning the
target function COUNT(expression) and the logical form (COUNT (expression)). For instance, counting the number of
films an actor has appeared in utilizes this tool.

Finish signals the termination of the logical form generation process. It takes an expression as its argument and finalizes the
logical form as STOP(expression). The corresponding logical form is simply (expression). This tool ensures the logical
form is complete and ready for execution against the KB.

F. Baseline Details
The six full-resource baselines provide a comprehensive evaluation framework for KBQA. These methods leverage fully
annotated datasets and advanced reasoning mechanisms to achieve high performance on various KBQA tasks. Below is a
summary of each baseline:

RnG-KBQA (Ye et al., 2022) is a retrieve-and-generate framework that first retrieves relevant knowledge from the knowledge
base (KB) and then generates executable logical forms for answering questions. It focuses on leveraging retrieval to enhance
logical form generation accuracy.

DecAF (Yu et al., 2023) employs multi-granular retrieval strategies to ensure robust KBQA performance. By focusing on
progressively refining retrieved knowledge, DecAF addresses the complexity of large-scale KBs and supports more accurate
logical reasoning.

TIARA (Shu et al., 2022) is a multi-stage retrieval method designed for large-scale KBs. It enhances robustness by retrieving
candidate knowledge in multiple stages and integrating it into logical form generation, improving its ability to handle
complex queries.

SPARQA (Sun et al., 2020) uses a skeleton-based semantic parsing approach to generate logical forms for complex questions.
It simplifies question processing by extracting a structural skeleton, which is then converted into a complete logical form.

BERT+Ranking (Gu et al., 2021) integrates a BERT-based encoder with a ranking mechanism to select the most relevant
answers from candidate entities. It enhances the precision of entity linking and relation matching in complex KBQA
scenarios.

ArcaneQA (Gu & Su, 2022) combines dynamic program generation with contextualized encoding to address complex
reasoning tasks. Its innovative design enables it to process multi-hop reasoning queries with high accuracy.

The three low-resource baselines are designed to address the challenges of KBQA in scenarios. Unlike fully supervised
methods, these approaches focus on GPT API for in-context-learning. Below is a detailed summary of each method:

KB-BINDER (Li et al., 2023) leverages GPT-3.5-turbo to perform KBQA with minimal supervision. It adopts a structured
in-context learning approach, where logical form templates guide the generation process. This method effectively balances
efficiency and accuracy in low-resource settings.

KB-Coder (Nie et al., 2024) employs code-style in-context learning to improve logical form generation. By treating logical
form generation as a code-writing task, this method enhances reasoning consistency and adaptability, even with limited
training data.

19

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

ARG-KBQA (Tian et al., 2024) enhances knowledge retrieval efficiency in low-resource KBQA. It optimizes argument
selection for logical forms, ensuring that queries retrieve the most relevant knowledge while minimizing errors caused by
insufficient training data.

The four baselines in Section 5.4 represent different approaches to KBQA, covering both end-to-end and step-by-step
methods. These methods are designed to evaluate different strategies, including retrieval-based logical form generation,
sequential reasoning, and tree-based expansion. The comparison with KBQA-o1 highlights the strengths and limitations of
each approach, providing insight into the effectiveness of heuristic exploration with MCTS. Below is a summary of each
baseline:

RG-E2E: Based on the DecAF (Yu et al., 2023), RG-E2E follows a retrieve-then-generate paradigm, where relevant
knowledge is first retrieved from the KB before generating the logical form. While effective in structured environments, this
approach struggles with unseen entity-relation combinations due to its reliance on pre-retrieved data.

GR-E2E: Adapted from the ChatKBQA (Luo et al., 2024a), GR-E2E first generates a preliminary logical form and then
refines it by retrieving supporting evidence from the KB. While more flexible than RG-E2E, it faces challenges in ensuring
that the generated logical form aligns correctly with KB constraints.

CoT-SbS: Inspired by QueryAgent (Huang et al., 2024), CoT-SbS applies Chain-of-Thought (CoT) reasoning to KBQA,
where logical forms are constructed incrementally through multiple reasoning steps. Although it improves interpretability, it
is prone to local optima and reasoning errors, especially in complex multi-hop queries.

ToT-SbS: Based on the Think-on-Graph (Sun et al., 2024), ToT-SbS extends step-by-step reasoning into a tree-like structure,
expanding multiple reasoning paths simultaneously. While it mitigates local optima, it suffers from large search spaces,
making it computationally expensive compared to heuristic search methods.

G. Hyperparameter Settings
Table 7 presents the hyperparameter configurations for the KBQA-o1 across three datasets: GrailQA, WebQSP, and GraphQ.
These parameters are categorized into four stages: Initial Few-shot SFT, MCTS Exploration Stage, Incremental Fine-tuning,
and MCTS Prediction Stage, each designed to optimize the KBQA framework’s performance for different tasks.

In the Initial Few-shot SFT stage, the policy and reward models are fine-tuned using a small labeled dataset to initialize the
framework. Both models adopt the DoRA architecture, optimized for reasoning tasks. The batch size is set to 4, ensuring
stability in training with manageable memory usage. A fixed learning rate of 5e-5 controls weight updates, providing a
balance between convergence speed and training stability. The number of epochs varies by dataset, with 100 for the policy
model in GrailQA and 50 for WebQSP and GraphQ. The reward model undergoes more training, with 300 epochs for
GrailQA and 100 for WebQSP and GraphQ, to ensure the robustness of the reward function.

The MCTS Exploration Stage employs Monte Carlo Tree Search to explore logical forms by simulating reasoning paths
within the KB. Each rollout performs 6 iterations of exploration. A beam size of 2 limits the number of candidate paths
considered. TopK and TopD parameters further refine candidate selection, with GrailQA and GraphQ using TopK=10, while
WebQSP uses TopK=3. Similarly, GrailQA and WebQSP have TopD=3, whereas GraphQ sets TopD=5. An exploration
weight of 50 balances exploration of new paths with exploitation of known high-quality paths. The reward ratio, fixed at 0.5,
ensures equal contribution from the policy and reward models. Dataset-specific reward thresholds (-100 for GrailQA, 30 for
WebQSP, and -50 for GraphQ) filter out low-quality paths, tailoring the exploration process to the characteristics of each
dataset.

The Incremental Fine-tuning stage further refines the policy and reward models based on insights gained during the
exploration stage. The models retain the DoRA architecture, with a batch size of 4 and a learning rate of 5e-5. Both models
are fine-tuned for 10 epochs across all datasets, ensuring improved generalization.

In the MCTS Prediction Stage, the refined models are used to generate final logical forms for KBQA tasks. 6 rollouts are
performed, consistent with the exploration stage, but the beam size is reduced to 1 to focus on the most promising candidate
paths. TopK and TopD parameters mirror those in the exploration stage to maintain consistency in candidate selection. The
exploration weight is reduced to 10, prioritizing exploitation of high-quality paths while allowing limited exploration during
prediction. The reward ratio remains fixed at 0.5 across all datasets, maintaining a consistent balance between contributions
from the policy and reward models.

20

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

Table 7. HyperParameter Settings for GrailQA, WebQSP, and GraphQ

Hyperparameter Name GrailQA WebQSP GraphQ

Initial Few-shot SFT

SFT1 Type for Policy Model DoRA DoRA DoRA
SFT1 Batch Size for Policy Model 4 4 4
SFT1 Learning Rate for Policy Model 5e-5 5e-5 5e-5
SFT1 Epoch for Policy Model 100 50 50
SFT1 Type for Reward Model DoRA DoRA DoRA
SFT1 Batch Size for Reward Model 4 4 4
SFT1 Learning Rate for Reward Model 5e-5 5e-5 5e-5
SFT1 Epoch for Reward Model 300 100 100

MCTS Exploration Stage

MCTS1 Rollout N 6 6 6
MCTS1 Beam Size B 2 2 2
MCTS1 TopK k 10 3 10
MCTS1 TopD d 3 3 5
MCTS1 Exploration Weight w 50 50 50
MCTS1 Reward Ratio δ 0.5 0.5 0.5
MCTS1 Reward Threshold γ∗ -100 30 -50

Incremental Fine-tuning

SFT2 Type for Policy Model DoRA DoRA DoRA
SFT2 Batch Size for Policy Model 4 4 4
SFT2 Learning Rate for Policy Model 5e-5 5e-5 5e-5
SFT2 Epoch for Policy Model 10 10 10
SFT2 Type for Reward Model DoRA DoRA DoRA
SFT2 Batch Size for Reward Model 4 4 4
SFT2 Learning Rate for Reward Model 5e-5 5e-5 5e-5
SFT2 Epoch for Reward Model 20 20 20

MCTS Prediction Stage

MCTS2 Rollout N 6 6 6
MCTS2 Beam Size B 1 1 1
MCTS2 TopK k 10 3 10
MCTS2 TopD d 3 3 5
MCTS2 Exploration Weight w 10 10 10
MCTS2 Reward Ratio δ 0.5 0.5 0.5

H. Open-source LLMs used in KBQA-o1
The KBQA-o1 framework is designed with a plug-and-play architecture, allowing seamless integration of different open-
source LLMs based on task requirements. This flexibility allows easy substitution or upgrading of LLMs, ensuring that the
system remains state-of-the-art as newer models become available.

Llama-3 (Dubey et al., 2024), developed by Meta AI, is an advanced large language model known for its strong reasoning
abilities and generalization across diverse tasks. It excels in processing multi-hop reasoning and compositional queries,
making it ideal for KBQA tasks that require logical inference over structured data, ensuring robustness in complex
question-answering scenarios.

Qwen2.5 (Yang et al., 2025), released by Alibaba, is particularly effective in entity linking and relation extraction, two
crucial components of KBQA. Trained on both structured and unstructured data, Qwen2.5 ensures high-precision entity
disambiguation and improves the accuracy of knowledge retrieval. Its multilingual capabilities make it promising to further
enhance KBQA-o1’s adaptability across different datasets and domains.

Gemma-2 (Team et al., 2024), developed by Google, is optimized for retrieval-based reasoning and structured query
generation. It specializes in efficiently retrieving relevant knowledge and generating accurate logical forms for complex
queries. Its lightweight yet powerful design ensures high-speed inference, making it well-suited for low-latency applications
in KBQA.

21

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

I. Case Study

Thought1: At this step, we should identify a topic entity from the question to start a new expression.
Action1: Extract_entity [Taylor Lautner]
Observation1: expression = START('m.07ldhs')
Thought2: At this step, we should find the one-hop relation that is connected to the current expression.
Action2: Find_relation [film.actor.film]
Observation2: expression = JOIN('(R film.actor.film)', expression)
Thought3: At this step, we should find the one-hop relation that is connected to the current expression.
Action3: Find_relation [film.performance.film]
Observation3: expression = JOIN('(R film.performance.film)', expression)
Thought4: At this step, we should identify a topic entity from the question to start a new expression.
Action4: Extract_entity [60]
Observation4: expression1 = START('60')
Thought5: At this step, we should perform a numerical comparison to determine the range.
Action5: Compare [LESS THAN | tv.tv_program.episode_running_time]
Observation5: expression1 = CMP('lt', 'tv.tv_program.episode_running_time', expression1)
Thought6: At this step, we should merge these two expressions.
Action6: Merge [expression1 | expression]
Observation6: expression = AND(expression1, expression)
Thought7: At this step, we conclude that it is appropriate to end and output the expression.
Action7: Finish [expression]
Observation7: expression = STOP(expression)

Initial Prompt
Input Question

Extract_entity
[Taylor Lautner]

Find_relation
[film.actior.film]

Find_relation
[film.actior.film]

Extract_entity
[60]

Find_relation
[film.performance.film]

Time_constraint
[film.film_regional_release_date

.release_date | NOW]

Time_constraint
[film.film.initial_release_date

.release_date | NOW]

Q: 54.74Q: 47.89

Q: 55.91

Q: 35.71

Q: 33.87

Q: 57.11

Q: 29.37

Q: 34.94

Compare
[LESS THAN | tv.tv_program.

episode_running_time]

Q: 24.38

Compare
[GREATER THAN | tv.tv_program.

episode_running_time]

Q: N/A

Finish
[expression]

Q: -0.99

Extract_entity
[60]

Q: 58.89

Order
[GREATER THAN | tv.tv_program.

episode_running_time]

Q: 39.74

#V: 10 #V: 10

#V: 9

#V: 1

#V: 1

#V: 6

#V: 1

#V: 1

#V: 1

#V: 0

#V: 1

#V: 5

#V: 1
Finish

[expression]

Q: 33.71 #V: 1

Compare
[LESS THAN | tv.tv_program.

episode_running_time]

Q: 60.19

Compare
[GREATER THAN | tv.tv_program.

episode_running_time]

Q: 25.16

#V: 4

#V: 1
Finish

[expression]

Q: 1.91 #V: 1

Merge
[expression1 | expression]

Q: 65.35 #V: 4
Finish

[expression]

Q: 80.69 #V: 4

Finish
[expression]

Q: 13.18 #V: 1

Finish
[expression]

Q: 24.34 #V: 1

Extract_entity
[Taylor Lautner]

Find_relation
[tv.regular_tv_appearance.series]

Time_constraint
[tv.regular_tv_appearance

.from | NOW]

Q: 31.64

Q: N/A

Q: N/A

#V: 1

#V: 0

#V: 0

Find_relation
[tv.regular_tv_appearance.seasons]

Q: N/A #V: 0

Compare
[LESS THAN | tv.tv_program.

episode_running_time]

Q: 21.31 #V: 1
Finish

[expression]

Q: -5.23 #V: 1

Compare
[GREATER THAN | tv.tv_program.

episode_running_time]

Q: N/A #V: 0

What movie with a television
running time of less than

60 minutes features
Taylor Lautner?

Question
Final Agent Process

What movie with a television
running time of less than

60 minutes features
Taylor Lautner?

Question
Initial Prompt

Input Question
Extract_entity

[Taylor Lautner]
Find_relation

[film.actior.film]
Extract_entity

[60]
Compare

[LESS THAN | tv.tv_program.
episode_running_time]

Finish
[expression]

What movie with a television
running time of less than

60 minutes features
Taylor Lautner?

Question
Initial Prompt

Input Question

Extract_entity [Taylor Lautner]

Find_relation [film.actior.film]

Extract_entity [60]

Finish [expression]

Compare [LESS THAN | tv.tv_program.episode_running_time]

Merge [expression1 | expression]

End-to-end KBQA Method:

Step-by-step KBQA Method:

(Agentic MCTS-based Method)
KBQA-o1

Figure 9. Case study of KBQA-o1’s MCTS inference compared with end-to-end and step-by-step methods.

To visually illustrate the reasoning process of KBQA-o1, Figure 9 compares the proposed MCTS-based method with
end-to-end and step-by-step KBQA approaches. In this example, the question “What movie with a television running time
of less than 60 minutes features Taylor Lautner?” is posed. The question is first processed in the initial prompt, forming
the agent’s starting state. Through multiple rounds of MCTS exploration, the framework builds a search tree, where the
Q-value represents the score updated through backpropagation, and #V denotes the number of times each state has been
visited. These values guide the agent in selecting the optimal next node using the Upper Confidence Bound for Trees (UCT).

The end-to-end KBQA method prematurely terminates logical form generation due to incomplete reasoning and a lack of
exploration. The step-by-step KBQA method incrementally constructs logical forms but also fails, as it cannot fully navigate
the reasoning constraints, leading to an incorrect result. In contrast, the KBQA-o1 method effectively explores and evaluates
multiple reasoning paths, refining its decisions based on reward feedback and generating the correct logical form. The final
agent process demonstrates how observations at each step are transformed into graph query statements, which are executed
to obtain the correct answer. This process highlights KBQA-o1’s ability to systematically decompose the query, balance
exploration and exploitation, and handle multi-step reasoning effectively, outperforming other methods.

J. Error Analysis
We analyze the errors made by KBQA-o1 on the GrailQA dataset and categorize them into three main types. These errors
reflect the challenges in exploring logical paths, retrieving accurate results, and ranking the most appropriate paths in the
context of complex KBQA tasks.

Executable path not discovered (29.8%) In this category, KBQA-o1 fails to explore any executable logical path in the
knowledge base, often due to the complexity of GrailQA’s compositional and zero-shot queries. These errors arise from
insufficient exploration of multi-hop reasoning paths and limited representation of rare logical forms in the training data.

22

KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search

Improvements in exploration depth and diversity of logical forms in the training process could help mitigate this issue.

Correct path not discovered (54.7%) This is the most common error type, where KBQA-o1 explores logical paths but
fails to discover the correct one. These errors highlight challenges in precise entity and relation retrieval, particularly in
zero-shot settings where entities or relations are unseen during training. Enhancing the semantic understanding and retrieval
mechanisms would be crucial for reducing this type of error.

Correct path not selected as the best (15.5%) In some cases, KBQA-o1 successfully explores the correct logical path but
fails to select it as the optimal solution. For example, it may assign a higher Q-value to an incorrect logical form over the
correct one. These errors often stem from suboptimal reward evaluation during MCTS backpropagation or inconsistencies in
the reward model’s fine-tuning. Addressing these issues through better reward modeling and fine-tuning could significantly
enhance path selection accuracy.

K. Future Directions
The KBQA-o1 offers several promising directions for future research and development. These directions aim to enhance the
model’s capabilities, extend its application domains, and address current limitations.

Exploring Reinforcement Learning Techniques Like DPO for Continual Learning. One promising direction is
leveraging advanced reinforcement learning techniques, such as Direct Policy Optimization (DPO), to enable continual
learning for KBQA-o1. By refining policy and reward models through reinforcement learning, the framework could
dynamically adapt to new datasets and tasks. A key challenge in this direction is constructing high-quality positive and
negative sample pairs to guide the learning process effectively. Future work could explore automated methods for generating
these samples or employing human-in-the-loop systems for quality assurance.

Expanding the Set of Logical Operators for Enriched QA Patterns. To broaden the range of questions the system
can handle, future research could focus on introducing and supporting more diverse logical operators. This would allow
KBQA-o1 to answer more complex queries, particularly those requiring advanced reasoning patterns such as conditional
logic, aggregation, and temporal constraints. By integrating these operators, the framework could offer more comprehensive
and flexible question-answering capabilities, covering a wider array of user needs.

Specialized Applications in Domains like Medicine and Law. KBQA-o1 has significant potential for domain-specific
applications, particularly in fields such as medicine and law. These areas require precise reasoning and domain-specific
knowledge to handle intricate and high-stakes queries. Adapting the framework to these domains would involve integrating
specialized knowledge bases and fine-tuning the models to align with domain-specific terminologies and reasoning patterns.
Such advancements could pave the way for impactful real-world applications, including clinical decision support and legal
research.

Extending to Multimodal, Multilingual, and Multi-Agent Systems. Future iterations of KBQA-o1 could extend its
capabilities to multimodal and multilingual settings, enabling the framework to process and reason over diverse input formats
such as images, audio, and text in multiple languages. Additionally, incorporating multi-agent systems could enhance the
framework’s ability to handle collaborative and interactive tasks, where multiple agents contribute to exploring and resolving
complex queries. These advancements would significantly expand the framework’s usability across various scenarios.

23

